at v2.6.30 1312 lines 34 kB view raw
1/* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21/* 22 * UBI scanning sub-system. 23 * 24 * This sub-system is responsible for scanning the flash media, checking UBI 25 * headers and providing complete information about the UBI flash image. 26 * 27 * The scanning information is represented by a &struct ubi_scan_info' object. 28 * Information about found volumes is represented by &struct ubi_scan_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. 33 * These objects are kept in per-volume RB-trees with the root at the 34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep 35 * an RB-tree of per-volume objects and each of these objects is the root of 36 * RB-tree of per-eraseblock objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 */ 42 43#include <linux/err.h> 44#include <linux/crc32.h> 45#include <linux/math64.h> 46#include "ubi.h" 47 48#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 49static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); 50#else 51#define paranoid_check_si(ubi, si) 0 52#endif 53 54/* Temporary variables used during scanning */ 55static struct ubi_ec_hdr *ech; 56static struct ubi_vid_hdr *vidh; 57 58/** 59 * add_to_list - add physical eraseblock to a list. 60 * @si: scanning information 61 * @pnum: physical eraseblock number to add 62 * @ec: erase counter of the physical eraseblock 63 * @list: the list to add to 64 * 65 * This function adds physical eraseblock @pnum to free, erase, corrupted or 66 * alien lists. Returns zero in case of success and a negative error code in 67 * case of failure. 68 */ 69static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, 70 struct list_head *list) 71{ 72 struct ubi_scan_leb *seb; 73 74 if (list == &si->free) 75 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 76 else if (list == &si->erase) 77 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 78 else if (list == &si->corr) 79 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 80 else if (list == &si->alien) 81 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 82 else 83 BUG(); 84 85 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 86 if (!seb) 87 return -ENOMEM; 88 89 seb->pnum = pnum; 90 seb->ec = ec; 91 list_add_tail(&seb->u.list, list); 92 return 0; 93} 94 95/** 96 * validate_vid_hdr - check volume identifier header. 97 * @vid_hdr: the volume identifier header to check 98 * @sv: information about the volume this logical eraseblock belongs to 99 * @pnum: physical eraseblock number the VID header came from 100 * 101 * This function checks that data stored in @vid_hdr is consistent. Returns 102 * non-zero if an inconsistency was found and zero if not. 103 * 104 * Note, UBI does sanity check of everything it reads from the flash media. 105 * Most of the checks are done in the I/O sub-system. Here we check that the 106 * information in the VID header is consistent to the information in other VID 107 * headers of the same volume. 108 */ 109static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, 110 const struct ubi_scan_volume *sv, int pnum) 111{ 112 int vol_type = vid_hdr->vol_type; 113 int vol_id = be32_to_cpu(vid_hdr->vol_id); 114 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 115 int data_pad = be32_to_cpu(vid_hdr->data_pad); 116 117 if (sv->leb_count != 0) { 118 int sv_vol_type; 119 120 /* 121 * This is not the first logical eraseblock belonging to this 122 * volume. Ensure that the data in its VID header is consistent 123 * to the data in previous logical eraseblock headers. 124 */ 125 126 if (vol_id != sv->vol_id) { 127 dbg_err("inconsistent vol_id"); 128 goto bad; 129 } 130 131 if (sv->vol_type == UBI_STATIC_VOLUME) 132 sv_vol_type = UBI_VID_STATIC; 133 else 134 sv_vol_type = UBI_VID_DYNAMIC; 135 136 if (vol_type != sv_vol_type) { 137 dbg_err("inconsistent vol_type"); 138 goto bad; 139 } 140 141 if (used_ebs != sv->used_ebs) { 142 dbg_err("inconsistent used_ebs"); 143 goto bad; 144 } 145 146 if (data_pad != sv->data_pad) { 147 dbg_err("inconsistent data_pad"); 148 goto bad; 149 } 150 } 151 152 return 0; 153 154bad: 155 ubi_err("inconsistent VID header at PEB %d", pnum); 156 ubi_dbg_dump_vid_hdr(vid_hdr); 157 ubi_dbg_dump_sv(sv); 158 return -EINVAL; 159} 160 161/** 162 * add_volume - add volume to the scanning information. 