at v2.6.31-rc2 3058 lines 90 kB view raw
1/******************************************************************************* 2 3 Intel PRO/100 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29/* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Receive 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * In order to keep updates to the RFD link field from colliding with 110 * hardware writes to mark packets complete, we use the feature that 111 * hardware will not write to a size 0 descriptor and mark the previous 112 * packet as end-of-list (EL). After updating the link, we remove EL 113 * and only then restore the size such that hardware may use the 114 * previous-to-end RFD. 115 * 116 * Under typical operation, the receive unit (RU) is start once, 117 * and the controller happily fills RFDs as frames arrive. If 118 * replacement RFDs cannot be allocated, or the RU goes non-active, 119 * the RU must be restarted. Frame arrival generates an interrupt, 120 * and Rx indication and re-allocation happen in the same context, 121 * therefore no locking is required. A software-generated interrupt 122 * is generated from the watchdog to recover from a failed allocation 123 * scenario where all Rx resources have been indicated and none re- 124 * placed. 125 * 126 * V. Miscellaneous 127 * 128 * VLAN offloading of tagging, stripping and filtering is not 129 * supported, but driver will accommodate the extra 4-byte VLAN tag 130 * for processing by upper layers. Tx/Rx Checksum offloading is not 131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 132 * not supported (hardware limitation). 133 * 134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 135 * 136 * Thanks to JC (jchapman@katalix.com) for helping with 137 * testing/troubleshooting the development driver. 138 * 139 * TODO: 140 * o several entry points race with dev->close 141 * o check for tx-no-resources/stop Q races with tx clean/wake Q 142 * 143 * FIXES: 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 145 * - Stratus87247: protect MDI control register manipulations 146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> 147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs 148 */ 149 150#include <linux/module.h> 151#include <linux/moduleparam.h> 152#include <linux/kernel.h> 153#include <linux/types.h> 154#include <linux/slab.h> 155#include <linux/delay.h> 156#include <linux/init.h> 157#include <linux/pci.h> 158#include <linux/dma-mapping.h> 159#include <linux/netdevice.h> 160#include <linux/etherdevice.h> 161#include <linux/mii.h> 162#include <linux/if_vlan.h> 163#include <linux/skbuff.h> 164#include <linux/ethtool.h> 165#include <linux/string.h> 166#include <linux/firmware.h> 167#include <asm/unaligned.h> 168 169 170#define DRV_NAME "e100" 171#define DRV_EXT "-NAPI" 172#define DRV_VERSION "3.5.24-k2"DRV_EXT 173#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 174#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" 175#define PFX DRV_NAME ": " 176 177#define E100_WATCHDOG_PERIOD (2 * HZ) 178#define E100_NAPI_WEIGHT 16 179 180#define FIRMWARE_D101M "e100/d101m_ucode.bin" 181#define FIRMWARE_D101S "e100/d101s_ucode.bin" 182#define FIRMWARE_D102E "e100/d102e_ucode.bin" 183 184MODULE_DESCRIPTION(DRV_DESCRIPTION); 185MODULE_AUTHOR(DRV_COPYRIGHT); 186MODULE_LICENSE("GPL"); 187MODULE_VERSION(DRV_VERSION); 188MODULE_FIRMWARE(FIRMWARE_D101M); 189MODULE_FIRMWARE(FIRMWARE_D101S); 190MODULE_FIRMWARE(FIRMWARE_D102E); 191 192static int debug = 3; 193static int eeprom_bad_csum_allow = 0; 194static int use_io = 0; 195module_param(debug, int, 0); 196module_param(eeprom_bad_csum_allow, int, 0); 197module_param(use_io, int, 0); 198MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 199MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); 200MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); 201#define DPRINTK(nlevel, klevel, fmt, args...) \ 202 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ 203 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ 204 __func__ , ## args)) 205 206#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 207 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 208 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 209static struct pci_device_id e100_id_table[] = { 210 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 211 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 212 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 213 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 214 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 215 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 216 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 217 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 218 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 219 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 220 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 221 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 222 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 223 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 224 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 225 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 226 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 227 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 228 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 229 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 230 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 231 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 232 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 233 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 234 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 235 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 236 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 237 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 238 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 239 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 240 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 241 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 242 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 243 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 244 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 245 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), 246 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 247 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 248 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 249 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 250 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 251 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 252 { 0, } 253}; 254MODULE_DEVICE_TABLE(pci, e100_id_table); 255 256enum mac { 257 mac_82557_D100_A = 0, 258 mac_82557_D100_B = 1, 259 mac_82557_D100_C = 2, 260 mac_82558_D101_A4 = 4, 261 mac_82558_D101_B0 = 5, 262 mac_82559_D101M = 8, 263 mac_82559_D101S = 9, 264 mac_82550_D102 = 12, 265 mac_82550_D102_C = 13, 266 mac_82551_E = 14, 267 mac_82551_F = 15, 268 mac_82551_10 = 16, 269 mac_unknown = 0xFF, 270}; 271 272enum phy { 273 phy_100a = 0x000003E0, 274 phy_100c = 0x035002A8, 275 phy_82555_tx = 0x015002A8, 276 phy_nsc_tx = 0x5C002000, 277 phy_82562_et = 0x033002A8, 278 phy_82562_em = 0x032002A8, 279 phy_82562_ek = 0x031002A8, 280 phy_82562_eh = 0x017002A8, 281 phy_82552_v = 0xd061004d, 282 phy_unknown = 0xFFFFFFFF, 283}; 284 285/* CSR (Control/Status Registers) */ 286struct csr { 287 struct { 288 u8 status; 289 u8 stat_ack; 290 u8 cmd_lo; 291 u8 cmd_hi; 292 u32 gen_ptr; 293 } scb; 294 u32 port; 295 u16 flash_ctrl; 296 u8 eeprom_ctrl_lo; 297 u8 eeprom_ctrl_hi; 298 u32 mdi_ctrl; 299 u32 rx_dma_count; 300}; 301 302enum scb_status { 303 rus_no_res = 0x08, 304 rus_ready = 0x10, 305 rus_mask = 0x3C, 306}; 307 308enum ru_state { 309 RU_SUSPENDED = 0, 310 RU_RUNNING = 1, 311 RU_UNINITIALIZED = -1, 312}; 313 314enum scb_stat_ack { 315 stat_ack_not_ours = 0x00, 316 stat_ack_sw_gen = 0x04, 317 stat_ack_rnr = 0x10, 318 stat_ack_cu_idle = 0x20, 319 stat_ack_frame_rx = 0x40, 320 stat_ack_cu_cmd_done = 0x80, 321 stat_ack_not_present = 0xFF, 322 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 323 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 324}; 325 326enum scb_cmd_hi { 327 irq_mask_none = 0x00, 328 irq_mask_all = 0x01, 329 irq_sw_gen = 0x02, 330}; 331 332enum scb_cmd_lo { 333 cuc_nop = 0x00, 334 ruc_start = 0x01, 335 ruc_load_base = 0x06, 336 cuc_start = 0x10, 337 cuc_resume = 0x20, 338 cuc_dump_addr = 0x40, 339 cuc_dump_stats = 0x50, 340 cuc_load_base = 0x60, 341 cuc_dump_reset = 0x70, 342}; 343 344enum cuc_dump { 345 cuc_dump_complete = 0x0000A005, 346 cuc_dump_reset_complete = 0x0000A007, 347}; 348 349enum port { 350 software_reset = 0x0000, 351 selftest = 0x0001, 352 selective_reset = 0x0002, 353}; 354 355enum eeprom_ctrl_lo { 356 eesk = 0x01, 357 eecs = 0x02, 358 eedi = 0x04, 359 eedo = 0x08, 360}; 361 362enum mdi_ctrl { 363 mdi_write = 0x04000000, 364 mdi_read = 0x08000000, 365 mdi_ready = 0x10000000, 366}; 367 368enum eeprom_op { 369 op_write = 0x05, 370 op_read = 0x06, 371 op_ewds = 0x10, 372 op_ewen = 0x13, 373}; 374 375enum eeprom_offsets { 376 eeprom_cnfg_mdix = 0x03, 377 eeprom_phy_iface = 0x06, 378 eeprom_id = 0x0A, 379 eeprom_config_asf = 0x0D, 380 eeprom_smbus_addr = 0x90, 381}; 382 383enum eeprom_cnfg_mdix { 384 eeprom_mdix_enabled = 0x0080, 385}; 386 387enum eeprom_phy_iface { 388 NoSuchPhy = 0, 389 I82553AB, 390 I82553C, 391 I82503, 392 DP83840, 393 S80C240, 394 S80C24, 395 I82555, 396 DP83840A = 10, 397}; 398 399enum eeprom_id { 400 eeprom_id_wol = 0x0020, 401}; 402 403enum eeprom_config_asf { 404 eeprom_asf = 0x8000, 405 eeprom_gcl = 0x4000, 406}; 407 408enum cb_status { 409 cb_complete = 0x8000, 410 cb_ok = 0x2000, 411}; 412 413enum cb_command { 414 cb_nop = 0x0000, 415 cb_iaaddr = 0x0001, 416 cb_config = 0x0002, 417 cb_multi = 0x0003, 418 cb_tx = 0x0004, 419 cb_ucode = 0x0005, 420 cb_dump = 0x0006, 421 cb_tx_sf = 0x0008, 422 cb_cid = 0x1f00, 423 cb_i = 0x2000, 424 cb_s = 0x4000, 425 cb_el = 0x8000, 426}; 427 428struct rfd { 429 __le16 status; 430 __le16 command; 431 __le32 link; 432 __le32 rbd; 433 __le16 actual_size; 434 __le16 size; 435}; 436 437struct rx { 438 struct rx *next, *prev; 439 struct sk_buff *skb; 440 dma_addr_t dma_addr; 441}; 442 443#if defined(__BIG_ENDIAN_BITFIELD) 444#define X(a,b) b,a 445#else 446#define X(a,b) a,b 447#endif 448struct config { 449/*0*/ u8 X(byte_count:6, pad0:2); 450/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 451/*2*/ u8 adaptive_ifs; 452/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 453 term_write_cache_line:1), pad3:4); 454/*4*/ u8 X(rx_dma_max_count:7, pad4:1); 455/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 456/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 457 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 458 rx_discard_overruns:1), rx_save_bad_frames:1); 459/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 460 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 461 tx_dynamic_tbd:1); 462/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 463/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 464 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 465/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 466 loopback:2); 467/*11*/ u8 X(linear_priority:3, pad11:5); 468/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 469/*13*/ u8 ip_addr_lo; 470/*14*/ u8 ip_addr_hi; 471/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 472 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 473 pad15_2:1), crs_or_cdt:1); 474/*16*/ u8 fc_delay_lo; 475/*17*/ u8 fc_delay_hi; 