at v2.6.30 472 lines 11 kB view raw
1/** 2 * @file cpu_buffer.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf <barry.kasindorf@amd.com> 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * Each CPU has a local buffer that stores PC value/event 12 * pairs. We also log context switches when we notice them. 13 * Eventually each CPU's buffer is processed into the global 14 * event buffer by sync_buffer(). 15 * 16 * We use a local buffer for two reasons: an NMI or similar 17 * interrupt cannot synchronise, and high sampling rates 18 * would lead to catastrophic global synchronisation if 19 * a global buffer was used. 20 */ 21 22#include <linux/sched.h> 23#include <linux/oprofile.h> 24#include <linux/vmalloc.h> 25#include <linux/errno.h> 26 27#include "event_buffer.h" 28#include "cpu_buffer.h" 29#include "buffer_sync.h" 30#include "oprof.h" 31 32#define OP_BUFFER_FLAGS 0 33 34/* 35 * Read and write access is using spin locking. Thus, writing to the 36 * buffer by NMI handler (x86) could occur also during critical 37 * sections when reading the buffer. To avoid this, there are 2 38 * buffers for independent read and write access. Read access is in 39 * process context only, write access only in the NMI handler. If the 40 * read buffer runs empty, both buffers are swapped atomically. There 41 * is potentially a small window during swapping where the buffers are 42 * disabled and samples could be lost. 43 * 44 * Using 2 buffers is a little bit overhead, but the solution is clear 45 * and does not require changes in the ring buffer implementation. It 46 * can be changed to a single buffer solution when the ring buffer 47 * access is implemented as non-locking atomic code. 48 */ 49static struct ring_buffer *op_ring_buffer_read; 50static struct ring_buffer *op_ring_buffer_write; 51DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer); 52 53static void wq_sync_buffer(struct work_struct *work); 54 55#define DEFAULT_TIMER_EXPIRE (HZ / 10) 56static int work_enabled; 57 58unsigned long oprofile_get_cpu_buffer_size(void) 59{ 60 return oprofile_cpu_buffer_size; 61} 62 63void oprofile_cpu_buffer_inc_smpl_lost(void) 64{ 65 struct oprofile_cpu_buffer *cpu_buf 66 = &__get_cpu_var(cpu_buffer); 67 68 cpu_buf->sample_lost_overflow++; 69} 70 71void free_cpu_buffers(void) 72{ 73 if (op_ring_buffer_read) 74 ring_buffer_free(op_ring_buffer_read); 75 op_ring_buffer_read = NULL; 76 if (op_ring_buffer_write) 77 ring_buffer_free(op_ring_buffer_write); 78 op_ring_buffer_write = NULL; 79} 80 81#define RB_EVENT_HDR_SIZE 4 82 83int alloc_cpu_buffers(void) 84{ 85 int i; 86 87 unsigned long buffer_size = oprofile_cpu_buffer_size; 88 unsigned long byte_size = buffer_size * (sizeof(struct op_sample) + 89 RB_EVENT_HDR_SIZE); 90 91 op_ring_buffer_read = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS); 92 if (!op_ring_buffer_read) 93 goto fail; 94 op_ring_buffer_write = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS); 95 if (!op_ring_buffer_write) 96 goto fail; 97 98 for_each_possible_cpu(i) { 99 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 100 101 b->last_task = NULL; 102 b->last_is_kernel = -1; 103 b->tracing = 0; 104 b->buffer_size = buffer_size; 105 b->sample_received = 0; 106 b->sample_lost_overflow = 0; 107 b->backtrace_aborted = 0; 108 b->sample_invalid_eip = 0; 109 b->cpu = i; 110 INIT_DELAYED_WORK(&b->work, wq_sync_buffer); 111 } 112 return 0; 113 114fail: 115 free_cpu_buffers(); 116 return -ENOMEM; 117} 118 119void start_cpu_work(void) 120{ 121 int i; 122 123 work_enabled = 1; 124 125 for_each_online_cpu(i) { 126 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 127 128 /* 129 * Spread the work by 1 jiffy per cpu so they dont all 130 * fire at once. 131 */ 132 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i); 133 } 134} 135 136void end_cpu_work(void) 137{ 138 int i; 139 140 work_enabled = 0; 141 142 for_each_online_cpu(i) { 143 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 144 145 cancel_delayed_work(&b->work); 146 } 147 148 flush_scheduled_work(); 149} 150 151/* 152 * This function prepares the cpu buffer to write a sample. 