163 * @si: scanning information 164 * @vol_id: ID of the volume to add 165 * @pnum: physical eraseblock number 166 * @vid_hdr: volume identifier header 167 * 168 * If the volume corresponding to the @vid_hdr logical eraseblock is already 169 * present in the scanning information, this function does nothing. Otherwise 170 * it adds corresponding volume to the scanning information. Returns a pointer 171 * to the scanning volume object in case of success and a negative error code 172 * in case of failure. 173 */ 174static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, 175 int pnum, 176 const struct ubi_vid_hdr *vid_hdr) 177{ 178 struct ubi_scan_volume *sv; 179 struct rb_node **p = &si->volumes.rb_node, *parent = NULL; 180 181 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 182 183 /* Walk the volume RB-tree to look if this volume is already present */ 184 while (*p) { 185 parent = *p; 186 sv = rb_entry(parent, struct ubi_scan_volume, rb); 187 188 if (vol_id == sv->vol_id) 189 return sv; 190 191 if (vol_id > sv->vol_id) 192 p = &(*p)->rb_left; 193 else 194 p = &(*p)->rb_right; 195 } 196 197 /* The volume is absent - add it */ 198 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); 199 if (!sv) 200 return ERR_PTR(-ENOMEM); 201 202 sv->highest_lnum = sv->leb_count = 0; 203 sv->vol_id = vol_id; 204 sv->root = RB_ROOT; 205 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 206 sv->data_pad = be32_to_cpu(vid_hdr->data_pad); 207 sv->compat = vid_hdr->compat; 208 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 209 : UBI_STATIC_VOLUME; 210 if (vol_id > si->highest_vol_id) 211 si->highest_vol_id = vol_id; 212 213 rb_link_node(&sv->rb, parent, p); 214 rb_insert_color(&sv->rb, &si->volumes); 215 si->vols_found += 1; 216 dbg_bld("added volume %d", vol_id); 217 return sv; 218} 219 220/** 221 * compare_lebs - find out which logical eraseblock is newer. 222 * @ubi: UBI device description object 223 * @seb: first logical eraseblock to compare 224 * @pnum: physical eraseblock number of the second logical eraseblock to 225 * compare 226 * @vid_hdr: volume identifier header of the second logical eraseblock 227 * 228 * This function compares 2 copies of a LEB and informs which one is newer. In 229 * case of success this function returns a positive value, in case of failure, a 230 * negative error code is returned. The success return codes use the following 231 * bits: 232 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the 233 * second PEB (described by @pnum and @vid_hdr); 234 * o bit 0 is set: the second PEB is newer; 235 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 236 * o bit 1 is set: bit-flips were detected in the newer LEB; 237 * o bit 2 is cleared: the older LEB is not corrupted; 238 * o bit 2 is set: the older LEB is corrupted. 239 */ 240static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, 241 int pnum, const struct ubi_vid_hdr *vid_hdr) 242{ 243 void *buf; 244 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 245 uint32_t data_crc, crc; 246 struct ubi_vid_hdr *vh = NULL; 247 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 248 249 if (sqnum2 == seb->sqnum) { 250 /* 251 * This must be a really ancient UBI image which has been 252 * created before sequence numbers support has been added. At 253 * that times we used 32-bit LEB versions stored in logical 254 * eraseblocks. That was before UBI got into mainline. We do not 255 * support these images anymore. Well, those images will work 256 * still work, but only if no unclean reboots happened. 257 */ 258 ubi_err("unsupported on-flash UBI format\n"); 259 return -EINVAL; 260 } 261 262 /* Obviously the LEB with lower sequence counter is older */ 263 second_is_newer = !!(sqnum2 > seb->sqnum); 264 265 /* 266 * Now we know which copy is newer. If the copy flag of the PEB with 267 * newer version is not set, then we just return, otherwise we have to 268 * check data CRC. For the second PEB we already have the VID header, 269 * for the first one - we'll need to re-read it from flash. 270 * 271 * Note: this may be optimized so that we wouldn't read twice. 