at v2.6.31-rc2 1696 lines 42 kB view raw
1/* 2 * Network device driver for the BMAC ethernet controller on 3 * Apple Powermacs. Assumes it's under a DBDMA controller. 4 * 5 * Copyright (C) 1998 Randy Gobbel. 6 * 7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to 8 * dynamic procfs inode. 9 */ 10#include <linux/module.h> 11#include <linux/kernel.h> 12#include <linux/netdevice.h> 13#include <linux/etherdevice.h> 14#include <linux/delay.h> 15#include <linux/string.h> 16#include <linux/timer.h> 17#include <linux/proc_fs.h> 18#include <linux/init.h> 19#include <linux/spinlock.h> 20#include <linux/crc32.h> 21#include <linux/bitrev.h> 22#include <linux/ethtool.h> 23#include <asm/prom.h> 24#include <asm/dbdma.h> 25#include <asm/io.h> 26#include <asm/page.h> 27#include <asm/pgtable.h> 28#include <asm/machdep.h> 29#include <asm/pmac_feature.h> 30#include <asm/macio.h> 31#include <asm/irq.h> 32 33#include "bmac.h" 34 35#define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1)))) 36#define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1))) 37 38/* 39 * CRC polynomial - used in working out multicast filter bits. 40 */ 41#define ENET_CRCPOLY 0x04c11db7 42 43/* switch to use multicast code lifted from sunhme driver */ 44#define SUNHME_MULTICAST 45 46#define N_RX_RING 64 47#define N_TX_RING 32 48#define MAX_TX_ACTIVE 1 49#define ETHERCRC 4 50#define ETHERMINPACKET 64 51#define ETHERMTU 1500 52#define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2) 53#define TX_TIMEOUT HZ /* 1 second */ 54 55/* Bits in transmit DMA status */ 56#define TX_DMA_ERR 0x80 57 58#define XXDEBUG(args) 59 60struct bmac_data { 61 /* volatile struct bmac *bmac; */ 62 struct sk_buff_head *queue; 63 volatile struct dbdma_regs __iomem *tx_dma; 64 int tx_dma_intr; 65 volatile struct dbdma_regs __iomem *rx_dma; 66 int rx_dma_intr; 67 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */ 68 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */ 69 struct macio_dev *mdev; 70 int is_bmac_plus; 71 struct sk_buff *rx_bufs[N_RX_RING]; 72 int rx_fill; 73 int rx_empty; 74 struct sk_buff *tx_bufs[N_TX_RING]; 75 int tx_fill; 76 int tx_empty; 77 unsigned char tx_fullup; 78 struct timer_list tx_timeout; 79 int timeout_active; 80 int sleeping; 81 int opened; 82 unsigned short hash_use_count[64]; 83 unsigned short hash_table_mask[4]; 84 spinlock_t lock; 85}; 86 87#if 0 /* Move that to ethtool */ 88 89typedef struct bmac_reg_entry { 90 char *name; 91 unsigned short reg_offset; 92} bmac_reg_entry_t; 93 94#define N_REG_ENTRIES 31 95 96static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = { 97 {"MEMADD", MEMADD}, 98 {"MEMDATAHI", MEMDATAHI}, 99 {"MEMDATALO", MEMDATALO}, 100 {"TXPNTR", TXPNTR}, 101 {"RXPNTR", RXPNTR}, 102 {"IPG1", IPG1}, 103 {"IPG2", IPG2}, 104 {"ALIMIT", ALIMIT}, 105 {"SLOT", SLOT}, 106 {"PALEN", PALEN}, 107 {"PAPAT", PAPAT}, 108 {"TXSFD", TXSFD}, 109 {"JAM", JAM}, 110 {"TXCFG", TXCFG}, 111 {"TXMAX", TXMAX}, 112 {"TXMIN", TXMIN}, 113 {"PAREG", PAREG}, 114 {"DCNT", DCNT}, 115 {"NCCNT", NCCNT}, 116 {"NTCNT", NTCNT}, 117 {"EXCNT", EXCNT}, 118 {"LTCNT", LTCNT}, 119 {"TXSM", TXSM}, 120 {"RXCFG", RXCFG}, 121 {"RXMAX", RXMAX}, 122 {"RXMIN", RXMIN}, 123 {"FRCNT", FRCNT}, 124 {"AECNT", AECNT}, 125 {"FECNT", FECNT}, 126 {"RXSM", RXSM}, 127 {"RXCV", RXCV} 128}; 129 130#endif 131 132static unsigned char *bmac_emergency_rxbuf; 133 134/* 135 * Number of bytes of private data per BMAC: allow enough for 136 * the rx and tx dma commands plus a branch dma command each, 137 * and another 16 bytes to allow us to align the dma command 138 * buffers on a 16 byte boundary. 139 */ 140#define PRIV_BYTES (sizeof(struct bmac_data) \ 141 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \ 142 + sizeof(struct sk_buff_head)) 143 144static int bmac_open(struct net_device *dev); 145static int bmac_close(struct net_device *dev); 146static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev); 147static void bmac_set_multicast(struct net_device *dev); 148static void bmac_reset_and_enable(struct net_device *dev); 149static void bmac_start_chip(struct net_device *dev); 150static void bmac_init_chip(struct net_device *dev); 151static void bmac_init_registers(struct net_device *dev); 152static void bmac_enable_and_reset_chip(struct net_device *dev); 153static int bmac_set_address(struct net_device *dev, void *addr); 154static irqreturn_t bmac_misc_intr(int irq, void *dev_id); 155static irqreturn_t bmac_txdma_intr(int irq, void *dev_id); 156static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id); 157static void bmac_set_timeout(struct net_device *dev); 158static void bmac_tx_timeout(unsigned long data); 159static int bmac_output(struct sk_buff *skb, struct net_device *dev); 160static void bmac_start(struct net_device *dev); 161 162#define DBDMA_SET(x) ( ((x) | (x) << 16) ) 163#define DBDMA_CLEAR(x) ( (x) << 16) 164 165static inline void 166dbdma_st32(volatile __u32 __iomem *a, unsigned long x) 167{ 168 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory"); 169 return; 170} 171 172static inline unsigned long 173dbdma_ld32(volatile __u32 __iomem *a) 174{ 175 __u32 swap; 176 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a)); 177 return swap; 178} 179 180static void 181dbdma_continue(volatile struct dbdma_regs __iomem *dmap) 182{ 183 dbdma_st32(&dmap->control, 184 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD)); 185 eieio(); 186} 187 188static void 189dbdma_reset(volatile struct dbdma_regs __iomem *dmap) 190{ 191 dbdma_st32(&dmap->control, 192 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN)); 193 eieio(); 194 while (dbdma_ld32(&dmap->status) & RUN) 195 eieio(); 196} 197 198static void 199dbdma_setcmd(volatile struct dbdma_cmd *cp, 200 unsigned short cmd, unsigned count, unsigned long addr, 201 unsigned long cmd_dep) 202{ 203 out_le16(&cp->command, cmd); 204 