153 * 154 * Struct op_entry is used during operations on the ring buffer while 155 * struct op_sample contains the data that is stored in the ring 156 * buffer. Struct entry can be uninitialized. The function reserves a 157 * data array that is specified by size. Use 158 * op_cpu_buffer_write_commit() after preparing the sample. In case of 159 * errors a null pointer is returned, otherwise the pointer to the 160 * sample. 161 * 162 */ 163struct op_sample 164*op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size) 165{ 166 entry->event = ring_buffer_lock_reserve 167 (op_ring_buffer_write, sizeof(struct op_sample) + 168 size * sizeof(entry->sample->data[0])); 169 if (entry->event) 170 entry->sample = ring_buffer_event_data(entry->event); 171 else 172 entry->sample = NULL; 173 174 if (!entry->sample) 175 return NULL; 176 177 entry->size = size; 178 entry->data = entry->sample->data; 179 180 return entry->sample; 181} 182 183int op_cpu_buffer_write_commit(struct op_entry *entry) 184{ 185 return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event); 186} 187 188struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu) 189{ 190 struct ring_buffer_event *e; 191 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL); 192 if (e) 193 goto event; 194 if (ring_buffer_swap_cpu(op_ring_buffer_read, 195 op_ring_buffer_write, 196 cpu)) 197 return NULL; 198 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL); 199 if (e) 200 goto event; 201 return NULL; 202 203event: 204 entry->event = e; 205 entry->sample = ring_buffer_event_data(e); 206 entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample)) 207 / sizeof(entry->sample->data[0]); 208 entry->data = entry->sample->data; 209 return entry->sample; 210} 211 212unsigned long op_cpu_buffer_entries(int cpu) 213{ 214 return ring_buffer_entries_cpu(op_ring_buffer_read, cpu) 215 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu); 216} 217 218static int 219op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace, 220 int is_kernel, struct task_struct *task) 221{ 222 struct op_entry entry; 223 struct op_sample *sample; 224 unsigned long flags; 225 int size; 226 227 flags = 0; 228 229 if (backtrace) 230 flags |= TRACE_BEGIN; 231 232 /* notice a switch from user->kernel or vice versa */ 233 is_kernel = !!is_kernel; 234 if (cpu_buf->last_is_kernel != is_kernel) { 235 cpu_buf->last_is_kernel = is_kernel; 236 flags |= KERNEL_CTX_SWITCH; 237 if (is_kernel) 238 flags |= IS_KERNEL; 239 } 240 241 /* notice a task switch */ 242 if (cpu_buf->last_task != task) { 243 cpu_buf->last_task = task; 244 flags |= USER_CTX_SWITCH; 245 } 246 247 if (!flags) 248 /* nothing to do */ 249 return 0; 250 251 if (flags & USER_CTX_SWITCH) 252 size = 1; 253 else 254 size = 0; 255 256 sample = op_cpu_buffer_write_reserve(&entry, size); 257 if (!sample) 258 return -ENOMEM; 259 260 sample->eip = ESCAPE_CODE; 261 sample->event = flags; 262 263 if (size) 264 op_cpu_buffer_add_data(&entry, (unsigned long)task); 265 266 op_cpu_buffer_write_commit(&entry); 267 268 return 0; 269} 270 271static inline int 272op_add_sample(struct oprofile_cpu_buffer *cpu_buf, 273 unsigned long pc, unsigned long event) 274{ 275 struct op_entry entry; 276 struct op_sample *sample; 277 278 sample = op_cpu_buffer_write_reserve(&entry, 0); 279 if (!sample) 280 return -ENOMEM; 281 282 sample->eip = pc; 283 sample->event = event; 284 285 return op_cpu_buffer_write_commit(&entry); 286} 287 288/* 289 * This must be safe from any context. 