272 */ 273 274 if (second_is_newer) { 275 if (!vid_hdr->copy_flag) { 276 /* It is not a copy, so it is newer */ 277 dbg_bld("second PEB %d is newer, copy_flag is unset", 278 pnum); 279 return 1; 280 } 281 } else { 282 pnum = seb->pnum; 283 284 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 285 if (!vh) 286 return -ENOMEM; 287 288 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 289 if (err) { 290 if (err == UBI_IO_BITFLIPS) 291 bitflips = 1; 292 else { 293 dbg_err("VID of PEB %d header is bad, but it " 294 "was OK earlier", pnum); 295 if (err > 0) 296 err = -EIO; 297 298 goto out_free_vidh; 299 } 300 } 301 302 if (!vh->copy_flag) { 303 /* It is not a copy, so it is newer */ 304 dbg_bld("first PEB %d is newer, copy_flag is unset", 305 pnum); 306 err = bitflips << 1; 307 goto out_free_vidh; 308 } 309 310 vid_hdr = vh; 311 } 312 313 /* Read the data of the copy and check the CRC */ 314 315 len = be32_to_cpu(vid_hdr->data_size); 316 buf = vmalloc(len); 317 if (!buf) { 318 err = -ENOMEM; 319 goto out_free_vidh; 320 } 321 322 err = ubi_io_read_data(ubi, buf, pnum, 0, len); 323 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) 324 goto out_free_buf; 325 326 data_crc = be32_to_cpu(vid_hdr->data_crc); 327 crc = crc32(UBI_CRC32_INIT, buf, len); 328 if (crc != data_crc) { 329 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 330 pnum, crc, data_crc); 331 corrupted = 1; 332 bitflips = 0; 333 second_is_newer = !second_is_newer; 334 } else { 335 dbg_bld("PEB %d CRC is OK", pnum); 336 bitflips = !!err; 337 } 338 339 vfree(buf); 340 ubi_free_vid_hdr(ubi, vh); 341 342 if (second_is_newer) 343 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 344 else 345 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 346 347 return second_is_newer | (bitflips << 1) | (corrupted << 2); 348 349out_free_buf: 350 vfree(buf); 351out_free_vidh: 352 ubi_free_vid_hdr(ubi, vh); 353 return err; 354} 355 356/** 357 * ubi_scan_add_used - add physical eraseblock to the scanning information. 358 * @ubi: UBI device description object 359 * @si: scanning information 360 * @pnum: the physical eraseblock number 361 * @ec: erase counter 362 * @vid_hdr: the volume identifier header 363 * @bitflips: if bit-flips were detected when this physical eraseblock was read 364 * 365 * This function adds information about a used physical eraseblock to the 366 * 'used' tree of the corresponding volume. The function is rather complex 367 * because it has to handle cases when this is not the first physical 368 * eraseblock belonging to the same logical eraseblock, and the newer one has 369 * to be picked, while the older one has to be dropped. This function returns 370 * zero in case of success and a negative error code in case of failure. 371 */ 372int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, 373 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, 374 int bitflips) 375{ 376 int err, vol_id, lnum; 377 unsigned long long sqnum; 378 struct ubi_scan_volume *sv; 379 struct ubi_scan_leb *seb; 380 struct rb_node **p, *parent = NULL; 381 382 vol_id = be32_to_cpu(vid_hdr->vol_id); 383 lnum = be32_to_cpu(vid_hdr->lnum); 384 sqnum = be64_to_cpu(vid_hdr->sqnum); 385 386 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 387 pnum, vol_id, lnum, ec, sqnum, bitflips); 388 389 sv = add_volume(si, vol_id, pnum, vid_hdr); 390 if (IS_ERR(sv)) 391 return PTR_ERR(sv); 392 393 if (si->max_sqnum < sqnum) 394 si->max_sqnum = sqnum; 395 396 /* 397 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 398 * if this is the first instance of this logical eraseblock or not. 399 */ 400 p = &sv->root.rb_node; 401 while (*p) { 402 int cmp_res; 403 404 parent = *p; 405 seb = rb_entry(parent, struct ubi_scan_leb, u.rb); 406 if (lnum != seb->lnum) { 407 if (lnum < seb->lnum) 408 p = &(*p)->rb_left; 409 else 410 p = &(*p)->rb_right; 411 continue; 412 } 413 414 /* 415 * There is already a physical eraseblock describing the same 416 * logical eraseblock present. 417 */ 418 419 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " 420 "EC %d", seb->pnum, seb->sqnum, seb->ec); 421 422 /* 423 * Make sure that the logical eraseblocks have different 424 * sequence numbers. Otherwise the image is bad. 425 * 426 * However, if the sequence number is zero, we assume it must 427 * be an ancient UBI image from the era when UBI did not have 428 * sequence numbers. We still can attach these images, unless 429 * there is a need to distinguish between old and new 430 * eraseblocks, in which case we'll refuse the image in 431 * 'compare_lebs()'. In other words, we attach old clean 432 * images, but refuse attaching old images with duplicated 433 * logical eraseblocks because there was an unclean reboot. 