out_le16(&cp->req_count, count); 205 out_le32(&cp->phy_addr, addr); 206 out_le32(&cp->cmd_dep, cmd_dep); 207 out_le16(&cp->xfer_status, 0); 208 out_le16(&cp->res_count, 0); 209} 210 211static inline 212void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data ) 213{ 214 out_le16((void __iomem *)dev->base_addr + reg_offset, data); 215} 216 217 218static inline 219unsigned short bmread(struct net_device *dev, unsigned long reg_offset ) 220{ 221 return in_le16((void __iomem *)dev->base_addr + reg_offset); 222} 223 224static void 225bmac_enable_and_reset_chip(struct net_device *dev) 226{ 227 struct bmac_data *bp = netdev_priv(dev); 228 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 229 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 230 231 if (rd) 232 dbdma_reset(rd); 233 if (td) 234 dbdma_reset(td); 235 236 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1); 237} 238 239#define MIFDELAY udelay(10) 240 241static unsigned int 242bmac_mif_readbits(struct net_device *dev, int nb) 243{ 244 unsigned int val = 0; 245 246 while (--nb >= 0) { 247 bmwrite(dev, MIFCSR, 0); 248 MIFDELAY; 249 if (bmread(dev, MIFCSR) & 8) 250 val |= 1 << nb; 251 bmwrite(dev, MIFCSR, 1); 252 MIFDELAY; 253 } 254 bmwrite(dev, MIFCSR, 0); 255 MIFDELAY; 256 bmwrite(dev, MIFCSR, 1); 257 MIFDELAY; 258 return val; 259} 260 261static void 262bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb) 263{ 264 int b; 265 266 while (--nb >= 0) { 267 b = (val & (1 << nb))? 6: 4; 268 bmwrite(dev, MIFCSR, b); 269 MIFDELAY; 270 bmwrite(dev, MIFCSR, b|1); 271 MIFDELAY; 272 } 273} 274 275static unsigned int 276bmac_mif_read(struct net_device *dev, unsigned int addr) 277{ 278 unsigned int val; 279 280 bmwrite(dev, MIFCSR, 4); 281 MIFDELAY; 282 bmac_mif_writebits(dev, ~0U, 32); 283 bmac_mif_writebits(dev, 6, 4); 284 bmac_mif_writebits(dev, addr, 10); 285 bmwrite(dev, MIFCSR, 2); 286 MIFDELAY; 287 bmwrite(dev, MIFCSR, 1); 288 MIFDELAY; 289 val = bmac_mif_readbits(dev, 17); 290 bmwrite(dev, MIFCSR, 4); 291 MIFDELAY; 292 return val; 293} 294 295static void 296bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val) 297{ 298 bmwrite(dev, MIFCSR, 4); 299 MIFDELAY; 300 bmac_mif_writebits(dev, ~0U, 32); 301 bmac_mif_writebits(dev, 5, 4); 302 bmac_mif_writebits(dev, addr, 10); 303 bmac_mif_writebits(dev, 2, 2); 304 bmac_mif_writebits(dev, val, 16); 305 bmac_mif_writebits(dev, 3, 2); 306} 307 308static void 309bmac_init_registers(struct net_device *dev) 310{ 311 struct bmac_data *bp = netdev_priv(dev); 312 volatile unsigned short regValue; 313 unsigned short *pWord16; 314 int i; 315 316 /* XXDEBUG(("bmac: enter init_registers\n")); */ 317 318 bmwrite(dev, RXRST, RxResetValue); 319 bmwrite(dev, TXRST, TxResetBit); 320 321 i = 100; 322 do { 323 --i; 324 udelay(10000); 325 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */ 326 } while ((regValue & TxResetBit) && i > 0); 327 328 if (!bp->is_bmac_plus) { 329 regValue = bmread(dev, XCVRIF); 330 regValue |= ClkBit | SerialMode | COLActiveLow; 331 bmwrite(dev, XCVRIF, regValue); 332 udelay(10000); 333 } 334 335 bmwrite(dev, RSEED, (unsigned short)0x1968); 336 337 regValue = bmread(dev, XIFC); 338 regValue |= TxOutputEnable; 339 bmwrite(dev, XIFC, regValue); 340 341 bmread(dev, PAREG); 342 343 /* set collision counters to 0 */ 344 bmwrite(dev, NCCNT, 0); 345 bmwrite(dev, NTCNT, 0); 346 bmwrite(dev, EXCNT, 0); 347 bmwrite(dev, LTCNT, 0); 348 349 /* set rx counters to 0 */ 350 bmwrite(dev, FRCNT, 0); 351 bmwrite(dev, LECNT, 0); 352 bmwrite(dev, AECNT, 0); 353 bmwrite(dev, FECNT, 0); 354 bmwrite(dev, RXCV, 0); 355 356 /* set tx fifo information */ 357 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */ 358 359 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */ 360 bmwrite(dev, TXFIFOCSR, TxFIFOEnable ); 361 362 /* set rx fifo information */ 363 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */ 364 bmwrite(dev, RXFIFOCSR, RxFIFOEnable ); 365 366 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */ 367 bmread(dev, STATUS); /* read it just to clear it */ 368 369 /* zero out the chip Hash Filter registers */ 370 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0; 371 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */ 372 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */ 373 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */ 374 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */ 375 376 pWord16 = (unsigned short *)dev->dev_addr; 377 bmwrite(dev, MADD0, *pWord16++); 378 bmwrite(dev, MADD1, *pWord16++); 379 bmwrite(dev, MADD2, *pWord16); 380 381 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets); 382 383 bmwrite(dev, INTDISABLE, EnableNormal); 384 385 return; 386} 387 388#if 0 389static void 390bmac_disable_interrupts(struct net_device *dev) 391{ 392 bmwrite(dev, INTDISABLE, DisableAll); 393} 394 395static void 396bmac_enable_interrupts(struct net_device *dev) 397{ 398 bmwrite(dev, INTDISABLE, EnableNormal); 399} 400#endif 401 402 403static void 404bmac_start_chip(struct net_device *dev) 405{ 406 struct bmac_data *bp = netdev_priv(dev); 407 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 408 unsigned short oldConfig; 409 410 /* enable rx dma channel */ 411 dbdma_continue(rd); 412 413 oldConfig = bmread(dev, TXCFG); 414 bmwrite(dev, TXCFG, oldConfig | TxMACEnable ); 415 416 /* turn on rx plus any other bits already on (promiscuous possibly) */ 417 oldConfig = bmread(dev, RXCFG); 418 bmwrite(dev, RXCFG, oldConfig | RxMACEnable ); 419 udelay(20000); 420} 421 422static void 423bmac_init_phy(struct net_device *dev) 424{ 425 unsigned int addr; 426 struct bmac_data *bp = netdev_priv(dev); 427 428 printk(KERN_DEBUG "phy registers:"); 429 for (addr = 0; addr < 32; ++addr) { 430 if ((addr & 7) == 0) 431 printk("\n" KERN_DEBUG); 432 printk(" %.4x", bmac_mif_read(dev, addr)); 433 } 434 printk("\n"); 435 if (bp->is_bmac_plus) { 