290 * 291 * is_kernel is needed because on some architectures you cannot 292 * tell if you are in kernel or user space simply by looking at 293 * pc. We tag this in the buffer by generating kernel enter/exit 294 * events whenever is_kernel changes 295 */ 296static int 297log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc, 298 unsigned long backtrace, int is_kernel, unsigned long event) 299{ 300 cpu_buf->sample_received++; 301 302 if (pc == ESCAPE_CODE) { 303 cpu_buf->sample_invalid_eip++; 304 return 0; 305 } 306 307 if (op_add_code(cpu_buf, backtrace, is_kernel, current)) 308 goto fail; 309 310 if (op_add_sample(cpu_buf, pc, event)) 311 goto fail; 312 313 return 1; 314 315fail: 316 cpu_buf->sample_lost_overflow++; 317 return 0; 318} 319 320static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf) 321{ 322 cpu_buf->tracing = 1; 323} 324 325static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf) 326{ 327 cpu_buf->tracing = 0; 328} 329 330static inline void 331__oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs, 332 unsigned long event, int is_kernel) 333{ 334 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 335 unsigned long backtrace = oprofile_backtrace_depth; 336 337 /* 338 * if log_sample() fail we can't backtrace since we lost the 339 * source of this event 340 */ 341 if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event)) 342 /* failed */ 343 return; 344 345 if (!backtrace) 346 return; 347 348 oprofile_begin_trace(cpu_buf); 349 oprofile_ops.backtrace(regs, backtrace); 350 oprofile_end_trace(cpu_buf); 351} 352 353void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs, 354 unsigned long event, int is_kernel) 355{ 356 __oprofile_add_ext_sample(pc, regs, event, is_kernel); 357} 358 359void oprofile_add_sample(struct pt_regs * const regs, unsigned long event) 360{ 361 int is_kernel = !user_mode(regs); 362 unsigned long pc = profile_pc(regs); 363 364 __oprofile_add_ext_sample(pc, regs, event, is_kernel); 365} 366 367/* 368 * Add samples with data to the ring buffer. 369 * 370 * Use oprofile_add_data(&entry, val) to add data and 371 * oprofile_write_commit(&entry) to commit the sample. 372 */ 373void 374oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs, 375 unsigned long pc, int code, int size) 376{ 377 struct op_sample *sample; 378 int is_kernel = !user_mode(regs); 379 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 380 381 cpu_buf->sample_received++; 382 383 /* no backtraces for samples with data */ 384 if (op_add_code(cpu_buf, 0, is_kernel, current)) 385 goto fail; 386 387 sample = op_cpu_buffer_write_reserve(entry, size + 2); 388 if (!sample) 389 goto fail; 390 sample->eip = ESCAPE_CODE; 391 sample->event = 0; /* no flags */ 392 393 op_cpu_buffer_add_data(entry, code); 394 op_cpu_buffer_add_data(entry, pc); 395 396 return; 397 398fail: 399 entry->event = NULL; 400 cpu_buf->sample_lost_overflow++; 401} 402 403int oprofile_add_data(struct op_entry *entry, unsigned long val) 404{ 405 if (!entry->event) 406 return 0; 407 return op_cpu_buffer_add_data(entry, val); 408} 409 410int oprofile_write_commit(struct op_entry *entry) 411{ 412 if (!entry->event) 413 return -EINVAL; 414 return op_cpu_buffer_write_commit(entry); 415} 416 417void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event) 418{ 419 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 420 log_sample(cpu_buf, pc, 0, is_kernel, event); 421} 422 423void oprofile_add_trace(unsigned long pc) 424{ 425 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 426 427 if (!cpu_buf->tracing) 428 return; 429 430 /* 431 * broken frame can give an eip with the same value as an 432 * escape code, abort the trace if we get it 433 */ 434 if (pc == ESCAPE_CODE) 435 goto fail; 436 437 if (op_add_sample(cpu_buf, pc, 0)) 438 goto fail; 439 440 return; 441fail: 442 cpu_buf->tracing = 0; 443 cpu_buf->backtrace_aborted++; 444 return; 445} 446 447/* 448 * This serves to avoid cpu buffer overflow, and makes sure 449 * the task mortuary progresses 450 * 451 * By using schedule_delayed_work_on and then schedule_delayed_work 452 * we guarantee this will stay on the correct cpu 453 */ 454static void wq_sync_buffer(struct work_struct *work) 455{ 456 struct oprofile_cpu_buffer *b = 457 container_of(work, struct oprofile_cpu_buffer, work.work); 458 if (b->cpu != smp_processor_id()) { 459 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n", 460 smp_processor_id(), b->cpu); 461 462 if (!cpu_online(b->cpu)) { 463 cancel_delayed_work(&b->work); 464 return; 465 } 466 } 467 sync_buffer(b->cpu); 468 469 /* don't re-add the work if we're shutting down */ 470 if (work_enabled) 471 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE); 472}