434 */ 435 if (seb->sqnum == sqnum && sqnum != 0) { 436 ubi_err("two LEBs with same sequence number %llu", 437 sqnum); 438 ubi_dbg_dump_seb(seb, 0); 439 ubi_dbg_dump_vid_hdr(vid_hdr); 440 return -EINVAL; 441 } 442 443 /* 444 * Now we have to drop the older one and preserve the newer 445 * one. 446 */ 447 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); 448 if (cmp_res < 0) 449 return cmp_res; 450 451 if (cmp_res & 1) { 452 /* 453 * This logical eraseblock is newer then the one 454 * found earlier. 455 */ 456 err = validate_vid_hdr(vid_hdr, sv, pnum); 457 if (err) 458 return err; 459 460 if (cmp_res & 4) 461 err = add_to_list(si, seb->pnum, seb->ec, 462 &si->corr); 463 else 464 err = add_to_list(si, seb->pnum, seb->ec, 465 &si->erase); 466 if (err) 467 return err; 468 469 seb->ec = ec; 470 seb->pnum = pnum; 471 seb->scrub = ((cmp_res & 2) || bitflips); 472 seb->sqnum = sqnum; 473 474 if (sv->highest_lnum == lnum) 475 sv->last_data_size = 476 be32_to_cpu(vid_hdr->data_size); 477 478 return 0; 479 } else { 480 /* 481 * This logical eraseblock is older than the one found 482 * previously. 483 */ 484 if (cmp_res & 4) 485 return add_to_list(si, pnum, ec, &si->corr); 486 else 487 return add_to_list(si, pnum, ec, &si->erase); 488 } 489 } 490 491 /* 492 * We've met this logical eraseblock for the first time, add it to the 493 * scanning information. 494 */ 495 496 err = validate_vid_hdr(vid_hdr, sv, pnum); 497 if (err) 498 return err; 499 500 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); 501 if (!seb) 502 return -ENOMEM; 503 504 seb->ec = ec; 505 seb->pnum = pnum; 506 seb->lnum = lnum; 507 seb->sqnum = sqnum; 508 seb->scrub = bitflips; 509 510 if (sv->highest_lnum <= lnum) { 511 sv->highest_lnum = lnum; 512 sv->last_data_size = be32_to_cpu(vid_hdr->data_size); 513 } 514 515 sv->leb_count += 1; 516 rb_link_node(&seb->u.rb, parent, p); 517 rb_insert_color(&seb->u.rb, &sv->root); 518 return 0; 519} 520 521/** 522 * ubi_scan_find_sv - find volume in the scanning information. 523 * @si: scanning information 524 * @vol_id: the requested volume ID 525 * 526 * This function returns a pointer to the volume description or %NULL if there 527 * are no data about this volume in the scanning information. 528 */ 529struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, 530 int vol_id) 531{ 532 struct ubi_scan_volume *sv; 533 struct rb_node *p = si->volumes.rb_node; 534 535 while (p) { 536 sv = rb_entry(p, struct ubi_scan_volume, rb); 537 538 if (vol_id == sv->vol_id) 539 return sv; 540 541 if (vol_id > sv->vol_id) 542 p = p->rb_left; 543 else 544 p = p->rb_right; 545 } 546 547 return NULL; 548} 549 550/** 551 * ubi_scan_find_seb - find LEB in the volume scanning information. 552 * @sv: a pointer to the volume scanning information 553 * @lnum: the requested logical eraseblock 554 * 555 * This function returns a pointer to the scanning logical eraseblock or %NULL 556 * if there are no data about it in the scanning volume information. 557 */ 558struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, 559 int lnum) 560{ 561 struct ubi_scan_leb *seb; 562 struct rb_node *p = sv->root.rb_node; 563 564 while (p) { 565 seb = rb_entry(p, struct ubi_scan_leb, u.rb); 566 567 if (lnum == seb->lnum) 568 return seb; 569 570 if (lnum > seb->lnum) 571 p = p->rb_left; 572 else 573 p = p->rb_right; 574 } 575 576 return NULL; 577} 578 579/** 580 * ubi_scan_rm_volume - delete scanning information about a volume. 581 * @si: scanning information 582 * @sv: the volume scanning information to delete 583 */ 584void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) 585{ 586 struct rb_node *rb; 587 struct ubi_scan_leb *seb; 588 589 dbg_bld("remove scanning information about volume %d", sv->vol_id); 590 591 while ((rb = rb_first(&sv->root))) { 592 seb = rb_entry(rb, struct ubi_scan_leb, u.rb); 593 rb_erase(&seb->u.rb, &sv->root); 594 list_add_tail(&seb->u.list, &si->erase); 595 } 596 597 rb_erase(&sv->rb, &si->volumes); 598 kfree(sv); 599 si->vols_found -= 1; 600} 601 602/** 603 * ubi_scan_erase_peb - erase a physical eraseblock. 604 * @ubi: UBI device description object 605 * @si: scanning information 606 * @pnum: physical eraseblock number to erase; 607 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) 608 * 609 * This function erases physical eraseblock 'pnum', and writes the erase 610 * counter header to it. This function should only be used on UBI device 611 * initialization stages, when the EBA sub-system had not been yet initialized. 612 * This function returns zero in case of success and a negative error code in 613 * case of failure. 