436 unsigned int capable, ctrl; 437 438 ctrl = bmac_mif_read(dev, 0); 439 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1; 440 if (bmac_mif_read(dev, 4) != capable 441 || (ctrl & 0x1000) == 0) { 442 bmac_mif_write(dev, 4, capable); 443 bmac_mif_write(dev, 0, 0x1200); 444 } else 445 bmac_mif_write(dev, 0, 0x1000); 446 } 447} 448 449static void bmac_init_chip(struct net_device *dev) 450{ 451 bmac_init_phy(dev); 452 bmac_init_registers(dev); 453} 454 455#ifdef CONFIG_PM 456static int bmac_suspend(struct macio_dev *mdev, pm_message_t state) 457{ 458 struct net_device* dev = macio_get_drvdata(mdev); 459 struct bmac_data *bp = netdev_priv(dev); 460 unsigned long flags; 461 unsigned short config; 462 int i; 463 464 netif_device_detach(dev); 465 /* prolly should wait for dma to finish & turn off the chip */ 466 spin_lock_irqsave(&bp->lock, flags); 467 if (bp->timeout_active) { 468 del_timer(&bp->tx_timeout); 469 bp->timeout_active = 0; 470 } 471 disable_irq(dev->irq); 472 disable_irq(bp->tx_dma_intr); 473 disable_irq(bp->rx_dma_intr); 474 bp->sleeping = 1; 475 spin_unlock_irqrestore(&bp->lock, flags); 476 if (bp->opened) { 477 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 478 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 479 480 config = bmread(dev, RXCFG); 481 bmwrite(dev, RXCFG, (config & ~RxMACEnable)); 482 config = bmread(dev, TXCFG); 483 bmwrite(dev, TXCFG, (config & ~TxMACEnable)); 484 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */ 485 /* disable rx and tx dma */ 486 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ 487 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ 488 /* free some skb's */ 489 for (i=0; i<N_RX_RING; i++) { 490 if (bp->rx_bufs[i] != NULL) { 491 dev_kfree_skb(bp->rx_bufs[i]); 492 bp->rx_bufs[i] = NULL; 493 } 494 } 495 for (i = 0; i<N_TX_RING; i++) { 496 if (bp->tx_bufs[i] != NULL) { 497 dev_kfree_skb(bp->tx_bufs[i]); 498 bp->tx_bufs[i] = NULL; 499 } 500 } 501 } 502 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); 503 return 0; 504} 505 506static int bmac_resume(struct macio_dev *mdev) 507{ 508 struct net_device* dev = macio_get_drvdata(mdev); 509 struct bmac_data *bp = netdev_priv(dev); 510 511 /* see if this is enough */ 512 if (bp->opened) 513 bmac_reset_and_enable(dev); 514 515 enable_irq(dev->irq); 516 enable_irq(bp->tx_dma_intr); 517 enable_irq(bp->rx_dma_intr); 518 netif_device_attach(dev); 519 520 return 0; 521} 522#endif /* CONFIG_PM */ 523 524static int bmac_set_address(struct net_device *dev, void *addr) 525{ 526 struct bmac_data *bp = netdev_priv(dev); 527 unsigned char *p = addr; 528 unsigned short *pWord16; 529 unsigned long flags; 530 int i; 531 532 XXDEBUG(("bmac: enter set_address\n")); 533 spin_lock_irqsave(&bp->lock, flags); 534 535 for (i = 0; i < 6; ++i) { 536 dev->dev_addr[i] = p[i]; 537 } 538 /* load up the hardware address */ 539 pWord16 = (unsigned short *)dev->dev_addr; 540 bmwrite(dev, MADD0, *pWord16++); 541 bmwrite(dev, MADD1, *pWord16++); 542 bmwrite(dev, MADD2, *pWord16); 543 544 spin_unlock_irqrestore(&bp->lock, flags); 545 XXDEBUG(("bmac: exit set_address\n")); 546 return 0; 547} 548 549static inline void bmac_set_timeout(struct net_device *dev) 550{ 551 struct bmac_data *bp = netdev_priv(dev); 552 unsigned long flags; 553 554 spin_lock_irqsave(&bp->lock, flags); 555 if (bp->timeout_active) 556 del_timer(&bp->tx_timeout); 557 bp->tx_timeout.expires = jiffies + TX_TIMEOUT; 558 bp->tx_timeout.function = bmac_tx_timeout; 559 bp->tx_timeout.data = (unsigned long) dev; 560 add_timer(&bp->tx_timeout); 561 bp->timeout_active = 1; 562 spin_unlock_irqrestore(&bp->lock, flags); 563} 564 565static void 566bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp) 567{ 568 void *vaddr; 569 unsigned long baddr; 570 unsigned long len; 571 572 len = skb->len; 573 vaddr = skb->data; 574 baddr = virt_to_bus(vaddr); 575 576 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0); 577} 578 579static void 580bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp) 581{ 582 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf; 583 584 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN, 585 virt_to_bus(addr), 0); 586} 587 588static void 589bmac_init_tx_ring(struct bmac_data *bp) 590{ 591 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 592 593 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd)); 594 595 bp->tx_empty = 0; 596 bp->tx_fill = 0; 597 bp->tx_fullup = 0; 598 599 /* put a branch at the end of the tx command list */ 600 dbdma_setcmd(&bp->tx_cmds[N_TX_RING], 601 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds)); 602 603 /* reset tx dma */ 604 dbdma_reset(td); 605 out_le32(&td->wait_sel, 0x00200020); 606 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds)); 607} 608 609static int 610bmac_init_rx_ring(struct bmac_data *bp) 611{ 612 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 613 int i; 614 struct sk_buff *skb; 615 616 /* initialize list of sk_buffs for receiving and set up recv dma */ 617 memset((char *)bp->rx_cmds, 0, 618 (N_RX_RING + 1) * sizeof(struct dbdma_cmd)); 619 for (i = 0; i < N_RX_RING; i++) { 620 if ((skb = bp->rx_bufs[i]) == NULL) { 621 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2); 622 if (skb != NULL) 623 skb_reserve(skb, 2); 624 } 625 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]); 626 } 627 628 bp->rx_empty = 0; 629 bp->rx_fill = i; 630 631 /* Put a branch back to the beginning of the receive command list */ 632 dbdma_setcmd(&bp->rx_cmds[N_RX_RING], 633 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds)); 634 635 /* start rx dma */ 636 dbdma_reset(rd); 637 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds)); 638 639 return 1; 640} 641 642 643static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev) 644{ 645 struct bmac_data *bp = netdev_priv(dev); 646 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 