at v2.6.30 596 lines 14 kB view raw
1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * This is the core of the buffer management. Each 12 * CPU buffer is processed and entered into the 13 * global event buffer. Such processing is necessary 14 * in several circumstances, mentioned below. 15 * 16 * The processing does the job of converting the 17 * transitory EIP value into a persistent dentry/offset 18 * value that the profiler can record at its leisure. 19 * 20 * See fs/dcookies.c for a description of the dentry/offset 21 * objects. 22 */ 23 24#include <linux/mm.h> 25#include <linux/workqueue.h> 26#include <linux/notifier.h> 27#include <linux/dcookies.h> 28#include <linux/profile.h> 29#include <linux/module.h> 30#include <linux/fs.h> 31#include <linux/oprofile.h> 32#include <linux/sched.h> 33 34#include "oprofile_stats.h" 35#include "event_buffer.h" 36#include "cpu_buffer.h" 37#include "buffer_sync.h" 38 39static LIST_HEAD(dying_tasks); 40static LIST_HEAD(dead_tasks); 41static cpumask_var_t marked_cpus; 42static DEFINE_SPINLOCK(task_mortuary); 43static void process_task_mortuary(void); 44 45/* Take ownership of the task struct and place it on the 46 * list for processing. Only after two full buffer syncs 47 * does the task eventually get freed, because by then 48 * we are sure we will not reference it again. 49 * Can be invoked from softirq via RCU callback due to 50 * call_rcu() of the task struct, hence the _irqsave. 51 */ 52static int 53task_free_notify(struct notifier_block *self, unsigned long val, void *data) 54{ 55 unsigned long flags; 56 struct task_struct *task = data; 57 spin_lock_irqsave(&task_mortuary, flags); 58 list_add(&task->tasks, &dying_tasks); 59 spin_unlock_irqrestore(&task_mortuary, flags); 60 return NOTIFY_OK; 61} 62 63 64/* The task is on its way out. A sync of the buffer means we can catch 65 * any remaining samples for this task. 66 */ 67static int 68task_exit_notify(struct notifier_block *self, unsigned long val, void *data) 69{ 70 /* To avoid latency problems, we only process the current CPU, 71 * hoping that most samples for the task are on this CPU 72 */ 73 sync_buffer(raw_smp_processor_id()); 74 return 0; 75} 76 77 78/* The task is about to try a do_munmap(). We peek at what it's going to 79 * do, and if it's an executable region, process the samples first, so 80 * we don't lose any. This does not have to be exact, it's a QoI issue 81 * only. 82 */ 83static int 84munmap_notify(struct notifier_block *self, unsigned long val, void *data) 85{ 86 unsigned long addr = (unsigned long)data; 87 struct mm_struct *mm = current->mm; 88 struct vm_area_struct *mpnt; 89 90 down_read(&mm->mmap_sem); 91 92 mpnt = find_vma(mm, addr); 93 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 94 up_read(&mm->mmap_sem); 95 /* To avoid latency problems, we only process the current CPU, 96 * hoping that most samples for the task are on this CPU 97 */ 98 sync_buffer(raw_smp_processor_id()); 99 return 0; 100 } 101 102 up_read(&mm->mmap_sem); 103 return 0; 104} 105 106 107/* We need to be told about new modules so we don't attribute to a previously 108 * loaded module, or drop the samples on the floor. 109 */ 110static int 111module_load_notify(struct notifier_block *self, unsigned long val, void *data) 112{ 113#ifdef CONFIG_MODULES 114 if (val != MODULE_STATE_COMING) 115 return 0; 116 117 /* FIXME: should we process all CPU buffers ? */ 118 mutex_lock(&buffer_mutex); 119 add_event_entry(ESCAPE_CODE); 120 add_event_entry(MODULE_LOADED_CODE); 121 mutex_unlock(&buffer_mutex); 122#endif 123 return 0; 124} 125 126 127static struct notifier_block task_free_nb = { 128 .notifier_call = task_free_notify, 129}; 130 131static struct notifier_block task_exit_nb = { 132 .notifier_call = task_exit_notify, 133}; 134 135static struct notifier_block munmap_nb = { 136 .notifier_call = munmap_notify, 137}; 138 139static struct notifier_block module_load_nb = { 140 .notifier_call = module_load_notify, 141}; 142 143 144static void end_sync(void) 145{ 146 end_cpu_work(); 147 /* make sure we don't leak task structs */ 148 process_task_mortuary(); 149 process_task_mortuary(); 150} 151 152 153int sync_start(void) 154{ 155 int err; 156 157 if (!alloc_cpumask_var(&marked_cpus, GFP_KERNEL)) 158 return -ENOMEM; 159 cpumask_clear(marked_cpus); 160 161 start_cpu_work(); 162 163 err = task_handoff_register(&task_free_nb); 164 if (err) 165 goto out1; 166 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 167 if (err) 168 goto out2; 169 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 170 if (err) 171 goto out3; 172 err = register_module_notifier(&module_load_nb); 173 if (err) 174 goto out4; 175 176out: 177 return err; 178out4: 179 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 180out3: 181 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 182out2: 183 task_handoff_unregister(&task_free_nb); 184out1: 185 end_sync(); 186 free_cpumask_var(marked_cpus); 187 goto out; 188} 189 190 191void sync_stop(void) 192{ 193 unregister_module_notifier(&module_load_nb); 194 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 195 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 196 task_handoff_unregister(&task_free_nb); 197 end_sync(); 198 free_cpumask_var(marked_cpus); 199} 200 201 202/* Optimisation. We can manage without taking the dcookie sem 203 * because we cannot reach this code without at least one 204 * dcookie user still being registered (namely, the reader 205 * of the event buffer). */ 206static inline unsigned long fast_get_dcookie(struct path *path) 207{ 208 unsigned long cookie; 209 210 if (path->dentry->d_flags & DCACHE_COOKIE) 211 return (unsigned long)path->dentry; 212 get_dcookie(path, &cookie); 213 return cookie; 214} 215 216 217/* Look up the dcookie for the task's first VM_EXECUTABLE mapping, 218 * which corresponds loosely to "application name". This is 219 * not strictly necessary but allows oprofile to associate 220 * shared-library samples with particular applications 221 */ 222static unsigned long get_exec_dcookie(struct mm_struct *mm) 223{ 224 unsigned long cookie = NO_COOKIE; 225 struct vm_area_struct *vma; 226 227 if (!mm) 228 goto out; 229 230 for (vma = mm->mmap; vma; vma = vma->vm_next) { 231 if (!vma->vm_file) 232 continue; 233 if (!(vma->vm_flags & VM_EXECUTABLE)) 234 continue; 235 cookie = fast_get_dcookie(&vma->vm_file->f_path); 236 break; 237 } 238 239out: 240 return cookie; 241} 242 243 244/* Convert the EIP value of a sample into a persistent dentry/offset 245 * pair that can then be added to the global event buffer. We make 246 * sure to do this lookup before a mm->mmap modification happens so 247 * we don't lose track. 248 */ 249static unsigned long 250lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) 251{ 252 unsigned long cookie = NO_COOKIE; 253 struct vm_area_struct *vma; 254 255 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 256 257 if (addr < vma->vm_start || addr >= vma->vm_end) 258 continue; 259 260 if (vma->vm_file) { 261 cookie = fast_get_dcookie(&vma->vm_file->f_path); 262 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 263 vma->vm_start; 264 } else { 265 /* must be an anonymous map */ 266 *offset = addr; 267 } 268 269 break; 270 } 271 272 if (!vma) 273 cookie = INVALID_COOKIE; 274 275 return cookie; 276} 277 278static unsigned long last_cookie = INVALID_COOKIE; 279 280static void add_cpu_switch(int i) 281{ 282 add_event_entry(ESCAPE_CODE); 283 add_event_entry(CPU_SWITCH_CODE); 284 add_event_entry(i); 285 