614 */ 615int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, 616 int pnum, int ec) 617{ 618 int err; 619 struct ubi_ec_hdr *ec_hdr; 620 621 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 622 /* 623 * Erase counter overflow. Upgrade UBI and use 64-bit 624 * erase counters internally. 625 */ 626 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); 627 return -EINVAL; 628 } 629 630 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 631 if (!ec_hdr) 632 return -ENOMEM; 633 634 ec_hdr->ec = cpu_to_be64(ec); 635 636 err = ubi_io_sync_erase(ubi, pnum, 0); 637 if (err < 0) 638 goto out_free; 639 640 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 641 642out_free: 643 kfree(ec_hdr); 644 return err; 645} 646 647/** 648 * ubi_scan_get_free_peb - get a free physical eraseblock. 649 * @ubi: UBI device description object 650 * @si: scanning information 651 * 652 * This function returns a free physical eraseblock. It is supposed to be 653 * called on the UBI initialization stages when the wear-leveling sub-system is 654 * not initialized yet. This function picks a physical eraseblocks from one of 655 * the lists, writes the EC header if it is needed, and removes it from the 656 * list. 657 * 658 * This function returns scanning physical eraseblock information in case of 659 * success and an error code in case of failure. 660 */ 661struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, 662 struct ubi_scan_info *si) 663{ 664 int err = 0, i; 665 struct ubi_scan_leb *seb; 666 667 if (!list_empty(&si->free)) { 668 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); 669 list_del(&seb->u.list); 670 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); 671 return seb; 672 } 673 674 for (i = 0; i < 2; i++) { 675 struct list_head *head; 676 struct ubi_scan_leb *tmp_seb; 677 678 if (i == 0) 679 head = &si->erase; 680 else 681 head = &si->corr; 682 683 /* 684 * We try to erase the first physical eraseblock from the @head 685 * list and pick it if we succeed, or try to erase the 686 * next one if not. And so forth. We don't want to take care 687 * about bad eraseblocks here - they'll be handled later. 688 */ 689 list_for_each_entry_safe(seb, tmp_seb, head, u.list) { 690 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 691 seb->ec = si->mean_ec; 692 693 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); 694 if (err) 695 continue; 696 697 seb->ec += 1; 698 list_del(&seb->u.list); 699 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); 700 return seb; 701 } 702 } 703 704 ubi_err("no eraseblocks found"); 705 return ERR_PTR(-ENOSPC); 706} 707 708/** 709 * process_eb - read, check UBI headers, and add them to scanning information. 710 * @ubi: UBI device description object 711 * @si: scanning information 712 * @pnum: the physical eraseblock number 713 * 714 * This function returns a zero if the physical eraseblock was successfully 715 * handled and a negative error code in case of failure. 716 */ 717static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, 718 int pnum) 719{ 720 long long uninitialized_var(ec); 721 int err, bitflips = 0, vol_id, ec_corr = 0; 722 723 dbg_bld("scan PEB %d", pnum); 724 725 /* Skip bad physical eraseblocks */ 726 err = ubi_io_is_bad(ubi, pnum); 727 if (err < 0) 728 return err; 729 else if (err) { 730 /* 731 * FIXME: this is actually duty of the I/O sub-system to 732 * initialize this, but MTD does not provide enough 733 * information. 734 */ 735 si->bad_peb_count += 1; 736 return 0; 737 } 738 739 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 740 if (err < 0) 741 return err; 742 else if (err == UBI_IO_BITFLIPS) 743 bitflips = 1; 744 else if (err == UBI_IO_PEB_EMPTY) 745 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); 746 else if (err == UBI_IO_BAD_EC_HDR) { 747 /* 748 * We have to also look at the VID header, possibly it is not 749 * corrupted. Set %bitflips flag in order to make this PEB be 750 * moved and EC be re-created. 751 */ 752 ec_corr = 1; 753 ec = UBI_SCAN_UNKNOWN_EC; 754 bitflips = 1; 755 } 756 757 si->is_empty = 0; 758 759 if (!ec_corr) { 760 /* Make sure UBI version is OK */ 761 if (ech->version != UBI_VERSION) { 762 ubi_err("this UBI version is %d, image version is %d", 763 UBI_VERSION, (int)ech->version); 764 return -EINVAL; 765 } 766 767 ec = be64_to_cpu(ech->ec); 768 if (ec > UBI_MAX_ERASECOUNTER) { 769 /* 770 * Erase counter overflow. The EC headers have 64 bits 771 * reserved, but we anyway make use of only 31 bit 772 * values, as this seems to be enough for any existing 773 * flash. Upgrade UBI and use 64-bit erase counters 774 * internally. 