647 int i; 648 649 /* see if there's a free slot in the tx ring */ 650 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */ 651 /* bp->tx_empty, bp->tx_fill)); */ 652 i = bp->tx_fill + 1; 653 if (i >= N_TX_RING) 654 i = 0; 655 if (i == bp->tx_empty) { 656 netif_stop_queue(dev); 657 bp->tx_fullup = 1; 658 XXDEBUG(("bmac_transmit_packet: tx ring full\n")); 659 return -1; /* can't take it at the moment */ 660 } 661 662 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0); 663 664 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]); 665 666 bp->tx_bufs[bp->tx_fill] = skb; 667 bp->tx_fill = i; 668 669 dev->stats.tx_bytes += skb->len; 670 671 dbdma_continue(td); 672 673 return 0; 674} 675 676static int rxintcount; 677 678static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id) 679{ 680 struct net_device *dev = (struct net_device *) dev_id; 681 struct bmac_data *bp = netdev_priv(dev); 682 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 683 volatile struct dbdma_cmd *cp; 684 int i, nb, stat; 685 struct sk_buff *skb; 686 unsigned int residual; 687 int last; 688 unsigned long flags; 689 690 spin_lock_irqsave(&bp->lock, flags); 691 692 if (++rxintcount < 10) { 693 XXDEBUG(("bmac_rxdma_intr\n")); 694 } 695 696 last = -1; 697 i = bp->rx_empty; 698 699 while (1) { 700 cp = &bp->rx_cmds[i]; 701 stat = ld_le16(&cp->xfer_status); 702 residual = ld_le16(&cp->res_count); 703 if ((stat & ACTIVE) == 0) 704 break; 705 nb = RX_BUFLEN - residual - 2; 706 if (nb < (ETHERMINPACKET - ETHERCRC)) { 707 skb = NULL; 708 dev->stats.rx_length_errors++; 709 dev->stats.rx_errors++; 710 } else { 711 skb = bp->rx_bufs[i]; 712 bp->rx_bufs[i] = NULL; 713 } 714 if (skb != NULL) { 715 nb -= ETHERCRC; 716 skb_put(skb, nb); 717 skb->protocol = eth_type_trans(skb, dev); 718 netif_rx(skb); 719 ++dev->stats.rx_packets; 720 dev->stats.rx_bytes += nb; 721 } else { 722 ++dev->stats.rx_dropped; 723 } 724 if ((skb = bp->rx_bufs[i]) == NULL) { 725 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2); 726 if (skb != NULL) 727 skb_reserve(bp->rx_bufs[i], 2); 728 } 729 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]); 730 st_le16(&cp->res_count, 0); 731 st_le16(&cp->xfer_status, 0); 732 last = i; 733 if (++i >= N_RX_RING) i = 0; 734 } 735 736 if (last != -1) { 737 bp->rx_fill = last; 738 bp->rx_empty = i; 739 } 740 741 dbdma_continue(rd); 742 spin_unlock_irqrestore(&bp->lock, flags); 743 744 if (rxintcount < 10) { 745 XXDEBUG(("bmac_rxdma_intr done\n")); 746 } 747 return IRQ_HANDLED; 748} 749 750static int txintcount; 751 752static irqreturn_t bmac_txdma_intr(int irq, void *dev_id) 753{ 754 struct net_device *dev = (struct net_device *) dev_id; 755 struct bmac_data *bp = netdev_priv(dev); 756 volatile struct dbdma_cmd *cp; 757 int stat; 758 unsigned long flags; 759 760 spin_lock_irqsave(&bp->lock, flags); 761 762 if (txintcount++ < 10) { 763 XXDEBUG(("bmac_txdma_intr\n")); 764 } 765 766 /* del_timer(&bp->tx_timeout); */ 767 /* bp->timeout_active = 0; */ 768 769 while (1) { 770 cp = &bp->tx_cmds[bp->tx_empty]; 771 stat = ld_le16(&cp->xfer_status); 772 if (txintcount < 10) { 773 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat)); 774 } 775 if (!(stat & ACTIVE)) { 776 /* 777 * status field might not have been filled by DBDMA 778 */ 779 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr))) 780 break; 781 } 782 783 if (bp->tx_bufs[bp->tx_empty]) { 784 ++dev->stats.tx_packets; 785 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]); 786 } 787 bp->tx_bufs[bp->tx_empty] = NULL; 788 bp->tx_fullup = 0; 789 netif_wake_queue(dev); 790 if (++bp->tx_empty >= N_TX_RING) 791 bp->tx_empty = 0; 792 if (bp->tx_empty == bp->tx_fill) 793 break; 794 } 795 796 spin_unlock_irqrestore(&bp->lock, flags); 797 798 if (txintcount < 10) { 799 XXDEBUG(("bmac_txdma_intr done->bmac_start\n")); 800 } 801 802 bmac_start(dev); 803 return IRQ_HANDLED; 804} 805 806#ifndef SUNHME_MULTICAST 807/* Real fast bit-reversal algorithm, 6-bit values */ 808static int reverse6[64] = { 809 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38, 810 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c, 811 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a, 812 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e, 813 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39, 814 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d, 815 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b, 816 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f 817}; 818 819static unsigned int 820crc416(unsigned int curval, unsigned short nxtval) 821{ 822 register unsigned int counter, cur = curval, next = nxtval; 823 register int high_crc_set, low_data_set; 824 825 /* Swap bytes */ 826 next = ((next & 0x00FF) << 8) | (next >> 8); 827 828 /* Compute bit-by-bit */ 829 for (counter = 0; counter < 16; ++counter) { 830 /* is high CRC bit set? */ 831 if ((cur & 0x80000000) == 0) high_crc_set = 0; 832 else high_crc_set = 1; 833 834 cur = cur << 1; 835 836 if ((next & 0x0001) == 0) low_data_set = 0; 837 else low_data_set = 1; 838 839 next = next >> 1; 840 841 /* do the XOR */ 842 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY; 843 } 844 return cur; 845} 846 847static unsigned int 848bmac_crc(unsigned short *address) 849{ 850 unsigned int newcrc; 851 852 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2])); 853 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */ 854 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */ 855 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */ 856 857 return(newcrc); 858} 859 860/* 861 * Add requested mcast addr to BMac's hash table filter. 862 * 863 */ 864 865static void 866bmac_addhash(struct bmac_data *bp, unsigned char *addr) 867{ 868 unsigned int crc; 869 unsigned short mask; 870 871 if (!