last_cookie = INVALID_COOKIE; 286} 287 288static void add_kernel_ctx_switch(unsigned int in_kernel) 289{ 290 add_event_entry(ESCAPE_CODE); 291 if (in_kernel) 292 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 293 else 294 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 295} 296 297static void 298add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) 299{ 300 add_event_entry(ESCAPE_CODE); 301 add_event_entry(CTX_SWITCH_CODE); 302 add_event_entry(task->pid); 303 add_event_entry(cookie); 304 /* Another code for daemon back-compat */ 305 add_event_entry(ESCAPE_CODE); 306 add_event_entry(CTX_TGID_CODE); 307 add_event_entry(task->tgid); 308} 309 310 311static void add_cookie_switch(unsigned long cookie) 312{ 313 add_event_entry(ESCAPE_CODE); 314 add_event_entry(COOKIE_SWITCH_CODE); 315 add_event_entry(cookie); 316} 317 318 319static void add_trace_begin(void) 320{ 321 add_event_entry(ESCAPE_CODE); 322 add_event_entry(TRACE_BEGIN_CODE); 323} 324 325static void add_data(struct op_entry *entry, struct mm_struct *mm) 326{ 327 unsigned long code, pc, val; 328 unsigned long cookie; 329 off_t offset; 330 331 if (!op_cpu_buffer_get_data(entry, &code)) 332 return; 333 if (!op_cpu_buffer_get_data(entry, &pc)) 334 return; 335 if (!op_cpu_buffer_get_size(entry)) 336 return; 337 338 if (mm) { 339 cookie = lookup_dcookie(mm, pc, &offset); 340 341 if (cookie == NO_COOKIE) 342 offset = pc; 343 if (cookie == INVALID_COOKIE) { 344 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 345 offset = pc; 346 } 347 if (cookie != last_cookie) { 348 add_cookie_switch(cookie); 349 last_cookie = cookie; 350 } 351 } else 352 offset = pc; 353 354 add_event_entry(ESCAPE_CODE); 355 add_event_entry(code); 356 add_event_entry(offset); /* Offset from Dcookie */ 357 358 while (op_cpu_buffer_get_data(entry, &val)) 359 add_event_entry(val); 360} 361 362static inline void add_sample_entry(unsigned long offset, unsigned long event) 363{ 364 add_event_entry(offset); 365 add_event_entry(event); 366} 367 368 369/* 370 * Add a sample to the global event buffer. If possible the 371 * sample is converted into a persistent dentry/offset pair 372 * for later lookup from userspace. Return 0 on failure. 373 */ 374static int 375add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) 376{ 377 unsigned long cookie; 378 off_t offset; 379 380 if (in_kernel) { 381 add_sample_entry(s->eip, s->event); 382 return 1; 383 } 384 385 /* add userspace sample */ 386 387 if (!mm) { 388 atomic_inc(&oprofile_stats.sample_lost_no_mm); 389 return 0; 390 } 391 392 cookie = lookup_dcookie(mm, s->eip, &offset); 393 394 if (cookie == INVALID_COOKIE) { 395 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 396 return 0; 397 } 398 399 if (cookie != last_cookie) { 400 add_cookie_switch(cookie); 401 last_cookie = cookie; 402 } 403 404 add_sample_entry(offset, s->event); 405 406 return 1; 407} 408 409 410static void release_mm(struct mm_struct *mm) 411{ 412 if (!mm) 413 return; 414 up_read(&mm->mmap_sem); 415 mmput(mm); 416} 417 418 419static struct mm_struct *take_tasks_mm(struct task_struct *task) 420{ 421 struct mm_struct *mm = get_task_mm(task); 422 if (mm) 423 down_read(&mm->mmap_sem); 424 return mm; 425} 426 427 428static inline int is_code(unsigned long val) 429{ 430 return val == ESCAPE_CODE; 431} 432 433 434/* Move tasks along towards death. Any tasks on dead_tasks 435 * will definitely have no remaining references in any 436 * CPU buffers at this point, because we use two lists, 437 * and to have reached the list, it must have gone through 438 * one full sync already. 439 */ 440static void process_task_mortuary(void) 441{ 442 unsigned long flags; 443 LIST_HEAD(local_dead_tasks); 444 struct task_struct *task; 445 struct task_struct *ttask; 446 447 spin_lock_irqsave(&task_mortuary, flags); 448 449 list_splice_init(&dead_tasks, &local_dead_tasks); 450 list_splice_init(&dying_tasks, &dead_tasks); 451 452 spin_unlock_irqrestore(&task_mortuary, flags); 453 454 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 455 list_del(&task->tasks); 456 free_task(task); 457 } 458} 459 460 461static void mark_done(int cpu) 462{ 463 int i; 464 465 cpumask_set_cpu(cpu, marked_cpus); 466 467 for_each_online_cpu(i) { 468 if (!cpumask_test_cpu(i, marked_cpus)) 469 return; 470 } 471 472 /* All CPUs have been processed at least once, 473 * we can process the mortuary once 474 */ 475 process_task_mortuary(); 476 477 cpumask_clear(marked_cpus); 478} 479 480 481/* FIXME: this is not sufficient if we implement syscall barrier backtrace 482 * traversal, the code switch to sb_sample_start at first kernel enter/exit 483 * switch so we need a fifth state and some special handling in sync_buffer() 484 */ 485typedef enum { 486 sb_bt_ignore = -2, 487 sb_buffer_start, 488 sb_bt_start, 489 sb_sample_start, 490} sync_buffer_state; 491 492/* Sync one of the CPU's buffers into the global event buffer. 493 * Here we need to go through each batch of samples punctuated 494 * by context switch notes, taking the task's mmap_sem and doing 495 * lookup in task->mm->mmap to convert EIP into dcookie/offset 496 * value. 497 */ 498void sync_buffer(int cpu) 499{ 500 struct mm_struct *mm = NULL; 501 struct mm_struct *oldmm; 502 unsigned long val; 503 struct task_struct *new; 504 unsigned long cookie = 0; 505 int in_kernel = 1; 506 sync_buffer_state state = sb_buffer_start; 507 unsigned int i; 508 unsigned long available; 509 unsigned long flags; 510 struct op_entry entry; 511 struct op_sample *sample; 512 513 mutex_lock(&buffer_mutex); 514 515 add_cpu_switch(cpu); 516 517 op_cpu_buffer_reset(cpu); 518 available = op_cpu_buffer_entries(cpu); 519 520 for (i = 0; i < available; ++i) { 521 sample = op_cpu_buffer_read_entry(&entry, cpu); 522 if (!sample) 523 break; 524 525 if (is_code(sample->eip)) { 526 flags = sample->event; 527 if (flags & TRACE_BEGIN) { 528 state = sb_bt_start; 529 add_trace_begin(); 530 } 531 if (flags & KERNEL_CTX_SWITCH) { 532 /* kernel/userspace switch */ 533 in_kernel = flags & IS_KERNEL; 534 if (state == sb_buffer_start) 535 state = sb_sample_start; 536 add_kernel_ctx_switch(flags & IS_KERNEL); 537 } 538 if (flags & USER_CTX_SWITCH 539 && op_cpu_buffer_get_data(&entry, &val)) { 540 /* userspace context switch */ 541 new = (struct task_struct *)val; 542 oldmm = mm; 543 release_mm(oldmm); 544 mm = take_tasks_mm(new); 545 if (mm != oldmm) 546 cookie = get_exec_dcookie(mm); 547 add_user_ctx_switch(new, cookie); 548 } 549 if (op_cpu_buffer_get_size(&entry)) 550 add_data(&entry, mm); 551 continue; 552 } 553 554 if (state < sb_bt_start) 555 /* ignore sample */ 556 continue; 557 558 if (add_sample(mm, sample, in_kernel)) 559 continue; 560 561 /* ignore backtraces if failed to add a sample */ 562 if (state == sb_bt_start) { 563 state = sb_bt_ignore; 564 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 565 } 566 } 567 release_mm(mm); 568 569 mark_done(cpu); 570 571 mutex_unlock(&buffer_mutex); 572} 573 574/* The function can be used to add a buffer worth of data directly to 575 * the kernel buffer. The buffer is assumed to be a circular buffer. 576 * Take the entries from index start and end at index end, wrapping 577 * at max_entries. 578 */ 579void oprofile_put_buff(unsigned long *buf, unsigned int start, 580 unsigned int stop, unsigned int max) 581{ 582 int i; 583 584 i = start; 585 586 mutex_lock(&buffer_mutex); 587 while (i != stop) { 588 add_event_entry(buf[i++]); 589 590 if (i >= max) 591 i = 0; 592 } 593 594 mutex_unlock(&buffer_mutex); 595} 596