775 */ 776 ubi_err("erase counter overflow, max is %d", 777 UBI_MAX_ERASECOUNTER); 778 ubi_dbg_dump_ec_hdr(ech); 779 return -EINVAL; 780 } 781 } 782 783 /* OK, we've done with the EC header, let's look at the VID header */ 784 785 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 786 if (err < 0) 787 return err; 788 else if (err == UBI_IO_BITFLIPS) 789 bitflips = 1; 790 else if (err == UBI_IO_BAD_VID_HDR || 791 (err == UBI_IO_PEB_FREE && ec_corr)) { 792 /* VID header is corrupted */ 793 err = add_to_list(si, pnum, ec, &si->corr); 794 if (err) 795 return err; 796 goto adjust_mean_ec; 797 } else if (err == UBI_IO_PEB_FREE) { 798 /* No VID header - the physical eraseblock is free */ 799 err = add_to_list(si, pnum, ec, &si->free); 800 if (err) 801 return err; 802 goto adjust_mean_ec; 803 } 804 805 vol_id = be32_to_cpu(vidh->vol_id); 806 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 807 int lnum = be32_to_cpu(vidh->lnum); 808 809 /* Unsupported internal volume */ 810 switch (vidh->compat) { 811 case UBI_COMPAT_DELETE: 812 ubi_msg("\"delete\" compatible internal volume %d:%d" 813 " found, remove it", vol_id, lnum); 814 err = add_to_list(si, pnum, ec, &si->corr); 815 if (err) 816 return err; 817 break; 818 819 case UBI_COMPAT_RO: 820 ubi_msg("read-only compatible internal volume %d:%d" 821 " found, switch to read-only mode", 822 vol_id, lnum); 823 ubi->ro_mode = 1; 824 break; 825 826 case UBI_COMPAT_PRESERVE: 827 ubi_msg("\"preserve\" compatible internal volume %d:%d" 828 " found", vol_id, lnum); 829 err = add_to_list(si, pnum, ec, &si->alien); 830 if (err) 831 return err; 832 si->alien_peb_count += 1; 833 return 0; 834 835 case UBI_COMPAT_REJECT: 836 ubi_err("incompatible internal volume %d:%d found", 837 vol_id, lnum); 838 return -EINVAL; 839 } 840 } 841 842 /* Both UBI headers seem to be fine */ 843 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); 844 if (err) 845 return err; 846 847adjust_mean_ec: 848 if (!ec_corr) { 849 si->ec_sum += ec; 850 si->ec_count += 1; 851 if (ec > si->max_ec) 852 si->max_ec = ec; 853 if (ec < si->min_ec) 854 si->min_ec = ec; 855 } 856 857 return 0; 858} 859 860/** 861 * ubi_scan - scan an MTD device. 862 * @ubi: UBI device description object 863 * 864 * This function does full scanning of an MTD device and returns complete 865 * information about it. In case of failure, an error code is returned. 866 */ 867struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) 868{ 869 int err, pnum; 870 struct rb_node *rb1, *rb2; 871 struct ubi_scan_volume *sv; 872 struct ubi_scan_leb *seb; 873 struct ubi_scan_info *si; 874 875 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); 876 if (!si) 877 return ERR_PTR(-ENOMEM); 878 879 INIT_LIST_HEAD(&si->corr); 880 INIT_LIST_HEAD(&si->free); 881 INIT_LIST_HEAD(&si->erase); 882 INIT_LIST_HEAD(&si->alien); 883 si->volumes = RB_ROOT; 884 si->is_empty = 1; 885 886 err = -ENOMEM; 887 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 888 if (!ech) 889 goto out_si; 890 891 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 892 if (!vidh) 893 goto out_ech; 894 895 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 896 cond_resched(); 897 898 dbg_gen("process PEB %d", pnum); 899 err = process_eb(ubi, si, pnum); 900 if (err < 0) 901 goto out_vidh; 902 } 903 904 dbg_msg("scanning is finished"); 905 906 /* Calculate mean erase counter */ 907 if (si->ec_count) 908 si->mean_ec = div_u64(si->ec_sum, si->ec_count); 909 910 if (si->is_empty) 911 ubi_msg("empty MTD device detected"); 912 913 /* 914 * In case of unknown erase counter we use the mean erase counter 915 * value. 916 */ 917 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 918 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 919 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 920 seb->ec = si->mean_ec; 921 } 922 923 list_for_each_entry(seb, &si->free, u.list) { 924 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 925 seb->ec = si->mean_ec; 926 } 927 928 list_for_each_entry(seb, &si->corr, u.list) 929 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 930 seb->ec = si->mean_ec; 931 932 list_for_each_entry(seb, &si->erase, u.list) 933 if (seb->ec == UBI_SCAN_UNKNOWN_EC) 934 seb->ec = si->mean_ec; 935 936 err = paranoid_check_si(ubi, si); 937 if (err) { 938 if (err > 0) 939 err = -EINVAL; 940 goto out_vidh; 941 } 942 943 ubi_free_vid_hdr(ubi, vidh); 944 kfree(ech); 945 946 return si; 947 948out_vidh: 949 ubi_free_vid_hdr(ubi, vidh); 950out_ech: 951 kfree(ech); 952out_si: 953 ubi_scan_destroy_si(si); 954 return ERR_PTR(err); 955} 956 957/** 958 * destroy_sv - free the scanning volume information 959 * @sv: scanning volume information 960 * 961 * This function destroys the volume RB-tree (@sv->root) and the scanning 962 * volume information. 