(*addr)) return; 872 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */ 873 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */ 874 if (bp->hash_use_count[crc]++) return; /* This bit is already set */ 875 mask = crc % 16; 876 mask = (unsigned char)1 << mask; 877 bp->hash_use_count[crc/16] |= mask; 878} 879 880static void 881bmac_removehash(struct bmac_data *bp, unsigned char *addr) 882{ 883 unsigned int crc; 884 unsigned char mask; 885 886 /* Now, delete the address from the filter copy, as indicated */ 887 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */ 888 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */ 889 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */ 890 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */ 891 mask = crc % 16; 892 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */ 893 bp->hash_table_mask[crc/16] &= mask; 894} 895 896/* 897 * Sync the adapter with the software copy of the multicast mask 898 * (logical address filter). 899 */ 900 901static void 902bmac_rx_off(struct net_device *dev) 903{ 904 unsigned short rx_cfg; 905 906 rx_cfg = bmread(dev, RXCFG); 907 rx_cfg &= ~RxMACEnable; 908 bmwrite(dev, RXCFG, rx_cfg); 909 do { 910 rx_cfg = bmread(dev, RXCFG); 911 } while (rx_cfg & RxMACEnable); 912} 913 914unsigned short 915bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable) 916{ 917 unsigned short rx_cfg; 918 919 rx_cfg = bmread(dev, RXCFG); 920 rx_cfg |= RxMACEnable; 921 if (hash_enable) rx_cfg |= RxHashFilterEnable; 922 else rx_cfg &= ~RxHashFilterEnable; 923 if (promisc_enable) rx_cfg |= RxPromiscEnable; 924 else rx_cfg &= ~RxPromiscEnable; 925 bmwrite(dev, RXRST, RxResetValue); 926 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */ 927 bmwrite(dev, RXFIFOCSR, RxFIFOEnable ); 928 bmwrite(dev, RXCFG, rx_cfg ); 929 return rx_cfg; 930} 931 932static void 933bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp) 934{ 935 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */ 936 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */ 937 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */ 938 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */ 939} 940 941#if 0 942static void 943bmac_add_multi(struct net_device *dev, 944 struct bmac_data *bp, unsigned char *addr) 945{ 946 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */ 947 bmac_addhash(bp, addr); 948 bmac_rx_off(dev); 949 bmac_update_hash_table_mask(dev, bp); 950 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0); 951 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */ 952} 953 954static void 955bmac_remove_multi(struct net_device *dev, 956 struct bmac_data *bp, unsigned char *addr) 957{ 958 bmac_removehash(bp, addr); 959 bmac_rx_off(dev); 960 bmac_update_hash_table_mask(dev, bp); 961 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0); 962} 963#endif 964 965/* Set or clear the multicast filter for this adaptor. 966 num_addrs == -1 Promiscuous mode, receive all packets 967 num_addrs == 0 Normal mode, clear multicast list 968 num_addrs > 0 Multicast mode, receive normal and MC packets, and do 969 best-effort filtering. 970 */ 971static void bmac_set_multicast(struct net_device *dev) 972{ 973 struct dev_mc_list *dmi; 974 struct bmac_data *bp = netdev_priv(dev); 975 int num_addrs = dev->mc_count; 976 unsigned short rx_cfg; 977 int i; 978 979 if (bp->sleeping) 980 return; 981 982 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs)); 983 984 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { 985 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff; 986 bmac_update_hash_table_mask(dev, bp); 987 rx_cfg = bmac_rx_on(dev, 1, 0); 988 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n")); 989 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) { 990 rx_cfg = bmread(dev, RXCFG); 991 rx_cfg |= RxPromiscEnable; 992 bmwrite(dev, RXCFG, rx_cfg); 993 rx_cfg = bmac_rx_on(dev, 0, 1); 994 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg)); 995 } else { 996 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0; 997 for (i=0; i<64; i++) bp->hash_use_count[i] = 0; 998 if (num_addrs == 0) { 999 rx_cfg = bmac_rx_on(dev, 0, 0); 1000 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg)); 1001 } else { 1002 for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next) 1003 bmac_addhash(bp, dmi->dmi_addr); 1004 bmac_update_hash_table_mask(dev, bp); 1005 rx_cfg = bmac_rx_on(dev, 1, 0); 1006 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg)); 1007 } 1008 } 1009 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */ 1010} 1011#else /* ifdef SUNHME_MULTICAST */ 1012 1013/* The version of set_multicast below was lifted from sunhme.c */ 1014 1015static void bmac_set_multicast(struct net_device *dev) 1016{ 1017 struct dev_mc_list *dmi = dev->mc_list; 1018 char *addrs; 1019 int i; 1020 unsigned short rx_cfg; 1021 u32 crc; 1022 1023 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { 1024 bmwrite(dev, BHASH0, 0xffff); 1025 bmwrite(dev, BHASH1, 0xffff); 1026 bmwrite(dev, BHASH2, 0xffff); 1027 bmwrite(dev, BHASH3, 0xffff); 1028 } else if(dev->flags & IFF_PROMISC) { 1029 rx_cfg = bmread(dev, RXCFG); 1030 rx_cfg |= RxPromiscEnable; 1031 bmwrite(dev, RXCFG, rx_cfg); 1032 } else { 1033 u16 hash_table[4]; 1034 1035 rx_cfg = bmread(dev, RXCFG); 1036 rx_cfg &= ~RxPromiscEnable; 1037 bmwrite(dev, RXCFG, rx_cfg); 1038 1039 for(i = 0; i < 4; i++) hash_table[i] = 0; 1040 1041 for(i = 0; i < dev->mc_count; i++) { 1042 addrs = dmi->dmi_addr; 1043 dmi = dmi->next; 1044 1045 if(!(*addrs & 1)) 1046 continue; 1047 1048 crc = ether_crc_le(6, addrs); 1049 crc >>= 26; 1050 hash_table[crc >> 4] |= 1 << (crc & 0xf); 1051 } 1052 bmwrite(dev, BHASH0, hash_table[0]); 1053 bmwrite(dev, BHASH1, hash_table[1]); 1054 bmwrite(dev, BHASH2, hash_table[2]); 1055 bmwrite(dev, BHASH3, hash_table[3]); 1056 } 1057} 1058#endif /* SUNHME_MULTICAST */ 1059 1060static int miscintcount; 1061 1062static irqreturn_t bmac_misc_intr(int irq, void *dev_id) 1063{ 1064 struct net_device *dev = (struct net_device *) dev_id; 1065 unsigned int status = bmread(dev, STATUS); 1066 if (miscintcount++ < 10) { 1067 XXDEBUG(("bmac_misc_intr\n")); 1068 } 1069 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */ 1070 /* bmac_txdma_intr_inner(irq, dev_id); */ 1071 /* if (status & FrameReceived) dev->stats.rx_dropped++; */ 1072 if (status & RxErrorMask) dev->stats.rx_errors++; 1073 if (status & RxCRCCntExp) dev->stats.rx_crc_errors++; 1074 if (status & RxLenCntExp) dev->stats.rx_length_errors++; 1075 if (status & RxOverFlow) dev->stats.rx_over_errors++; 1076 if (status & RxAlignCntExp) dev->stats.rx_frame_errors++; 1077 1078 /* if (status & FrameSent) dev->stats.tx_dropped++; */ 1079 if (status & TxErrorMask) dev->stats.tx_errors++; 1080 if (status & TxUnderrun) dev->stats.tx_fifo_errors++; 1081 if (status & TxNormalCollExp) dev->stats.collisions++; 1082 return IRQ_HANDLED; 1083} 1084 1085/* 1086 * Procedure for reading EEPROM 1087 */ 1088#define SROMAddressLength 5 1089#define DataInOn 0x0008 1090#define DataInOff 0x0000 1091#define Clk 0x0002 1092#define ChipSelect 0x0001 1093#define SDIShiftCount 3 1094#define SD0ShiftCount 2 1095#define DelayValue 1000 /* number of microseconds */ 1096#define SROMStartOffset 10 /* this is in words */ 1097#define SROMReadCount 3 /* number of words to read from SROM */ 1098#define SROMAddressBits 6 1099#define EnetAddressOffset 20 1100 1101static unsigned char 1102bmac_clock_out_bit(struct net_device *dev) 1103{ 1104 unsigned short data; 1105 unsigned short val; 1106 1107 bmwrite(dev, SROMCSR, ChipSelect | Clk); 1108 udelay(DelayValue); 1109 1110 data = bmread(dev, SROMCSR); 1111 udelay(DelayValue); 1112 val = (data >> SD0ShiftCount) & 1; 1113 1114 bmwrite(dev, SROMCSR, ChipSelect); 1115 udelay(DelayValue); 1116 1117 return val; 1118} 1119 1120static void 1121bmac_clock_in_bit(struct net_device *dev, unsigned int val) 1122{ 1123 unsigned short data; 1124 1125 if (val != 0 && val != 1) return; 1126 1127 data = (val << SDIShiftCount); 1128 bmwrite(dev, SROMCSR, data | ChipSelect ); 1129 udelay(DelayValue); 1130 1131 bmwrite(dev, SROMCSR, data | ChipSelect | Clk ); 1132 udelay(DelayValue); 1133 1134 bmwrite(dev, SROMCSR, data | ChipSelect); 1135 udelay(DelayValue); 1136} 1137 1138static void 1139reset_and_select_srom(struct net_device *dev) 1140{ 1141 /* first reset */ 1142 bmwrite(dev, SROMCSR, 0); 1143 udelay(DelayValue); 1144 1145 /* send it the read command (110) */ 1146 bmac_clock_in_bit(dev, 1); 1147 bmac_clock_in_bit(dev, 1); 1148 bmac_clock_in_bit(dev, 0); 1149} 1150 1151static unsigned short 1152read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len) 1153{ 1154 unsigned short data, val; 1155 int i; 1156 1157 /* send out the address we want to read from */ 1158 for (i = 0; i < addr_len; i++) { 1159 val = addr >> (addr_len-i-1); 1160 bmac_clock_in_bit(dev, val & 1); 1161 } 1162 1163 /* Now read in the 16-bit data */ 1164 data = 0; 1165 for (i = 0; i < 16; i++) { 1166 val = bmac_clock_out_bit(dev); 1167 data <<= 1; 1168 data |= val; 1169 } 1170 bmwrite(dev, SROMCSR, 0); 1171 1172 return data; 1173} 1174 1175/* 1176 * It looks like Cogent and SMC use different methods for calculating 1177 * checksums. What a pain.. 1178 */ 1179 1180static int 1181bmac_verify_checksum(struct net_device *dev) 1182{ 1183 unsigned short data, storedCS; 1184 1185 reset_and_select_srom(dev); 1186 data = read_srom(dev, 3, SROMAddressBits); 1187 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00); 1188 1189 return 0; 1190} 1191 1192 1193static void 1194bmac_get_station_address(struct net_device *dev, unsigned char *ea) 1195{ 1196 int i; 1197 unsigned short data; 1198 1199 for (i = 0; i < 6; i++) 1200 { 1201 reset_and_select_srom(dev); 1202 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits); 1203 ea[2*i] = bitrev8(data & 0x0ff); 1204 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff); 1205 } 1206} 1207 1208static void bmac_reset_and_enable(struct net_device *dev) 1209{ 1210 struct bmac_data *bp = netdev_priv(dev); 1211 unsigned long flags; 1212 struct sk_buff *skb; 1213 unsigned char *data; 1214 1215 spin_lock_irqsave(&bp->lock, flags); 1216 bmac_enable_and_reset_chip(dev); 1217 bmac_init_tx_ring(bp); 1218 bmac_init_rx_ring(bp); 1219 bmac_init_chip(dev); 1220 bmac_start_chip(dev); 1221 bmwrite(dev, INTDISABLE, EnableNormal); 1222 bp->sleeping = 0; 1223 1224 /* 1225 * It seems that the bmac can't receive until it's transmitted 1226 * a packet. So we give it a dummy packet to transmit. 1227 */ 1228 skb = dev_alloc_skb(ETHERMINPACKET); 1229 if (skb != NULL) { 1230 data = skb_put(skb, ETHERMINPACKET); 1231 memset(data, 0, ETHERMINPACKET); 1232 memcpy(data, dev->dev_addr, 6); 1233 memcpy(data+6, dev->dev_addr, 6); 1234 bmac_transmit_packet(skb, dev); 1235 } 1236 spin_unlock_irqrestore(&bp->lock, flags); 1237} 1238static void bmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1239{ 1240 struct bmac_data *bp = netdev_priv(dev); 1241 strcpy(info->driver, "bmac"); 1242 strcpy(info->bus_info, dev_name(&bp->mdev->ofdev.dev)); 1243} 1244 1245static const struct ethtool_ops bmac_ethtool_ops = { 1246 .get_drvinfo = bmac_get_drvinfo, 1247 .get_link = ethtool_op_get_link, 1248}; 1249 1250static const struct net_device_ops bmac_netdev_ops = { 1251 .ndo_open = bmac_open, 1252 .ndo_stop = bmac_close, 1253 .ndo_start_xmit = bmac_output, 1254 .ndo_set_multicast_list = bmac_set_multicast, 1255 .ndo_set_mac_address = bmac_set_address, 1256 .ndo_change_mtu = eth_change_mtu, 1257 .ndo_validate_addr = eth_validate_addr, 1258}; 1259 1260static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match) 1261{ 1262 int j, rev, ret; 1263 struct bmac_data *bp; 1264 const unsigned char *prop_addr; 1265 unsigned char addr[6]; 1266 struct net_device *dev; 1267 