476/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 477 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 478/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 479 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 480 full_duplex_force:1), full_duplex_pin:1); 481/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 482/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 483/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 484 u8 pad_d102[9]; 485}; 486 487#define E100_MAX_MULTICAST_ADDRS 64 488struct multi { 489 __le16 count; 490 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 491}; 492 493/* Important: keep total struct u32-aligned */ 494#define UCODE_SIZE 134 495struct cb { 496 __le16 status; 497 __le16 command; 498 __le32 link; 499 union { 500 u8 iaaddr[ETH_ALEN]; 501 __le32 ucode[UCODE_SIZE]; 502 struct config config; 503 struct multi multi; 504 struct { 505 u32 tbd_array; 506 u16 tcb_byte_count; 507 u8 threshold; 508 u8 tbd_count; 509 struct { 510 __le32 buf_addr; 511 __le16 size; 512 u16 eol; 513 } tbd; 514 } tcb; 515 __le32 dump_buffer_addr; 516 } u; 517 struct cb *next, *prev; 518 dma_addr_t dma_addr; 519 struct sk_buff *skb; 520}; 521 522enum loopback { 523 lb_none = 0, lb_mac = 1, lb_phy = 3, 524}; 525 526struct stats { 527 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, 528 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 529 tx_multiple_collisions, tx_total_collisions; 530 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 531 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 532 rx_short_frame_errors; 533 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 534 __le16 xmt_tco_frames, rcv_tco_frames; 535 __le32 complete; 536}; 537 538struct mem { 539 struct { 540 u32 signature; 541 u32 result; 542 } selftest; 543 struct stats stats; 544 u8 dump_buf[596]; 545}; 546 547struct param_range { 548 u32 min; 549 u32 max; 550 u32 count; 551}; 552 553struct params { 554 struct param_range rfds; 555 struct param_range cbs; 556}; 557 558struct nic { 559 /* Begin: frequently used values: keep adjacent for cache effect */ 560 u32 msg_enable ____cacheline_aligned; 561 struct net_device *netdev; 562 struct pci_dev *pdev; 563 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); 564 565 struct rx *rxs ____cacheline_aligned; 566 struct rx *rx_to_use; 567 struct rx *rx_to_clean; 568 struct rfd blank_rfd; 569 enum ru_state ru_running; 570 571 spinlock_t cb_lock ____cacheline_aligned; 572 spinlock_t cmd_lock; 573 struct csr __iomem *csr; 574 enum scb_cmd_lo cuc_cmd; 575 unsigned int cbs_avail; 576 struct napi_struct napi; 577 struct cb *cbs; 578 struct cb *cb_to_use; 579 struct cb *cb_to_send; 580 struct cb *cb_to_clean; 581 __le16 tx_command; 582 /* End: frequently used values: keep adjacent for cache effect */ 583 584 enum { 585 ich = (1 << 0), 586 promiscuous = (1 << 1), 587 multicast_all = (1 << 2), 588 wol_magic = (1 << 3), 589 ich_10h_workaround = (1 << 4), 590 } flags ____cacheline_aligned; 591 592 enum mac mac; 593 enum phy phy; 594 struct params params; 595 struct timer_list watchdog; 596 struct timer_list blink_timer; 597 struct mii_if_info mii; 598 struct work_struct tx_timeout_task; 599 enum loopback loopback; 600 601 struct mem *mem; 602 dma_addr_t dma_addr; 603 604 dma_addr_t cbs_dma_addr; 605 u8 adaptive_ifs; 606 u8 tx_threshold; 607 u32 tx_frames; 608 u32 tx_collisions; 609 u32 tx_deferred; 610 u32 tx_single_collisions; 611 u32 tx_multiple_collisions; 612 u32 tx_fc_pause; 613 u32 tx_tco_frames; 614 615 u32 rx_fc_pause; 616 u32 rx_fc_unsupported; 617 u32 rx_tco_frames; 618 u32 rx_over_length_errors; 619 620 u16 leds; 621 u16 eeprom_wc; 622 __le16 eeprom[256]; 623 spinlock_t mdio_lock; 624}; 625 626static inline void e100_write_flush(struct nic *nic) 627{ 628 /* Flush previous PCI writes through intermediate bridges 629 * by doing a benign read */ 630 (void)ioread8(&nic->csr->scb.status); 631} 632 633static void e100_enable_irq(struct nic *nic) 634{ 635 unsigned long flags; 636 637 spin_lock_irqsave(&nic->cmd_lock, flags); 638 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); 639 e100_write_flush(nic); 640 spin_unlock_irqrestore(&nic->cmd_lock, flags); 641} 642 643static void e100_disable_irq(struct nic *nic) 644{ 645 unsigned long flags; 646 647 spin_lock_irqsave(&nic->cmd_lock, flags); 648 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); 649 e100_write_flush(nic); 650 spin_unlock_irqrestore(&nic->cmd_lock, flags); 651} 652 653static void e100_hw_reset(struct nic *nic) 654{ 655 /* Put CU and RU into idle with a selective reset to get 656 * device off of PCI bus */ 657 iowrite32(selective_reset, &nic->csr->port); 658 e100_write_flush(nic); udelay(20); 659 660 /* Now fully reset device */ 661 iowrite32(software_reset, &nic->csr->port); 662 e100_write_flush(nic); udelay(20); 663 664 /* Mask off our interrupt line - it's unmasked after reset */ 665 e100_disable_irq(nic); 666} 667 668static int e100_self_test(struct nic *nic) 669{ 670 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 671 672 /* Passing the self-test is a pretty good indication 673 * that the device can DMA to/from host memory */ 674 675 nic->mem->selftest.signature = 0; 676 nic->mem->selftest.result = 0xFFFFFFFF; 677 678 iowrite32(selftest | dma_addr, &nic->csr->port); 679 e100_write_flush(nic); 680 /* Wait 10 msec for self-test to complete */ 681 msleep(10); 682 683 /* Interrupts are enabled after self-test */ 684 e100_disable_irq(nic); 685 686 /* Check results of self-test */ 687 if (nic->mem->selftest.result != 0) { 688 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", 689 nic->mem->selftest.result); 690 return -ETIMEDOUT; 691 } 692 if (nic->mem->selftest.signature == 0) { 693 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); 694 return -ETIMEDOUT; 695 } 696 697 return 0; 698} 699 700static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) 701{ 702 u32 cmd_addr_data[3]; 703 u8 ctrl; 704 int i, j; 705 706 /* Three cmds: write/erase enable, write data, write/erase disable */ 707 cmd_addr_data[0] = op_ewen << (addr_len - 2); 708 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 709 le16_to_cpu(data); 710 cmd_addr_data[2] = op_ewds << (addr_len - 2); 711 712 /* Bit-bang cmds to write word to eeprom */ 713 for (j = 0; j < 3; j++) { 714 715 /* Chip select */ 716 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 717 e100_write_flush(nic); udelay(4); 718 719 for (i = 31; i >= 0; i--) { 720 ctrl = (cmd_addr_data[j] & (1 << i)) ? 721 eecs | eedi : eecs; 722 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 723 e100_write_flush(nic); udelay(4); 724 725 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 726 e100_write_flush(nic); udelay(4); 727 } 728 /* Wait 10 msec for cmd to complete */ 729 msleep(10); 730 731 /* Chip deselect */ 732 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 733 e100_write_flush(nic); udelay(4); 734 } 735}; 736 737/* General technique stolen from the eepro100 driver - very clever */ 738static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 739{ 740 u32 cmd_addr_data; 741 u16 data = 0; 742 u8 ctrl; 743 int i; 744 745 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 746 747 /* Chip select */ 748 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 749 e100_write_flush(nic); udelay(4); 750 751 /* Bit-bang to read word from eeprom */ 752 for (i = 31; i >= 0; i--) { 753 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 754 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 755 e100_write_flush(nic); udelay(4); 756 757 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 758 e100_write_flush(nic); udelay(4); 759 760 /* Eeprom drives a dummy zero to EEDO after receiving 761 * complete address. Use this to adjust addr_len. */ 762 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); 763 if (!(ctrl & eedo) && i > 16) { 764 *addr_len -= (i - 16); 765 i = 17; 766 } 767 768 data = (data << 1) | (ctrl & eedo ? 1 : 0); 769 } 770 771 /* Chip deselect */ 772 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 773 e100_write_flush(nic); udelay(4); 774 775 return cpu_to_le16(data); 776}; 777 778/* Load entire EEPROM image into driver cache and validate checksum */ 779static int e100_eeprom_load(struct nic *nic) 780{ 781 u16 addr, addr_len = 8, checksum = 0; 782 783 /* Try reading with an 8-bit addr len to discover actual addr len */ 784 e100_eeprom_read(nic, &addr_len, 0); 785 nic->eeprom_wc = 1 << addr_len; 786 787 for (addr = 0; addr < nic->eeprom_wc; addr++) { 788 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 789 if (addr < nic->eeprom_wc - 1) 790 checksum += le16_to_cpu(nic->eeprom[addr]); 791 } 792 793 /* The checksum, stored in the last word, is calculated such that 794 * the sum of words should be 0xBABA */ 795 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { 796 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); 797 if (!eeprom_bad_csum_allow) 798 return -EAGAIN; 799 } 800 801 return 0; 802} 803 804/* Save (portion of) driver EEPROM cache to device and update checksum */ 805static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 806{ 807 u16 addr, addr_len = 8, checksum = 0; 808 809 /* Try reading with an 8-bit addr len to discover actual addr len */ 810 e100_eeprom_read(nic, &addr_len, 0); 811 nic->eeprom_wc = 1 << addr_len; 812 813 if (start + count >= nic->eeprom_wc) 814 return -EINVAL; 815 816 for (addr = start; addr < start + count; addr++) 817 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 818 819 /* The checksum, stored in the last word, is calculated such that 820 * the sum of words should be 0xBABA */ 821 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) 822 checksum += le16_to_cpu(nic->eeprom[addr]); 823 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); 824 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 825 nic->eeprom[nic->eeprom_wc - 1]); 826 827 return 0; 828} 829 830#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 831#define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 832static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 833{ 834 unsigned long flags; 835 unsigned int i; 836 int err = 0; 837 838 spin_lock_irqsave(&nic->cmd_lock, flags); 839 840 /* Previous command is accepted when SCB clears */ 841 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 842 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) 843 break; 844 cpu_relax(); 845 if (unlikely(i > E100_WAIT_SCB_FAST)) 846 udelay(5); 847 } 848 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 849 err = -EAGAIN; 850 goto err_unlock; 851 } 852 853 if (unlikely(cmd != cuc_resume)) 854 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); 855 iowrite8(cmd, &nic->csr->scb.cmd_lo); 856 857err_unlock: 858 spin_unlock_irqrestore(&nic->cmd_lock, flags); 859 860 return err; 861} 862 863static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 864 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 865{ 866 struct cb *cb; 867 unsigned long flags; 868 int err = 0; 869 870 spin_lock_irqsave(&nic->cb_lock, flags); 871 872 if (unlikely(!nic->cbs_avail)) { 873 err = -ENOMEM; 874 goto err_unlock; 875 } 876 877 cb = nic->cb_to_use; 878 nic->cb_to_use = cb->next; 879 nic->cbs_avail--; 880 cb->skb = skb; 881 882 if (unlikely(!nic->cbs_avail)) 883 err = -ENOSPC; 884 885 cb_prepare(nic, cb, skb); 886 887 /* Order is important otherwise we'll be in a race with h/w: 888 * set S-bit in current first, then clear S-bit in previous. */ 889 cb->command |= cpu_to_le16(cb_s); 890 wmb(); 891 cb->prev->command &= cpu_to_le16(~cb_s); 892 893 while (nic->cb_to_send != nic->cb_to_use) { 894 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 895 nic->cb_to_send->dma_addr))) { 896 /* Ok, here's where things get sticky. It's 897 * possible that we can't schedule the command 898 * because the controller is too busy, so 899 * let's just queue the command and try again 900 * when another command is scheduled. */ 901 if (err == -ENOSPC) { 902 //request a reset 903 schedule_work(&nic->tx_timeout_task); 904 } 905 break; 906 } else { 907 nic->cuc_cmd = cuc_resume; 908 nic->cb_to_send = nic->cb_to_send->next; 909 } 910 } 911 912err_unlock: 913 spin_unlock_irqrestore(&nic->cb_lock, flags); 914 915 return err; 916} 917 918static int mdio_read(struct net_device *netdev, int addr, int reg) 919{ 920 struct nic *nic = netdev_priv(netdev); 921 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); 922} 923 924static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 925{ 926 struct nic *nic = netdev_priv(netdev); 927 928 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); 929} 930 931/* the standard mdio_ctrl() function for usual MII-compliant hardware */ 932static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 933{ 934 u32 data_out = 0; 935 unsigned int i; 936 unsigned long flags; 937 938 939 /* 940 * Stratus87247: we shouldn't be writing the MDI control 941 * register until the Ready bit shows True. Also, since 942 * manipulation of the MDI control registers is a multi-step 943 * procedure it should be done under lock. 944 */ 945 spin_lock_irqsave(&nic->mdio_lock, flags); 946 for (i = 100; i; --i) { 947 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) 948 break; 949 udelay(20); 950 } 951 if (unlikely(!i)) { 952 printk("e100.mdio_ctrl(%s) won't go Ready\n", 953 nic->netdev->name ); 954 spin_unlock_irqrestore(&nic->mdio_lock, flags); 955 return 0; /* No way to indicate timeout error */ 956 } 957 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 958 959 for (i = 0; i < 100; i++) { 960 udelay(20); 961 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) 962 break; 963 } 964 spin_unlock_irqrestore(&nic->mdio_lock, flags); 965 DPRINTK(HW, DEBUG, 966 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 967 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); 968 return (u16)data_out; 969} 970 971/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ 972static u16 mdio_ctrl_phy_82552_v(struct nic *nic, 973 u32 addr, 974 u32 dir, 975 u32 reg, 976 u16 data) 977{ 978 if ((reg == MII_BMCR) && (dir == mdi_write)) { 979 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { 980 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, 981 MII_ADVERTISE); 982 983 /* 984 * Workaround Si issue where sometimes the part will not 985 * autoneg to 100Mbps even when advertised. 986 */ 987 if (advert & ADVERTISE_100FULL) 988 data |= BMCR_SPEED100 | BMCR_FULLDPLX; 989 else if (advert & ADVERTISE_100HALF) 990 data |= BMCR_SPEED100; 991 } 992 } 993 return mdio_ctrl_hw(nic, addr, dir, reg, data); 994} 995 996/* Fully software-emulated mdio_ctrl() function for cards without 997 * MII-compliant PHYs. 998 * For now, this is mainly geared towards 80c24 support; in case of further 999 * requirements for other types (i82503, ...?) either extend this mechanism 1000 * or split it, whichever is cleaner. 1001 */ 1002static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, 1003 u32 addr, 1004 u32 dir, 1005 u32 reg, 1006 u16 data) 1007{ 1008 /* might need to allocate a netdev_priv'ed register array eventually 1009 * to be able to record state changes, but for now 1010 * some fully hardcoded register handling ought to be ok I guess. */ 1011 1012 if (dir == mdi_read) { 1013 switch (reg) { 1014 case MII_BMCR: 1015 /* Auto-negotiation, right? */ 1016 return BMCR_ANENABLE | 1017 BMCR_FULLDPLX; 1018 case MII_BMSR: 1019 return BMSR_LSTATUS /* for mii_link_ok() */ | 1020 BMSR_ANEGCAPABLE | 1021 BMSR_10FULL; 1022 case MII_ADVERTISE: 1023 /* 80c24 is a "combo card" PHY, right? */ 1024 return ADVERTISE_10HALF | 1025 ADVERTISE_10FULL; 1026 default: 1027 DPRINTK(HW, DEBUG, 1028 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1029 dir == mdi_read ? "READ" : "WRITE", addr, reg, data); 1030 return 0xFFFF; 1031 } 1032 } else { 1033 switch (reg) { 1034 default: 1035 DPRINTK(HW, DEBUG, 1036 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1037 dir == mdi_read ? "READ" : "WRITE", addr, reg, data); 1038 return 0xFFFF; 1039 } 1040 } 1041} 1042static inline int e100_phy_supports_mii(struct nic *nic) 1043{ 1044 /* for now, just check it by comparing whether we 1045 are using MII software emulation. 1046 */ 1047 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); 1048} 1049 1050static void e100_get_defaults(struct nic *nic) 1051{ 1052 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 1053 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 1054 1055 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 1056 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; 1057 if (nic->mac == mac_unknown) 1058 nic->mac = mac_82557_D100_A; 1059 1060 nic->params.rfds = rfds; 1061 nic->params.cbs = cbs; 1062 1063 /* Quadwords to DMA into FIFO before starting frame transmit */ 1064 nic->tx_threshold = 0xE0; 1065 1066 /* no interrupt for every tx completion, delay = 256us if not 557 */ 1067 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 1068 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 1069 1070 /* Template for a freshly allocated RFD */ 1071 nic->blank_rfd.command = 0; 1072 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); 1073 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 1074 1075 /* MII setup */ 1076 nic->mii.phy_id_mask = 0x1F; 1077 nic->mii.reg_num_mask = 0x1F; 1078 nic->mii.dev = nic->netdev; 1079 nic->mii.mdio_read = mdio_read; 1080 nic->mii.mdio_write = mdio_write; 1081} 1082 1083static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1084{ 1085 struct config *config = &cb->u.config; 1086 u8 *c = (u8 *)config; 1087 1088 cb->command = cpu_to_le16(cb_config); 1089 1090 memset(config, 0, sizeof(struct config)); 1091 1092 config->byte_count = 0x16; /* bytes in this struct */ 1093 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 1094 config->direct_rx_dma = 0x1; /* reserved */ 1095 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 1096 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 1097 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 1098 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 1099 if (e100_phy_supports_mii(nic)) 1100 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ 1101 config->pad10 = 0x6; 1102 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 1103 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 1104 config->ifs = 0x6; /* x16 = inter frame spacing */ 1105 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 1106 config->pad15_1 = 0x1; 1107 config->pad15_2 = 0x1; 1108 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 1109 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 1110 config->tx_padding = 0x1; /* 1=pad short frames */ 1111 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 1112 config->pad18 = 0x1; 1113 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 1114 config->pad20_1 = 0x1F; 1115 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 1116 config->pad21_1 = 0x5; 1117 1118 config->adaptive_ifs = nic->adaptive_ifs; 1119 config->loopback = nic->loopback; 1120 1121 if (nic->mii.force_media && nic->mii.full_duplex) 1122 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1123 1124 if (nic->flags & promiscuous || nic->loopback) { 1125 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1126 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1127 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1128 } 1129 1130 if (nic->flags & multicast_all) 1131 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1132 1133 /* disable WoL when up */ 1134 if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1135 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1136 1137 if (nic->mac >= mac_82558_D101_A4) { 1138 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1139 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1140 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1141 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1142 if (nic->mac >= mac_82559_D101M) { 1143 config->tno_intr = 0x1; /* TCO stats enable */ 1144 /* Enable TCO in extended config */ 1145 if (nic->mac >= mac_82551_10) { 1146 config->byte_count = 0x20; /* extended bytes */ 1147 config->rx_d102_mode = 0x1; /* GMRC for TCO */ 1148 } 1149 } else { 1150 config->standard_stat_counter = 0x0; 1151 } 1152 } 1153 1154 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1155 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 1156 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1157 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 1158 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1159 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 1160} 1161 1162/************************************************************************* 1163* CPUSaver parameters 1164* 1165* All CPUSaver parameters are 16-bit literals that are part of a 1166* "move immediate value" instruction. By changing the value of 1167* the literal in the instruction before the code is loaded, the 1168* driver can change the algorithm. 1169* 1170* INTDELAY - This loads the dead-man timer with its initial value. 1171* When this timer expires the interrupt is asserted, and the 1172* timer is reset each time a new packet is received. (see 1173* BUNDLEMAX below to set the limit on number of chained packets) 1174* The current default is 0x600 or 1536. Experiments show that 1175* the value should probably stay within the 0x200 - 0x1000. 1176* 1177* BUNDLEMAX - 1178* This sets the maximum number of frames that will be bundled. In 1179* some situations, such as the TCP windowing algorithm, it may be 1180* better to limit the growth of the bundle size than let it go as 1181* high as it can, because that could cause too much added latency. 1182* The default is six, because this is the number of packets in the 1183* default TCP window size. A value of 1 would make CPUSaver indicate 1184* an interrupt for every frame received. If you do not want to put 1185* a limit on the bundle size, set this value to xFFFF. 1186* 1187* BUNDLESMALL - 1188* This contains a bit-mask describing the minimum size frame that 1189* will be bundled. The default masks the lower 7 bits, which means 1190* that any frame less than 128 bytes in length will not be bundled, 1191* but will instead immediately generate an interrupt. This does 1192* not affect the current bundle in any way. Any frame that is 128 1193* bytes or large will be bundled normally. This feature is meant 1194* to provide immediate indication of ACK frames in a TCP environment. 1195* Customers were seeing poor performance when a machine with CPUSaver 1196* enabled was sending but not receiving. The delay introduced when 1197* the ACKs were received was enough to reduce total throughput, because 1198* the sender would sit idle until the ACK was finally seen. 1199* 1200* The current default is 0xFF80, which masks out the lower 7 bits. 1201* This means that any frame which is x7F (127) bytes or smaller 1202* will cause an immediate interrupt. Because this value must be a 1203* bit mask, there are only a few valid values that can be used. To 1204* turn this feature off, the driver can write the value xFFFF to the 1205* lower word of this instruction (in the same way that the other 1206* parameters are used). Likewise, a value of 0xF800 (2047) would 1207* cause an interrupt to be generated for every frame, because all 1208* standard Ethernet frames are <= 2047 bytes in length. 1209*************************************************************************/ 1210 1211/* if you wish to disable the ucode functionality, while maintaining the 1212 * workarounds it provides, set the following defines to: 1213 * BUNDLESMALL 0 1214 * BUNDLEMAX 1 1215 * INTDELAY 1 1216 */ 1217#define BUNDLESMALL 1 1218#define BUNDLEMAX (u16)6 1219#define INTDELAY (u16)1536 /* 0x600 */ 1220 1221/* Initialize firmware */ 1222static const struct firmware *e100_request_firmware(struct nic *nic) 1223{ 1224 const char *fw_name; 1225 const struct firmware *fw; 1226 u8 timer, bundle, min_size; 1227 int err; 1228 1229 /* do not load u-code for ICH devices */ 1230 if (nic->flags & ich) 1231 return NULL; 1232 1233 /* Search for ucode match against h/w revision */ 1234 if (nic->mac == mac_82559_D101M) 1235 fw_name = FIRMWARE_D101M; 1236 else if (nic->mac == mac_82559_D101S) 1237 fw_name = FIRMWARE_D101S; 1238 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) 1239 fw_name = FIRMWARE_D102E; 1240 else /* No ucode on other devices */ 1241 return NULL; 1242 1243 err = request_firmware(&fw, fw_name, &nic->pdev->dev); 1244 if (err) { 1245 DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n", 1246 fw_name, err); 1247 return ERR_PTR(err); 1248 } 1249 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes 1250 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ 1251 if (fw->size != UCODE_SIZE * 4 + 3) { 1252 DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n", 1253 fw_name, fw->size); 1254 release_firmware(fw); 1255 return ERR_PTR(-EINVAL); 1256 } 1257 1258 /* Read timer, bundle and min_size from end of firmware blob */ 1259 timer = fw->data[UCODE_SIZE * 4]; 1260 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1261 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1262 1263 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || 1264 min_size >= UCODE_SIZE) { 1265 DPRINTK(PROBE, ERR, 1266 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", 1267 fw_name, timer, bundle, min_size); 1268 release_firmware(fw); 1269 return ERR_PTR(-EINVAL); 1270 } 1271 /* OK, firmware is validated and ready to use... */ 1272 return fw; 1273} 1274 1275static void e100_setup_ucode(struct nic *nic, struct cb *cb, 1276 struct sk_buff *skb) 1277{ 1278 const struct firmware *fw = (void *)skb; 1279 u8 timer, bundle, min_size; 1280 1281 /* It's not a real skb; we just abused the fact that e100_exec_cb 1282 will pass it through to here... */ 1283 cb->skb = NULL; 1284 1285 /* firmware is stored as little endian already */ 1286 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); 1287 1288 /* Read timer, bundle and min_size from end of firmware blob */ 1289 timer = fw->data[UCODE_SIZE * 4]; 1290 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1291 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1292 1293 /* Insert user-tunable settings in cb->u.ucode */ 1294 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); 1295 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); 1296 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); 1297 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); 1298 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); 1299 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); 1300 1301 cb->command = cpu_to_le16(cb_ucode | cb_el); 1302} 1303 1304static inline int e100_load_ucode_wait(struct nic *nic) 1305{ 1306 const struct firmware *fw; 1307 int err = 0, counter = 50; 1308 struct cb *cb = nic->cb_to_clean; 1309 1310 fw = e100_request_firmware(nic); 1311 /* If it's NULL, then no ucode is required */ 1312 if (!fw || IS_ERR(fw)) 1313 return PTR_ERR(fw); 1314 1315 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) 1316 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); 1317 1318 /* must restart cuc */ 1319 nic->cuc_cmd = cuc_start; 1320 1321 /* wait for completion */ 1322 e100_write_flush(nic); 1323 udelay(10); 1324 1325 /* wait for possibly (ouch) 500ms */ 1326 while (!(cb->status & cpu_to_le16(cb_complete))) { 1327 msleep(10); 1328 if (!--counter) break; 1329 } 1330 1331 /* ack any interrupts, something could have been set */ 1332 iowrite8(~0, &nic->csr->scb.stat_ack); 1333 1334 /* if the command failed, or is not OK, notify and return */ 1335 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1336 DPRINTK(PROBE,ERR, "ucode load failed\n"); 1337 err = -EPERM; 1338 } 1339 1340 return err; 1341} 1342 1343static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1344 struct sk_buff *skb) 1345{ 1346 cb->command = cpu_to_le16(cb_iaaddr); 1347 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1348} 1349 1350static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1351{ 1352 cb->command = cpu_to_le16(cb_dump); 1353 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1354 offsetof(struct mem, dump_buf)); 1355} 1356 1357static int e100_phy_check_without_mii(struct nic *nic) 1358{ 1359 u8 phy_type; 1360 int without_mii; 1361 1362 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; 1363 1364 switch (phy_type) { 1365 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ 1366 case I82503: /* Non-MII PHY; UNTESTED! */ 1367 case S80C24: /* Non-MII PHY; tested and working */ 1368 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": 1369 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 1370 * doesn't have a programming interface of any sort. The 1371 * media is sensed automatically based on how the link partner 1372 * is configured. This is, in essence, manual configuration. 1373 */ 1374 DPRINTK(PROBE, INFO, 1375 "found MII-less i82503 or 80c24 or other PHY\n"); 1376 1377 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; 1378 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ 1379 1380 /* these might be needed for certain MII-less cards... 1381 * nic->flags |= ich; 1382 * nic->flags |= ich_10h_workaround; */ 1383 1384 without_mii = 1; 1385 break; 1386 default: 1387 without_mii = 0; 1388 break; 1389 } 1390 return without_mii; 1391} 1392 1393#define NCONFIG_AUTO_SWITCH 0x0080 1394#define MII_NSC_CONG MII_RESV1 1395#define NSC_CONG_ENABLE 0x0100 1396#define NSC_CONG_TXREADY 0x0400 1397#define ADVERTISE_FC_SUPPORTED 0x0400 1398static int e100_phy_init(struct nic *nic) 1399{ 1400 struct net_device *netdev = nic->netdev; 1401 u32 addr; 1402 u16 bmcr, stat, id_lo, id_hi, cong; 1403 1404 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1405 for (addr = 0; addr < 32; addr++) { 1406 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1407 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1408 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1409 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1410 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1411 break; 1412 } 1413 if (addr == 32) { 1414 /* uhoh, no PHY detected: check whether we seem to be some 1415 * weird, rare variant which is *known* to not have any MII. 1416 * But do this AFTER MII checking only, since this does 1417 * lookup of EEPROM values which may easily be unreliable. */ 1418 if (e100_phy_check_without_mii(nic)) 1419 return 0; /* simply return and hope for the best */ 1420 else { 1421 /* for unknown cases log a fatal error */ 1422 DPRINTK(HW, ERR, 1423 "Failed to locate any known PHY, aborting.\n"); 1424 return -EAGAIN; 1425 } 1426 } else 1427 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); 1428 1429 /* Isolate all the PHY ids */ 1430 for (addr = 0; addr < 32; addr++) 1431 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1432 /* Select the discovered PHY */ 1433 bmcr &= ~BMCR_ISOLATE; 1434 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); 1435 1436 /* Get phy ID */ 1437 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1438 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1439 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1440 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); 1441 1442 /* Handle National tx phys */ 1443#define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1444 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1445 /* Disable congestion control */ 1446 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1447 cong |= NSC_CONG_TXREADY; 1448 cong &= ~NSC_CONG_ENABLE; 1449 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1450 } 1451 1452 if (nic->phy == phy_82552_v) { 1453 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); 1454 1455 /* assign special tweaked mdio_ctrl() function */ 1456 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; 1457 1458 /* Workaround Si not advertising flow-control during autoneg */ 1459 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1460 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); 1461 1462 /* Reset for the above changes to take effect */ 1463 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1464 bmcr |= BMCR_RESET; 1465 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); 1466 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1467 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1468 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { 1469 /* enable/disable MDI/MDI-X auto-switching. */ 1470 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1471 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1472 } 1473 1474 return 0; 1475} 1476 1477static int e100_hw_init(struct nic *nic) 1478{ 1479 int err; 1480 1481 e100_hw_reset(nic); 1482 1483 DPRINTK(HW, ERR, "e100_hw_init\n"); 1484 if (!in_interrupt() && (err = e100_self_test(nic))) 1485 return err; 1486 1487 if ((err = e100_phy_init(nic))) 1488 return err; 1489 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1490 return err; 1491 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1492 return err; 1493 if ((err = e100_load_ucode_wait(nic))) 1494 return err; 1495 if ((err = e100_exec_cb(nic, NULL, e100_configure))) 1496 return err; 1497 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1498 return err; 1499 if ((err = e100_exec_cmd(nic, cuc_dump_addr, 1500 nic->dma_addr + offsetof(struct mem, stats)))) 1501 return err; 1502 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1503 return err; 1504 1505 e100_disable_irq(nic); 1506 1507 return 0; 1508} 1509 1510static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1511{ 1512 struct net_device *netdev = nic->netdev; 1513 struct dev_mc_list *list = netdev->mc_list; 1514 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); 1515 1516 cb->command = cpu_to_le16(cb_multi); 1517 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1518 for (i = 0; list && i < count; i++, list = list->next) 1519 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, 1520 ETH_ALEN); 1521} 1522 1523static void e100_set_multicast_list(struct net_device *netdev) 1524{ 1525 struct nic *nic = netdev_priv(netdev); 1526 1527 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", 1528 netdev->mc_count, netdev->flags); 1529 1530 if (netdev->flags & IFF_PROMISC) 1531 nic->flags |= promiscuous; 1532 else 1533 nic->flags &= ~promiscuous; 1534 1535 if (netdev->flags & IFF_ALLMULTI || 1536 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) 1537 nic->flags |= multicast_all; 1538 else 1539 nic->flags &= ~multicast_all; 1540 1541 e100_exec_cb(nic, NULL, e100_configure); 1542 e100_exec_cb(nic, NULL, e100_multi); 1543} 1544 1545static void e100_update_stats(struct nic *nic) 1546{ 1547 struct net_device *dev = nic->netdev; 1548 struct net_device_stats *ns = &dev->stats; 1549 struct stats *s = &nic->mem->stats; 1550 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1551 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : 1552 &s->complete; 1553 1554 /* Device's stats reporting may take several microseconds to 1555 * complete, so we're always waiting for results of the 1556 * previous command. */ 1557 1558 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { 1559 *complete = 0; 1560 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1561 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1562 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1563 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1564 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1565 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1566 ns->collisions += nic->tx_collisions; 1567 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1568 le32_to_cpu(s->tx_lost_crs); 1569 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + 1570 nic->rx_over_length_errors; 1571 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1572 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1573 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1574 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1575 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1576 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1577 le32_to_cpu(s->rx_alignment_errors) + 1578 le32_to_cpu(s->rx_short_frame_errors) + 1579 le32_to_cpu(s->rx_cdt_errors); 1580 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1581 nic->tx_single_collisions += 1582 le32_to_cpu(s->tx_single_collisions); 1583 nic->tx_multiple_collisions += 1584 le32_to_cpu(s->tx_multiple_collisions); 1585 if (nic->mac >= mac_82558_D101_A4) { 1586 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1587 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1588 nic->rx_fc_unsupported += 1589 le32_to_cpu(s->fc_rcv_unsupported); 1590 if (nic->mac >= mac_82559_D101M) { 1591 nic->tx_tco_frames += 1592 le16_to_cpu(s->xmt_tco_frames); 1593 nic->rx_tco_frames += 1594 le16_to_cpu(s->rcv_tco_frames); 1595 } 1596 } 1597 } 1598 1599 1600 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) 1601 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); 1602} 1603 1604static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1605{ 1606 /* Adjust inter-frame-spacing (IFS) between two transmits if 1607 * we're getting collisions on a half-duplex connection. */ 1608 1609 if (duplex == DUPLEX_HALF) { 1610 u32 prev = nic->adaptive_ifs; 1611 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1612 1613 if ((nic->tx_frames / 32 < nic->tx_collisions) && 1614 (nic->tx_frames > min_frames)) { 1615 if (nic->adaptive_ifs < 60) 1616 nic->adaptive_ifs += 5; 1617 } else if (nic->tx_frames < min_frames) { 1618 if (nic->adaptive_ifs >= 5) 1619 nic->adaptive_ifs -= 5; 1620 } 1621 if (nic->adaptive_ifs != prev) 1622 e100_exec_cb(nic, NULL, e100_configure); 1623 } 1624} 1625 1626static void e100_watchdog(unsigned long data) 1627{ 1628 struct nic *nic = (struct nic *)data; 1629 struct ethtool_cmd cmd; 1630 1631 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); 1632 1633 /* mii library handles link maintenance tasks */ 1634 1635 mii_ethtool_gset(&nic->mii, &cmd); 1636 1637 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1638 printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n", 1639 nic->netdev->name, 1640 cmd.speed == SPEED_100 ? "100" : "10", 1641 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); 1642 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1643 printk(KERN_INFO "e100: %s NIC Link is Down\n", 1644 nic->netdev->name); 1645 } 1646 1647 mii_check_link(&nic->mii); 1648 1649 /* Software generated interrupt to recover from (rare) Rx 1650 * allocation failure. 1651 * Unfortunately have to use a spinlock to not re-enable interrupts 1652 * accidentally, due to hardware that shares a register between the 1653 * interrupt mask bit and the SW Interrupt generation bit */ 1654 spin_lock_irq(&nic->cmd_lock); 1655 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1656 e100_write_flush(nic); 1657 spin_unlock_irq(&nic->cmd_lock); 1658 1659 e100_update_stats(nic); 1660 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); 1661 1662 if (nic->mac <= mac_82557_D100_C) 1663 /* Issue a multicast command to workaround a 557 lock up */ 1664 e100_set_multicast_list(nic->netdev); 1665 1666 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) 1667 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1668 nic->flags |= ich_10h_workaround; 1669 else 1670 nic->flags &= ~ich_10h_workaround; 1671 1672 mod_timer(&nic->watchdog, 1673 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); 1674} 1675 1676static void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1677 struct sk_buff *skb) 1678{ 1679 cb->command = nic->tx_command; 1680 /* interrupt every 16 packets regardless of delay */ 1681 if ((nic->cbs_avail & ~15) == nic->cbs_avail) 1682 cb->command |= cpu_to_le16(cb_i); 1683 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1684 cb->u.tcb.tcb_byte_count = 0; 1685 cb->u.tcb.threshold = nic->tx_threshold; 1686 cb->u.tcb.tbd_count = 1; 1687 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1688 skb->data, skb->len, PCI_DMA_TODEVICE)); 1689 /* check for mapping failure? */ 1690 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1691} 1692 1693static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 1694{ 1695 struct nic *nic = netdev_priv(netdev); 1696 int err; 1697 1698 if (nic->flags & ich_10h_workaround) { 1699 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1700 Issue a NOP command followed by a 1us delay before 1701 issuing the Tx command. */ 1702 if (e100_exec_cmd(nic, cuc_nop, 0)) 1703 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); 1704 udelay(1); 1705 } 1706 1707 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1708 1709 switch (err) { 1710 case -ENOSPC: 1711 /* We queued the skb, but now we're out of space. */ 1712 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); 1713 netif_stop_queue(netdev); 1714 break; 1715 case -ENOMEM: 1716 /* This is a hard error - log it. */ 1717 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); 1718 netif_stop_queue(netdev); 1719 return NETDEV_TX_BUSY; 1720 } 1721 1722 netdev->trans_start = jiffies; 1723 return 0; 1724} 1725 1726static int e100_tx_clean(struct nic *nic) 1727{ 1728 struct net_device *dev = nic->netdev; 1729 struct cb *cb; 1730 int tx_cleaned = 0; 1731 1732 spin_lock(&nic->cb_lock); 1733 1734 /* Clean CBs marked complete */ 1735 for (cb = nic->cb_to_clean; 1736 cb->status & cpu_to_le16(cb_complete); 1737 cb = nic->cb_to_clean = cb->next) { 1738 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n", 1739 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), 1740 cb->status); 1741 1742 if (likely(cb->skb != NULL)) { 1743 dev->stats.tx_packets++; 1744 dev->stats.tx_bytes += cb->skb->len; 1745 1746 pci_unmap_single(nic->pdev, 1747 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1748 le16_to_cpu(cb->u.tcb.tbd.size), 1749 PCI_DMA_TODEVICE); 1750 dev_kfree_skb_any(cb->skb); 1751 cb->skb = NULL; 1752 tx_cleaned = 1; 1753 } 1754 cb->status = 0; 1755 nic->cbs_avail++; 1756 } 1757 1758 spin_unlock(&nic->cb_lock); 1759 1760 /* Recover from running out of Tx resources in xmit_frame */ 1761 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1762 netif_wake_queue(nic->netdev); 1763 1764 return tx_cleaned; 1765} 1766 1767static void e100_clean_cbs(struct nic *nic) 1768{ 1769 if (nic->cbs) { 1770 while (nic->cbs_avail != nic->params.cbs.count) { 1771 struct cb *cb = nic->cb_to_clean; 1772 if (cb->skb) { 1773 pci_unmap_single(nic->pdev, 1774 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1775 le16_to_cpu(cb->u.tcb.tbd.size), 1776 PCI_DMA_TODEVICE); 1777 dev_kfree_skb(cb->skb); 1778 } 1779 nic->cb_to_clean = nic->cb_to_clean->next; 1780 nic->cbs_avail++; 1781 } 1782 pci_free_consistent(nic->pdev, 1783 sizeof(struct cb) * nic->params.cbs.count, 1784 nic->cbs, nic->cbs_dma_addr); 1785 nic->cbs = NULL; 1786 nic->cbs_avail = 0; 1787 } 1788 nic->cuc_cmd = cuc_start; 1789 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1790 nic->cbs; 1791} 1792 1793static int e100_alloc_cbs(struct nic *nic) 1794{ 1795 struct cb *cb; 1796 unsigned int i, count = nic->params.cbs.count; 1797 1798 nic->cuc_cmd = cuc_start; 1799 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1800 nic->cbs_avail = 0; 1801 1802 nic->cbs = pci_alloc_consistent(nic->pdev, 1803 sizeof(struct cb) * count, &nic->cbs_dma_addr); 1804 if (!nic->cbs) 1805 return -ENOMEM; 1806 1807 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { 1808 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1809 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1810 1811 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1812 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1813 ((i+1) % count) * sizeof(struct cb)); 1814 cb->skb = NULL; 1815 } 1816 1817 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1818 nic->cbs_avail = count; 1819 1820 return 0; 1821} 1822 1823static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1824{ 1825 if (!nic->rxs) return; 1826 if (RU_SUSPENDED != nic->ru_running) return; 1827 1828 /* handle init time starts */ 1829 if (!rx) rx = nic->rxs; 1830 1831 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1832 if (rx->skb) { 1833 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1834 nic->ru_running = RU_RUNNING; 1835 } 1836} 1837 1838#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) 1839static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1840{ 1841 if (!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN))) 1842 return -ENOMEM; 1843 1844 /* Align, init, and map the RFD. */ 1845 skb_reserve(rx->skb, NET_IP_ALIGN); 1846 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); 1847 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1848 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1849 1850 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { 1851 dev_kfree_skb_any(rx->skb); 1852 rx->skb = NULL; 1853 rx->dma_addr = 0; 1854 return -ENOMEM; 1855 } 1856 1857 /* Link the RFD to end of RFA by linking previous RFD to 1858 * this one. We are safe to touch the previous RFD because 1859 * it is protected by the before last buffer's el bit being set */ 1860 if (rx->prev->skb) { 1861 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1862 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); 1863 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1864 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1865 } 1866 1867 return 0; 1868} 1869 1870static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1871 unsigned int *work_done, unsigned int work_to_do) 1872{ 1873 struct net_device *dev = nic->netdev; 1874 struct sk_buff *skb = rx->skb; 1875 struct rfd *rfd = (struct rfd *)skb->data; 1876 u16 rfd_status, actual_size; 1877 1878 if (unlikely(work_done && *work_done >= work_to_do)) 1879 return -EAGAIN; 1880 1881 /* Need to sync before taking a peek at cb_complete bit */ 1882 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1883 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1884 rfd_status = le16_to_cpu(rfd->status); 1885 1886 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); 1887 1888 /* If data isn't ready, nothing to indicate */ 1889 if (unlikely(!(rfd_status & cb_complete))) { 1890 /* If the next buffer has the el bit, but we think the receiver 1891 * is still running, check to see if it really stopped while 1892 * we had interrupts off. 1893 * This allows for a fast restart without re-enabling 1894 * interrupts */ 1895 if ((le16_to_cpu(rfd->command) & cb_el) && 1896 (RU_RUNNING == nic->ru_running)) 1897 1898 if (ioread8(&nic->csr->scb.status) & rus_no_res) 1899 nic->ru_running = RU_SUSPENDED; 1900 return -ENODATA; 1901 } 1902 1903 /* Get actual data size */ 1904 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1905 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1906 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1907 1908 /* Get data */ 1909 pci_unmap_single(nic->pdev, rx->dma_addr, 1910 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1911 1912 /* If this buffer has the el bit, but we think the receiver 1913 * is still running, check to see if it really stopped while 1914 * we had interrupts off. 1915 * This allows for a fast restart without re-enabling interrupts. 1916 * This can happen when the RU sees the size change but also sees 1917 * the el bit set. */ 1918 if ((le16_to_cpu(rfd->command) & cb_el) && 1919 (RU_RUNNING == nic->ru_running)) { 1920 1921 if (ioread8(&nic->csr->scb.status) & rus_no_res) 1922 nic->ru_running = RU_SUSPENDED; 1923 } 1924 1925 /* Pull off the RFD and put the actual data (minus eth hdr) */ 1926 skb_reserve(skb, sizeof(struct rfd)); 1927 skb_put(skb, actual_size); 1928 skb->protocol = eth_type_trans(skb, nic->netdev); 1929 1930 if (unlikely(!(rfd_status & cb_ok))) { 1931 /* Don't indicate if hardware indicates errors */ 1932 dev_kfree_skb_any(skb); 1933 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { 1934 /* Don't indicate oversized frames */ 1935 nic->rx_over_length_errors++; 1936 dev_kfree_skb_any(skb); 1937 } else { 1938 dev->stats.rx_packets++; 1939 dev->stats.rx_bytes += actual_size; 1940 netif_receive_skb(skb); 1941 if (work_done) 1942 (*work_done)++; 1943 } 1944 1945 rx->skb = NULL; 1946 1947 return 0; 1948} 1949 1950static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 1951 unsigned int work_to_do) 1952{ 1953 struct rx *rx; 1954 int restart_required = 0, err = 0; 1955 struct rx *old_before_last_rx, *new_before_last_rx; 1956 struct rfd *old_before_last_rfd, *new_before_last_rfd; 1957 1958 /* Indicate newly arrived packets */ 1959 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 1960 err = e100_rx_indicate(nic, rx, work_done, work_to_do); 1961 /* Hit quota or no more to clean */ 1962 if (-EAGAIN == err || -ENODATA == err) 1963 break; 1964 } 1965 1966 1967 /* On EAGAIN, hit quota so have more work to do, restart once 1968 * cleanup is complete. 1969 * Else, are we already rnr? then pay attention!!! this ensures that 1970 * the state machine progression never allows a start with a 1971 * partially cleaned list, avoiding a race between hardware 1972 * and rx_to_clean when in NAPI mode */ 1973 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) 1974 restart_required = 1; 1975 1976 old_before_last_rx = nic->rx_to_use->prev->prev; 1977 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; 1978 1979 /* Alloc new skbs to refill list */ 1980 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 1981 if (unlikely(e100_rx_alloc_skb(nic, rx))) 1982 break; /* Better luck next time (see watchdog) */ 1983 } 1984 1985 new_before_last_rx = nic->rx_to_use->prev->prev; 1986 if (new_before_last_rx != old_before_last_rx) { 1987 /* Set the el-bit on the buffer that is before the last buffer. 1988 * This lets us update the next pointer on the last buffer 1989 * without worrying about hardware touching it. 1990 * We set the size to 0 to prevent hardware from touching this 1991 * buffer. 1992 * When the hardware hits the before last buffer with el-bit 1993 * and size of 0, it will RNR interrupt, the RUS will go into 1994 * the No Resources state. It will not complete nor write to 1995 * this buffer. */ 1996 new_before_last_rfd = 1997 (struct rfd *)new_before_last_rx->skb->data; 1998 new_before_last_rfd->size = 0; 1999 new_before_last_rfd->command |= cpu_to_le16(cb_el); 2000 pci_dma_sync_single_for_device(nic->pdev, 2001 new_before_last_rx->dma_addr, sizeof(struct rfd), 2002 PCI_DMA_BIDIRECTIONAL); 2003 2004 /* Now that we have a new stopping point, we can clear the old 2005 * stopping point. We must sync twice to get the proper 2006 * ordering on the hardware side of things. */ 2007 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); 2008 pci_dma_sync_single_for_device(nic->pdev, 2009 old_before_last_rx->dma_addr, sizeof(struct rfd), 2010 PCI_DMA_BIDIRECTIONAL); 2011 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 2012 pci_dma_sync_single_for_device(nic->pdev, 2013 old_before_last_rx->dma_addr, sizeof(struct rfd), 2014 PCI_DMA_BIDIRECTIONAL); 2015 } 2016 2017 if (restart_required) { 2018 // ack the rnr? 2019 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); 2020 e100_start_receiver(nic, nic->rx_to_clean); 2021 if (work_done) 2022 (*work_done)++; 2023 } 2024} 2025 2026static void e100_rx_clean_list(struct nic *nic) 2027{ 2028 struct rx *rx; 2029 unsigned int i, count = nic->params.rfds.count; 2030 2031 nic->ru_running = RU_UNINITIALIZED; 2032 2033 if (nic->rxs) { 2034 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2035 if (rx->skb) { 2036 pci_unmap_single(nic->pdev, rx->dma_addr, 2037 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2038 dev_kfree_skb(rx->skb); 2039 } 2040 } 2041 kfree(nic->rxs); 2042 nic->rxs = NULL; 2043 } 2044 2045 nic->rx_to_use = nic->rx_to_clean = NULL; 2046} 2047 2048static int e100_rx_alloc_list(struct nic *nic) 2049{ 2050 struct rx *rx; 2051 unsigned int i, count = nic->params.rfds.count; 2052 struct rfd *before_last; 2053 2054 nic->rx_to_use = nic->rx_to_clean = NULL; 2055 nic->ru_running = RU_UNINITIALIZED; 2056 2057 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) 2058 return -ENOMEM; 2059 2060 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2061 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 2062 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 2063 if (e100_rx_alloc_skb(nic, rx)) { 2064 e100_rx_clean_list(nic); 2065 return -ENOMEM; 2066 } 2067 } 2068 /* Set the el-bit on the buffer that is before the last buffer. 2069 * This lets us update the next pointer on the last buffer without 2070 * worrying about hardware touching it. 2071 * We set the size to 0 to prevent hardware from touching this buffer. 2072 * When the hardware hits the before last buffer with el-bit and size 2073 * of 0, it will RNR interrupt, the RU will go into the No Resources 2074 * state. It will not complete nor write to this buffer. */ 2075 rx = nic->rxs->prev->prev; 2076 before_last = (struct rfd *)rx->skb->data; 2077 before_last->command |= cpu_to_le16(cb_el); 2078 before_last->size = 0; 2079 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 2080 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 2081 2082 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 2083 nic->ru_running = RU_SUSPENDED; 2084 2085 return 0; 2086} 2087 2088static irqreturn_t e100_intr(int irq, void *dev_id) 2089{ 2090 struct net_device *netdev = dev_id; 2091 struct nic *nic = netdev_priv(netdev); 2092 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); 2093 2094 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); 2095 2096 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ 2097 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 2098 return IRQ_NONE; 2099 2100 /* Ack interrupt(s) */ 2101 iowrite8(stat_ack, &nic->csr->scb.stat_ack); 2102 2103 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 2104 if (stat_ack & stat_ack_rnr) 2105 nic->ru_running = RU_SUSPENDED; 2106 2107 if (likely(napi_schedule_prep(&nic->napi))) { 2108 e100_disable_irq(nic); 2109 __napi_schedule(&nic->napi); 2110 } 2111 2112 return IRQ_HANDLED; 2113} 2114 2115static int e100_poll(struct napi_struct *napi, int budget) 2116{ 2117 struct nic *nic = container_of(napi, struct nic, napi); 2118 unsigned int work_done = 0; 2119 2120 e100_rx_clean(nic, &work_done, budget); 2121 e100_tx_clean(nic); 2122 2123 /* If budget not fully consumed, exit the polling mode */ 2124 if (work_done < budget) { 2125 napi_complete(napi); 2126 e100_enable_irq(nic); 2127 } 2128 2129 return work_done; 2130} 2131 2132#ifdef CONFIG_NET_POLL_CONTROLLER 2133static void e100_netpoll(struct net_device *netdev) 2134{ 2135 struct nic *nic = netdev_priv(netdev); 2136 2137 e100_disable_irq(nic); 2138 e100_intr(nic->pdev->irq, netdev); 2139 e100_tx_clean(nic); 2140 e100_enable_irq(nic); 2141} 2142#endif 2143 2144static int e100_set_mac_address(struct net_device *netdev, void *p) 2145{ 2146 struct nic *nic = netdev_priv(netdev); 2147 struct sockaddr *addr = p; 2148 2149 if (!is_valid_ether_addr(addr->sa_data)) 2150 return -EADDRNOTAVAIL; 2151 2152 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2153 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2154 2155 return 0; 2156} 2157 2158static int e100_change_mtu(struct net_device *netdev, int new_mtu) 2159{ 2160 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 2161 return -EINVAL; 2162 netdev->mtu = new_mtu; 2163 return 0; 2164} 2165 2166static int e100_asf(struct nic *nic) 2167{ 2168 /* ASF can be enabled from eeprom */ 2169 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2170 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 2171 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 2172 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); 2173} 2174 2175static int e100_up(struct nic *nic) 2176{ 2177 int err; 2178 2179 if ((err = e100_rx_alloc_list(nic))) 2180 return err; 2181 if ((err = e100_alloc_cbs(nic))) 2182 goto err_rx_clean_list; 2183 if ((err = e100_hw_init(nic))) 2184 goto err_clean_cbs; 2185 e100_set_multicast_list(nic->netdev); 2186 e100_start_receiver(nic, NULL); 2187 mod_timer(&nic->watchdog, jiffies); 2188 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, 2189 nic->netdev->name, nic->netdev))) 2190 goto err_no_irq; 2191 netif_wake_queue(nic->netdev); 2192 napi_enable(&nic->napi); 2193 /* enable ints _after_ enabling poll, preventing a race between 2194 * disable ints+schedule */ 2195 e100_enable_irq(nic); 2196 return 0; 2197 2198err_no_irq: 2199 del_timer_sync(&nic->watchdog); 2200err_clean_cbs: 2201 e100_clean_cbs(nic); 2202err_rx_clean_list: 2203 e100_rx_clean_list(nic); 2204 return err; 2205} 2206 2207static void e100_down(struct nic *nic) 2208{ 2209 /* wait here for poll to complete */ 2210 napi_disable(&nic->napi); 2211 netif_stop_queue(nic->netdev); 2212 e100_hw_reset(nic); 2213 free_irq(nic->pdev->irq, nic->netdev); 2214 del_timer_sync(&nic->watchdog); 2215 netif_carrier_off(nic->netdev); 2216 e100_clean_cbs(nic); 2217 e100_rx_clean_list(nic); 2218} 2219 2220static void e100_tx_timeout(struct net_device *netdev) 2221{ 2222 struct nic *nic = netdev_priv(netdev); 2223 2224 /* Reset outside of interrupt context, to avoid request_irq 2225 * in interrupt context */ 2226 schedule_work(&nic->tx_timeout_task); 2227} 2228 2229static void e100_tx_timeout_task(struct work_struct *work) 2230{ 2231 struct nic *nic = container_of(work, struct nic, tx_timeout_task); 2232 struct net_device *netdev = nic->netdev; 2233 2234 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", 2235 ioread8(&nic->csr->scb.status)); 2236 e100_down(netdev_priv(netdev)); 2237 e100_up(netdev_priv(netdev)); 2238} 2239 2240static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2241{ 2242 int err; 2243 struct sk_buff *skb; 2244 2245 /* Use driver resources to perform internal MAC or PHY 2246 * loopback test. A single packet is prepared and transmitted 2247 * in loopback mode, and the test passes if the received 2248 * packet compares byte-for-byte to the transmitted packet. */ 2249 2250 if ((err = e100_rx_alloc_list(nic))) 2251 return err; 2252 if ((err = e100_alloc_cbs(nic))) 2253 goto err_clean_rx; 2254 2255 /* ICH PHY loopback is broken so do MAC loopback instead */ 2256 if (nic->flags & ich && loopback_mode == lb_phy) 2257 loopback_mode = lb_mac; 2258 2259 nic->loopback = loopback_mode; 2260 if ((err = e100_hw_init(nic))) 2261 goto err_loopback_none; 2262 2263 if (loopback_mode == lb_phy) 2264 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2265 BMCR_LOOPBACK); 2266 2267 e100_start_receiver(nic, NULL); 2268 2269 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { 2270 err = -ENOMEM; 2271 goto err_loopback_none; 2272 } 2273 skb_put(skb, ETH_DATA_LEN); 2274 memset(skb->data, 0xFF, ETH_DATA_LEN); 2275 e100_xmit_frame(skb, nic->netdev); 2276 2277 msleep(10); 2278 2279 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, 2280 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2281 2282 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2283 skb->data, ETH_DATA_LEN)) 2284 err = -EAGAIN; 2285 2286err_loopback_none: 2287 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2288 nic->loopback = lb_none; 2289 e100_clean_cbs(nic); 2290 e100_hw_reset(nic); 2291err_clean_rx: 2292 e100_rx_clean_list(nic); 2293 return err; 2294} 2295 2296#define MII_LED_CONTROL 0x1B 2297#define E100_82552_LED_OVERRIDE 0x19 2298#define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ 2299#define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ 2300static void e100_blink_led(unsigned long data) 2301{ 2302 struct nic *nic = (struct nic *)data; 2303 enum led_state { 2304 led_on = 0x01, 2305 led_off = 0x04, 2306 led_on_559 = 0x05, 2307 led_on_557 = 0x07, 2308 }; 2309 u16 led_reg = MII_LED_CONTROL; 2310 2311 if (nic->phy == phy_82552_v) { 2312 led_reg = E100_82552_LED_OVERRIDE; 2313 2314 nic->leds = (nic->leds == E100_82552_LED_ON) ? 2315 E100_82552_LED_OFF : E100_82552_LED_ON; 2316 } else { 2317 nic->leds = (nic->leds & led_on) ? led_off : 2318 (nic->mac < mac_82559_D101M) ? led_on_557 : 2319 led_on_559; 2320 } 2321 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds); 2322 mod_timer(&nic->blink_timer, jiffies + HZ / 4); 2323} 2324 2325static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2326{ 2327 struct nic *nic = netdev_priv(netdev); 2328 return mii_ethtool_gset(&nic->mii, cmd); 2329} 2330 2331static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2332{ 2333 struct nic *nic = netdev_priv(netdev); 2334 int err; 2335 2336 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2337 err = mii_ethtool_sset(&nic->mii, cmd); 2338 e100_exec_cb(nic, NULL, e100_configure); 2339 2340 return err; 2341} 2342 2343static void e100_get_drvinfo(struct net_device *netdev, 2344 struct ethtool_drvinfo *info) 2345{ 2346 struct nic *nic = netdev_priv(netdev); 2347 strcpy(info->driver, DRV_NAME); 2348 strcpy(info->version, DRV_VERSION); 2349 strcpy(info->fw_version, "N/A"); 2350 strcpy(info->bus_info, pci_name(nic->pdev)); 2351} 2352 2353#define E100_PHY_REGS 0x1C 2354static int e100_get_regs_len(struct net_device *netdev) 2355{ 2356 struct nic *nic = netdev_priv(netdev); 2357 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); 2358} 2359 2360static void e100_get_regs(struct net_device *netdev, 2361 struct ethtool_regs *regs, void *p) 2362{ 2363 struct nic *nic = netdev_priv(netdev); 2364 u32 *buff = p; 2365 int i; 2366 2367 regs->version = (1 << 24) | nic->pdev->revision; 2368 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | 2369 ioread8(&nic->csr->scb.cmd_lo) << 16 | 2370 ioread16(&nic->csr->scb.status); 2371 for (i = E100_PHY_REGS; i >= 0; i--) 2372 buff[1 + E100_PHY_REGS - i] = 2373 mdio_read(netdev, nic->mii.phy_id, i); 2374 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2375 e100_exec_cb(nic, NULL, e100_dump); 2376 msleep(10); 2377 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2378 sizeof(nic->mem->dump_buf)); 2379} 2380 2381static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2382{ 2383 struct nic *nic = netdev_priv(netdev); 2384 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2385 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2386} 2387 2388static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2389{ 2390 struct nic *nic = netdev_priv(netdev); 2391 2392 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || 2393 !device_can_wakeup(&nic->pdev->dev)) 2394 return -EOPNOTSUPP; 2395 2396 if (wol->wolopts) 2397 nic->flags |= wol_magic; 2398 else 2399 nic->flags &= ~wol_magic; 2400 2401 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); 2402 2403 e100_exec_cb(nic, NULL, e100_configure); 2404 2405 return 0; 2406} 2407 2408static u32 e100_get_msglevel(struct net_device *netdev) 2409{ 2410 struct nic *nic = netdev_priv(netdev); 2411 return nic->msg_enable; 2412} 2413 2414static void e100_set_msglevel(struct net_device *netdev, u32 value) 2415{ 2416 struct nic *nic = netdev_priv(netdev); 2417 nic->msg_enable = value; 2418} 2419 2420static int e100_nway_reset(struct net_device *netdev) 2421{ 2422 struct nic *nic = netdev_priv(netdev); 2423 return mii_nway_restart(&nic->mii); 2424} 2425 2426static u32 e100_get_link(struct net_device *netdev) 2427{ 2428 struct nic *nic = netdev_priv(netdev); 2429 return mii_link_ok(&nic->mii); 2430} 2431 2432static int e100_get_eeprom_len(struct net_device *netdev) 2433{ 2434 struct nic *nic = netdev_priv(netdev); 2435 return nic->eeprom_wc << 1; 2436} 2437 2438#define E100_EEPROM_MAGIC 0x1234 2439static int e100_get_eeprom(struct net_device *netdev, 2440 struct ethtool_eeprom *eeprom, u8 *bytes) 2441{ 2442 struct nic *nic = netdev_priv(netdev); 2443 2444 eeprom->magic = E100_EEPROM_MAGIC; 2445 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2446 2447 return 0; 2448} 2449 2450static int e100_set_eeprom(struct net_device *netdev, 2451 struct ethtool_eeprom *eeprom, u8 *bytes) 2452{ 2453 struct nic *nic = netdev_priv(netdev); 2454 2455 if (eeprom->magic != E100_EEPROM_MAGIC) 2456 return -EINVAL; 2457 2458 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2459 2460 return e100_eeprom_save(nic, eeprom->offset >> 1, 2461 (eeprom->len >> 1) + 1); 2462} 2463 2464static void e100_get_ringparam(struct net_device *netdev, 2465 struct ethtool_ringparam *ring) 2466{ 2467 struct nic *nic = netdev_priv(netdev); 2468 struct param_range *rfds = &nic->params.rfds; 2469 struct param_range *cbs = &nic->params.cbs; 2470 2471 ring->rx_max_pending = rfds->max; 2472 ring->tx_max_pending = cbs->max; 2473 ring->rx_mini_max_pending = 0; 2474 ring->rx_jumbo_max_pending = 0; 2475 ring->rx_pending = rfds->count; 2476 ring->tx_pending = cbs->count; 2477 ring->rx_mini_pending = 0; 2478 ring->rx_jumbo_pending = 0; 2479} 2480 2481static int e100_set_ringparam(struct net_device *netdev, 2482 struct ethtool_ringparam *ring) 2483{ 2484 struct nic *nic = netdev_priv(netdev); 2485 struct param_range *rfds = &nic->params.rfds; 2486 struct param_range *cbs = &nic->params.cbs; 2487 2488 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2489 return -EINVAL; 2490 2491 if (netif_running(netdev)) 2492 e100_down(nic); 2493 rfds->count = max(ring->rx_pending, rfds->min); 2494 rfds->count = min(rfds->count, rfds->max); 2495 cbs->count = max(ring->tx_pending, cbs->min); 2496 cbs->count = min(cbs->count, cbs->max); 2497 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", 2498 rfds->count, cbs->count); 2499 if (netif_running(netdev)) 2500 e100_up(nic); 2501 2502 return 0; 2503} 2504 2505static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2506 "Link test (on/offline)", 2507 "Eeprom test (on/offline)", 2508 "Self test (offline)", 2509 "Mac loopback (offline)", 2510 "Phy loopback (offline)", 2511}; 2512#define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) 2513 2514static void e100_diag_test(struct net_device *netdev, 2515 struct ethtool_test *test, u64 *data) 2516{ 2517 struct ethtool_cmd cmd; 2518 struct nic *nic = netdev_priv(netdev); 2519 int i, err; 2520 2521 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2522 data[0] = !mii_link_ok(&nic->mii); 2523 data[1] = e100_eeprom_load(nic); 2524 if (test->flags & ETH_TEST_FL_OFFLINE) { 2525 2526 /* save speed, duplex & autoneg settings */ 2527 err = mii_ethtool_gset(&nic->mii, &cmd); 2528 2529 if (netif_running(netdev)) 2530 e100_down(nic); 2531 data[2] = e100_self_test(nic); 2532 data[3] = e100_loopback_test(nic, lb_mac); 2533 data[4] = e100_loopback_test(nic, lb_phy); 2534 2535 /* restore speed, duplex & autoneg settings */ 2536 err = mii_ethtool_sset(&nic->mii, &cmd); 2537 2538 if (netif_running(netdev)) 2539 e100_up(nic); 2540 } 2541 for (i = 0; i < E100_TEST_LEN; i++) 2542 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2543 2544 msleep_interruptible(4 * 1000); 2545} 2546 2547static int e100_phys_id(struct net_device *netdev, u32 data) 2548{ 2549 struct nic *nic = netdev_priv(netdev); 2550 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : 2551 MII_LED_CONTROL; 2552 2553 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 2554 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); 2555 mod_timer(&nic->blink_timer, jiffies); 2556 msleep_interruptible(data * 1000); 2557 del_timer_sync(&nic->blink_timer); 2558 mdio_write(netdev, nic->mii.phy_id, led_reg, 0); 2559 2560 return 0; 2561} 2562 2563static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2564 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2565 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2566 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2567 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2568 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2569 "tx_heartbeat_errors", "tx_window_errors", 2570 /* device-specific stats */ 2571 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2572 "tx_flow_control_pause", "rx_flow_control_pause", 2573 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2574}; 2575#define E100_NET_STATS_LEN 21 2576#define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) 2577 2578static int e100_get_sset_count(struct net_device *netdev, int sset) 2579{ 2580 switch (sset) { 2581 case ETH_SS_TEST: 2582 return E100_TEST_LEN; 2583 case ETH_SS_STATS: 2584 return E100_STATS_LEN; 2585 default: 2586 return -EOPNOTSUPP; 2587 } 2588} 2589 2590static void e100_get_ethtool_stats(struct net_device *netdev, 2591 struct ethtool_stats *stats, u64 *data) 2592{ 2593 struct nic *nic = netdev_priv(netdev); 2594 int i; 2595 2596 for (i = 0; i < E100_NET_STATS_LEN; i++) 2597 data[i] = ((unsigned long *)&netdev->stats)[i]; 2598 2599 data[i++] = nic->tx_deferred; 2600 data[i++] = nic->tx_single_collisions; 2601 data[i++] = nic->tx_multiple_collisions; 2602 data[i++] = nic->tx_fc_pause; 2603 data[i++] = nic->rx_fc_pause; 2604 data[i++] = nic->rx_fc_unsupported; 2605 data[i++] = nic->tx_tco_frames; 2606 data[i++] = nic->rx_tco_frames; 2607} 2608 2609static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2610{ 2611 switch (stringset) { 2612 case ETH_SS_TEST: 2613 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2614 break; 2615 case ETH_SS_STATS: 2616 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2617 break; 2618 } 2619} 2620 2621static const struct ethtool_ops e100_ethtool_ops = { 2622 .get_settings = e100_get_settings, 2623 .set_settings = e100_set_settings, 2624 .get_drvinfo = e100_get_drvinfo, 2625 .get_regs_len = e100_get_regs_len, 2626 .get_regs = e100_get_regs, 2627 .get_wol = e100_get_wol, 2628 .set_wol = e100_set_wol, 2629 .get_msglevel = e100_get_msglevel, 2630 .set_msglevel = e100_set_msglevel, 2631 .nway_reset = e100_nway_reset, 2632 .get_link = e100_get_link, 2633 .get_eeprom_len = e100_get_eeprom_len, 2634 .get_eeprom = e100_get_eeprom, 2635 .set_eeprom = e100_set_eeprom, 2636 .get_ringparam = e100_get_ringparam, 2637 .set_ringparam = e100_set_ringparam, 2638 .self_test = e100_diag_test, 2639 .get_strings = e100_get_strings, 2640 .phys_id = e100_phys_id, 2641 .get_ethtool_stats = e100_get_ethtool_stats, 2642 .get_sset_count = e100_get_sset_count, 2643}; 2644 2645static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2646{ 2647 struct nic *nic = netdev_priv(netdev); 2648 2649 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2650} 2651 2652static int e100_alloc(struct nic *nic) 2653{ 2654 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2655 &nic->dma_addr); 2656 return nic->mem ? 0 : -ENOMEM; 2657} 2658 2659static void e100_free(struct nic *nic) 2660{ 2661 if (nic->mem) { 2662 pci_free_consistent(nic->pdev, sizeof(struct mem), 2663 nic->mem, nic->dma_addr); 2664 nic->mem = NULL; 2665 } 2666} 2667 2668static int e100_open(struct net_device *netdev) 2669{ 2670 struct nic *nic = netdev_priv(netdev); 2671 int err = 0; 2672 2673 netif_carrier_off(netdev); 2674 if ((err = e100_up(nic))) 2675 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); 2676 return err; 2677} 2678 2679static int e100_close(struct net_device *netdev) 2680{ 2681 e100_down(netdev_priv(netdev)); 2682 return 0; 2683} 2684 2685static const struct net_device_ops e100_netdev_ops = { 2686 .ndo_open = e100_open, 2687 .ndo_stop = e100_close, 2688 .ndo_start_xmit = e100_xmit_frame, 2689 .ndo_validate_addr = eth_validate_addr, 2690 .ndo_set_multicast_list = e100_set_multicast_list, 2691 .ndo_set_mac_address = e100_set_mac_address, 2692 .ndo_change_mtu = e100_change_mtu, 2693 .ndo_do_ioctl = e100_do_ioctl, 2694 .ndo_tx_timeout = e100_tx_timeout, 2695#ifdef CONFIG_NET_POLL_CONTROLLER 2696 .ndo_poll_controller = e100_netpoll, 2697#endif 2698}; 2699 2700static int __devinit e100_probe(struct pci_dev *pdev, 2701 const struct pci_device_id *ent) 2702{ 2703 struct net_device *netdev; 2704 struct nic *nic; 2705 int err; 2706 2707 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) { 2708 if (((1 << debug) - 1) & NETIF_MSG_PROBE) 2709 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); 2710 return -ENOMEM; 2711 } 2712 2713 netdev->netdev_ops = &e100_netdev_ops; 2714 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2715 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2716 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2717 2718 nic = netdev_priv(netdev); 2719 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); 2720 nic->netdev = netdev; 2721 nic->pdev = pdev; 2722 nic->msg_enable = (1 << debug) - 1; 2723 nic->mdio_ctrl = mdio_ctrl_hw; 2724 pci_set_drvdata(pdev, netdev); 2725 2726 if ((err = pci_enable_device(pdev))) { 2727 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); 2728 goto err_out_free_dev; 2729 } 2730 2731 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2732 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " 2733 "base address, aborting.\n"); 2734 err = -ENODEV; 2735 goto err_out_disable_pdev; 2736 } 2737 2738 if ((err = pci_request_regions(pdev, DRV_NAME))) { 2739 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); 2740 goto err_out_disable_pdev; 2741 } 2742 2743 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 2744 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); 2745 goto err_out_free_res; 2746 } 2747 2748 SET_NETDEV_DEV(netdev, &pdev->dev); 2749 2750 if (use_io) 2751 DPRINTK(PROBE, INFO, "using i/o access mode\n"); 2752 2753 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); 2754 if (!nic->csr) { 2755 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); 2756 err = -ENOMEM; 2757 goto err_out_free_res; 2758 } 2759 2760 if (ent->driver_data) 2761 nic->flags |= ich; 2762 else 2763 nic->flags &= ~ich; 2764 2765 e100_get_defaults(nic); 2766 2767 /* locks must be initialized before calling hw_reset */ 2768 spin_lock_init(&nic->cb_lock); 2769 spin_lock_init(&nic->cmd_lock); 2770 spin_lock_init(&nic->mdio_lock); 2771 2772 /* Reset the device before pci_set_master() in case device is in some 2773 * funky state and has an interrupt pending - hint: we don't have the 2774 * interrupt handler registered yet. */ 2775 e100_hw_reset(nic); 2776 2777 pci_set_master(pdev); 2778 2779 init_timer(&nic->watchdog); 2780 nic->watchdog.function = e100_watchdog; 2781 nic->watchdog.data = (unsigned long)nic; 2782 init_timer(&nic->blink_timer); 2783 nic->blink_timer.function = e100_blink_led; 2784 nic->blink_timer.data = (unsigned long)nic; 2785 2786 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); 2787 2788 if ((err = e100_alloc(nic))) { 2789 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); 2790 goto err_out_iounmap; 2791 } 2792 2793 if ((err = e100_eeprom_load(nic))) 2794 goto err_out_free; 2795 2796 e100_phy_init(nic); 2797 2798 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2799 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); 2800 if (!is_valid_ether_addr(netdev->perm_addr)) { 2801 if (!eeprom_bad_csum_allow) { 2802 DPRINTK(PROBE, ERR, "Invalid MAC address from " 2803 "EEPROM, aborting.\n"); 2804 err = -EAGAIN; 2805 goto err_out_free; 2806 } else { 2807 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, " 2808 "you MUST configure one.\n"); 2809 } 2810 } 2811 2812 /* Wol magic packet can be enabled from eeprom */ 2813 if ((nic->mac >= mac_82558_D101_A4) && 2814 (nic->eeprom[eeprom_id] & eeprom_id_wol)) { 2815 nic->flags |= wol_magic; 2816 device_set_wakeup_enable(&pdev->dev, true); 2817 } 2818 2819 /* ack any pending wake events, disable PME */ 2820 pci_pme_active(pdev, false); 2821 2822 strcpy(netdev->name, "eth%d"); 2823 if ((err = register_netdev(netdev))) { 2824 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); 2825 goto err_out_free; 2826 } 2827 2828 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n", 2829 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), 2830 pdev->irq, netdev->dev_addr); 2831 2832 return 0; 2833 2834err_out_free: 2835 e100_free(nic); 2836err_out_iounmap: 2837 pci_iounmap(pdev, nic->csr); 2838err_out_free_res: 2839 pci_release_regions(pdev); 2840err_out_disable_pdev: 2841 pci_disable_device(pdev); 2842err_out_free_dev: 2843 pci_set_drvdata(pdev, NULL); 2844 free_netdev(netdev); 2845 return err; 2846} 2847 2848static void __devexit e100_remove(struct pci_dev *pdev) 2849{ 2850 struct net_device *netdev = pci_get_drvdata(pdev); 2851 2852 if (netdev) { 2853 struct nic *nic = netdev_priv(netdev); 2854 unregister_netdev(netdev); 2855 e100_free(nic); 2856 pci_iounmap(pdev, nic->csr); 2857 free_netdev(netdev); 2858 pci_release_regions(pdev); 2859 pci_disable_device(pdev); 2860 pci_set_drvdata(pdev, NULL); 2861 } 2862} 2863 2864#define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ 2865#define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ 2866#define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ 2867static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) 2868{ 2869 struct net_device *netdev = pci_get_drvdata(pdev); 2870 struct nic *nic = netdev_priv(netdev); 2871 2872 if (netif_running(netdev)) 2873 e100_down(nic); 2874 netif_device_detach(netdev); 2875 2876 pci_save_state(pdev); 2877 2878 if ((nic->flags & wol_magic) | e100_asf(nic)) { 2879 /* enable reverse auto-negotiation */ 2880 if (nic->phy == phy_82552_v) { 2881 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 2882 E100_82552_SMARTSPEED); 2883 2884 mdio_write(netdev, nic->mii.phy_id, 2885 E100_82552_SMARTSPEED, smartspeed | 2886 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); 2887 } 2888 *enable_wake = true; 2889 } else { 2890 *enable_wake = false; 2891 } 2892 2893 pci_disable_device(pdev); 2894} 2895 2896static int __e100_power_off(struct pci_dev *pdev, bool wake) 2897{ 2898 if (wake) 2899 return pci_prepare_to_sleep(pdev); 2900 2901 pci_wake_from_d3(pdev, false); 2902 pci_set_power_state(pdev, PCI_D3hot); 2903 2904 return 0; 2905} 2906 2907#ifdef CONFIG_PM 2908static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 2909{ 2910 bool wake; 2911 __e100_shutdown(pdev, &wake); 2912 return __e100_power_off(pdev, wake); 2913} 2914 2915static int e100_resume(struct pci_dev *pdev) 2916{ 2917 struct net_device *netdev = pci_get_drvdata(pdev); 2918 struct nic *nic = netdev_priv(netdev); 2919 2920 pci_set_power_state(pdev, PCI_D0); 2921 pci_restore_state(pdev); 2922 /* ack any pending wake events, disable PME */ 2923 pci_enable_wake(pdev, 0, 0); 2924 2925 /* disable reverse auto-negotiation */ 2926 if (nic->phy == phy_82552_v) { 2927 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 2928 E100_82552_SMARTSPEED); 2929 2930 mdio_write(netdev, nic->mii.phy_id, 2931 E100_82552_SMARTSPEED, 2932 smartspeed & ~(E100_82552_REV_ANEG)); 2933 } 2934 2935 netif_device_attach(netdev); 2936 if (netif_running(netdev)) 2937 e100_up(nic); 2938 2939 return 0; 2940} 2941#endif /* CONFIG_PM */ 2942 2943static void e100_shutdown(struct pci_dev *pdev) 2944{ 2945 bool wake; 2946 __e100_shutdown(pdev, &wake); 2947 if (system_state == SYSTEM_POWER_OFF) 2948 __e100_power_off(pdev, wake); 2949} 2950 2951/* ------------------ PCI Error Recovery infrastructure -------------- */ 2952/** 2953 * e100_io_error_detected - called when PCI error is detected. 2954 * @pdev: Pointer to PCI device 2955 * @state: The current pci connection state 2956 */ 2957static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2958{ 2959 struct net_device *netdev = pci_get_drvdata(pdev); 2960 struct nic *nic = netdev_priv(netdev); 2961 2962 netif_device_detach(netdev); 2963 2964 if (state == pci_channel_io_perm_failure) 2965 return PCI_ERS_RESULT_DISCONNECT; 2966 2967 if (netif_running(netdev)) 2968 e100_down(nic); 2969 pci_disable_device(pdev); 2970 2971 /* Request a slot reset. */ 2972 return PCI_ERS_RESULT_NEED_RESET; 2973} 2974 2975/** 2976 * e100_io_slot_reset - called after the pci bus has been reset. 2977 * @pdev: Pointer to PCI device 2978 * 2979 * Restart the card from scratch. 2980 */ 2981static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) 2982{ 2983 struct net_device *netdev = pci_get_drvdata(pdev); 2984 struct nic *nic = netdev_priv(netdev); 2985 2986 if (pci_enable_device(pdev)) { 2987 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n"); 2988 return PCI_ERS_RESULT_DISCONNECT; 2989 } 2990 pci_set_master(pdev); 2991 2992 /* Only one device per card can do a reset */ 2993 if (0 != PCI_FUNC(pdev->devfn)) 2994 return PCI_ERS_RESULT_RECOVERED; 2995 e100_hw_reset(nic); 2996 e100_phy_init(nic); 2997 2998 return PCI_ERS_RESULT_RECOVERED; 2999} 3000 3001/** 3002 * e100_io_resume - resume normal operations 3003 * @pdev: Pointer to PCI device 3004 * 3005 * Resume normal operations after an error recovery 3006 * sequence has been completed. 3007 */ 3008static void e100_io_resume(struct pci_dev *pdev) 3009{ 3010 struct net_device *netdev = pci_get_drvdata(pdev); 3011 struct nic *nic = netdev_priv(netdev); 3012 3013 /* ack any pending wake events, disable PME */ 3014 pci_enable_wake(pdev, 0, 0); 3015 3016 netif_device_attach(netdev); 3017 if (netif_running(netdev)) { 3018 e100_open(netdev); 3019 mod_timer(&nic->watchdog, jiffies); 3020 } 3021} 3022 3023static struct pci_error_handlers e100_err_handler = { 3024 .error_detected = e100_io_error_detected, 3025 .slot_reset = e100_io_slot_reset, 3026 .resume = e100_io_resume, 3027}; 3028 3029static struct pci_driver e100_driver = { 3030 .name = DRV_NAME, 3031 .id_table = e100_id_table, 3032 .probe = e100_probe, 3033 .remove = __devexit_p(e100_remove), 3034#ifdef CONFIG_PM 3035 /* Power Management hooks */ 3036 .suspend = e100_suspend, 3037 .resume = e100_resume, 3038#endif 3039 .shutdown = e100_shutdown, 3040 .err_handler = &e100_err_handler, 3041}; 3042 3043static int __init e100_init_module(void) 3044{ 3045 if (((1 << debug) - 1) & NETIF_MSG_DRV) { 3046 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 3047 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); 3048 } 3049 return pci_register_driver(&e100_driver); 3050} 3051 3052static void __exit e100_cleanup_module(void) 3053{ 3054 pci_unregister_driver(&e100_driver); 3055} 3056 3057module_init(e100_init_module); 3058module_exit(e100_cleanup_module);