963 */ 964static void destroy_sv(struct ubi_scan_volume *sv) 965{ 966 struct ubi_scan_leb *seb; 967 struct rb_node *this = sv->root.rb_node; 968 969 while (this) { 970 if (this->rb_left) 971 this = this->rb_left; 972 else if (this->rb_right) 973 this = this->rb_right; 974 else { 975 seb = rb_entry(this, struct ubi_scan_leb, u.rb); 976 this = rb_parent(this); 977 if (this) { 978 if (this->rb_left == &seb->u.rb) 979 this->rb_left = NULL; 980 else 981 this->rb_right = NULL; 982 } 983 984 kfree(seb); 985 } 986 } 987 kfree(sv); 988} 989 990/** 991 * ubi_scan_destroy_si - destroy scanning information. 992 * @si: scanning information 993 */ 994void ubi_scan_destroy_si(struct ubi_scan_info *si) 995{ 996 struct ubi_scan_leb *seb, *seb_tmp; 997 struct ubi_scan_volume *sv; 998 struct rb_node *rb; 999 1000 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { 1001 list_del(&seb->u.list); 1002 kfree(seb); 1003 } 1004 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { 1005 list_del(&seb->u.list); 1006 kfree(seb); 1007 } 1008 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { 1009 list_del(&seb->u.list); 1010 kfree(seb); 1011 } 1012 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { 1013 list_del(&seb->u.list); 1014 kfree(seb); 1015 } 1016 1017 /* Destroy the volume RB-tree */ 1018 rb = si->volumes.rb_node; 1019 while (rb) { 1020 if (rb->rb_left) 1021 rb = rb->rb_left; 1022 else if (rb->rb_right) 1023 rb = rb->rb_right; 1024 else { 1025 sv = rb_entry(rb, struct ubi_scan_volume, rb); 1026 1027 rb = rb_parent(rb); 1028 if (rb) { 1029 if (rb->rb_left == &sv->rb) 1030 rb->rb_left = NULL; 1031 else 1032 rb->rb_right = NULL; 1033 } 1034 1035 destroy_sv(sv); 1036 } 1037 } 1038 1039 kfree(si); 1040} 1041 1042#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1043 1044/** 1045 * paranoid_check_si - check the scanning information. 1046 * @ubi: UBI device description object 1047 * @si: scanning information 1048 * 1049 * This function returns zero if the scanning information is all right, %1 if 1050 * not and a negative error code if an error occurred. 1051 */ 1052static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) 1053{ 1054 int pnum, err, vols_found = 0; 1055 struct rb_node *rb1, *rb2; 1056 struct ubi_scan_volume *sv; 1057 struct ubi_scan_leb *seb, *last_seb; 1058 uint8_t *buf; 1059 1060 /* 1061 * At first, check that scanning information is OK. 1062 */ 1063 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1064 int leb_count = 0; 1065 1066 cond_resched(); 1067 1068 vols_found += 1; 1069 1070 if (si->is_empty) { 1071 ubi_err("bad is_empty flag"); 1072 goto bad_sv; 1073 } 1074 1075 if (sv->vol_id < 0 || sv->highest_lnum < 0 || 1076 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || 1077 sv->data_pad < 0 || sv->last_data_size < 0) { 1078 ubi_err("negative values"); 1079 goto bad_sv; 1080 } 1081 1082 if (sv->vol_id >= UBI_MAX_VOLUMES && 1083 sv->vol_id < UBI_INTERNAL_VOL_START) { 1084 ubi_err("bad vol_id"); 1085 goto bad_sv; 1086 } 1087 1088 if (sv->vol_id > si->highest_vol_id) { 1089 ubi_err("highest_vol_id is %d, but vol_id %d is there", 1090 si->highest_vol_id, sv->vol_id); 1091 goto out; 1092 } 1093 1094 if (sv->vol_type != UBI_DYNAMIC_VOLUME && 1095 sv->vol_type != UBI_STATIC_VOLUME) { 1096 ubi_err("bad vol_type"); 1097 goto bad_sv; 1098 } 1099 1100 if (sv->data_pad > ubi->leb_size / 2) { 1101 ubi_err("bad data_pad"); 1102 goto bad_sv; 1103 } 1104 1105 last_seb = NULL; 1106 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1107 cond_resched(); 1108 1109 last_seb = seb; 1110 leb_count += 1; 1111 1112 if (seb->pnum < 0 || seb->ec < 0) { 1113 ubi_err("negative values"); 1114 goto bad_seb; 1115 } 1116 1117 if (seb->ec < si->min_ec) { 1118 ubi_err("bad si->min_ec (%d), %d found", 1119 si->min_ec, seb->ec); 1120 goto bad_seb; 1121 } 1122 1123 if (seb->ec > si->max_ec) { 1124 ubi_err("bad si->max_ec (%d), %d found", 1125 si->max_ec, seb->ec); 1126 goto bad_seb; 1127 } 1128 1129 if (seb->pnum >= ubi->peb_count) { 1130 ubi_err("too high PEB number %d, total PEBs %d", 