int is_bmac_plus = ((int)match->data) != 0; 1268 1269 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) { 1270 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n"); 1271 return -ENODEV; 1272 } 1273 prop_addr = of_get_property(macio_get_of_node(mdev), 1274 "mac-address", NULL); 1275 if (prop_addr == NULL) { 1276 prop_addr = of_get_property(macio_get_of_node(mdev), 1277 "local-mac-address", NULL); 1278 if (prop_addr == NULL) { 1279 printk(KERN_ERR "BMAC: Can't get mac-address\n"); 1280 return -ENODEV; 1281 } 1282 } 1283 memcpy(addr, prop_addr, sizeof(addr)); 1284 1285 dev = alloc_etherdev(PRIV_BYTES); 1286 if (!dev) { 1287 printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n"); 1288 return -ENOMEM; 1289 } 1290 1291 bp = netdev_priv(dev); 1292 SET_NETDEV_DEV(dev, &mdev->ofdev.dev); 1293 macio_set_drvdata(mdev, dev); 1294 1295 bp->mdev = mdev; 1296 spin_lock_init(&bp->lock); 1297 1298 if (macio_request_resources(mdev, "bmac")) { 1299 printk(KERN_ERR "BMAC: can't request IO resource !\n"); 1300 goto out_free; 1301 } 1302 1303 dev->base_addr = (unsigned long) 1304 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0)); 1305 if (dev->base_addr == 0) 1306 goto out_release; 1307 1308 dev->irq = macio_irq(mdev, 0); 1309 1310 bmac_enable_and_reset_chip(dev); 1311 bmwrite(dev, INTDISABLE, DisableAll); 1312 1313 rev = addr[0] == 0 && addr[1] == 0xA0; 1314 for (j = 0; j < 6; ++j) 1315 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j]; 1316 1317 /* Enable chip without interrupts for now */ 1318 bmac_enable_and_reset_chip(dev); 1319 bmwrite(dev, INTDISABLE, DisableAll); 1320 1321 dev->netdev_ops = &bmac_netdev_ops; 1322 dev->ethtool_ops = &bmac_ethtool_ops; 1323 1324 bmac_get_station_address(dev, addr); 1325 if (bmac_verify_checksum(dev) != 0) 1326 goto err_out_iounmap; 1327 1328 bp->is_bmac_plus = is_bmac_plus; 1329 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1)); 1330 if (!bp->tx_dma) 1331 goto err_out_iounmap; 1332 bp->tx_dma_intr = macio_irq(mdev, 1); 1333 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2)); 1334 if (!bp->rx_dma) 1335 goto err_out_iounmap_tx; 1336 bp->rx_dma_intr = macio_irq(mdev, 2); 1337 1338 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1); 1339 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1; 1340 1341 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1); 1342 skb_queue_head_init(bp->queue); 1343 1344 init_timer(&bp->tx_timeout); 1345 1346 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev); 1347 if (ret) { 1348 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq); 1349 goto err_out_iounmap_rx; 1350 } 1351 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev); 1352 if (ret) { 1353 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr); 1354 goto err_out_irq0; 1355 } 1356 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev); 1357 if (ret) { 1358 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr); 1359 goto err_out_irq1; 1360 } 1361 1362 /* Mask chip interrupts and disable chip, will be 1363 * re-enabled on open() 1364 */ 1365 disable_irq(dev->irq); 1366 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); 1367 1368 if (register_netdev(dev) != 0) { 1369 printk(KERN_ERR "BMAC: Ethernet registration failed\n"); 1370 goto err_out_irq2; 1371 } 1372 1373 printk(KERN_INFO "%s: BMAC%s at %pM", 1374 dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr); 1375 XXDEBUG((", base_addr=%#0lx", dev->base_addr)); 1376 printk("\n"); 1377 1378 return 0; 1379 1380err_out_irq2: 1381 free_irq(bp->rx_dma_intr, dev); 1382err_out_irq1: 1383 free_irq(bp->tx_dma_intr, dev); 1384err_out_irq0: 1385 free_irq(dev->irq, dev); 1386err_out_iounmap_rx: 1387 iounmap(bp->rx_dma); 1388err_out_iounmap_tx: 1389 iounmap(bp->tx_dma); 1390err_out_iounmap: 1391 iounmap((void __iomem *)dev->base_addr); 1392out_release: 1393 macio_release_resources(mdev); 1394out_free: 1395 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); 1396 free_netdev(dev); 1397 1398 return -ENODEV; 1399} 1400 1401static int bmac_open(struct net_device *dev) 1402{ 1403 struct bmac_data *bp = netdev_priv(dev); 1404 /* XXDEBUG(("bmac: enter open\n")); */ 1405 /* reset the chip */ 1406 bp->opened = 1; 1407 bmac_reset_and_enable(dev); 1408 enable_irq(dev->irq); 1409 return 0; 1410} 1411 1412static int bmac_close(struct net_device *dev) 1413{ 1414 struct bmac_data *bp = netdev_priv(dev); 1415 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 1416 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 1417 unsigned short config; 1418 int i; 1419 1420 bp->sleeping = 1; 1421 1422 /* disable rx and tx */ 1423 config = bmread(dev, RXCFG); 1424 bmwrite(dev, RXCFG, (config & ~RxMACEnable)); 1425 1426 config = bmread(dev, TXCFG); 1427 bmwrite(dev, TXCFG, (config & ~TxMACEnable)); 1428 1429 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */ 1430 1431 /* disable rx and tx dma */ 1432 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ 1433 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ 1434 1435 /* free some skb's */ 1436 XXDEBUG(("bmac: free rx bufs\n")); 1437 for (i=0; i<N_RX_RING; i++) { 1438 if (bp->rx_bufs[i] != NULL) { 1439 dev_kfree_skb(bp->rx_bufs[i]); 1440 bp->rx_bufs[i] = NULL; 1441 } 1442 } 1443 XXDEBUG(("bmac: free tx bufs\n")); 1444 for (i = 0; i<N_TX_RING; i++) { 1445 if (bp->tx_bufs[i] != NULL) { 1446 dev_kfree_skb(bp->tx_bufs[i]); 1447 bp->tx_bufs[i] = NULL; 1448 } 1449 } 1450 XXDEBUG(("bmac: all bufs freed\n")); 1451 1452 bp->opened = 0; 1453 disable_irq(dev->irq); 1454 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); 1455 1456 return 0; 1457} 1458 1459static void 1460bmac_start(struct net_device *dev) 1461{ 1462 struct bmac_data *bp = netdev_priv(dev); 1463 int i; 1464 struct sk_buff *skb; 1465 unsigned long flags; 1466 1467 if (bp->sleeping) 1468 return; 1469 1470 spin_lock_irqsave(&bp->lock, flags); 1471 while (1) { 1472 i = bp->tx_fill + 1; 1473 if (i >= N_TX_RING) 1474 i = 0; 1475 if (i == bp->tx_empty) 1476 break; 1477 skb = skb_dequeue(bp->queue); 1478 if (skb == NULL) 1479 break; 1480 bmac_transmit_packet(skb, dev); 1481 } 1482 spin_unlock_irqrestore(&bp->lock, flags); 1483} 1484 1485static int 1486bmac_output(struct sk_buff *skb, struct net_device *dev) 1487{ 1488 struct bmac_data *bp = netdev_priv(dev); 1489 skb_queue_tail(bp->queue, skb); 1490 bmac_start(dev); 1491 return 0; 1492} 1493 1494static void bmac_tx_timeout(unsigned long data) 1495{ 1496 struct net_device *dev = (struct net_device *) data; 1497 struct bmac_data *bp = netdev_priv(dev); 1498 volatile struct dbdma_regs __iomem *td = bp->tx_dma; 1499 volatile struct dbdma_regs __iomem *rd = bp->rx_dma; 1500 volatile struct dbdma_cmd *cp; 1501 unsigned long flags; 1502 unsigned short config, oldConfig; 1503 int i; 1504 1505 XXDEBUG(("bmac: tx_timeout called\n")); 1506 spin_lock_irqsave(&bp->lock, flags); 1507 bp->timeout_active = 0; 1508 1509 /* update various counters */ 1510/* bmac_handle_misc_intrs(bp, 0); */ 1511 1512 cp = &bp->tx_cmds[bp->tx_empty]; 1513/* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */ 1514/* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */ 1515/* mb->pr, mb->xmtfs, mb->fifofc)); */ 1516 1517 /* turn off both tx and rx and reset the chip */ 1518 config = bmread(dev, RXCFG); 1519 bmwrite(dev, RXCFG, (config & ~RxMACEnable)); 1520 config = bmread(dev, TXCFG); 1521 bmwrite(dev, TXCFG, (config & ~TxMACEnable)); 1522 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD)); 1523 printk(KERN_ERR "bmac: transmit timeout - resetting\n"); 1524 bmac_enable_and_reset_chip(dev); 1525 1526 /* restart rx dma */ 1527 cp = bus_to_virt(ld_le32(&rd->cmdptr)); 1528 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD)); 1529 out_le16(&cp->xfer_status, 0); 1530 out_le32(&rd->cmdptr, virt_to_bus(cp)); 1531 out_le32(&rd->control, DBDMA_SET(RUN|WAKE)); 1532 1533 /* fix up the transmit side */ 1534 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n", 1535 bp->tx_empty, bp->tx_fill, bp->tx_fullup)); 1536 i = bp->tx_empty; 1537 ++dev->stats.tx_errors; 1538 if (i != bp->tx_fill) { 1539 dev_kfree_skb(bp->tx_bufs[i]); 1540 bp->tx_bufs[i] = NULL; 1541 if (++i >= N_TX_RING) i = 0; 1542 bp->tx_empty = i; 1543 } 1544 bp->tx_fullup = 0; 1545 netif_wake_queue(dev); 1546 if (i != bp->tx_fill) { 1547 cp = &bp->tx_cmds[i]; 1548 out_le16(&cp->xfer_status, 0); 1549 out_le16(&cp->command, OUTPUT_LAST); 1550 out_le32(&td->cmdptr, virt_to_bus(cp)); 1551 out_le32(&td->control, DBDMA_SET(RUN)); 1552 /* bmac_set_timeout(dev); */ 1553 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i)); 1554 } 1555 1556 /* turn it back on */ 1557 oldConfig = bmread(dev, RXCFG); 1558 bmwrite(dev, RXCFG, oldConfig | RxMACEnable ); 1559 oldConfig = bmread(dev, TXCFG); 1560 bmwrite(dev, TXCFG, oldConfig | TxMACEnable ); 1561 1562 spin_unlock_irqrestore(&bp->lock, flags); 1563} 1564 1565#if 0 1566static void dump_dbdma(volatile struct dbdma_cmd *cp,int count) 1567{ 1568 int i,*ip; 1569 1570 for (i=0;i< count;i++) { 1571 ip = (int*)(cp+i); 1572 1573 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n", 1574 ld_le32(ip+0), 1575 ld_le32(ip+1), 1576 ld_le32(ip+2), 1577 ld_le32(ip+3)); 1578 } 1579 1580} 1581#endif 1582 1583#if 0 1584static int 1585bmac_proc_info(char *buffer, char **start, off_t offset, int length) 1586{ 1587 int len = 0; 1588 off_t pos = 0; 1589 off_t begin = 0; 1590 int i; 1591 1592 if (bmac_devs == NULL) 1593 return (-ENOSYS); 1594 1595 len += sprintf(buffer, "BMAC counters & registers\n"); 1596 1597 for (i = 0; i<N_REG_ENTRIES; i++) { 1598 len += sprintf(buffer + len, "%s: %#08x\n", 1599 reg_entries[i].name, 1600 bmread(bmac_devs, reg_entries[i].reg_offset)); 1601 pos = begin + len; 1602 1603 if (pos < offset) { 1604 len = 0; 1605 begin = pos; 1606 } 1607 1608 if (pos > offset+length) break; 1609 } 1610 1611 *start = buffer + (offset - begin); 1612 len -= (offset - begin); 1613 1614 if (len > length) len = length; 1615 1616 return len; 1617} 1618#endif 1619 1620static int __devexit bmac_remove(struct macio_dev *mdev) 1621{ 1622 struct net_device *dev = macio_get_drvdata(mdev); 1623 struct bmac_data *bp = netdev_priv(dev); 1624 1625 unregister_netdev(dev); 1626 1627 free_irq(dev->irq, dev); 1628 free_irq(bp->tx_dma_intr, dev); 1629 free_irq(bp->rx_dma_intr, dev); 1630 1631 iounmap((void __iomem *)dev->base_addr); 1632 iounmap(bp->tx_dma); 1633 iounmap(bp->rx_dma); 1634 1635 macio_release_resources(mdev); 1636 1637 free_netdev(dev); 1638 1639 return 0; 1640} 1641 1642static struct of_device_id bmac_match[] = 1643{ 1644 { 1645 .name = "bmac", 1646 .data = (void *)0, 1647 }, 1648 { 1649 .type = "network", 1650 .compatible = "bmac+", 1651 .data = (void *)1, 1652 }, 1653 {}, 1654}; 1655MODULE_DEVICE_TABLE (of, bmac_match); 1656 1657static struct macio_driver bmac_driver = 1658{ 1659 .name = "bmac", 1660 .match_table = bmac_match, 1661 .probe = bmac_probe, 1662 .remove = bmac_remove, 1663#ifdef CONFIG_PM 1664 .suspend = bmac_suspend, 1665 .resume = bmac_resume, 1666#endif 1667}; 1668 1669 1670static int __init bmac_init(void) 1671{ 1672 if (bmac_emergency_rxbuf == NULL) { 1673 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL); 1674 if (bmac_emergency_rxbuf == NULL) { 1675 printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n"); 1676 return -ENOMEM; 1677 } 1678 } 1679 1680 return macio_register_driver(&bmac_driver); 1681} 1682 1683static void __exit bmac_exit(void) 1684{ 1685 macio_unregister_driver(&bmac_driver); 1686 1687 kfree(bmac_emergency_rxbuf); 1688 bmac_emergency_rxbuf = NULL; 1689} 1690 1691MODULE_AUTHOR("Randy Gobbel/Paul Mackerras"); 1692MODULE_DESCRIPTION("PowerMac BMAC ethernet driver."); 1693MODULE_LICENSE("GPL"); 1694 1695module_init(bmac_init); 1696module_exit(bmac_exit);