1131 seb->pnum, ubi->peb_count); 1132 goto bad_seb; 1133 } 1134 1135 if (sv->vol_type == UBI_STATIC_VOLUME) { 1136 if (seb->lnum >= sv->used_ebs) { 1137 ubi_err("bad lnum or used_ebs"); 1138 goto bad_seb; 1139 } 1140 } else { 1141 if (sv->used_ebs != 0) { 1142 ubi_err("non-zero used_ebs"); 1143 goto bad_seb; 1144 } 1145 } 1146 1147 if (seb->lnum > sv->highest_lnum) { 1148 ubi_err("incorrect highest_lnum or lnum"); 1149 goto bad_seb; 1150 } 1151 } 1152 1153 if (sv->leb_count != leb_count) { 1154 ubi_err("bad leb_count, %d objects in the tree", 1155 leb_count); 1156 goto bad_sv; 1157 } 1158 1159 if (!last_seb) 1160 continue; 1161 1162 seb = last_seb; 1163 1164 if (seb->lnum != sv->highest_lnum) { 1165 ubi_err("bad highest_lnum"); 1166 goto bad_seb; 1167 } 1168 } 1169 1170 if (vols_found != si->vols_found) { 1171 ubi_err("bad si->vols_found %d, should be %d", 1172 si->vols_found, vols_found); 1173 goto out; 1174 } 1175 1176 /* Check that scanning information is correct */ 1177 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1178 last_seb = NULL; 1179 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1180 int vol_type; 1181 1182 cond_resched(); 1183 1184 last_seb = seb; 1185 1186 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); 1187 if (err && err != UBI_IO_BITFLIPS) { 1188 ubi_err("VID header is not OK (%d)", err); 1189 if (err > 0) 1190 err = -EIO; 1191 return err; 1192 } 1193 1194 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1195 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1196 if (sv->vol_type != vol_type) { 1197 ubi_err("bad vol_type"); 1198 goto bad_vid_hdr; 1199 } 1200 1201 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { 1202 ubi_err("bad sqnum %llu", seb->sqnum); 1203 goto bad_vid_hdr; 1204 } 1205 1206 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { 1207 ubi_err("bad vol_id %d", sv->vol_id); 1208 goto bad_vid_hdr; 1209 } 1210 1211 if (sv->compat != vidh->compat) { 1212 ubi_err("bad compat %d", vidh->compat); 1213 goto bad_vid_hdr; 1214 } 1215 1216 if (seb->lnum != be32_to_cpu(vidh->lnum)) { 1217 ubi_err("bad lnum %d", seb->lnum); 1218 goto bad_vid_hdr; 1219 } 1220 1221 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1222 ubi_err("bad used_ebs %d", sv->used_ebs); 1223 goto bad_vid_hdr; 1224 } 1225 1226 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { 1227 ubi_err("bad data_pad %d", sv->data_pad); 1228 goto bad_vid_hdr; 1229 } 1230 } 1231 1232 if (!last_seb) 1233 continue; 1234 1235 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { 1236 ubi_err("bad highest_lnum %d", sv->highest_lnum); 1237 goto bad_vid_hdr; 1238 } 1239 1240 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { 1241 ubi_err("bad last_data_size %d", sv->last_data_size); 1242 goto bad_vid_hdr; 1243 } 1244 } 1245 1246 /* 1247 * Make sure that all the physical eraseblocks are in one of the lists 1248 * or trees. 1249 */ 1250 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1251 if (!buf) 1252 return -ENOMEM; 1253 1254 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1255 err = ubi_io_is_bad(ubi, pnum); 1256 if (err < 0) { 1257 kfree(buf); 1258 return err; 1259 } else if (err) 1260 buf[pnum] = 1; 1261 } 1262 1263 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) 1264 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) 1265 buf[seb->pnum] = 1; 1266 1267 list_for_each_entry(seb, &si->free, u.list) 1268 buf[seb->pnum] = 1; 1269 1270 list_for_each_entry(seb, &si->corr, u.list) 1271 buf[seb->pnum] = 1; 1272 1273 list_for_each_entry(seb, &si->erase, u.list) 1274 buf[seb->pnum] = 1; 1275 1276 list_for_each_entry(seb, &si->alien, u.list) 1277 buf[seb->pnum] = 1; 1278 1279 err = 0; 1280 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1281 if (!buf[pnum]) { 1282 ubi_err("PEB %d is not referred", pnum); 1283 err = 1; 1284 } 1285 1286 kfree(buf); 1287 if (err) 1288 goto out; 1289 return 0; 1290 1291bad_seb: 1292 ubi_err("bad scanning information about LEB %d", seb->lnum); 1293 ubi_dbg_dump_seb(seb, 0); 1294 ubi_dbg_dump_sv(sv); 1295 goto out; 1296 1297bad_sv: 1298 ubi_err("bad scanning information about volume %d", sv->vol_id); 1299 ubi_dbg_dump_sv(sv); 1300 goto out; 1301 1302bad_vid_hdr: 1303 ubi_err("bad scanning information about volume %d", sv->vol_id); 1304 ubi_dbg_dump_sv(sv); 1305 ubi_dbg_dump_vid_hdr(vidh); 1306 1307out: 1308 ubi_dbg_dump_stack(); 1309 return 1; 1310} 1311 1312#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */