at v2.6.30-rc4 5335 lines 132 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/ethtool.h> 94#include <linux/notifier.h> 95#include <linux/skbuff.h> 96#include <net/net_namespace.h> 97#include <net/sock.h> 98#include <linux/rtnetlink.h> 99#include <linux/proc_fs.h> 100#include <linux/seq_file.h> 101#include <linux/stat.h> 102#include <linux/if_bridge.h> 103#include <linux/if_macvlan.h> 104#include <net/dst.h> 105#include <net/pkt_sched.h> 106#include <net/checksum.h> 107#include <linux/highmem.h> 108#include <linux/init.h> 109#include <linux/kmod.h> 110#include <linux/module.h> 111#include <linux/netpoll.h> 112#include <linux/rcupdate.h> 113#include <linux/delay.h> 114#include <net/wext.h> 115#include <net/iw_handler.h> 116#include <asm/current.h> 117#include <linux/audit.h> 118#include <linux/dmaengine.h> 119#include <linux/err.h> 120#include <linux/ctype.h> 121#include <linux/if_arp.h> 122#include <linux/if_vlan.h> 123#include <linux/ip.h> 124#include <net/ip.h> 125#include <linux/ipv6.h> 126#include <linux/in.h> 127#include <linux/jhash.h> 128#include <linux/random.h> 129 130#include "net-sysfs.h" 131 132/* Instead of increasing this, you should create a hash table. */ 133#define MAX_GRO_SKBS 8 134 135/* This should be increased if a protocol with a bigger head is added. */ 136#define GRO_MAX_HEAD (MAX_HEADER + 128) 137 138/* 139 * The list of packet types we will receive (as opposed to discard) 140 * and the routines to invoke. 141 * 142 * Why 16. Because with 16 the only overlap we get on a hash of the 143 * low nibble of the protocol value is RARP/SNAP/X.25. 144 * 145 * NOTE: That is no longer true with the addition of VLAN tags. Not 146 * sure which should go first, but I bet it won't make much 147 * difference if we are running VLANs. The good news is that 148 * this protocol won't be in the list unless compiled in, so 149 * the average user (w/out VLANs) will not be adversely affected. 150 * --BLG 151 * 152 * 0800 IP 153 * 8100 802.1Q VLAN 154 * 0001 802.3 155 * 0002 AX.25 156 * 0004 802.2 157 * 8035 RARP 158 * 0005 SNAP 159 * 0805 X.25 160 * 0806 ARP 161 * 8137 IPX 162 * 0009 Localtalk 163 * 86DD IPv6 164 */ 165 166#define PTYPE_HASH_SIZE (16) 167#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 168 169static DEFINE_SPINLOCK(ptype_lock); 170static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 171static struct list_head ptype_all __read_mostly; /* Taps */ 172 173/* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192DEFINE_RWLOCK(dev_base_lock); 193 194EXPORT_SYMBOL(dev_base_lock); 195 196#define NETDEV_HASHBITS 8 197#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200{ 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203} 204 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206{ 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208} 209 210/* Device list insertion */ 211static int list_netdevice(struct net_device *dev) 212{ 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223} 224 225/* Device list removal */ 226static void unlist_netdevice(struct net_device *dev) 227{ 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236} 237 238/* 239 * Our notifier list 240 */ 241 242static RAW_NOTIFIER_HEAD(netdev_chain); 243 244/* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 251#ifdef CONFIG_LOCKDEP 252/* 253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 254 * according to dev->type 255 */ 256static const unsigned short netdev_lock_type[] = 257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE}; 272 273static const char *netdev_lock_name[] = 274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"}; 289 290static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 293static inline unsigned short netdev_lock_pos(unsigned short dev_type) 294{ 295 int i; 296 297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 298 if (netdev_lock_type[i] == dev_type) 299 return i; 300 /* the last key is used by default */ 301 return ARRAY_SIZE(netdev_lock_type) - 1; 302} 303 304static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 305 unsigned short dev_type) 306{ 307 int i; 308 309 i = netdev_lock_pos(dev_type); 310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 311 netdev_lock_name[i]); 312} 313 314static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 315{ 316 int i; 317 318 i = netdev_lock_pos(dev->type); 319 lockdep_set_class_and_name(&dev->addr_list_lock, 320 &netdev_addr_lock_key[i], 321 netdev_lock_name[i]); 322} 323#else 324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326{ 327} 328static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329{ 330} 331#endif 332 333/******************************************************************************* 334 335 Protocol management and registration routines 336 337*******************************************************************************/ 338 339/* 340 * Add a protocol ID to the list. Now that the input handler is 341 * smarter we can dispense with all the messy stuff that used to be 342 * here. 343 * 344 * BEWARE!!! Protocol handlers, mangling input packets, 345 * MUST BE last in hash buckets and checking protocol handlers 346 * MUST start from promiscuous ptype_all chain in net_bh. 347 * It is true now, do not change it. 348 * Explanation follows: if protocol handler, mangling packet, will 349 * be the first on list, it is not able to sense, that packet 350 * is cloned and should be copied-on-write, so that it will 351 * change it and subsequent readers will get broken packet. 352 * --ANK (980803) 353 */ 354 355/** 356 * dev_add_pack - add packet handler 357 * @pt: packet type declaration 358 * 359 * Add a protocol handler to the networking stack. The passed &packet_type 360 * is linked into kernel lists and may not be freed until it has been 361 * removed from the kernel lists. 362 * 363 * This call does not sleep therefore it can not 364 * guarantee all CPU's that are in middle of receiving packets 365 * will see the new packet type (until the next received packet). 366 */ 367 368void dev_add_pack(struct packet_type *pt) 369{ 370 int hash; 371 372 spin_lock_bh(&ptype_lock); 373 if (pt->type == htons(ETH_P_ALL)) 374 list_add_rcu(&pt->list, &ptype_all); 375 else { 376 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 377 list_add_rcu(&pt->list, &ptype_base[hash]); 378 } 379 spin_unlock_bh(&ptype_lock); 380} 381 382/** 383 * __dev_remove_pack - remove packet handler 384 * @pt: packet type declaration 385 * 386 * Remove a protocol handler that was previously added to the kernel 387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 388 * from the kernel lists and can be freed or reused once this function 389 * returns. 390 * 391 * The packet type might still be in use by receivers 392 * and must not be freed until after all the CPU's have gone 393 * through a quiescent state. 394 */ 395void __dev_remove_pack(struct packet_type *pt) 396{ 397 struct list_head *head; 398 struct packet_type *pt1; 399 400 spin_lock_bh(&ptype_lock); 401 402 if (pt->type == htons(ETH_P_ALL)) 403 head = &ptype_all; 404 else 405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 415out: 416 spin_unlock_bh(&ptype_lock); 417} 418/** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430void dev_remove_pack(struct packet_type *pt) 431{ 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435} 436 437/****************************************************************************** 438 439 Device Boot-time Settings Routines 440 441*******************************************************************************/ 442 443/* Boot time configuration table */ 444static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 445 446/** 447 * netdev_boot_setup_add - add new setup entry 448 * @name: name of the device 449 * @map: configured settings for the device 450 * 451 * Adds new setup entry to the dev_boot_setup list. The function 452 * returns 0 on error and 1 on success. This is a generic routine to 453 * all netdevices. 454 */ 455static int netdev_boot_setup_add(char *name, struct ifmap *map) 456{ 457 struct netdev_boot_setup *s; 458 int i; 459 460 s = dev_boot_setup; 461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 463 memset(s[i].name, 0, sizeof(s[i].name)); 464 strlcpy(s[i].name, name, IFNAMSIZ); 465 memcpy(&s[i].map, map, sizeof(s[i].map)); 466 break; 467 } 468 } 469 470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 471} 472 473/** 474 * netdev_boot_setup_check - check boot time settings 475 * @dev: the netdevice 476 * 477 * Check boot time settings for the device. 478 * The found settings are set for the device to be used 479 * later in the device probing. 480 * Returns 0 if no settings found, 1 if they are. 481 */ 482int netdev_boot_setup_check(struct net_device *dev) 483{ 484 struct netdev_boot_setup *s = dev_boot_setup; 485 int i; 486 487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 489 !strcmp(dev->name, s[i].name)) { 490 dev->irq = s[i].map.irq; 491 dev->base_addr = s[i].map.base_addr; 492 dev->mem_start = s[i].map.mem_start; 493 dev->mem_end = s[i].map.mem_end; 494 return 1; 495 } 496 } 497 return 0; 498} 499 500 501/** 502 * netdev_boot_base - get address from boot time settings 503 * @prefix: prefix for network device 504 * @unit: id for network device 505 * 506 * Check boot time settings for the base address of device. 507 * The found settings are set for the device to be used 508 * later in the device probing. 509 * Returns 0 if no settings found. 510 */ 511unsigned long netdev_boot_base(const char *prefix, int unit) 512{ 513 const struct netdev_boot_setup *s = dev_boot_setup; 514 char name[IFNAMSIZ]; 515 int i; 516 517 sprintf(name, "%s%d", prefix, unit); 518 519 /* 520 * If device already registered then return base of 1 521 * to indicate not to probe for this interface 522 */ 523 if (__dev_get_by_name(&init_net, name)) 524 return 1; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 527 if (!strcmp(name, s[i].name)) 528 return s[i].map.base_addr; 529 return 0; 530} 531 532/* 533 * Saves at boot time configured settings for any netdevice. 534 */ 535int __init netdev_boot_setup(char *str) 536{ 537 int ints[5]; 538 struct ifmap map; 539 540 str = get_options(str, ARRAY_SIZE(ints), ints); 541 if (!str || !*str) 542 return 0; 543 544 /* Save settings */ 545 memset(&map, 0, sizeof(map)); 546 if (ints[0] > 0) 547 map.irq = ints[1]; 548 if (ints[0] > 1) 549 map.base_addr = ints[2]; 550 if (ints[0] > 2) 551 map.mem_start = ints[3]; 552 if (ints[0] > 3) 553 map.mem_end = ints[4]; 554 555 /* Add new entry to the list */ 556 return netdev_boot_setup_add(str, &map); 557} 558 559__setup("netdev=", netdev_boot_setup); 560 561/******************************************************************************* 562 563 Device Interface Subroutines 564 565*******************************************************************************/ 566 567/** 568 * __dev_get_by_name - find a device by its name 569 * @net: the applicable net namespace 570 * @name: name to find 571 * 572 * Find an interface by name. Must be called under RTNL semaphore 573 * or @dev_base_lock. If the name is found a pointer to the device 574 * is returned. If the name is not found then %NULL is returned. The 575 * reference counters are not incremented so the caller must be 576 * careful with locks. 577 */ 578 579struct net_device *__dev_get_by_name(struct net *net, const char *name) 580{ 581 struct hlist_node *p; 582 583 hlist_for_each(p, dev_name_hash(net, name)) { 584 struct net_device *dev 585 = hlist_entry(p, struct net_device, name_hlist); 586 if (!strncmp(dev->name, name, IFNAMSIZ)) 587 return dev; 588 } 589 return NULL; 590} 591 592/** 593 * dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. This can be called from any 598 * context and does its own locking. The returned handle has 599 * the usage count incremented and the caller must use dev_put() to 600 * release it when it is no longer needed. %NULL is returned if no 601 * matching device is found. 602 */ 603 604struct net_device *dev_get_by_name(struct net *net, const char *name) 605{ 606 struct net_device *dev; 607 608 read_lock(&dev_base_lock); 609 dev = __dev_get_by_name(net, name); 610 if (dev) 611 dev_hold(dev); 612 read_unlock(&dev_base_lock); 613 return dev; 614} 615 616/** 617 * __dev_get_by_index - find a device by its ifindex 618 * @net: the applicable net namespace 619 * @ifindex: index of device 620 * 621 * Search for an interface by index. Returns %NULL if the device 622 * is not found or a pointer to the device. The device has not 623 * had its reference counter increased so the caller must be careful 624 * about locking. The caller must hold either the RTNL semaphore 625 * or @dev_base_lock. 626 */ 627 628struct net_device *__dev_get_by_index(struct net *net, int ifindex) 629{ 630 struct hlist_node *p; 631 632 hlist_for_each(p, dev_index_hash(net, ifindex)) { 633 struct net_device *dev 634 = hlist_entry(p, struct net_device, index_hlist); 635 if (dev->ifindex == ifindex) 636 return dev; 637 } 638 return NULL; 639} 640 641 642/** 643 * dev_get_by_index - find a device by its ifindex 644 * @net: the applicable net namespace 645 * @ifindex: index of device 646 * 647 * Search for an interface by index. Returns NULL if the device 648 * is not found or a pointer to the device. The device returned has 649 * had a reference added and the pointer is safe until the user calls 650 * dev_put to indicate they have finished with it. 651 */ 652 653struct net_device *dev_get_by_index(struct net *net, int ifindex) 654{ 655 struct net_device *dev; 656 657 read_lock(&dev_base_lock); 658 dev = __dev_get_by_index(net, ifindex); 659 if (dev) 660 dev_hold(dev); 661 read_unlock(&dev_base_lock); 662 return dev; 663} 664 665/** 666 * dev_getbyhwaddr - find a device by its hardware address 667 * @net: the applicable net namespace 668 * @type: media type of device 669 * @ha: hardware address 670 * 671 * Search for an interface by MAC address. Returns NULL if the device 672 * is not found or a pointer to the device. The caller must hold the 673 * rtnl semaphore. The returned device has not had its ref count increased 674 * and the caller must therefore be careful about locking 675 * 676 * BUGS: 677 * If the API was consistent this would be __dev_get_by_hwaddr 678 */ 679 680struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 681{ 682 struct net_device *dev; 683 684 ASSERT_RTNL(); 685 686 for_each_netdev(net, dev) 687 if (dev->type == type && 688 !memcmp(dev->dev_addr, ha, dev->addr_len)) 689 return dev; 690 691 return NULL; 692} 693 694EXPORT_SYMBOL(dev_getbyhwaddr); 695 696struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 697{ 698 struct net_device *dev; 699 700 ASSERT_RTNL(); 701 for_each_netdev(net, dev) 702 if (dev->type == type) 703 return dev; 704 705 return NULL; 706} 707 708EXPORT_SYMBOL(__dev_getfirstbyhwtype); 709 710struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 711{ 712 struct net_device *dev; 713 714 rtnl_lock(); 715 dev = __dev_getfirstbyhwtype(net, type); 716 if (dev) 717 dev_hold(dev); 718 rtnl_unlock(); 719 return dev; 720} 721 722EXPORT_SYMBOL(dev_getfirstbyhwtype); 723 724/** 725 * dev_get_by_flags - find any device with given flags 726 * @net: the applicable net namespace 727 * @if_flags: IFF_* values 728 * @mask: bitmask of bits in if_flags to check 729 * 730 * Search for any interface with the given flags. Returns NULL if a device 731 * is not found or a pointer to the device. The device returned has 732 * had a reference added and the pointer is safe until the user calls 733 * dev_put to indicate they have finished with it. 734 */ 735 736struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 737{ 738 struct net_device *dev, *ret; 739 740 ret = NULL; 741 read_lock(&dev_base_lock); 742 for_each_netdev(net, dev) { 743 if (((dev->flags ^ if_flags) & mask) == 0) { 744 dev_hold(dev); 745 ret = dev; 746 break; 747 } 748 } 749 read_unlock(&dev_base_lock); 750 return ret; 751} 752 753/** 754 * dev_valid_name - check if name is okay for network device 755 * @name: name string 756 * 757 * Network device names need to be valid file names to 758 * to allow sysfs to work. We also disallow any kind of 759 * whitespace. 760 */ 761int dev_valid_name(const char *name) 762{ 763 if (*name == '\0') 764 return 0; 765 if (strlen(name) >= IFNAMSIZ) 766 return 0; 767 if (!strcmp(name, ".") || !strcmp(name, "..")) 768 return 0; 769 770 while (*name) { 771 if (*name == '/' || isspace(*name)) 772 return 0; 773 name++; 774 } 775 return 1; 776} 777 778/** 779 * __dev_alloc_name - allocate a name for a device 780 * @net: network namespace to allocate the device name in 781 * @name: name format string 782 * @buf: scratch buffer and result name string 783 * 784 * Passed a format string - eg "lt%d" it will try and find a suitable 785 * id. It scans list of devices to build up a free map, then chooses 786 * the first empty slot. The caller must hold the dev_base or rtnl lock 787 * while allocating the name and adding the device in order to avoid 788 * duplicates. 789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 790 * Returns the number of the unit assigned or a negative errno code. 791 */ 792 793static int __dev_alloc_name(struct net *net, const char *name, char *buf) 794{ 795 int i = 0; 796 const char *p; 797 const int max_netdevices = 8*PAGE_SIZE; 798 unsigned long *inuse; 799 struct net_device *d; 800 801 p = strnchr(name, IFNAMSIZ-1, '%'); 802 if (p) { 803 /* 804 * Verify the string as this thing may have come from 805 * the user. There must be either one "%d" and no other "%" 806 * characters. 807 */ 808 if (p[1] != 'd' || strchr(p + 2, '%')) 809 return -EINVAL; 810 811 /* Use one page as a bit array of possible slots */ 812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 813 if (!inuse) 814 return -ENOMEM; 815 816 for_each_netdev(net, d) { 817 if (!sscanf(d->name, name, &i)) 818 continue; 819 if (i < 0 || i >= max_netdevices) 820 continue; 821 822 /* avoid cases where sscanf is not exact inverse of printf */ 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!strncmp(buf, d->name, IFNAMSIZ)) 825 set_bit(i, inuse); 826 } 827 828 i = find_first_zero_bit(inuse, max_netdevices); 829 free_page((unsigned long) inuse); 830 } 831 832 snprintf(buf, IFNAMSIZ, name, i); 833 if (!__dev_get_by_name(net, buf)) 834 return i; 835 836 /* It is possible to run out of possible slots 837 * when the name is long and there isn't enough space left 838 * for the digits, or if all bits are used. 839 */ 840 return -ENFILE; 841} 842 843/** 844 * dev_alloc_name - allocate a name for a device 845 * @dev: device 846 * @name: name format string 847 * 848 * Passed a format string - eg "lt%d" it will try and find a suitable 849 * id. It scans list of devices to build up a free map, then chooses 850 * the first empty slot. The caller must hold the dev_base or rtnl lock 851 * while allocating the name and adding the device in order to avoid 852 * duplicates. 853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 854 * Returns the number of the unit assigned or a negative errno code. 855 */ 856 857int dev_alloc_name(struct net_device *dev, const char *name) 858{ 859 char buf[IFNAMSIZ]; 860 struct net *net; 861 int ret; 862 863 BUG_ON(!dev_net(dev)); 864 net = dev_net(dev); 865 ret = __dev_alloc_name(net, name, buf); 866 if (ret >= 0) 867 strlcpy(dev->name, buf, IFNAMSIZ); 868 return ret; 869} 870 871 872/** 873 * dev_change_name - change name of a device 874 * @dev: device 875 * @newname: name (or format string) must be at least IFNAMSIZ 876 * 877 * Change name of a device, can pass format strings "eth%d". 878 * for wildcarding. 879 */ 880int dev_change_name(struct net_device *dev, const char *newname) 881{ 882 char oldname[IFNAMSIZ]; 883 int err = 0; 884 int ret; 885 struct net *net; 886 887 ASSERT_RTNL(); 888 BUG_ON(!dev_net(dev)); 889 890 net = dev_net(dev); 891 if (dev->flags & IFF_UP) 892 return -EBUSY; 893 894 if (!dev_valid_name(newname)) 895 return -EINVAL; 896 897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 898 return 0; 899 900 memcpy(oldname, dev->name, IFNAMSIZ); 901 902 if (strchr(newname, '%')) { 903 err = dev_alloc_name(dev, newname); 904 if (err < 0) 905 return err; 906 } 907 else if (__dev_get_by_name(net, newname)) 908 return -EEXIST; 909 else 910 strlcpy(dev->name, newname, IFNAMSIZ); 911 912rollback: 913 /* For now only devices in the initial network namespace 914 * are in sysfs. 915 */ 916 if (net == &init_net) { 917 ret = device_rename(&dev->dev, dev->name); 918 if (ret) { 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 return ret; 921 } 922 } 923 924 write_lock_bh(&dev_base_lock); 925 hlist_del(&dev->name_hlist); 926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 927 write_unlock_bh(&dev_base_lock); 928 929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 930 ret = notifier_to_errno(ret); 931 932 if (ret) { 933 if (err) { 934 printk(KERN_ERR 935 "%s: name change rollback failed: %d.\n", 936 dev->name, ret); 937 } else { 938 err = ret; 939 memcpy(dev->name, oldname, IFNAMSIZ); 940 goto rollback; 941 } 942 } 943 944 return err; 945} 946 947/** 948 * dev_set_alias - change ifalias of a device 949 * @dev: device 950 * @alias: name up to IFALIASZ 951 * @len: limit of bytes to copy from info 952 * 953 * Set ifalias for a device, 954 */ 955int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 956{ 957 ASSERT_RTNL(); 958 959 if (len >= IFALIASZ) 960 return -EINVAL; 961 962 if (!len) { 963 if (dev->ifalias) { 964 kfree(dev->ifalias); 965 dev->ifalias = NULL; 966 } 967 return 0; 968 } 969 970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 971 if (!dev->ifalias) 972 return -ENOMEM; 973 974 strlcpy(dev->ifalias, alias, len+1); 975 return len; 976} 977 978 979/** 980 * netdev_features_change - device changes features 981 * @dev: device to cause notification 982 * 983 * Called to indicate a device has changed features. 984 */ 985void netdev_features_change(struct net_device *dev) 986{ 987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 988} 989EXPORT_SYMBOL(netdev_features_change); 990 991/** 992 * netdev_state_change - device changes state 993 * @dev: device to cause notification 994 * 995 * Called to indicate a device has changed state. This function calls 996 * the notifier chains for netdev_chain and sends a NEWLINK message 997 * to the routing socket. 998 */ 999void netdev_state_change(struct net_device *dev) 1000{ 1001 if (dev->flags & IFF_UP) { 1002 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1004 } 1005} 1006 1007void netdev_bonding_change(struct net_device *dev) 1008{ 1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1010} 1011EXPORT_SYMBOL(netdev_bonding_change); 1012 1013/** 1014 * dev_load - load a network module 1015 * @net: the applicable net namespace 1016 * @name: name of interface 1017 * 1018 * If a network interface is not present and the process has suitable 1019 * privileges this function loads the module. If module loading is not 1020 * available in this kernel then it becomes a nop. 1021 */ 1022 1023void dev_load(struct net *net, const char *name) 1024{ 1025 struct net_device *dev; 1026 1027 read_lock(&dev_base_lock); 1028 dev = __dev_get_by_name(net, name); 1029 read_unlock(&dev_base_lock); 1030 1031 if (!dev && capable(CAP_SYS_MODULE)) 1032 request_module("%s", name); 1033} 1034 1035/** 1036 * dev_open - prepare an interface for use. 1037 * @dev: device to open 1038 * 1039 * Takes a device from down to up state. The device's private open 1040 * function is invoked and then the multicast lists are loaded. Finally 1041 * the device is moved into the up state and a %NETDEV_UP message is 1042 * sent to the netdev notifier chain. 1043 * 1044 * Calling this function on an active interface is a nop. On a failure 1045 * a negative errno code is returned. 1046 */ 1047int dev_open(struct net_device *dev) 1048{ 1049 const struct net_device_ops *ops = dev->netdev_ops; 1050 int ret = 0; 1051 1052 ASSERT_RTNL(); 1053 1054 /* 1055 * Is it already up? 1056 */ 1057 1058 if (dev->flags & IFF_UP) 1059 return 0; 1060 1061 /* 1062 * Is it even present? 1063 */ 1064 if (!netif_device_present(dev)) 1065 return -ENODEV; 1066 1067 /* 1068 * Call device private open method 1069 */ 1070 set_bit(__LINK_STATE_START, &dev->state); 1071 1072 if (ops->ndo_validate_addr) 1073 ret = ops->ndo_validate_addr(dev); 1074 1075 if (!ret && ops->ndo_open) 1076 ret = ops->ndo_open(dev); 1077 1078 /* 1079 * If it went open OK then: 1080 */ 1081 1082 if (ret) 1083 clear_bit(__LINK_STATE_START, &dev->state); 1084 else { 1085 /* 1086 * Set the flags. 1087 */ 1088 dev->flags |= IFF_UP; 1089 1090 /* 1091 * Enable NET_DMA 1092 */ 1093 net_dmaengine_get(); 1094 1095 /* 1096 * Initialize multicasting status 1097 */ 1098 dev_set_rx_mode(dev); 1099 1100 /* 1101 * Wakeup transmit queue engine 1102 */ 1103 dev_activate(dev); 1104 1105 /* 1106 * ... and announce new interface. 1107 */ 1108 call_netdevice_notifiers(NETDEV_UP, dev); 1109 } 1110 1111 return ret; 1112} 1113 1114/** 1115 * dev_close - shutdown an interface. 1116 * @dev: device to shutdown 1117 * 1118 * This function moves an active device into down state. A 1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1121 * chain. 1122 */ 1123int dev_close(struct net_device *dev) 1124{ 1125 const struct net_device_ops *ops = dev->netdev_ops; 1126 ASSERT_RTNL(); 1127 1128 might_sleep(); 1129 1130 if (!(dev->flags & IFF_UP)) 1131 return 0; 1132 1133 /* 1134 * Tell people we are going down, so that they can 1135 * prepare to death, when device is still operating. 1136 */ 1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1138 1139 clear_bit(__LINK_STATE_START, &dev->state); 1140 1141 /* Synchronize to scheduled poll. We cannot touch poll list, 1142 * it can be even on different cpu. So just clear netif_running(). 1143 * 1144 * dev->stop() will invoke napi_disable() on all of it's 1145 * napi_struct instances on this device. 1146 */ 1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1148 1149 dev_deactivate(dev); 1150 1151 /* 1152 * Call the device specific close. This cannot fail. 1153 * Only if device is UP 1154 * 1155 * We allow it to be called even after a DETACH hot-plug 1156 * event. 1157 */ 1158 if (ops->ndo_stop) 1159 ops->ndo_stop(dev); 1160 1161 /* 1162 * Device is now down. 1163 */ 1164 1165 dev->flags &= ~IFF_UP; 1166 1167 /* 1168 * Tell people we are down 1169 */ 1170 call_netdevice_notifiers(NETDEV_DOWN, dev); 1171 1172 /* 1173 * Shutdown NET_DMA 1174 */ 1175 net_dmaengine_put(); 1176 1177 return 0; 1178} 1179 1180 1181/** 1182 * dev_disable_lro - disable Large Receive Offload on a device 1183 * @dev: device 1184 * 1185 * Disable Large Receive Offload (LRO) on a net device. Must be 1186 * called under RTNL. This is needed if received packets may be 1187 * forwarded to another interface. 1188 */ 1189void dev_disable_lro(struct net_device *dev) 1190{ 1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1192 dev->ethtool_ops->set_flags) { 1193 u32 flags = dev->ethtool_ops->get_flags(dev); 1194 if (flags & ETH_FLAG_LRO) { 1195 flags &= ~ETH_FLAG_LRO; 1196 dev->ethtool_ops->set_flags(dev, flags); 1197 } 1198 } 1199 WARN_ON(dev->features & NETIF_F_LRO); 1200} 1201EXPORT_SYMBOL(dev_disable_lro); 1202 1203 1204static int dev_boot_phase = 1; 1205 1206/* 1207 * Device change register/unregister. These are not inline or static 1208 * as we export them to the world. 1209 */ 1210 1211/** 1212 * register_netdevice_notifier - register a network notifier block 1213 * @nb: notifier 1214 * 1215 * Register a notifier to be called when network device events occur. 1216 * The notifier passed is linked into the kernel structures and must 1217 * not be reused until it has been unregistered. A negative errno code 1218 * is returned on a failure. 1219 * 1220 * When registered all registration and up events are replayed 1221 * to the new notifier to allow device to have a race free 1222 * view of the network device list. 1223 */ 1224 1225int register_netdevice_notifier(struct notifier_block *nb) 1226{ 1227 struct net_device *dev; 1228 struct net_device *last; 1229 struct net *net; 1230 int err; 1231 1232 rtnl_lock(); 1233 err = raw_notifier_chain_register(&netdev_chain, nb); 1234 if (err) 1235 goto unlock; 1236 if (dev_boot_phase) 1237 goto unlock; 1238 for_each_net(net) { 1239 for_each_netdev(net, dev) { 1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1241 err = notifier_to_errno(err); 1242 if (err) 1243 goto rollback; 1244 1245 if (!(dev->flags & IFF_UP)) 1246 continue; 1247 1248 nb->notifier_call(nb, NETDEV_UP, dev); 1249 } 1250 } 1251 1252unlock: 1253 rtnl_unlock(); 1254 return err; 1255 1256rollback: 1257 last = dev; 1258 for_each_net(net) { 1259 for_each_netdev(net, dev) { 1260 if (dev == last) 1261 break; 1262 1263 if (dev->flags & IFF_UP) { 1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1265 nb->notifier_call(nb, NETDEV_DOWN, dev); 1266 } 1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1268 } 1269 } 1270 1271 raw_notifier_chain_unregister(&netdev_chain, nb); 1272 goto unlock; 1273} 1274 1275/** 1276 * unregister_netdevice_notifier - unregister a network notifier block 1277 * @nb: notifier 1278 * 1279 * Unregister a notifier previously registered by 1280 * register_netdevice_notifier(). The notifier is unlinked into the 1281 * kernel structures and may then be reused. A negative errno code 1282 * is returned on a failure. 1283 */ 1284 1285int unregister_netdevice_notifier(struct notifier_block *nb) 1286{ 1287 int err; 1288 1289 rtnl_lock(); 1290 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1291 rtnl_unlock(); 1292 return err; 1293} 1294 1295/** 1296 * call_netdevice_notifiers - call all network notifier blocks 1297 * @val: value passed unmodified to notifier function 1298 * @dev: net_device pointer passed unmodified to notifier function 1299 * 1300 * Call all network notifier blocks. Parameters and return value 1301 * are as for raw_notifier_call_chain(). 1302 */ 1303 1304int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1305{ 1306 return raw_notifier_call_chain(&netdev_chain, val, dev); 1307} 1308 1309/* When > 0 there are consumers of rx skb time stamps */ 1310static atomic_t netstamp_needed = ATOMIC_INIT(0); 1311 1312void net_enable_timestamp(void) 1313{ 1314 atomic_inc(&netstamp_needed); 1315} 1316 1317void net_disable_timestamp(void) 1318{ 1319 atomic_dec(&netstamp_needed); 1320} 1321 1322static inline void net_timestamp(struct sk_buff *skb) 1323{ 1324 if (atomic_read(&netstamp_needed)) 1325 __net_timestamp(skb); 1326 else 1327 skb->tstamp.tv64 = 0; 1328} 1329 1330/* 1331 * Support routine. Sends outgoing frames to any network 1332 * taps currently in use. 1333 */ 1334 1335static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1336{ 1337 struct packet_type *ptype; 1338 1339#ifdef CONFIG_NET_CLS_ACT 1340 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1341 net_timestamp(skb); 1342#else 1343 net_timestamp(skb); 1344#endif 1345 1346 rcu_read_lock(); 1347 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1348 /* Never send packets back to the socket 1349 * they originated from - MvS (miquels@drinkel.ow.org) 1350 */ 1351 if ((ptype->dev == dev || !ptype->dev) && 1352 (ptype->af_packet_priv == NULL || 1353 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1354 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1355 if (!skb2) 1356 break; 1357 1358 /* skb->nh should be correctly 1359 set by sender, so that the second statement is 1360 just protection against buggy protocols. 1361 */ 1362 skb_reset_mac_header(skb2); 1363 1364 if (skb_network_header(skb2) < skb2->data || 1365 skb2->network_header > skb2->tail) { 1366 if (net_ratelimit()) 1367 printk(KERN_CRIT "protocol %04x is " 1368 "buggy, dev %s\n", 1369 skb2->protocol, dev->name); 1370 skb_reset_network_header(skb2); 1371 } 1372 1373 skb2->transport_header = skb2->network_header; 1374 skb2->pkt_type = PACKET_OUTGOING; 1375 ptype->func(skb2, skb->dev, ptype, skb->dev); 1376 } 1377 } 1378 rcu_read_unlock(); 1379} 1380 1381 1382static inline void __netif_reschedule(struct Qdisc *q) 1383{ 1384 struct softnet_data *sd; 1385 unsigned long flags; 1386 1387 local_irq_save(flags); 1388 sd = &__get_cpu_var(softnet_data); 1389 q->next_sched = sd->output_queue; 1390 sd->output_queue = q; 1391 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1392 local_irq_restore(flags); 1393} 1394 1395void __netif_schedule(struct Qdisc *q) 1396{ 1397 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1398 __netif_reschedule(q); 1399} 1400EXPORT_SYMBOL(__netif_schedule); 1401 1402void dev_kfree_skb_irq(struct sk_buff *skb) 1403{ 1404 if (atomic_dec_and_test(&skb->users)) { 1405 struct softnet_data *sd; 1406 unsigned long flags; 1407 1408 local_irq_save(flags); 1409 sd = &__get_cpu_var(softnet_data); 1410 skb->next = sd->completion_queue; 1411 sd->completion_queue = skb; 1412 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1413 local_irq_restore(flags); 1414 } 1415} 1416EXPORT_SYMBOL(dev_kfree_skb_irq); 1417 1418void dev_kfree_skb_any(struct sk_buff *skb) 1419{ 1420 if (in_irq() || irqs_disabled()) 1421 dev_kfree_skb_irq(skb); 1422 else 1423 dev_kfree_skb(skb); 1424} 1425EXPORT_SYMBOL(dev_kfree_skb_any); 1426 1427 1428/** 1429 * netif_device_detach - mark device as removed 1430 * @dev: network device 1431 * 1432 * Mark device as removed from system and therefore no longer available. 1433 */ 1434void netif_device_detach(struct net_device *dev) 1435{ 1436 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1437 netif_running(dev)) { 1438 netif_tx_stop_all_queues(dev); 1439 } 1440} 1441EXPORT_SYMBOL(netif_device_detach); 1442 1443/** 1444 * netif_device_attach - mark device as attached 1445 * @dev: network device 1446 * 1447 * Mark device as attached from system and restart if needed. 1448 */ 1449void netif_device_attach(struct net_device *dev) 1450{ 1451 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1452 netif_running(dev)) { 1453 netif_tx_wake_all_queues(dev); 1454 __netdev_watchdog_up(dev); 1455 } 1456} 1457EXPORT_SYMBOL(netif_device_attach); 1458 1459static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1460{ 1461 return ((features & NETIF_F_GEN_CSUM) || 1462 ((features & NETIF_F_IP_CSUM) && 1463 protocol == htons(ETH_P_IP)) || 1464 ((features & NETIF_F_IPV6_CSUM) && 1465 protocol == htons(ETH_P_IPV6)) || 1466 ((features & NETIF_F_FCOE_CRC) && 1467 protocol == htons(ETH_P_FCOE))); 1468} 1469 1470static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1471{ 1472 if (can_checksum_protocol(dev->features, skb->protocol)) 1473 return true; 1474 1475 if (skb->protocol == htons(ETH_P_8021Q)) { 1476 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1477 if (can_checksum_protocol(dev->features & dev->vlan_features, 1478 veh->h_vlan_encapsulated_proto)) 1479 return true; 1480 } 1481 1482 return false; 1483} 1484 1485/* 1486 * Invalidate hardware checksum when packet is to be mangled, and 1487 * complete checksum manually on outgoing path. 1488 */ 1489int skb_checksum_help(struct sk_buff *skb) 1490{ 1491 __wsum csum; 1492 int ret = 0, offset; 1493 1494 if (skb->ip_summed == CHECKSUM_COMPLETE) 1495 goto out_set_summed; 1496 1497 if (unlikely(skb_shinfo(skb)->gso_size)) { 1498 /* Let GSO fix up the checksum. */ 1499 goto out_set_summed; 1500 } 1501 1502 offset = skb->csum_start - skb_headroom(skb); 1503 BUG_ON(offset >= skb_headlen(skb)); 1504 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1505 1506 offset += skb->csum_offset; 1507 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1508 1509 if (skb_cloned(skb) && 1510 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1511 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1512 if (ret) 1513 goto out; 1514 } 1515 1516 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1517out_set_summed: 1518 skb->ip_summed = CHECKSUM_NONE; 1519out: 1520 return ret; 1521} 1522 1523/** 1524 * skb_gso_segment - Perform segmentation on skb. 1525 * @skb: buffer to segment 1526 * @features: features for the output path (see dev->features) 1527 * 1528 * This function segments the given skb and returns a list of segments. 1529 * 1530 * It may return NULL if the skb requires no segmentation. This is 1531 * only possible when GSO is used for verifying header integrity. 1532 */ 1533struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1534{ 1535 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1536 struct packet_type *ptype; 1537 __be16 type = skb->protocol; 1538 int err; 1539 1540 skb_reset_mac_header(skb); 1541 skb->mac_len = skb->network_header - skb->mac_header; 1542 __skb_pull(skb, skb->mac_len); 1543 1544 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1545 struct net_device *dev = skb->dev; 1546 struct ethtool_drvinfo info = {}; 1547 1548 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1549 dev->ethtool_ops->get_drvinfo(dev, &info); 1550 1551 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1552 "ip_summed=%d", 1553 info.driver, dev ? dev->features : 0L, 1554 skb->sk ? skb->sk->sk_route_caps : 0L, 1555 skb->len, skb->data_len, skb->ip_summed); 1556 1557 if (skb_header_cloned(skb) && 1558 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1559 return ERR_PTR(err); 1560 } 1561 1562 rcu_read_lock(); 1563 list_for_each_entry_rcu(ptype, 1564 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1565 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1566 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1567 err = ptype->gso_send_check(skb); 1568 segs = ERR_PTR(err); 1569 if (err || skb_gso_ok(skb, features)) 1570 break; 1571 __skb_push(skb, (skb->data - 1572 skb_network_header(skb))); 1573 } 1574 segs = ptype->gso_segment(skb, features); 1575 break; 1576 } 1577 } 1578 rcu_read_unlock(); 1579 1580 __skb_push(skb, skb->data - skb_mac_header(skb)); 1581 1582 return segs; 1583} 1584 1585EXPORT_SYMBOL(skb_gso_segment); 1586 1587/* Take action when hardware reception checksum errors are detected. */ 1588#ifdef CONFIG_BUG 1589void netdev_rx_csum_fault(struct net_device *dev) 1590{ 1591 if (net_ratelimit()) { 1592 printk(KERN_ERR "%s: hw csum failure.\n", 1593 dev ? dev->name : "<unknown>"); 1594 dump_stack(); 1595 } 1596} 1597EXPORT_SYMBOL(netdev_rx_csum_fault); 1598#endif 1599 1600/* Actually, we should eliminate this check as soon as we know, that: 1601 * 1. IOMMU is present and allows to map all the memory. 1602 * 2. No high memory really exists on this machine. 1603 */ 1604 1605static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1606{ 1607#ifdef CONFIG_HIGHMEM 1608 int i; 1609 1610 if (dev->features & NETIF_F_HIGHDMA) 1611 return 0; 1612 1613 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1614 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1615 return 1; 1616 1617#endif 1618 return 0; 1619} 1620 1621struct dev_gso_cb { 1622 void (*destructor)(struct sk_buff *skb); 1623}; 1624 1625#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1626 1627static void dev_gso_skb_destructor(struct sk_buff *skb) 1628{ 1629 struct dev_gso_cb *cb; 1630 1631 do { 1632 struct sk_buff *nskb = skb->next; 1633 1634 skb->next = nskb->next; 1635 nskb->next = NULL; 1636 kfree_skb(nskb); 1637 } while (skb->next); 1638 1639 cb = DEV_GSO_CB(skb); 1640 if (cb->destructor) 1641 cb->destructor(skb); 1642} 1643 1644/** 1645 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1646 * @skb: buffer to segment 1647 * 1648 * This function segments the given skb and stores the list of segments 1649 * in skb->next. 1650 */ 1651static int dev_gso_segment(struct sk_buff *skb) 1652{ 1653 struct net_device *dev = skb->dev; 1654 struct sk_buff *segs; 1655 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1656 NETIF_F_SG : 0); 1657 1658 segs = skb_gso_segment(skb, features); 1659 1660 /* Verifying header integrity only. */ 1661 if (!segs) 1662 return 0; 1663 1664 if (IS_ERR(segs)) 1665 return PTR_ERR(segs); 1666 1667 skb->next = segs; 1668 DEV_GSO_CB(skb)->destructor = skb->destructor; 1669 skb->destructor = dev_gso_skb_destructor; 1670 1671 return 0; 1672} 1673 1674int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1675 struct netdev_queue *txq) 1676{ 1677 const struct net_device_ops *ops = dev->netdev_ops; 1678 int rc; 1679 1680 if (likely(!skb->next)) { 1681 if (!list_empty(&ptype_all)) 1682 dev_queue_xmit_nit(skb, dev); 1683 1684 if (netif_needs_gso(dev, skb)) { 1685 if (unlikely(dev_gso_segment(skb))) 1686 goto out_kfree_skb; 1687 if (skb->next) 1688 goto gso; 1689 } 1690 1691 rc = ops->ndo_start_xmit(skb, dev); 1692 /* 1693 * TODO: if skb_orphan() was called by 1694 * dev->hard_start_xmit() (for example, the unmodified 1695 * igb driver does that; bnx2 doesn't), then 1696 * skb_tx_software_timestamp() will be unable to send 1697 * back the time stamp. 1698 * 1699 * How can this be prevented? Always create another 1700 * reference to the socket before calling 1701 * dev->hard_start_xmit()? Prevent that skb_orphan() 1702 * does anything in dev->hard_start_xmit() by clearing 1703 * the skb destructor before the call and restoring it 1704 * afterwards, then doing the skb_orphan() ourselves? 1705 */ 1706 return rc; 1707 } 1708 1709gso: 1710 do { 1711 struct sk_buff *nskb = skb->next; 1712 1713 skb->next = nskb->next; 1714 nskb->next = NULL; 1715 rc = ops->ndo_start_xmit(nskb, dev); 1716 if (unlikely(rc)) { 1717 nskb->next = skb->next; 1718 skb->next = nskb; 1719 return rc; 1720 } 1721 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1722 return NETDEV_TX_BUSY; 1723 } while (skb->next); 1724 1725 skb->destructor = DEV_GSO_CB(skb)->destructor; 1726 1727out_kfree_skb: 1728 kfree_skb(skb); 1729 return 0; 1730} 1731 1732static u32 skb_tx_hashrnd; 1733 1734u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1735{ 1736 u32 hash; 1737 1738 if (skb_rx_queue_recorded(skb)) { 1739 hash = skb_get_rx_queue(skb); 1740 } else if (skb->sk && skb->sk->sk_hash) { 1741 hash = skb->sk->sk_hash; 1742 } else 1743 hash = skb->protocol; 1744 1745 hash = jhash_1word(hash, skb_tx_hashrnd); 1746 1747 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1748} 1749EXPORT_SYMBOL(skb_tx_hash); 1750 1751static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1752 struct sk_buff *skb) 1753{ 1754 const struct net_device_ops *ops = dev->netdev_ops; 1755 u16 queue_index = 0; 1756 1757 if (ops->ndo_select_queue) 1758 queue_index = ops->ndo_select_queue(dev, skb); 1759 else if (dev->real_num_tx_queues > 1) 1760 queue_index = skb_tx_hash(dev, skb); 1761 1762 skb_set_queue_mapping(skb, queue_index); 1763 return netdev_get_tx_queue(dev, queue_index); 1764} 1765 1766/** 1767 * dev_queue_xmit - transmit a buffer 1768 * @skb: buffer to transmit 1769 * 1770 * Queue a buffer for transmission to a network device. The caller must 1771 * have set the device and priority and built the buffer before calling 1772 * this function. The function can be called from an interrupt. 1773 * 1774 * A negative errno code is returned on a failure. A success does not 1775 * guarantee the frame will be transmitted as it may be dropped due 1776 * to congestion or traffic shaping. 1777 * 1778 * ----------------------------------------------------------------------------------- 1779 * I notice this method can also return errors from the queue disciplines, 1780 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1781 * be positive. 1782 * 1783 * Regardless of the return value, the skb is consumed, so it is currently 1784 * difficult to retry a send to this method. (You can bump the ref count 1785 * before sending to hold a reference for retry if you are careful.) 1786 * 1787 * When calling this method, interrupts MUST be enabled. This is because 1788 * the BH enable code must have IRQs enabled so that it will not deadlock. 1789 * --BLG 1790 */ 1791int dev_queue_xmit(struct sk_buff *skb) 1792{ 1793 struct net_device *dev = skb->dev; 1794 struct netdev_queue *txq; 1795 struct Qdisc *q; 1796 int rc = -ENOMEM; 1797 1798 /* GSO will handle the following emulations directly. */ 1799 if (netif_needs_gso(dev, skb)) 1800 goto gso; 1801 1802 if (skb_shinfo(skb)->frag_list && 1803 !(dev->features & NETIF_F_FRAGLIST) && 1804 __skb_linearize(skb)) 1805 goto out_kfree_skb; 1806 1807 /* Fragmented skb is linearized if device does not support SG, 1808 * or if at least one of fragments is in highmem and device 1809 * does not support DMA from it. 1810 */ 1811 if (skb_shinfo(skb)->nr_frags && 1812 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1813 __skb_linearize(skb)) 1814 goto out_kfree_skb; 1815 1816 /* If packet is not checksummed and device does not support 1817 * checksumming for this protocol, complete checksumming here. 1818 */ 1819 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1820 skb_set_transport_header(skb, skb->csum_start - 1821 skb_headroom(skb)); 1822 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1823 goto out_kfree_skb; 1824 } 1825 1826gso: 1827 /* Disable soft irqs for various locks below. Also 1828 * stops preemption for RCU. 1829 */ 1830 rcu_read_lock_bh(); 1831 1832 txq = dev_pick_tx(dev, skb); 1833 q = rcu_dereference(txq->qdisc); 1834 1835#ifdef CONFIG_NET_CLS_ACT 1836 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1837#endif 1838 if (q->enqueue) { 1839 spinlock_t *root_lock = qdisc_lock(q); 1840 1841 spin_lock(root_lock); 1842 1843 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1844 kfree_skb(skb); 1845 rc = NET_XMIT_DROP; 1846 } else { 1847 rc = qdisc_enqueue_root(skb, q); 1848 qdisc_run(q); 1849 } 1850 spin_unlock(root_lock); 1851 1852 goto out; 1853 } 1854 1855 /* The device has no queue. Common case for software devices: 1856 loopback, all the sorts of tunnels... 1857 1858 Really, it is unlikely that netif_tx_lock protection is necessary 1859 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1860 counters.) 1861 However, it is possible, that they rely on protection 1862 made by us here. 1863 1864 Check this and shot the lock. It is not prone from deadlocks. 1865 Either shot noqueue qdisc, it is even simpler 8) 1866 */ 1867 if (dev->flags & IFF_UP) { 1868 int cpu = smp_processor_id(); /* ok because BHs are off */ 1869 1870 if (txq->xmit_lock_owner != cpu) { 1871 1872 HARD_TX_LOCK(dev, txq, cpu); 1873 1874 if (!netif_tx_queue_stopped(txq)) { 1875 rc = 0; 1876 if (!dev_hard_start_xmit(skb, dev, txq)) { 1877 HARD_TX_UNLOCK(dev, txq); 1878 goto out; 1879 } 1880 } 1881 HARD_TX_UNLOCK(dev, txq); 1882 if (net_ratelimit()) 1883 printk(KERN_CRIT "Virtual device %s asks to " 1884 "queue packet!\n", dev->name); 1885 } else { 1886 /* Recursion is detected! It is possible, 1887 * unfortunately */ 1888 if (net_ratelimit()) 1889 printk(KERN_CRIT "Dead loop on virtual device " 1890 "%s, fix it urgently!\n", dev->name); 1891 } 1892 } 1893 1894 rc = -ENETDOWN; 1895 rcu_read_unlock_bh(); 1896 1897out_kfree_skb: 1898 kfree_skb(skb); 1899 return rc; 1900out: 1901 rcu_read_unlock_bh(); 1902 return rc; 1903} 1904 1905 1906/*======================================================================= 1907 Receiver routines 1908 =======================================================================*/ 1909 1910int netdev_max_backlog __read_mostly = 1000; 1911int netdev_budget __read_mostly = 300; 1912int weight_p __read_mostly = 64; /* old backlog weight */ 1913 1914DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1915 1916 1917/** 1918 * netif_rx - post buffer to the network code 1919 * @skb: buffer to post 1920 * 1921 * This function receives a packet from a device driver and queues it for 1922 * the upper (protocol) levels to process. It always succeeds. The buffer 1923 * may be dropped during processing for congestion control or by the 1924 * protocol layers. 1925 * 1926 * return values: 1927 * NET_RX_SUCCESS (no congestion) 1928 * NET_RX_DROP (packet was dropped) 1929 * 1930 */ 1931 1932int netif_rx(struct sk_buff *skb) 1933{ 1934 struct softnet_data *queue; 1935 unsigned long flags; 1936 1937 /* if netpoll wants it, pretend we never saw it */ 1938 if (netpoll_rx(skb)) 1939 return NET_RX_DROP; 1940 1941 if (!skb->tstamp.tv64) 1942 net_timestamp(skb); 1943 1944 /* 1945 * The code is rearranged so that the path is the most 1946 * short when CPU is congested, but is still operating. 1947 */ 1948 local_irq_save(flags); 1949 queue = &__get_cpu_var(softnet_data); 1950 1951 __get_cpu_var(netdev_rx_stat).total++; 1952 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1953 if (queue->input_pkt_queue.qlen) { 1954enqueue: 1955 __skb_queue_tail(&queue->input_pkt_queue, skb); 1956 local_irq_restore(flags); 1957 return NET_RX_SUCCESS; 1958 } 1959 1960 napi_schedule(&queue->backlog); 1961 goto enqueue; 1962 } 1963 1964 __get_cpu_var(netdev_rx_stat).dropped++; 1965 local_irq_restore(flags); 1966 1967 kfree_skb(skb); 1968 return NET_RX_DROP; 1969} 1970 1971int netif_rx_ni(struct sk_buff *skb) 1972{ 1973 int err; 1974 1975 preempt_disable(); 1976 err = netif_rx(skb); 1977 if (local_softirq_pending()) 1978 do_softirq(); 1979 preempt_enable(); 1980 1981 return err; 1982} 1983 1984EXPORT_SYMBOL(netif_rx_ni); 1985 1986static void net_tx_action(struct softirq_action *h) 1987{ 1988 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1989 1990 if (sd->completion_queue) { 1991 struct sk_buff *clist; 1992 1993 local_irq_disable(); 1994 clist = sd->completion_queue; 1995 sd->completion_queue = NULL; 1996 local_irq_enable(); 1997 1998 while (clist) { 1999 struct sk_buff *skb = clist; 2000 clist = clist->next; 2001 2002 WARN_ON(atomic_read(&skb->users)); 2003 __kfree_skb(skb); 2004 } 2005 } 2006 2007 if (sd->output_queue) { 2008 struct Qdisc *head; 2009 2010 local_irq_disable(); 2011 head = sd->output_queue; 2012 sd->output_queue = NULL; 2013 local_irq_enable(); 2014 2015 while (head) { 2016 struct Qdisc *q = head; 2017 spinlock_t *root_lock; 2018 2019 head = head->next_sched; 2020 2021 root_lock = qdisc_lock(q); 2022 if (spin_trylock(root_lock)) { 2023 smp_mb__before_clear_bit(); 2024 clear_bit(__QDISC_STATE_SCHED, 2025 &q->state); 2026 qdisc_run(q); 2027 spin_unlock(root_lock); 2028 } else { 2029 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2030 &q->state)) { 2031 __netif_reschedule(q); 2032 } else { 2033 smp_mb__before_clear_bit(); 2034 clear_bit(__QDISC_STATE_SCHED, 2035 &q->state); 2036 } 2037 } 2038 } 2039 } 2040} 2041 2042static inline int deliver_skb(struct sk_buff *skb, 2043 struct packet_type *pt_prev, 2044 struct net_device *orig_dev) 2045{ 2046 atomic_inc(&skb->users); 2047 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2048} 2049 2050#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2051/* These hooks defined here for ATM */ 2052struct net_bridge; 2053struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2054 unsigned char *addr); 2055void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2056 2057/* 2058 * If bridge module is loaded call bridging hook. 2059 * returns NULL if packet was consumed. 2060 */ 2061struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2062 struct sk_buff *skb) __read_mostly; 2063static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2064 struct packet_type **pt_prev, int *ret, 2065 struct net_device *orig_dev) 2066{ 2067 struct net_bridge_port *port; 2068 2069 if (skb->pkt_type == PACKET_LOOPBACK || 2070 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2071 return skb; 2072 2073 if (*pt_prev) { 2074 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2075 *pt_prev = NULL; 2076 } 2077 2078 return br_handle_frame_hook(port, skb); 2079} 2080#else 2081#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2082#endif 2083 2084#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2085struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2086EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2087 2088static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2089 struct packet_type **pt_prev, 2090 int *ret, 2091 struct net_device *orig_dev) 2092{ 2093 if (skb->dev->macvlan_port == NULL) 2094 return skb; 2095 2096 if (*pt_prev) { 2097 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2098 *pt_prev = NULL; 2099 } 2100 return macvlan_handle_frame_hook(skb); 2101} 2102#else 2103#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2104#endif 2105 2106#ifdef CONFIG_NET_CLS_ACT 2107/* TODO: Maybe we should just force sch_ingress to be compiled in 2108 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2109 * a compare and 2 stores extra right now if we dont have it on 2110 * but have CONFIG_NET_CLS_ACT 2111 * NOTE: This doesnt stop any functionality; if you dont have 2112 * the ingress scheduler, you just cant add policies on ingress. 2113 * 2114 */ 2115static int ing_filter(struct sk_buff *skb) 2116{ 2117 struct net_device *dev = skb->dev; 2118 u32 ttl = G_TC_RTTL(skb->tc_verd); 2119 struct netdev_queue *rxq; 2120 int result = TC_ACT_OK; 2121 struct Qdisc *q; 2122 2123 if (MAX_RED_LOOP < ttl++) { 2124 printk(KERN_WARNING 2125 "Redir loop detected Dropping packet (%d->%d)\n", 2126 skb->iif, dev->ifindex); 2127 return TC_ACT_SHOT; 2128 } 2129 2130 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2131 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2132 2133 rxq = &dev->rx_queue; 2134 2135 q = rxq->qdisc; 2136 if (q != &noop_qdisc) { 2137 spin_lock(qdisc_lock(q)); 2138 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2139 result = qdisc_enqueue_root(skb, q); 2140 spin_unlock(qdisc_lock(q)); 2141 } 2142 2143 return result; 2144} 2145 2146static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2147 struct packet_type **pt_prev, 2148 int *ret, struct net_device *orig_dev) 2149{ 2150 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2151 goto out; 2152 2153 if (*pt_prev) { 2154 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2155 *pt_prev = NULL; 2156 } else { 2157 /* Huh? Why does turning on AF_PACKET affect this? */ 2158 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2159 } 2160 2161 switch (ing_filter(skb)) { 2162 case TC_ACT_SHOT: 2163 case TC_ACT_STOLEN: 2164 kfree_skb(skb); 2165 return NULL; 2166 } 2167 2168out: 2169 skb->tc_verd = 0; 2170 return skb; 2171} 2172#endif 2173 2174/* 2175 * netif_nit_deliver - deliver received packets to network taps 2176 * @skb: buffer 2177 * 2178 * This function is used to deliver incoming packets to network 2179 * taps. It should be used when the normal netif_receive_skb path 2180 * is bypassed, for example because of VLAN acceleration. 2181 */ 2182void netif_nit_deliver(struct sk_buff *skb) 2183{ 2184 struct packet_type *ptype; 2185 2186 if (list_empty(&ptype_all)) 2187 return; 2188 2189 skb_reset_network_header(skb); 2190 skb_reset_transport_header(skb); 2191 skb->mac_len = skb->network_header - skb->mac_header; 2192 2193 rcu_read_lock(); 2194 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2195 if (!ptype->dev || ptype->dev == skb->dev) 2196 deliver_skb(skb, ptype, skb->dev); 2197 } 2198 rcu_read_unlock(); 2199} 2200 2201/** 2202 * netif_receive_skb - process receive buffer from network 2203 * @skb: buffer to process 2204 * 2205 * netif_receive_skb() is the main receive data processing function. 2206 * It always succeeds. The buffer may be dropped during processing 2207 * for congestion control or by the protocol layers. 2208 * 2209 * This function may only be called from softirq context and interrupts 2210 * should be enabled. 2211 * 2212 * Return values (usually ignored): 2213 * NET_RX_SUCCESS: no congestion 2214 * NET_RX_DROP: packet was dropped 2215 */ 2216int netif_receive_skb(struct sk_buff *skb) 2217{ 2218 struct packet_type *ptype, *pt_prev; 2219 struct net_device *orig_dev; 2220 struct net_device *null_or_orig; 2221 int ret = NET_RX_DROP; 2222 __be16 type; 2223 2224 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2225 return NET_RX_SUCCESS; 2226 2227 /* if we've gotten here through NAPI, check netpoll */ 2228 if (netpoll_receive_skb(skb)) 2229 return NET_RX_DROP; 2230 2231 if (!skb->tstamp.tv64) 2232 net_timestamp(skb); 2233 2234 if (!skb->iif) 2235 skb->iif = skb->dev->ifindex; 2236 2237 null_or_orig = NULL; 2238 orig_dev = skb->dev; 2239 if (orig_dev->master) { 2240 if (skb_bond_should_drop(skb)) 2241 null_or_orig = orig_dev; /* deliver only exact match */ 2242 else 2243 skb->dev = orig_dev->master; 2244 } 2245 2246 __get_cpu_var(netdev_rx_stat).total++; 2247 2248 skb_reset_network_header(skb); 2249 skb_reset_transport_header(skb); 2250 skb->mac_len = skb->network_header - skb->mac_header; 2251 2252 pt_prev = NULL; 2253 2254 rcu_read_lock(); 2255 2256#ifdef CONFIG_NET_CLS_ACT 2257 if (skb->tc_verd & TC_NCLS) { 2258 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2259 goto ncls; 2260 } 2261#endif 2262 2263 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2264 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2265 ptype->dev == orig_dev) { 2266 if (pt_prev) 2267 ret = deliver_skb(skb, pt_prev, orig_dev); 2268 pt_prev = ptype; 2269 } 2270 } 2271 2272#ifdef CONFIG_NET_CLS_ACT 2273 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2274 if (!skb) 2275 goto out; 2276ncls: 2277#endif 2278 2279 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2280 if (!skb) 2281 goto out; 2282 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2283 if (!skb) 2284 goto out; 2285 2286 skb_orphan(skb); 2287 2288 type = skb->protocol; 2289 list_for_each_entry_rcu(ptype, 2290 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2291 if (ptype->type == type && 2292 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2293 ptype->dev == orig_dev)) { 2294 if (pt_prev) 2295 ret = deliver_skb(skb, pt_prev, orig_dev); 2296 pt_prev = ptype; 2297 } 2298 } 2299 2300 if (pt_prev) { 2301 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2302 } else { 2303 kfree_skb(skb); 2304 /* Jamal, now you will not able to escape explaining 2305 * me how you were going to use this. :-) 2306 */ 2307 ret = NET_RX_DROP; 2308 } 2309 2310out: 2311 rcu_read_unlock(); 2312 return ret; 2313} 2314 2315/* Network device is going away, flush any packets still pending */ 2316static void flush_backlog(void *arg) 2317{ 2318 struct net_device *dev = arg; 2319 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2320 struct sk_buff *skb, *tmp; 2321 2322 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2323 if (skb->dev == dev) { 2324 __skb_unlink(skb, &queue->input_pkt_queue); 2325 kfree_skb(skb); 2326 } 2327} 2328 2329static int napi_gro_complete(struct sk_buff *skb) 2330{ 2331 struct packet_type *ptype; 2332 __be16 type = skb->protocol; 2333 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2334 int err = -ENOENT; 2335 2336 if (NAPI_GRO_CB(skb)->count == 1) { 2337 skb_shinfo(skb)->gso_size = 0; 2338 goto out; 2339 } 2340 2341 rcu_read_lock(); 2342 list_for_each_entry_rcu(ptype, head, list) { 2343 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2344 continue; 2345 2346 err = ptype->gro_complete(skb); 2347 break; 2348 } 2349 rcu_read_unlock(); 2350 2351 if (err) { 2352 WARN_ON(&ptype->list == head); 2353 kfree_skb(skb); 2354 return NET_RX_SUCCESS; 2355 } 2356 2357out: 2358 return netif_receive_skb(skb); 2359} 2360 2361void napi_gro_flush(struct napi_struct *napi) 2362{ 2363 struct sk_buff *skb, *next; 2364 2365 for (skb = napi->gro_list; skb; skb = next) { 2366 next = skb->next; 2367 skb->next = NULL; 2368 napi_gro_complete(skb); 2369 } 2370 2371 napi->gro_count = 0; 2372 napi->gro_list = NULL; 2373} 2374EXPORT_SYMBOL(napi_gro_flush); 2375 2376void *skb_gro_header(struct sk_buff *skb, unsigned int hlen) 2377{ 2378 unsigned int offset = skb_gro_offset(skb); 2379 2380 hlen += offset; 2381 if (hlen <= skb_headlen(skb)) 2382 return skb->data + offset; 2383 2384 if (unlikely(!skb_shinfo(skb)->nr_frags || 2385 skb_shinfo(skb)->frags[0].size <= 2386 hlen - skb_headlen(skb) || 2387 PageHighMem(skb_shinfo(skb)->frags[0].page))) 2388 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 2389 2390 return page_address(skb_shinfo(skb)->frags[0].page) + 2391 skb_shinfo(skb)->frags[0].page_offset + 2392 offset - skb_headlen(skb); 2393} 2394EXPORT_SYMBOL(skb_gro_header); 2395 2396int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2397{ 2398 struct sk_buff **pp = NULL; 2399 struct packet_type *ptype; 2400 __be16 type = skb->protocol; 2401 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2402 int same_flow; 2403 int mac_len; 2404 int ret; 2405 2406 if (!(skb->dev->features & NETIF_F_GRO)) 2407 goto normal; 2408 2409 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list) 2410 goto normal; 2411 2412 rcu_read_lock(); 2413 list_for_each_entry_rcu(ptype, head, list) { 2414 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2415 continue; 2416 2417 skb_set_network_header(skb, skb_gro_offset(skb)); 2418 mac_len = skb->network_header - skb->mac_header; 2419 skb->mac_len = mac_len; 2420 NAPI_GRO_CB(skb)->same_flow = 0; 2421 NAPI_GRO_CB(skb)->flush = 0; 2422 NAPI_GRO_CB(skb)->free = 0; 2423 2424 pp = ptype->gro_receive(&napi->gro_list, skb); 2425 break; 2426 } 2427 rcu_read_unlock(); 2428 2429 if (&ptype->list == head) 2430 goto normal; 2431 2432 same_flow = NAPI_GRO_CB(skb)->same_flow; 2433 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2434 2435 if (pp) { 2436 struct sk_buff *nskb = *pp; 2437 2438 *pp = nskb->next; 2439 nskb->next = NULL; 2440 napi_gro_complete(nskb); 2441 napi->gro_count--; 2442 } 2443 2444 if (same_flow) 2445 goto ok; 2446 2447 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2448 goto normal; 2449 2450 napi->gro_count++; 2451 NAPI_GRO_CB(skb)->count = 1; 2452 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2453 skb->next = napi->gro_list; 2454 napi->gro_list = skb; 2455 ret = GRO_HELD; 2456 2457pull: 2458 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) { 2459 if (napi->gro_list == skb) 2460 napi->gro_list = skb->next; 2461 ret = GRO_DROP; 2462 } 2463 2464ok: 2465 return ret; 2466 2467normal: 2468 ret = GRO_NORMAL; 2469 goto pull; 2470} 2471EXPORT_SYMBOL(dev_gro_receive); 2472 2473static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2474{ 2475 struct sk_buff *p; 2476 2477 if (netpoll_rx_on(skb)) 2478 return GRO_NORMAL; 2479 2480 for (p = napi->gro_list; p; p = p->next) { 2481 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev) 2482 && !compare_ether_header(skb_mac_header(p), 2483 skb_gro_mac_header(skb)); 2484 NAPI_GRO_CB(p)->flush = 0; 2485 } 2486 2487 return dev_gro_receive(napi, skb); 2488} 2489 2490int napi_skb_finish(int ret, struct sk_buff *skb) 2491{ 2492 int err = NET_RX_SUCCESS; 2493 2494 switch (ret) { 2495 case GRO_NORMAL: 2496 return netif_receive_skb(skb); 2497 2498 case GRO_DROP: 2499 err = NET_RX_DROP; 2500 /* fall through */ 2501 2502 case GRO_MERGED_FREE: 2503 kfree_skb(skb); 2504 break; 2505 } 2506 2507 return err; 2508} 2509EXPORT_SYMBOL(napi_skb_finish); 2510 2511int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2512{ 2513 skb_gro_reset_offset(skb); 2514 2515 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2516} 2517EXPORT_SYMBOL(napi_gro_receive); 2518 2519void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2520{ 2521 __skb_pull(skb, skb_headlen(skb)); 2522 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2523 2524 napi->skb = skb; 2525} 2526EXPORT_SYMBOL(napi_reuse_skb); 2527 2528struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi, 2529 struct napi_gro_fraginfo *info) 2530{ 2531 struct net_device *dev = napi->dev; 2532 struct sk_buff *skb = napi->skb; 2533 struct ethhdr *eth; 2534 skb_frag_t *frag; 2535 int i; 2536 2537 napi->skb = NULL; 2538 2539 if (!skb) { 2540 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2541 if (!skb) 2542 goto out; 2543 2544 skb_reserve(skb, NET_IP_ALIGN); 2545 } 2546 2547 BUG_ON(info->nr_frags > MAX_SKB_FRAGS); 2548 frag = info->frags; 2549 2550 for (i = 0; i < info->nr_frags; i++) { 2551 skb_fill_page_desc(skb, i, frag->page, frag->page_offset, 2552 frag->size); 2553 frag++; 2554 } 2555 skb_shinfo(skb)->nr_frags = info->nr_frags; 2556 2557 skb->data_len = info->len; 2558 skb->len += info->len; 2559 skb->truesize += info->len; 2560 2561 skb_reset_mac_header(skb); 2562 skb_gro_reset_offset(skb); 2563 2564 eth = skb_gro_header(skb, sizeof(*eth)); 2565 if (!eth) { 2566 napi_reuse_skb(napi, skb); 2567 skb = NULL; 2568 goto out; 2569 } 2570 2571 skb_gro_pull(skb, sizeof(*eth)); 2572 2573 /* 2574 * This works because the only protocols we care about don't require 2575 * special handling. We'll fix it up properly at the end. 2576 */ 2577 skb->protocol = eth->h_proto; 2578 2579 skb->ip_summed = info->ip_summed; 2580 skb->csum = info->csum; 2581 2582out: 2583 return skb; 2584} 2585EXPORT_SYMBOL(napi_fraginfo_skb); 2586 2587int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret) 2588{ 2589 int err = NET_RX_SUCCESS; 2590 2591 switch (ret) { 2592 case GRO_NORMAL: 2593 case GRO_HELD: 2594 skb->protocol = eth_type_trans(skb, napi->dev); 2595 2596 if (ret == GRO_NORMAL) 2597 return netif_receive_skb(skb); 2598 2599 skb_gro_pull(skb, -ETH_HLEN); 2600 break; 2601 2602 case GRO_DROP: 2603 err = NET_RX_DROP; 2604 /* fall through */ 2605 2606 case GRO_MERGED_FREE: 2607 napi_reuse_skb(napi, skb); 2608 break; 2609 } 2610 2611 return err; 2612} 2613EXPORT_SYMBOL(napi_frags_finish); 2614 2615int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info) 2616{ 2617 struct sk_buff *skb = napi_fraginfo_skb(napi, info); 2618 2619 if (!skb) 2620 return NET_RX_DROP; 2621 2622 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2623} 2624EXPORT_SYMBOL(napi_gro_frags); 2625 2626static int process_backlog(struct napi_struct *napi, int quota) 2627{ 2628 int work = 0; 2629 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2630 unsigned long start_time = jiffies; 2631 2632 napi->weight = weight_p; 2633 do { 2634 struct sk_buff *skb; 2635 2636 local_irq_disable(); 2637 skb = __skb_dequeue(&queue->input_pkt_queue); 2638 if (!skb) { 2639 __napi_complete(napi); 2640 local_irq_enable(); 2641 break; 2642 } 2643 local_irq_enable(); 2644 2645 netif_receive_skb(skb); 2646 } while (++work < quota && jiffies == start_time); 2647 2648 return work; 2649} 2650 2651/** 2652 * __napi_schedule - schedule for receive 2653 * @n: entry to schedule 2654 * 2655 * The entry's receive function will be scheduled to run 2656 */ 2657void __napi_schedule(struct napi_struct *n) 2658{ 2659 unsigned long flags; 2660 2661 local_irq_save(flags); 2662 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2663 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2664 local_irq_restore(flags); 2665} 2666EXPORT_SYMBOL(__napi_schedule); 2667 2668void __napi_complete(struct napi_struct *n) 2669{ 2670 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2671 BUG_ON(n->gro_list); 2672 2673 list_del(&n->poll_list); 2674 smp_mb__before_clear_bit(); 2675 clear_bit(NAPI_STATE_SCHED, &n->state); 2676} 2677EXPORT_SYMBOL(__napi_complete); 2678 2679void napi_complete(struct napi_struct *n) 2680{ 2681 unsigned long flags; 2682 2683 /* 2684 * don't let napi dequeue from the cpu poll list 2685 * just in case its running on a different cpu 2686 */ 2687 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2688 return; 2689 2690 napi_gro_flush(n); 2691 local_irq_save(flags); 2692 __napi_complete(n); 2693 local_irq_restore(flags); 2694} 2695EXPORT_SYMBOL(napi_complete); 2696 2697void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2698 int (*poll)(struct napi_struct *, int), int weight) 2699{ 2700 INIT_LIST_HEAD(&napi->poll_list); 2701 napi->gro_count = 0; 2702 napi->gro_list = NULL; 2703 napi->skb = NULL; 2704 napi->poll = poll; 2705 napi->weight = weight; 2706 list_add(&napi->dev_list, &dev->napi_list); 2707 napi->dev = dev; 2708#ifdef CONFIG_NETPOLL 2709 spin_lock_init(&napi->poll_lock); 2710 napi->poll_owner = -1; 2711#endif 2712 set_bit(NAPI_STATE_SCHED, &napi->state); 2713} 2714EXPORT_SYMBOL(netif_napi_add); 2715 2716void netif_napi_del(struct napi_struct *napi) 2717{ 2718 struct sk_buff *skb, *next; 2719 2720 list_del_init(&napi->dev_list); 2721 kfree_skb(napi->skb); 2722 2723 for (skb = napi->gro_list; skb; skb = next) { 2724 next = skb->next; 2725 skb->next = NULL; 2726 kfree_skb(skb); 2727 } 2728 2729 napi->gro_list = NULL; 2730 napi->gro_count = 0; 2731} 2732EXPORT_SYMBOL(netif_napi_del); 2733 2734 2735static void net_rx_action(struct softirq_action *h) 2736{ 2737 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2738 unsigned long time_limit = jiffies + 2; 2739 int budget = netdev_budget; 2740 void *have; 2741 2742 local_irq_disable(); 2743 2744 while (!list_empty(list)) { 2745 struct napi_struct *n; 2746 int work, weight; 2747 2748 /* If softirq window is exhuasted then punt. 2749 * Allow this to run for 2 jiffies since which will allow 2750 * an average latency of 1.5/HZ. 2751 */ 2752 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2753 goto softnet_break; 2754 2755 local_irq_enable(); 2756 2757 /* Even though interrupts have been re-enabled, this 2758 * access is safe because interrupts can only add new 2759 * entries to the tail of this list, and only ->poll() 2760 * calls can remove this head entry from the list. 2761 */ 2762 n = list_entry(list->next, struct napi_struct, poll_list); 2763 2764 have = netpoll_poll_lock(n); 2765 2766 weight = n->weight; 2767 2768 /* This NAPI_STATE_SCHED test is for avoiding a race 2769 * with netpoll's poll_napi(). Only the entity which 2770 * obtains the lock and sees NAPI_STATE_SCHED set will 2771 * actually make the ->poll() call. Therefore we avoid 2772 * accidently calling ->poll() when NAPI is not scheduled. 2773 */ 2774 work = 0; 2775 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2776 work = n->poll(n, weight); 2777 2778 WARN_ON_ONCE(work > weight); 2779 2780 budget -= work; 2781 2782 local_irq_disable(); 2783 2784 /* Drivers must not modify the NAPI state if they 2785 * consume the entire weight. In such cases this code 2786 * still "owns" the NAPI instance and therefore can 2787 * move the instance around on the list at-will. 2788 */ 2789 if (unlikely(work == weight)) { 2790 if (unlikely(napi_disable_pending(n))) 2791 __napi_complete(n); 2792 else 2793 list_move_tail(&n->poll_list, list); 2794 } 2795 2796 netpoll_poll_unlock(have); 2797 } 2798out: 2799 local_irq_enable(); 2800 2801#ifdef CONFIG_NET_DMA 2802 /* 2803 * There may not be any more sk_buffs coming right now, so push 2804 * any pending DMA copies to hardware 2805 */ 2806 dma_issue_pending_all(); 2807#endif 2808 2809 return; 2810 2811softnet_break: 2812 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2813 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2814 goto out; 2815} 2816 2817static gifconf_func_t * gifconf_list [NPROTO]; 2818 2819/** 2820 * register_gifconf - register a SIOCGIF handler 2821 * @family: Address family 2822 * @gifconf: Function handler 2823 * 2824 * Register protocol dependent address dumping routines. The handler 2825 * that is passed must not be freed or reused until it has been replaced 2826 * by another handler. 2827 */ 2828int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2829{ 2830 if (family >= NPROTO) 2831 return -EINVAL; 2832 gifconf_list[family] = gifconf; 2833 return 0; 2834} 2835 2836 2837/* 2838 * Map an interface index to its name (SIOCGIFNAME) 2839 */ 2840 2841/* 2842 * We need this ioctl for efficient implementation of the 2843 * if_indextoname() function required by the IPv6 API. Without 2844 * it, we would have to search all the interfaces to find a 2845 * match. --pb 2846 */ 2847 2848static int dev_ifname(struct net *net, struct ifreq __user *arg) 2849{ 2850 struct net_device *dev; 2851 struct ifreq ifr; 2852 2853 /* 2854 * Fetch the caller's info block. 2855 */ 2856 2857 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2858 return -EFAULT; 2859 2860 read_lock(&dev_base_lock); 2861 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2862 if (!dev) { 2863 read_unlock(&dev_base_lock); 2864 return -ENODEV; 2865 } 2866 2867 strcpy(ifr.ifr_name, dev->name); 2868 read_unlock(&dev_base_lock); 2869 2870 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2871 return -EFAULT; 2872 return 0; 2873} 2874 2875/* 2876 * Perform a SIOCGIFCONF call. This structure will change 2877 * size eventually, and there is nothing I can do about it. 2878 * Thus we will need a 'compatibility mode'. 2879 */ 2880 2881static int dev_ifconf(struct net *net, char __user *arg) 2882{ 2883 struct ifconf ifc; 2884 struct net_device *dev; 2885 char __user *pos; 2886 int len; 2887 int total; 2888 int i; 2889 2890 /* 2891 * Fetch the caller's info block. 2892 */ 2893 2894 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2895 return -EFAULT; 2896 2897 pos = ifc.ifc_buf; 2898 len = ifc.ifc_len; 2899 2900 /* 2901 * Loop over the interfaces, and write an info block for each. 2902 */ 2903 2904 total = 0; 2905 for_each_netdev(net, dev) { 2906 for (i = 0; i < NPROTO; i++) { 2907 if (gifconf_list[i]) { 2908 int done; 2909 if (!pos) 2910 done = gifconf_list[i](dev, NULL, 0); 2911 else 2912 done = gifconf_list[i](dev, pos + total, 2913 len - total); 2914 if (done < 0) 2915 return -EFAULT; 2916 total += done; 2917 } 2918 } 2919 } 2920 2921 /* 2922 * All done. Write the updated control block back to the caller. 2923 */ 2924 ifc.ifc_len = total; 2925 2926 /* 2927 * Both BSD and Solaris return 0 here, so we do too. 2928 */ 2929 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2930} 2931 2932#ifdef CONFIG_PROC_FS 2933/* 2934 * This is invoked by the /proc filesystem handler to display a device 2935 * in detail. 2936 */ 2937void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2938 __acquires(dev_base_lock) 2939{ 2940 struct net *net = seq_file_net(seq); 2941 loff_t off; 2942 struct net_device *dev; 2943 2944 read_lock(&dev_base_lock); 2945 if (!*pos) 2946 return SEQ_START_TOKEN; 2947 2948 off = 1; 2949 for_each_netdev(net, dev) 2950 if (off++ == *pos) 2951 return dev; 2952 2953 return NULL; 2954} 2955 2956void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2957{ 2958 struct net *net = seq_file_net(seq); 2959 ++*pos; 2960 return v == SEQ_START_TOKEN ? 2961 first_net_device(net) : next_net_device((struct net_device *)v); 2962} 2963 2964void dev_seq_stop(struct seq_file *seq, void *v) 2965 __releases(dev_base_lock) 2966{ 2967 read_unlock(&dev_base_lock); 2968} 2969 2970static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2971{ 2972 const struct net_device_stats *stats = dev_get_stats(dev); 2973 2974 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2975 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2976 dev->name, stats->rx_bytes, stats->rx_packets, 2977 stats->rx_errors, 2978 stats->rx_dropped + stats->rx_missed_errors, 2979 stats->rx_fifo_errors, 2980 stats->rx_length_errors + stats->rx_over_errors + 2981 stats->rx_crc_errors + stats->rx_frame_errors, 2982 stats->rx_compressed, stats->multicast, 2983 stats->tx_bytes, stats->tx_packets, 2984 stats->tx_errors, stats->tx_dropped, 2985 stats->tx_fifo_errors, stats->collisions, 2986 stats->tx_carrier_errors + 2987 stats->tx_aborted_errors + 2988 stats->tx_window_errors + 2989 stats->tx_heartbeat_errors, 2990 stats->tx_compressed); 2991} 2992 2993/* 2994 * Called from the PROCfs module. This now uses the new arbitrary sized 2995 * /proc/net interface to create /proc/net/dev 2996 */ 2997static int dev_seq_show(struct seq_file *seq, void *v) 2998{ 2999 if (v == SEQ_START_TOKEN) 3000 seq_puts(seq, "Inter-| Receive " 3001 " | Transmit\n" 3002 " face |bytes packets errs drop fifo frame " 3003 "compressed multicast|bytes packets errs " 3004 "drop fifo colls carrier compressed\n"); 3005 else 3006 dev_seq_printf_stats(seq, v); 3007 return 0; 3008} 3009 3010static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3011{ 3012 struct netif_rx_stats *rc = NULL; 3013 3014 while (*pos < nr_cpu_ids) 3015 if (cpu_online(*pos)) { 3016 rc = &per_cpu(netdev_rx_stat, *pos); 3017 break; 3018 } else 3019 ++*pos; 3020 return rc; 3021} 3022 3023static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3024{ 3025 return softnet_get_online(pos); 3026} 3027 3028static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3029{ 3030 ++*pos; 3031 return softnet_get_online(pos); 3032} 3033 3034static void softnet_seq_stop(struct seq_file *seq, void *v) 3035{ 3036} 3037 3038static int softnet_seq_show(struct seq_file *seq, void *v) 3039{ 3040 struct netif_rx_stats *s = v; 3041 3042 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3043 s->total, s->dropped, s->time_squeeze, 0, 3044 0, 0, 0, 0, /* was fastroute */ 3045 s->cpu_collision ); 3046 return 0; 3047} 3048 3049static const struct seq_operations dev_seq_ops = { 3050 .start = dev_seq_start, 3051 .next = dev_seq_next, 3052 .stop = dev_seq_stop, 3053 .show = dev_seq_show, 3054}; 3055 3056static int dev_seq_open(struct inode *inode, struct file *file) 3057{ 3058 return seq_open_net(inode, file, &dev_seq_ops, 3059 sizeof(struct seq_net_private)); 3060} 3061 3062static const struct file_operations dev_seq_fops = { 3063 .owner = THIS_MODULE, 3064 .open = dev_seq_open, 3065 .read = seq_read, 3066 .llseek = seq_lseek, 3067 .release = seq_release_net, 3068}; 3069 3070static const struct seq_operations softnet_seq_ops = { 3071 .start = softnet_seq_start, 3072 .next = softnet_seq_next, 3073 .stop = softnet_seq_stop, 3074 .show = softnet_seq_show, 3075}; 3076 3077static int softnet_seq_open(struct inode *inode, struct file *file) 3078{ 3079 return seq_open(file, &softnet_seq_ops); 3080} 3081 3082static const struct file_operations softnet_seq_fops = { 3083 .owner = THIS_MODULE, 3084 .open = softnet_seq_open, 3085 .read = seq_read, 3086 .llseek = seq_lseek, 3087 .release = seq_release, 3088}; 3089 3090static void *ptype_get_idx(loff_t pos) 3091{ 3092 struct packet_type *pt = NULL; 3093 loff_t i = 0; 3094 int t; 3095 3096 list_for_each_entry_rcu(pt, &ptype_all, list) { 3097 if (i == pos) 3098 return pt; 3099 ++i; 3100 } 3101 3102 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3103 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3104 if (i == pos) 3105 return pt; 3106 ++i; 3107 } 3108 } 3109 return NULL; 3110} 3111 3112static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3113 __acquires(RCU) 3114{ 3115 rcu_read_lock(); 3116 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3117} 3118 3119static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3120{ 3121 struct packet_type *pt; 3122 struct list_head *nxt; 3123 int hash; 3124 3125 ++*pos; 3126 if (v == SEQ_START_TOKEN) 3127 return ptype_get_idx(0); 3128 3129 pt = v; 3130 nxt = pt->list.next; 3131 if (pt->type == htons(ETH_P_ALL)) { 3132 if (nxt != &ptype_all) 3133 goto found; 3134 hash = 0; 3135 nxt = ptype_base[0].next; 3136 } else 3137 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3138 3139 while (nxt == &ptype_base[hash]) { 3140 if (++hash >= PTYPE_HASH_SIZE) 3141 return NULL; 3142 nxt = ptype_base[hash].next; 3143 } 3144found: 3145 return list_entry(nxt, struct packet_type, list); 3146} 3147 3148static void ptype_seq_stop(struct seq_file *seq, void *v) 3149 __releases(RCU) 3150{ 3151 rcu_read_unlock(); 3152} 3153 3154static int ptype_seq_show(struct seq_file *seq, void *v) 3155{ 3156 struct packet_type *pt = v; 3157 3158 if (v == SEQ_START_TOKEN) 3159 seq_puts(seq, "Type Device Function\n"); 3160 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3161 if (pt->type == htons(ETH_P_ALL)) 3162 seq_puts(seq, "ALL "); 3163 else 3164 seq_printf(seq, "%04x", ntohs(pt->type)); 3165 3166 seq_printf(seq, " %-8s %pF\n", 3167 pt->dev ? pt->dev->name : "", pt->func); 3168 } 3169 3170 return 0; 3171} 3172 3173static const struct seq_operations ptype_seq_ops = { 3174 .start = ptype_seq_start, 3175 .next = ptype_seq_next, 3176 .stop = ptype_seq_stop, 3177 .show = ptype_seq_show, 3178}; 3179 3180static int ptype_seq_open(struct inode *inode, struct file *file) 3181{ 3182 return seq_open_net(inode, file, &ptype_seq_ops, 3183 sizeof(struct seq_net_private)); 3184} 3185 3186static const struct file_operations ptype_seq_fops = { 3187 .owner = THIS_MODULE, 3188 .open = ptype_seq_open, 3189 .read = seq_read, 3190 .llseek = seq_lseek, 3191 .release = seq_release_net, 3192}; 3193 3194 3195static int __net_init dev_proc_net_init(struct net *net) 3196{ 3197 int rc = -ENOMEM; 3198 3199 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3200 goto out; 3201 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3202 goto out_dev; 3203 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3204 goto out_softnet; 3205 3206 if (wext_proc_init(net)) 3207 goto out_ptype; 3208 rc = 0; 3209out: 3210 return rc; 3211out_ptype: 3212 proc_net_remove(net, "ptype"); 3213out_softnet: 3214 proc_net_remove(net, "softnet_stat"); 3215out_dev: 3216 proc_net_remove(net, "dev"); 3217 goto out; 3218} 3219 3220static void __net_exit dev_proc_net_exit(struct net *net) 3221{ 3222 wext_proc_exit(net); 3223 3224 proc_net_remove(net, "ptype"); 3225 proc_net_remove(net, "softnet_stat"); 3226 proc_net_remove(net, "dev"); 3227} 3228 3229static struct pernet_operations __net_initdata dev_proc_ops = { 3230 .init = dev_proc_net_init, 3231 .exit = dev_proc_net_exit, 3232}; 3233 3234static int __init dev_proc_init(void) 3235{ 3236 return register_pernet_subsys(&dev_proc_ops); 3237} 3238#else 3239#define dev_proc_init() 0 3240#endif /* CONFIG_PROC_FS */ 3241 3242 3243/** 3244 * netdev_set_master - set up master/slave pair 3245 * @slave: slave device 3246 * @master: new master device 3247 * 3248 * Changes the master device of the slave. Pass %NULL to break the 3249 * bonding. The caller must hold the RTNL semaphore. On a failure 3250 * a negative errno code is returned. On success the reference counts 3251 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3252 * function returns zero. 3253 */ 3254int netdev_set_master(struct net_device *slave, struct net_device *master) 3255{ 3256 struct net_device *old = slave->master; 3257 3258 ASSERT_RTNL(); 3259 3260 if (master) { 3261 if (old) 3262 return -EBUSY; 3263 dev_hold(master); 3264 } 3265 3266 slave->master = master; 3267 3268 synchronize_net(); 3269 3270 if (old) 3271 dev_put(old); 3272 3273 if (master) 3274 slave->flags |= IFF_SLAVE; 3275 else 3276 slave->flags &= ~IFF_SLAVE; 3277 3278 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3279 return 0; 3280} 3281 3282static void dev_change_rx_flags(struct net_device *dev, int flags) 3283{ 3284 const struct net_device_ops *ops = dev->netdev_ops; 3285 3286 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3287 ops->ndo_change_rx_flags(dev, flags); 3288} 3289 3290static int __dev_set_promiscuity(struct net_device *dev, int inc) 3291{ 3292 unsigned short old_flags = dev->flags; 3293 uid_t uid; 3294 gid_t gid; 3295 3296 ASSERT_RTNL(); 3297 3298 dev->flags |= IFF_PROMISC; 3299 dev->promiscuity += inc; 3300 if (dev->promiscuity == 0) { 3301 /* 3302 * Avoid overflow. 3303 * If inc causes overflow, untouch promisc and return error. 3304 */ 3305 if (inc < 0) 3306 dev->flags &= ~IFF_PROMISC; 3307 else { 3308 dev->promiscuity -= inc; 3309 printk(KERN_WARNING "%s: promiscuity touches roof, " 3310 "set promiscuity failed, promiscuity feature " 3311 "of device might be broken.\n", dev->name); 3312 return -EOVERFLOW; 3313 } 3314 } 3315 if (dev->flags != old_flags) { 3316 printk(KERN_INFO "device %s %s promiscuous mode\n", 3317 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3318 "left"); 3319 if (audit_enabled) { 3320 current_uid_gid(&uid, &gid); 3321 audit_log(current->audit_context, GFP_ATOMIC, 3322 AUDIT_ANOM_PROMISCUOUS, 3323 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3324 dev->name, (dev->flags & IFF_PROMISC), 3325 (old_flags & IFF_PROMISC), 3326 audit_get_loginuid(current), 3327 uid, gid, 3328 audit_get_sessionid(current)); 3329 } 3330 3331 dev_change_rx_flags(dev, IFF_PROMISC); 3332 } 3333 return 0; 3334} 3335 3336/** 3337 * dev_set_promiscuity - update promiscuity count on a device 3338 * @dev: device 3339 * @inc: modifier 3340 * 3341 * Add or remove promiscuity from a device. While the count in the device 3342 * remains above zero the interface remains promiscuous. Once it hits zero 3343 * the device reverts back to normal filtering operation. A negative inc 3344 * value is used to drop promiscuity on the device. 3345 * Return 0 if successful or a negative errno code on error. 3346 */ 3347int dev_set_promiscuity(struct net_device *dev, int inc) 3348{ 3349 unsigned short old_flags = dev->flags; 3350 int err; 3351 3352 err = __dev_set_promiscuity(dev, inc); 3353 if (err < 0) 3354 return err; 3355 if (dev->flags != old_flags) 3356 dev_set_rx_mode(dev); 3357 return err; 3358} 3359 3360/** 3361 * dev_set_allmulti - update allmulti count on a device 3362 * @dev: device 3363 * @inc: modifier 3364 * 3365 * Add or remove reception of all multicast frames to a device. While the 3366 * count in the device remains above zero the interface remains listening 3367 * to all interfaces. Once it hits zero the device reverts back to normal 3368 * filtering operation. A negative @inc value is used to drop the counter 3369 * when releasing a resource needing all multicasts. 3370 * Return 0 if successful or a negative errno code on error. 3371 */ 3372 3373int dev_set_allmulti(struct net_device *dev, int inc) 3374{ 3375 unsigned short old_flags = dev->flags; 3376 3377 ASSERT_RTNL(); 3378 3379 dev->flags |= IFF_ALLMULTI; 3380 dev->allmulti += inc; 3381 if (dev->allmulti == 0) { 3382 /* 3383 * Avoid overflow. 3384 * If inc causes overflow, untouch allmulti and return error. 3385 */ 3386 if (inc < 0) 3387 dev->flags &= ~IFF_ALLMULTI; 3388 else { 3389 dev->allmulti -= inc; 3390 printk(KERN_WARNING "%s: allmulti touches roof, " 3391 "set allmulti failed, allmulti feature of " 3392 "device might be broken.\n", dev->name); 3393 return -EOVERFLOW; 3394 } 3395 } 3396 if (dev->flags ^ old_flags) { 3397 dev_change_rx_flags(dev, IFF_ALLMULTI); 3398 dev_set_rx_mode(dev); 3399 } 3400 return 0; 3401} 3402 3403/* 3404 * Upload unicast and multicast address lists to device and 3405 * configure RX filtering. When the device doesn't support unicast 3406 * filtering it is put in promiscuous mode while unicast addresses 3407 * are present. 3408 */ 3409void __dev_set_rx_mode(struct net_device *dev) 3410{ 3411 const struct net_device_ops *ops = dev->netdev_ops; 3412 3413 /* dev_open will call this function so the list will stay sane. */ 3414 if (!(dev->flags&IFF_UP)) 3415 return; 3416 3417 if (!netif_device_present(dev)) 3418 return; 3419 3420 if (ops->ndo_set_rx_mode) 3421 ops->ndo_set_rx_mode(dev); 3422 else { 3423 /* Unicast addresses changes may only happen under the rtnl, 3424 * therefore calling __dev_set_promiscuity here is safe. 3425 */ 3426 if (dev->uc_count > 0 && !dev->uc_promisc) { 3427 __dev_set_promiscuity(dev, 1); 3428 dev->uc_promisc = 1; 3429 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3430 __dev_set_promiscuity(dev, -1); 3431 dev->uc_promisc = 0; 3432 } 3433 3434 if (ops->ndo_set_multicast_list) 3435 ops->ndo_set_multicast_list(dev); 3436 } 3437} 3438 3439void dev_set_rx_mode(struct net_device *dev) 3440{ 3441 netif_addr_lock_bh(dev); 3442 __dev_set_rx_mode(dev); 3443 netif_addr_unlock_bh(dev); 3444} 3445 3446int __dev_addr_delete(struct dev_addr_list **list, int *count, 3447 void *addr, int alen, int glbl) 3448{ 3449 struct dev_addr_list *da; 3450 3451 for (; (da = *list) != NULL; list = &da->next) { 3452 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3453 alen == da->da_addrlen) { 3454 if (glbl) { 3455 int old_glbl = da->da_gusers; 3456 da->da_gusers = 0; 3457 if (old_glbl == 0) 3458 break; 3459 } 3460 if (--da->da_users) 3461 return 0; 3462 3463 *list = da->next; 3464 kfree(da); 3465 (*count)--; 3466 return 0; 3467 } 3468 } 3469 return -ENOENT; 3470} 3471 3472int __dev_addr_add(struct dev_addr_list **list, int *count, 3473 void *addr, int alen, int glbl) 3474{ 3475 struct dev_addr_list *da; 3476 3477 for (da = *list; da != NULL; da = da->next) { 3478 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3479 da->da_addrlen == alen) { 3480 if (glbl) { 3481 int old_glbl = da->da_gusers; 3482 da->da_gusers = 1; 3483 if (old_glbl) 3484 return 0; 3485 } 3486 da->da_users++; 3487 return 0; 3488 } 3489 } 3490 3491 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3492 if (da == NULL) 3493 return -ENOMEM; 3494 memcpy(da->da_addr, addr, alen); 3495 da->da_addrlen = alen; 3496 da->da_users = 1; 3497 da->da_gusers = glbl ? 1 : 0; 3498 da->next = *list; 3499 *list = da; 3500 (*count)++; 3501 return 0; 3502} 3503 3504/** 3505 * dev_unicast_delete - Release secondary unicast address. 3506 * @dev: device 3507 * @addr: address to delete 3508 * @alen: length of @addr 3509 * 3510 * Release reference to a secondary unicast address and remove it 3511 * from the device if the reference count drops to zero. 3512 * 3513 * The caller must hold the rtnl_mutex. 3514 */ 3515int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3516{ 3517 int err; 3518 3519 ASSERT_RTNL(); 3520 3521 netif_addr_lock_bh(dev); 3522 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3523 if (!err) 3524 __dev_set_rx_mode(dev); 3525 netif_addr_unlock_bh(dev); 3526 return err; 3527} 3528EXPORT_SYMBOL(dev_unicast_delete); 3529 3530/** 3531 * dev_unicast_add - add a secondary unicast address 3532 * @dev: device 3533 * @addr: address to add 3534 * @alen: length of @addr 3535 * 3536 * Add a secondary unicast address to the device or increase 3537 * the reference count if it already exists. 3538 * 3539 * The caller must hold the rtnl_mutex. 3540 */ 3541int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3542{ 3543 int err; 3544 3545 ASSERT_RTNL(); 3546 3547 netif_addr_lock_bh(dev); 3548 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3549 if (!err) 3550 __dev_set_rx_mode(dev); 3551 netif_addr_unlock_bh(dev); 3552 return err; 3553} 3554EXPORT_SYMBOL(dev_unicast_add); 3555 3556int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3557 struct dev_addr_list **from, int *from_count) 3558{ 3559 struct dev_addr_list *da, *next; 3560 int err = 0; 3561 3562 da = *from; 3563 while (da != NULL) { 3564 next = da->next; 3565 if (!da->da_synced) { 3566 err = __dev_addr_add(to, to_count, 3567 da->da_addr, da->da_addrlen, 0); 3568 if (err < 0) 3569 break; 3570 da->da_synced = 1; 3571 da->da_users++; 3572 } else if (da->da_users == 1) { 3573 __dev_addr_delete(to, to_count, 3574 da->da_addr, da->da_addrlen, 0); 3575 __dev_addr_delete(from, from_count, 3576 da->da_addr, da->da_addrlen, 0); 3577 } 3578 da = next; 3579 } 3580 return err; 3581} 3582 3583void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3584 struct dev_addr_list **from, int *from_count) 3585{ 3586 struct dev_addr_list *da, *next; 3587 3588 da = *from; 3589 while (da != NULL) { 3590 next = da->next; 3591 if (da->da_synced) { 3592 __dev_addr_delete(to, to_count, 3593 da->da_addr, da->da_addrlen, 0); 3594 da->da_synced = 0; 3595 __dev_addr_delete(from, from_count, 3596 da->da_addr, da->da_addrlen, 0); 3597 } 3598 da = next; 3599 } 3600} 3601 3602/** 3603 * dev_unicast_sync - Synchronize device's unicast list to another device 3604 * @to: destination device 3605 * @from: source device 3606 * 3607 * Add newly added addresses to the destination device and release 3608 * addresses that have no users left. The source device must be 3609 * locked by netif_tx_lock_bh. 3610 * 3611 * This function is intended to be called from the dev->set_rx_mode 3612 * function of layered software devices. 3613 */ 3614int dev_unicast_sync(struct net_device *to, struct net_device *from) 3615{ 3616 int err = 0; 3617 3618 netif_addr_lock_bh(to); 3619 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3620 &from->uc_list, &from->uc_count); 3621 if (!err) 3622 __dev_set_rx_mode(to); 3623 netif_addr_unlock_bh(to); 3624 return err; 3625} 3626EXPORT_SYMBOL(dev_unicast_sync); 3627 3628/** 3629 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3630 * @to: destination device 3631 * @from: source device 3632 * 3633 * Remove all addresses that were added to the destination device by 3634 * dev_unicast_sync(). This function is intended to be called from the 3635 * dev->stop function of layered software devices. 3636 */ 3637void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3638{ 3639 netif_addr_lock_bh(from); 3640 netif_addr_lock(to); 3641 3642 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3643 &from->uc_list, &from->uc_count); 3644 __dev_set_rx_mode(to); 3645 3646 netif_addr_unlock(to); 3647 netif_addr_unlock_bh(from); 3648} 3649EXPORT_SYMBOL(dev_unicast_unsync); 3650 3651static void __dev_addr_discard(struct dev_addr_list **list) 3652{ 3653 struct dev_addr_list *tmp; 3654 3655 while (*list != NULL) { 3656 tmp = *list; 3657 *list = tmp->next; 3658 if (tmp->da_users > tmp->da_gusers) 3659 printk("__dev_addr_discard: address leakage! " 3660 "da_users=%d\n", tmp->da_users); 3661 kfree(tmp); 3662 } 3663} 3664 3665static void dev_addr_discard(struct net_device *dev) 3666{ 3667 netif_addr_lock_bh(dev); 3668 3669 __dev_addr_discard(&dev->uc_list); 3670 dev->uc_count = 0; 3671 3672 __dev_addr_discard(&dev->mc_list); 3673 dev->mc_count = 0; 3674 3675 netif_addr_unlock_bh(dev); 3676} 3677 3678/** 3679 * dev_get_flags - get flags reported to userspace 3680 * @dev: device 3681 * 3682 * Get the combination of flag bits exported through APIs to userspace. 3683 */ 3684unsigned dev_get_flags(const struct net_device *dev) 3685{ 3686 unsigned flags; 3687 3688 flags = (dev->flags & ~(IFF_PROMISC | 3689 IFF_ALLMULTI | 3690 IFF_RUNNING | 3691 IFF_LOWER_UP | 3692 IFF_DORMANT)) | 3693 (dev->gflags & (IFF_PROMISC | 3694 IFF_ALLMULTI)); 3695 3696 if (netif_running(dev)) { 3697 if (netif_oper_up(dev)) 3698 flags |= IFF_RUNNING; 3699 if (netif_carrier_ok(dev)) 3700 flags |= IFF_LOWER_UP; 3701 if (netif_dormant(dev)) 3702 flags |= IFF_DORMANT; 3703 } 3704 3705 return flags; 3706} 3707 3708/** 3709 * dev_change_flags - change device settings 3710 * @dev: device 3711 * @flags: device state flags 3712 * 3713 * Change settings on device based state flags. The flags are 3714 * in the userspace exported format. 3715 */ 3716int dev_change_flags(struct net_device *dev, unsigned flags) 3717{ 3718 int ret, changes; 3719 int old_flags = dev->flags; 3720 3721 ASSERT_RTNL(); 3722 3723 /* 3724 * Set the flags on our device. 3725 */ 3726 3727 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3728 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3729 IFF_AUTOMEDIA)) | 3730 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3731 IFF_ALLMULTI)); 3732 3733 /* 3734 * Load in the correct multicast list now the flags have changed. 3735 */ 3736 3737 if ((old_flags ^ flags) & IFF_MULTICAST) 3738 dev_change_rx_flags(dev, IFF_MULTICAST); 3739 3740 dev_set_rx_mode(dev); 3741 3742 /* 3743 * Have we downed the interface. We handle IFF_UP ourselves 3744 * according to user attempts to set it, rather than blindly 3745 * setting it. 3746 */ 3747 3748 ret = 0; 3749 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3750 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3751 3752 if (!ret) 3753 dev_set_rx_mode(dev); 3754 } 3755 3756 if (dev->flags & IFF_UP && 3757 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3758 IFF_VOLATILE))) 3759 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3760 3761 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3762 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3763 dev->gflags ^= IFF_PROMISC; 3764 dev_set_promiscuity(dev, inc); 3765 } 3766 3767 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3768 is important. Some (broken) drivers set IFF_PROMISC, when 3769 IFF_ALLMULTI is requested not asking us and not reporting. 3770 */ 3771 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3772 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3773 dev->gflags ^= IFF_ALLMULTI; 3774 dev_set_allmulti(dev, inc); 3775 } 3776 3777 /* Exclude state transition flags, already notified */ 3778 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3779 if (changes) 3780 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3781 3782 return ret; 3783} 3784 3785/** 3786 * dev_set_mtu - Change maximum transfer unit 3787 * @dev: device 3788 * @new_mtu: new transfer unit 3789 * 3790 * Change the maximum transfer size of the network device. 3791 */ 3792int dev_set_mtu(struct net_device *dev, int new_mtu) 3793{ 3794 const struct net_device_ops *ops = dev->netdev_ops; 3795 int err; 3796 3797 if (new_mtu == dev->mtu) 3798 return 0; 3799 3800 /* MTU must be positive. */ 3801 if (new_mtu < 0) 3802 return -EINVAL; 3803 3804 if (!netif_device_present(dev)) 3805 return -ENODEV; 3806 3807 err = 0; 3808 if (ops->ndo_change_mtu) 3809 err = ops->ndo_change_mtu(dev, new_mtu); 3810 else 3811 dev->mtu = new_mtu; 3812 3813 if (!err && dev->flags & IFF_UP) 3814 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3815 return err; 3816} 3817 3818/** 3819 * dev_set_mac_address - Change Media Access Control Address 3820 * @dev: device 3821 * @sa: new address 3822 * 3823 * Change the hardware (MAC) address of the device 3824 */ 3825int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3826{ 3827 const struct net_device_ops *ops = dev->netdev_ops; 3828 int err; 3829 3830 if (!ops->ndo_set_mac_address) 3831 return -EOPNOTSUPP; 3832 if (sa->sa_family != dev->type) 3833 return -EINVAL; 3834 if (!netif_device_present(dev)) 3835 return -ENODEV; 3836 err = ops->ndo_set_mac_address(dev, sa); 3837 if (!err) 3838 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3839 return err; 3840} 3841 3842/* 3843 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3844 */ 3845static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3846{ 3847 int err; 3848 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3849 3850 if (!dev) 3851 return -ENODEV; 3852 3853 switch (cmd) { 3854 case SIOCGIFFLAGS: /* Get interface flags */ 3855 ifr->ifr_flags = dev_get_flags(dev); 3856 return 0; 3857 3858 case SIOCGIFMETRIC: /* Get the metric on the interface 3859 (currently unused) */ 3860 ifr->ifr_metric = 0; 3861 return 0; 3862 3863 case SIOCGIFMTU: /* Get the MTU of a device */ 3864 ifr->ifr_mtu = dev->mtu; 3865 return 0; 3866 3867 case SIOCGIFHWADDR: 3868 if (!dev->addr_len) 3869 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3870 else 3871 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3872 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3873 ifr->ifr_hwaddr.sa_family = dev->type; 3874 return 0; 3875 3876 case SIOCGIFSLAVE: 3877 err = -EINVAL; 3878 break; 3879 3880 case SIOCGIFMAP: 3881 ifr->ifr_map.mem_start = dev->mem_start; 3882 ifr->ifr_map.mem_end = dev->mem_end; 3883 ifr->ifr_map.base_addr = dev->base_addr; 3884 ifr->ifr_map.irq = dev->irq; 3885 ifr->ifr_map.dma = dev->dma; 3886 ifr->ifr_map.port = dev->if_port; 3887 return 0; 3888 3889 case SIOCGIFINDEX: 3890 ifr->ifr_ifindex = dev->ifindex; 3891 return 0; 3892 3893 case SIOCGIFTXQLEN: 3894 ifr->ifr_qlen = dev->tx_queue_len; 3895 return 0; 3896 3897 default: 3898 /* dev_ioctl() should ensure this case 3899 * is never reached 3900 */ 3901 WARN_ON(1); 3902 err = -EINVAL; 3903 break; 3904 3905 } 3906 return err; 3907} 3908 3909/* 3910 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3911 */ 3912static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3913{ 3914 int err; 3915 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3916 const struct net_device_ops *ops; 3917 3918 if (!dev) 3919 return -ENODEV; 3920 3921 ops = dev->netdev_ops; 3922 3923 switch (cmd) { 3924 case SIOCSIFFLAGS: /* Set interface flags */ 3925 return dev_change_flags(dev, ifr->ifr_flags); 3926 3927 case SIOCSIFMETRIC: /* Set the metric on the interface 3928 (currently unused) */ 3929 return -EOPNOTSUPP; 3930 3931 case SIOCSIFMTU: /* Set the MTU of a device */ 3932 return dev_set_mtu(dev, ifr->ifr_mtu); 3933 3934 case SIOCSIFHWADDR: 3935 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3936 3937 case SIOCSIFHWBROADCAST: 3938 if (ifr->ifr_hwaddr.sa_family != dev->type) 3939 return -EINVAL; 3940 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3941 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3942 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3943 return 0; 3944 3945 case SIOCSIFMAP: 3946 if (ops->ndo_set_config) { 3947 if (!netif_device_present(dev)) 3948 return -ENODEV; 3949 return ops->ndo_set_config(dev, &ifr->ifr_map); 3950 } 3951 return -EOPNOTSUPP; 3952 3953 case SIOCADDMULTI: 3954 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3955 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3956 return -EINVAL; 3957 if (!netif_device_present(dev)) 3958 return -ENODEV; 3959 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3960 dev->addr_len, 1); 3961 3962 case SIOCDELMULTI: 3963 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3964 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3965 return -EINVAL; 3966 if (!netif_device_present(dev)) 3967 return -ENODEV; 3968 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3969 dev->addr_len, 1); 3970 3971 case SIOCSIFTXQLEN: 3972 if (ifr->ifr_qlen < 0) 3973 return -EINVAL; 3974 dev->tx_queue_len = ifr->ifr_qlen; 3975 return 0; 3976 3977 case SIOCSIFNAME: 3978 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3979 return dev_change_name(dev, ifr->ifr_newname); 3980 3981 /* 3982 * Unknown or private ioctl 3983 */ 3984 3985 default: 3986 if ((cmd >= SIOCDEVPRIVATE && 3987 cmd <= SIOCDEVPRIVATE + 15) || 3988 cmd == SIOCBONDENSLAVE || 3989 cmd == SIOCBONDRELEASE || 3990 cmd == SIOCBONDSETHWADDR || 3991 cmd == SIOCBONDSLAVEINFOQUERY || 3992 cmd == SIOCBONDINFOQUERY || 3993 cmd == SIOCBONDCHANGEACTIVE || 3994 cmd == SIOCGMIIPHY || 3995 cmd == SIOCGMIIREG || 3996 cmd == SIOCSMIIREG || 3997 cmd == SIOCBRADDIF || 3998 cmd == SIOCBRDELIF || 3999 cmd == SIOCSHWTSTAMP || 4000 cmd == SIOCWANDEV) { 4001 err = -EOPNOTSUPP; 4002 if (ops->ndo_do_ioctl) { 4003 if (netif_device_present(dev)) 4004 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4005 else 4006 err = -ENODEV; 4007 } 4008 } else 4009 err = -EINVAL; 4010 4011 } 4012 return err; 4013} 4014 4015/* 4016 * This function handles all "interface"-type I/O control requests. The actual 4017 * 'doing' part of this is dev_ifsioc above. 4018 */ 4019 4020/** 4021 * dev_ioctl - network device ioctl 4022 * @net: the applicable net namespace 4023 * @cmd: command to issue 4024 * @arg: pointer to a struct ifreq in user space 4025 * 4026 * Issue ioctl functions to devices. This is normally called by the 4027 * user space syscall interfaces but can sometimes be useful for 4028 * other purposes. The return value is the return from the syscall if 4029 * positive or a negative errno code on error. 4030 */ 4031 4032int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4033{ 4034 struct ifreq ifr; 4035 int ret; 4036 char *colon; 4037 4038 /* One special case: SIOCGIFCONF takes ifconf argument 4039 and requires shared lock, because it sleeps writing 4040 to user space. 4041 */ 4042 4043 if (cmd == SIOCGIFCONF) { 4044 rtnl_lock(); 4045 ret = dev_ifconf(net, (char __user *) arg); 4046 rtnl_unlock(); 4047 return ret; 4048 } 4049 if (cmd == SIOCGIFNAME) 4050 return dev_ifname(net, (struct ifreq __user *)arg); 4051 4052 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4053 return -EFAULT; 4054 4055 ifr.ifr_name[IFNAMSIZ-1] = 0; 4056 4057 colon = strchr(ifr.ifr_name, ':'); 4058 if (colon) 4059 *colon = 0; 4060 4061 /* 4062 * See which interface the caller is talking about. 4063 */ 4064 4065 switch (cmd) { 4066 /* 4067 * These ioctl calls: 4068 * - can be done by all. 4069 * - atomic and do not require locking. 4070 * - return a value 4071 */ 4072 case SIOCGIFFLAGS: 4073 case SIOCGIFMETRIC: 4074 case SIOCGIFMTU: 4075 case SIOCGIFHWADDR: 4076 case SIOCGIFSLAVE: 4077 case SIOCGIFMAP: 4078 case SIOCGIFINDEX: 4079 case SIOCGIFTXQLEN: 4080 dev_load(net, ifr.ifr_name); 4081 read_lock(&dev_base_lock); 4082 ret = dev_ifsioc_locked(net, &ifr, cmd); 4083 read_unlock(&dev_base_lock); 4084 if (!ret) { 4085 if (colon) 4086 *colon = ':'; 4087 if (copy_to_user(arg, &ifr, 4088 sizeof(struct ifreq))) 4089 ret = -EFAULT; 4090 } 4091 return ret; 4092 4093 case SIOCETHTOOL: 4094 dev_load(net, ifr.ifr_name); 4095 rtnl_lock(); 4096 ret = dev_ethtool(net, &ifr); 4097 rtnl_unlock(); 4098 if (!ret) { 4099 if (colon) 4100 *colon = ':'; 4101 if (copy_to_user(arg, &ifr, 4102 sizeof(struct ifreq))) 4103 ret = -EFAULT; 4104 } 4105 return ret; 4106 4107 /* 4108 * These ioctl calls: 4109 * - require superuser power. 4110 * - require strict serialization. 4111 * - return a value 4112 */ 4113 case SIOCGMIIPHY: 4114 case SIOCGMIIREG: 4115 case SIOCSIFNAME: 4116 if (!capable(CAP_NET_ADMIN)) 4117 return -EPERM; 4118 dev_load(net, ifr.ifr_name); 4119 rtnl_lock(); 4120 ret = dev_ifsioc(net, &ifr, cmd); 4121 rtnl_unlock(); 4122 if (!ret) { 4123 if (colon) 4124 *colon = ':'; 4125 if (copy_to_user(arg, &ifr, 4126 sizeof(struct ifreq))) 4127 ret = -EFAULT; 4128 } 4129 return ret; 4130 4131 /* 4132 * These ioctl calls: 4133 * - require superuser power. 4134 * - require strict serialization. 4135 * - do not return a value 4136 */ 4137 case SIOCSIFFLAGS: 4138 case SIOCSIFMETRIC: 4139 case SIOCSIFMTU: 4140 case SIOCSIFMAP: 4141 case SIOCSIFHWADDR: 4142 case SIOCSIFSLAVE: 4143 case SIOCADDMULTI: 4144 case SIOCDELMULTI: 4145 case SIOCSIFHWBROADCAST: 4146 case SIOCSIFTXQLEN: 4147 case SIOCSMIIREG: 4148 case SIOCBONDENSLAVE: 4149 case SIOCBONDRELEASE: 4150 case SIOCBONDSETHWADDR: 4151 case SIOCBONDCHANGEACTIVE: 4152 case SIOCBRADDIF: 4153 case SIOCBRDELIF: 4154 case SIOCSHWTSTAMP: 4155 if (!capable(CAP_NET_ADMIN)) 4156 return -EPERM; 4157 /* fall through */ 4158 case SIOCBONDSLAVEINFOQUERY: 4159 case SIOCBONDINFOQUERY: 4160 dev_load(net, ifr.ifr_name); 4161 rtnl_lock(); 4162 ret = dev_ifsioc(net, &ifr, cmd); 4163 rtnl_unlock(); 4164 return ret; 4165 4166 case SIOCGIFMEM: 4167 /* Get the per device memory space. We can add this but 4168 * currently do not support it */ 4169 case SIOCSIFMEM: 4170 /* Set the per device memory buffer space. 4171 * Not applicable in our case */ 4172 case SIOCSIFLINK: 4173 return -EINVAL; 4174 4175 /* 4176 * Unknown or private ioctl. 4177 */ 4178 default: 4179 if (cmd == SIOCWANDEV || 4180 (cmd >= SIOCDEVPRIVATE && 4181 cmd <= SIOCDEVPRIVATE + 15)) { 4182 dev_load(net, ifr.ifr_name); 4183 rtnl_lock(); 4184 ret = dev_ifsioc(net, &ifr, cmd); 4185 rtnl_unlock(); 4186 if (!ret && copy_to_user(arg, &ifr, 4187 sizeof(struct ifreq))) 4188 ret = -EFAULT; 4189 return ret; 4190 } 4191 /* Take care of Wireless Extensions */ 4192 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4193 return wext_handle_ioctl(net, &ifr, cmd, arg); 4194 return -EINVAL; 4195 } 4196} 4197 4198 4199/** 4200 * dev_new_index - allocate an ifindex 4201 * @net: the applicable net namespace 4202 * 4203 * Returns a suitable unique value for a new device interface 4204 * number. The caller must hold the rtnl semaphore or the 4205 * dev_base_lock to be sure it remains unique. 4206 */ 4207static int dev_new_index(struct net *net) 4208{ 4209 static int ifindex; 4210 for (;;) { 4211 if (++ifindex <= 0) 4212 ifindex = 1; 4213 if (!__dev_get_by_index(net, ifindex)) 4214 return ifindex; 4215 } 4216} 4217 4218/* Delayed registration/unregisteration */ 4219static LIST_HEAD(net_todo_list); 4220 4221static void net_set_todo(struct net_device *dev) 4222{ 4223 list_add_tail(&dev->todo_list, &net_todo_list); 4224} 4225 4226static void rollback_registered(struct net_device *dev) 4227{ 4228 BUG_ON(dev_boot_phase); 4229 ASSERT_RTNL(); 4230 4231 /* Some devices call without registering for initialization unwind. */ 4232 if (dev->reg_state == NETREG_UNINITIALIZED) { 4233 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4234 "was registered\n", dev->name, dev); 4235 4236 WARN_ON(1); 4237 return; 4238 } 4239 4240 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4241 4242 /* If device is running, close it first. */ 4243 dev_close(dev); 4244 4245 /* And unlink it from device chain. */ 4246 unlist_netdevice(dev); 4247 4248 dev->reg_state = NETREG_UNREGISTERING; 4249 4250 synchronize_net(); 4251 4252 /* Shutdown queueing discipline. */ 4253 dev_shutdown(dev); 4254 4255 4256 /* Notify protocols, that we are about to destroy 4257 this device. They should clean all the things. 4258 */ 4259 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4260 4261 /* 4262 * Flush the unicast and multicast chains 4263 */ 4264 dev_addr_discard(dev); 4265 4266 if (dev->netdev_ops->ndo_uninit) 4267 dev->netdev_ops->ndo_uninit(dev); 4268 4269 /* Notifier chain MUST detach us from master device. */ 4270 WARN_ON(dev->master); 4271 4272 /* Remove entries from kobject tree */ 4273 netdev_unregister_kobject(dev); 4274 4275 synchronize_net(); 4276 4277 dev_put(dev); 4278} 4279 4280static void __netdev_init_queue_locks_one(struct net_device *dev, 4281 struct netdev_queue *dev_queue, 4282 void *_unused) 4283{ 4284 spin_lock_init(&dev_queue->_xmit_lock); 4285 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4286 dev_queue->xmit_lock_owner = -1; 4287} 4288 4289static void netdev_init_queue_locks(struct net_device *dev) 4290{ 4291 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4292 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4293} 4294 4295unsigned long netdev_fix_features(unsigned long features, const char *name) 4296{ 4297 /* Fix illegal SG+CSUM combinations. */ 4298 if ((features & NETIF_F_SG) && 4299 !(features & NETIF_F_ALL_CSUM)) { 4300 if (name) 4301 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4302 "checksum feature.\n", name); 4303 features &= ~NETIF_F_SG; 4304 } 4305 4306 /* TSO requires that SG is present as well. */ 4307 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4308 if (name) 4309 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4310 "SG feature.\n", name); 4311 features &= ~NETIF_F_TSO; 4312 } 4313 4314 if (features & NETIF_F_UFO) { 4315 if (!(features & NETIF_F_GEN_CSUM)) { 4316 if (name) 4317 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4318 "since no NETIF_F_HW_CSUM feature.\n", 4319 name); 4320 features &= ~NETIF_F_UFO; 4321 } 4322 4323 if (!(features & NETIF_F_SG)) { 4324 if (name) 4325 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4326 "since no NETIF_F_SG feature.\n", name); 4327 features &= ~NETIF_F_UFO; 4328 } 4329 } 4330 4331 return features; 4332} 4333EXPORT_SYMBOL(netdev_fix_features); 4334 4335/* Some devices need to (re-)set their netdev_ops inside 4336 * ->init() or similar. If that happens, we have to setup 4337 * the compat pointers again. 4338 */ 4339void netdev_resync_ops(struct net_device *dev) 4340{ 4341#ifdef CONFIG_COMPAT_NET_DEV_OPS 4342 const struct net_device_ops *ops = dev->netdev_ops; 4343 4344 dev->init = ops->ndo_init; 4345 dev->uninit = ops->ndo_uninit; 4346 dev->open = ops->ndo_open; 4347 dev->change_rx_flags = ops->ndo_change_rx_flags; 4348 dev->set_rx_mode = ops->ndo_set_rx_mode; 4349 dev->set_multicast_list = ops->ndo_set_multicast_list; 4350 dev->set_mac_address = ops->ndo_set_mac_address; 4351 dev->validate_addr = ops->ndo_validate_addr; 4352 dev->do_ioctl = ops->ndo_do_ioctl; 4353 dev->set_config = ops->ndo_set_config; 4354 dev->change_mtu = ops->ndo_change_mtu; 4355 dev->neigh_setup = ops->ndo_neigh_setup; 4356 dev->tx_timeout = ops->ndo_tx_timeout; 4357 dev->get_stats = ops->ndo_get_stats; 4358 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4359 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4360 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4361#ifdef CONFIG_NET_POLL_CONTROLLER 4362 dev->poll_controller = ops->ndo_poll_controller; 4363#endif 4364#endif 4365} 4366EXPORT_SYMBOL(netdev_resync_ops); 4367 4368/** 4369 * register_netdevice - register a network device 4370 * @dev: device to register 4371 * 4372 * Take a completed network device structure and add it to the kernel 4373 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4374 * chain. 0 is returned on success. A negative errno code is returned 4375 * on a failure to set up the device, or if the name is a duplicate. 4376 * 4377 * Callers must hold the rtnl semaphore. You may want 4378 * register_netdev() instead of this. 4379 * 4380 * BUGS: 4381 * The locking appears insufficient to guarantee two parallel registers 4382 * will not get the same name. 4383 */ 4384 4385int register_netdevice(struct net_device *dev) 4386{ 4387 struct hlist_head *head; 4388 struct hlist_node *p; 4389 int ret; 4390 struct net *net = dev_net(dev); 4391 4392 BUG_ON(dev_boot_phase); 4393 ASSERT_RTNL(); 4394 4395 might_sleep(); 4396 4397 /* When net_device's are persistent, this will be fatal. */ 4398 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4399 BUG_ON(!net); 4400 4401 spin_lock_init(&dev->addr_list_lock); 4402 netdev_set_addr_lockdep_class(dev); 4403 netdev_init_queue_locks(dev); 4404 4405 dev->iflink = -1; 4406 4407#ifdef CONFIG_COMPAT_NET_DEV_OPS 4408 /* Netdevice_ops API compatibility support. 4409 * This is temporary until all network devices are converted. 4410 */ 4411 if (dev->netdev_ops) { 4412 netdev_resync_ops(dev); 4413 } else { 4414 char drivername[64]; 4415 pr_info("%s (%s): not using net_device_ops yet\n", 4416 dev->name, netdev_drivername(dev, drivername, 64)); 4417 4418 /* This works only because net_device_ops and the 4419 compatibility structure are the same. */ 4420 dev->netdev_ops = (void *) &(dev->init); 4421 } 4422#endif 4423 4424 /* Init, if this function is available */ 4425 if (dev->netdev_ops->ndo_init) { 4426 ret = dev->netdev_ops->ndo_init(dev); 4427 if (ret) { 4428 if (ret > 0) 4429 ret = -EIO; 4430 goto out; 4431 } 4432 } 4433 4434 if (!dev_valid_name(dev->name)) { 4435 ret = -EINVAL; 4436 goto err_uninit; 4437 } 4438 4439 dev->ifindex = dev_new_index(net); 4440 if (dev->iflink == -1) 4441 dev->iflink = dev->ifindex; 4442 4443 /* Check for existence of name */ 4444 head = dev_name_hash(net, dev->name); 4445 hlist_for_each(p, head) { 4446 struct net_device *d 4447 = hlist_entry(p, struct net_device, name_hlist); 4448 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4449 ret = -EEXIST; 4450 goto err_uninit; 4451 } 4452 } 4453 4454 /* Fix illegal checksum combinations */ 4455 if ((dev->features & NETIF_F_HW_CSUM) && 4456 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4457 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4458 dev->name); 4459 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4460 } 4461 4462 if ((dev->features & NETIF_F_NO_CSUM) && 4463 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4464 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4465 dev->name); 4466 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4467 } 4468 4469 dev->features = netdev_fix_features(dev->features, dev->name); 4470 4471 /* Enable software GSO if SG is supported. */ 4472 if (dev->features & NETIF_F_SG) 4473 dev->features |= NETIF_F_GSO; 4474 4475 netdev_initialize_kobject(dev); 4476 ret = netdev_register_kobject(dev); 4477 if (ret) 4478 goto err_uninit; 4479 dev->reg_state = NETREG_REGISTERED; 4480 4481 /* 4482 * Default initial state at registry is that the 4483 * device is present. 4484 */ 4485 4486 set_bit(__LINK_STATE_PRESENT, &dev->state); 4487 4488 dev_init_scheduler(dev); 4489 dev_hold(dev); 4490 list_netdevice(dev); 4491 4492 /* Notify protocols, that a new device appeared. */ 4493 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4494 ret = notifier_to_errno(ret); 4495 if (ret) { 4496 rollback_registered(dev); 4497 dev->reg_state = NETREG_UNREGISTERED; 4498 } 4499 4500out: 4501 return ret; 4502 4503err_uninit: 4504 if (dev->netdev_ops->ndo_uninit) 4505 dev->netdev_ops->ndo_uninit(dev); 4506 goto out; 4507} 4508 4509/** 4510 * init_dummy_netdev - init a dummy network device for NAPI 4511 * @dev: device to init 4512 * 4513 * This takes a network device structure and initialize the minimum 4514 * amount of fields so it can be used to schedule NAPI polls without 4515 * registering a full blown interface. This is to be used by drivers 4516 * that need to tie several hardware interfaces to a single NAPI 4517 * poll scheduler due to HW limitations. 4518 */ 4519int init_dummy_netdev(struct net_device *dev) 4520{ 4521 /* Clear everything. Note we don't initialize spinlocks 4522 * are they aren't supposed to be taken by any of the 4523 * NAPI code and this dummy netdev is supposed to be 4524 * only ever used for NAPI polls 4525 */ 4526 memset(dev, 0, sizeof(struct net_device)); 4527 4528 /* make sure we BUG if trying to hit standard 4529 * register/unregister code path 4530 */ 4531 dev->reg_state = NETREG_DUMMY; 4532 4533 /* initialize the ref count */ 4534 atomic_set(&dev->refcnt, 1); 4535 4536 /* NAPI wants this */ 4537 INIT_LIST_HEAD(&dev->napi_list); 4538 4539 /* a dummy interface is started by default */ 4540 set_bit(__LINK_STATE_PRESENT, &dev->state); 4541 set_bit(__LINK_STATE_START, &dev->state); 4542 4543 return 0; 4544} 4545EXPORT_SYMBOL_GPL(init_dummy_netdev); 4546 4547 4548/** 4549 * register_netdev - register a network device 4550 * @dev: device to register 4551 * 4552 * Take a completed network device structure and add it to the kernel 4553 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4554 * chain. 0 is returned on success. A negative errno code is returned 4555 * on a failure to set up the device, or if the name is a duplicate. 4556 * 4557 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4558 * and expands the device name if you passed a format string to 4559 * alloc_netdev. 4560 */ 4561int register_netdev(struct net_device *dev) 4562{ 4563 int err; 4564 4565 rtnl_lock(); 4566 4567 /* 4568 * If the name is a format string the caller wants us to do a 4569 * name allocation. 4570 */ 4571 if (strchr(dev->name, '%')) { 4572 err = dev_alloc_name(dev, dev->name); 4573 if (err < 0) 4574 goto out; 4575 } 4576 4577 err = register_netdevice(dev); 4578out: 4579 rtnl_unlock(); 4580 return err; 4581} 4582EXPORT_SYMBOL(register_netdev); 4583 4584/* 4585 * netdev_wait_allrefs - wait until all references are gone. 4586 * 4587 * This is called when unregistering network devices. 4588 * 4589 * Any protocol or device that holds a reference should register 4590 * for netdevice notification, and cleanup and put back the 4591 * reference if they receive an UNREGISTER event. 4592 * We can get stuck here if buggy protocols don't correctly 4593 * call dev_put. 4594 */ 4595static void netdev_wait_allrefs(struct net_device *dev) 4596{ 4597 unsigned long rebroadcast_time, warning_time; 4598 4599 rebroadcast_time = warning_time = jiffies; 4600 while (atomic_read(&dev->refcnt) != 0) { 4601 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4602 rtnl_lock(); 4603 4604 /* Rebroadcast unregister notification */ 4605 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4606 4607 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4608 &dev->state)) { 4609 /* We must not have linkwatch events 4610 * pending on unregister. If this 4611 * happens, we simply run the queue 4612 * unscheduled, resulting in a noop 4613 * for this device. 4614 */ 4615 linkwatch_run_queue(); 4616 } 4617 4618 __rtnl_unlock(); 4619 4620 rebroadcast_time = jiffies; 4621 } 4622 4623 msleep(250); 4624 4625 if (time_after(jiffies, warning_time + 10 * HZ)) { 4626 printk(KERN_EMERG "unregister_netdevice: " 4627 "waiting for %s to become free. Usage " 4628 "count = %d\n", 4629 dev->name, atomic_read(&dev->refcnt)); 4630 warning_time = jiffies; 4631 } 4632 } 4633} 4634 4635/* The sequence is: 4636 * 4637 * rtnl_lock(); 4638 * ... 4639 * register_netdevice(x1); 4640 * register_netdevice(x2); 4641 * ... 4642 * unregister_netdevice(y1); 4643 * unregister_netdevice(y2); 4644 * ... 4645 * rtnl_unlock(); 4646 * free_netdev(y1); 4647 * free_netdev(y2); 4648 * 4649 * We are invoked by rtnl_unlock(). 4650 * This allows us to deal with problems: 4651 * 1) We can delete sysfs objects which invoke hotplug 4652 * without deadlocking with linkwatch via keventd. 4653 * 2) Since we run with the RTNL semaphore not held, we can sleep 4654 * safely in order to wait for the netdev refcnt to drop to zero. 4655 * 4656 * We must not return until all unregister events added during 4657 * the interval the lock was held have been completed. 4658 */ 4659void netdev_run_todo(void) 4660{ 4661 struct list_head list; 4662 4663 /* Snapshot list, allow later requests */ 4664 list_replace_init(&net_todo_list, &list); 4665 4666 __rtnl_unlock(); 4667 4668 while (!list_empty(&list)) { 4669 struct net_device *dev 4670 = list_entry(list.next, struct net_device, todo_list); 4671 list_del(&dev->todo_list); 4672 4673 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4674 printk(KERN_ERR "network todo '%s' but state %d\n", 4675 dev->name, dev->reg_state); 4676 dump_stack(); 4677 continue; 4678 } 4679 4680 dev->reg_state = NETREG_UNREGISTERED; 4681 4682 on_each_cpu(flush_backlog, dev, 1); 4683 4684 netdev_wait_allrefs(dev); 4685 4686 /* paranoia */ 4687 BUG_ON(atomic_read(&dev->refcnt)); 4688 WARN_ON(dev->ip_ptr); 4689 WARN_ON(dev->ip6_ptr); 4690 WARN_ON(dev->dn_ptr); 4691 4692 if (dev->destructor) 4693 dev->destructor(dev); 4694 4695 /* Free network device */ 4696 kobject_put(&dev->dev.kobj); 4697 } 4698} 4699 4700/** 4701 * dev_get_stats - get network device statistics 4702 * @dev: device to get statistics from 4703 * 4704 * Get network statistics from device. The device driver may provide 4705 * its own method by setting dev->netdev_ops->get_stats; otherwise 4706 * the internal statistics structure is used. 4707 */ 4708const struct net_device_stats *dev_get_stats(struct net_device *dev) 4709 { 4710 const struct net_device_ops *ops = dev->netdev_ops; 4711 4712 if (ops->ndo_get_stats) 4713 return ops->ndo_get_stats(dev); 4714 else 4715 return &dev->stats; 4716} 4717EXPORT_SYMBOL(dev_get_stats); 4718 4719static void netdev_init_one_queue(struct net_device *dev, 4720 struct netdev_queue *queue, 4721 void *_unused) 4722{ 4723 queue->dev = dev; 4724} 4725 4726static void netdev_init_queues(struct net_device *dev) 4727{ 4728 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4729 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4730 spin_lock_init(&dev->tx_global_lock); 4731} 4732 4733/** 4734 * alloc_netdev_mq - allocate network device 4735 * @sizeof_priv: size of private data to allocate space for 4736 * @name: device name format string 4737 * @setup: callback to initialize device 4738 * @queue_count: the number of subqueues to allocate 4739 * 4740 * Allocates a struct net_device with private data area for driver use 4741 * and performs basic initialization. Also allocates subquue structs 4742 * for each queue on the device at the end of the netdevice. 4743 */ 4744struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4745 void (*setup)(struct net_device *), unsigned int queue_count) 4746{ 4747 struct netdev_queue *tx; 4748 struct net_device *dev; 4749 size_t alloc_size; 4750 void *p; 4751 4752 BUG_ON(strlen(name) >= sizeof(dev->name)); 4753 4754 alloc_size = sizeof(struct net_device); 4755 if (sizeof_priv) { 4756 /* ensure 32-byte alignment of private area */ 4757 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4758 alloc_size += sizeof_priv; 4759 } 4760 /* ensure 32-byte alignment of whole construct */ 4761 alloc_size += NETDEV_ALIGN_CONST; 4762 4763 p = kzalloc(alloc_size, GFP_KERNEL); 4764 if (!p) { 4765 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4766 return NULL; 4767 } 4768 4769 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4770 if (!tx) { 4771 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4772 "tx qdiscs.\n"); 4773 kfree(p); 4774 return NULL; 4775 } 4776 4777 dev = (struct net_device *) 4778 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4779 dev->padded = (char *)dev - (char *)p; 4780 dev_net_set(dev, &init_net); 4781 4782 dev->_tx = tx; 4783 dev->num_tx_queues = queue_count; 4784 dev->real_num_tx_queues = queue_count; 4785 4786 dev->gso_max_size = GSO_MAX_SIZE; 4787 4788 netdev_init_queues(dev); 4789 4790 INIT_LIST_HEAD(&dev->napi_list); 4791 setup(dev); 4792 strcpy(dev->name, name); 4793 return dev; 4794} 4795EXPORT_SYMBOL(alloc_netdev_mq); 4796 4797/** 4798 * free_netdev - free network device 4799 * @dev: device 4800 * 4801 * This function does the last stage of destroying an allocated device 4802 * interface. The reference to the device object is released. 4803 * If this is the last reference then it will be freed. 4804 */ 4805void free_netdev(struct net_device *dev) 4806{ 4807 struct napi_struct *p, *n; 4808 4809 release_net(dev_net(dev)); 4810 4811 kfree(dev->_tx); 4812 4813 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 4814 netif_napi_del(p); 4815 4816 /* Compatibility with error handling in drivers */ 4817 if (dev->reg_state == NETREG_UNINITIALIZED) { 4818 kfree((char *)dev - dev->padded); 4819 return; 4820 } 4821 4822 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4823 dev->reg_state = NETREG_RELEASED; 4824 4825 /* will free via device release */ 4826 put_device(&dev->dev); 4827} 4828 4829/** 4830 * synchronize_net - Synchronize with packet receive processing 4831 * 4832 * Wait for packets currently being received to be done. 4833 * Does not block later packets from starting. 4834 */ 4835void synchronize_net(void) 4836{ 4837 might_sleep(); 4838 synchronize_rcu(); 4839} 4840 4841/** 4842 * unregister_netdevice - remove device from the kernel 4843 * @dev: device 4844 * 4845 * This function shuts down a device interface and removes it 4846 * from the kernel tables. 4847 * 4848 * Callers must hold the rtnl semaphore. You may want 4849 * unregister_netdev() instead of this. 4850 */ 4851 4852void unregister_netdevice(struct net_device *dev) 4853{ 4854 ASSERT_RTNL(); 4855 4856 rollback_registered(dev); 4857 /* Finish processing unregister after unlock */ 4858 net_set_todo(dev); 4859} 4860 4861/** 4862 * unregister_netdev - remove device from the kernel 4863 * @dev: device 4864 * 4865 * This function shuts down a device interface and removes it 4866 * from the kernel tables. 4867 * 4868 * This is just a wrapper for unregister_netdevice that takes 4869 * the rtnl semaphore. In general you want to use this and not 4870 * unregister_netdevice. 4871 */ 4872void unregister_netdev(struct net_device *dev) 4873{ 4874 rtnl_lock(); 4875 unregister_netdevice(dev); 4876 rtnl_unlock(); 4877} 4878 4879EXPORT_SYMBOL(unregister_netdev); 4880 4881/** 4882 * dev_change_net_namespace - move device to different nethost namespace 4883 * @dev: device 4884 * @net: network namespace 4885 * @pat: If not NULL name pattern to try if the current device name 4886 * is already taken in the destination network namespace. 4887 * 4888 * This function shuts down a device interface and moves it 4889 * to a new network namespace. On success 0 is returned, on 4890 * a failure a netagive errno code is returned. 4891 * 4892 * Callers must hold the rtnl semaphore. 4893 */ 4894 4895int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4896{ 4897 char buf[IFNAMSIZ]; 4898 const char *destname; 4899 int err; 4900 4901 ASSERT_RTNL(); 4902 4903 /* Don't allow namespace local devices to be moved. */ 4904 err = -EINVAL; 4905 if (dev->features & NETIF_F_NETNS_LOCAL) 4906 goto out; 4907 4908#ifdef CONFIG_SYSFS 4909 /* Don't allow real devices to be moved when sysfs 4910 * is enabled. 4911 */ 4912 err = -EINVAL; 4913 if (dev->dev.parent) 4914 goto out; 4915#endif 4916 4917 /* Ensure the device has been registrered */ 4918 err = -EINVAL; 4919 if (dev->reg_state != NETREG_REGISTERED) 4920 goto out; 4921 4922 /* Get out if there is nothing todo */ 4923 err = 0; 4924 if (net_eq(dev_net(dev), net)) 4925 goto out; 4926 4927 /* Pick the destination device name, and ensure 4928 * we can use it in the destination network namespace. 4929 */ 4930 err = -EEXIST; 4931 destname = dev->name; 4932 if (__dev_get_by_name(net, destname)) { 4933 /* We get here if we can't use the current device name */ 4934 if (!pat) 4935 goto out; 4936 if (!dev_valid_name(pat)) 4937 goto out; 4938 if (strchr(pat, '%')) { 4939 if (__dev_alloc_name(net, pat, buf) < 0) 4940 goto out; 4941 destname = buf; 4942 } else 4943 destname = pat; 4944 if (__dev_get_by_name(net, destname)) 4945 goto out; 4946 } 4947 4948 /* 4949 * And now a mini version of register_netdevice unregister_netdevice. 4950 */ 4951 4952 /* If device is running close it first. */ 4953 dev_close(dev); 4954 4955 /* And unlink it from device chain */ 4956 err = -ENODEV; 4957 unlist_netdevice(dev); 4958 4959 synchronize_net(); 4960 4961 /* Shutdown queueing discipline. */ 4962 dev_shutdown(dev); 4963 4964 /* Notify protocols, that we are about to destroy 4965 this device. They should clean all the things. 4966 */ 4967 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4968 4969 /* 4970 * Flush the unicast and multicast chains 4971 */ 4972 dev_addr_discard(dev); 4973 4974 netdev_unregister_kobject(dev); 4975 4976 /* Actually switch the network namespace */ 4977 dev_net_set(dev, net); 4978 4979 /* Assign the new device name */ 4980 if (destname != dev->name) 4981 strcpy(dev->name, destname); 4982 4983 /* If there is an ifindex conflict assign a new one */ 4984 if (__dev_get_by_index(net, dev->ifindex)) { 4985 int iflink = (dev->iflink == dev->ifindex); 4986 dev->ifindex = dev_new_index(net); 4987 if (iflink) 4988 dev->iflink = dev->ifindex; 4989 } 4990 4991 /* Fixup kobjects */ 4992 err = netdev_register_kobject(dev); 4993 WARN_ON(err); 4994 4995 /* Add the device back in the hashes */ 4996 list_netdevice(dev); 4997 4998 /* Notify protocols, that a new device appeared. */ 4999 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5000 5001 synchronize_net(); 5002 err = 0; 5003out: 5004 return err; 5005} 5006 5007static int dev_cpu_callback(struct notifier_block *nfb, 5008 unsigned long action, 5009 void *ocpu) 5010{ 5011 struct sk_buff **list_skb; 5012 struct Qdisc **list_net; 5013 struct sk_buff *skb; 5014 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5015 struct softnet_data *sd, *oldsd; 5016 5017 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5018 return NOTIFY_OK; 5019 5020 local_irq_disable(); 5021 cpu = smp_processor_id(); 5022 sd = &per_cpu(softnet_data, cpu); 5023 oldsd = &per_cpu(softnet_data, oldcpu); 5024 5025 /* Find end of our completion_queue. */ 5026 list_skb = &sd->completion_queue; 5027 while (*list_skb) 5028 list_skb = &(*list_skb)->next; 5029 /* Append completion queue from offline CPU. */ 5030 *list_skb = oldsd->completion_queue; 5031 oldsd->completion_queue = NULL; 5032 5033 /* Find end of our output_queue. */ 5034 list_net = &sd->output_queue; 5035 while (*list_net) 5036 list_net = &(*list_net)->next_sched; 5037 /* Append output queue from offline CPU. */ 5038 *list_net = oldsd->output_queue; 5039 oldsd->output_queue = NULL; 5040 5041 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5042 local_irq_enable(); 5043 5044 /* Process offline CPU's input_pkt_queue */ 5045 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5046 netif_rx(skb); 5047 5048 return NOTIFY_OK; 5049} 5050 5051 5052/** 5053 * netdev_increment_features - increment feature set by one 5054 * @all: current feature set 5055 * @one: new feature set 5056 * @mask: mask feature set 5057 * 5058 * Computes a new feature set after adding a device with feature set 5059 * @one to the master device with current feature set @all. Will not 5060 * enable anything that is off in @mask. Returns the new feature set. 5061 */ 5062unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5063 unsigned long mask) 5064{ 5065 /* If device needs checksumming, downgrade to it. */ 5066 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5067 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5068 else if (mask & NETIF_F_ALL_CSUM) { 5069 /* If one device supports v4/v6 checksumming, set for all. */ 5070 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5071 !(all & NETIF_F_GEN_CSUM)) { 5072 all &= ~NETIF_F_ALL_CSUM; 5073 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5074 } 5075 5076 /* If one device supports hw checksumming, set for all. */ 5077 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5078 all &= ~NETIF_F_ALL_CSUM; 5079 all |= NETIF_F_HW_CSUM; 5080 } 5081 } 5082 5083 one |= NETIF_F_ALL_CSUM; 5084 5085 one |= all & NETIF_F_ONE_FOR_ALL; 5086 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5087 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5088 5089 return all; 5090} 5091EXPORT_SYMBOL(netdev_increment_features); 5092 5093static struct hlist_head *netdev_create_hash(void) 5094{ 5095 int i; 5096 struct hlist_head *hash; 5097 5098 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5099 if (hash != NULL) 5100 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5101 INIT_HLIST_HEAD(&hash[i]); 5102 5103 return hash; 5104} 5105 5106/* Initialize per network namespace state */ 5107static int __net_init netdev_init(struct net *net) 5108{ 5109 INIT_LIST_HEAD(&net->dev_base_head); 5110 5111 net->dev_name_head = netdev_create_hash(); 5112 if (net->dev_name_head == NULL) 5113 goto err_name; 5114 5115 net->dev_index_head = netdev_create_hash(); 5116 if (net->dev_index_head == NULL) 5117 goto err_idx; 5118 5119 return 0; 5120 5121err_idx: 5122 kfree(net->dev_name_head); 5123err_name: 5124 return -ENOMEM; 5125} 5126 5127/** 5128 * netdev_drivername - network driver for the device 5129 * @dev: network device 5130 * @buffer: buffer for resulting name 5131 * @len: size of buffer 5132 * 5133 * Determine network driver for device. 5134 */ 5135char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5136{ 5137 const struct device_driver *driver; 5138 const struct device *parent; 5139 5140 if (len <= 0 || !buffer) 5141 return buffer; 5142 buffer[0] = 0; 5143 5144 parent = dev->dev.parent; 5145 5146 if (!parent) 5147 return buffer; 5148 5149 driver = parent->driver; 5150 if (driver && driver->name) 5151 strlcpy(buffer, driver->name, len); 5152 return buffer; 5153} 5154 5155static void __net_exit netdev_exit(struct net *net) 5156{ 5157 kfree(net->dev_name_head); 5158 kfree(net->dev_index_head); 5159} 5160 5161static struct pernet_operations __net_initdata netdev_net_ops = { 5162 .init = netdev_init, 5163 .exit = netdev_exit, 5164}; 5165 5166static void __net_exit default_device_exit(struct net *net) 5167{ 5168 struct net_device *dev; 5169 /* 5170 * Push all migratable of the network devices back to the 5171 * initial network namespace 5172 */ 5173 rtnl_lock(); 5174restart: 5175 for_each_netdev(net, dev) { 5176 int err; 5177 char fb_name[IFNAMSIZ]; 5178 5179 /* Ignore unmoveable devices (i.e. loopback) */ 5180 if (dev->features & NETIF_F_NETNS_LOCAL) 5181 continue; 5182 5183 /* Delete virtual devices */ 5184 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5185 dev->rtnl_link_ops->dellink(dev); 5186 goto restart; 5187 } 5188 5189 /* Push remaing network devices to init_net */ 5190 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5191 err = dev_change_net_namespace(dev, &init_net, fb_name); 5192 if (err) { 5193 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5194 __func__, dev->name, err); 5195 BUG(); 5196 } 5197 goto restart; 5198 } 5199 rtnl_unlock(); 5200} 5201 5202static struct pernet_operations __net_initdata default_device_ops = { 5203 .exit = default_device_exit, 5204}; 5205 5206/* 5207 * Initialize the DEV module. At boot time this walks the device list and 5208 * unhooks any devices that fail to initialise (normally hardware not 5209 * present) and leaves us with a valid list of present and active devices. 5210 * 5211 */ 5212 5213/* 5214 * This is called single threaded during boot, so no need 5215 * to take the rtnl semaphore. 5216 */ 5217static int __init net_dev_init(void) 5218{ 5219 int i, rc = -ENOMEM; 5220 5221 BUG_ON(!dev_boot_phase); 5222 5223 if (dev_proc_init()) 5224 goto out; 5225 5226 if (netdev_kobject_init()) 5227 goto out; 5228 5229 INIT_LIST_HEAD(&ptype_all); 5230 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5231 INIT_LIST_HEAD(&ptype_base[i]); 5232 5233 if (register_pernet_subsys(&netdev_net_ops)) 5234 goto out; 5235 5236 /* 5237 * Initialise the packet receive queues. 5238 */ 5239 5240 for_each_possible_cpu(i) { 5241 struct softnet_data *queue; 5242 5243 queue = &per_cpu(softnet_data, i); 5244 skb_queue_head_init(&queue->input_pkt_queue); 5245 queue->completion_queue = NULL; 5246 INIT_LIST_HEAD(&queue->poll_list); 5247 5248 queue->backlog.poll = process_backlog; 5249 queue->backlog.weight = weight_p; 5250 queue->backlog.gro_list = NULL; 5251 queue->backlog.gro_count = 0; 5252 } 5253 5254 dev_boot_phase = 0; 5255 5256 /* The loopback device is special if any other network devices 5257 * is present in a network namespace the loopback device must 5258 * be present. Since we now dynamically allocate and free the 5259 * loopback device ensure this invariant is maintained by 5260 * keeping the loopback device as the first device on the 5261 * list of network devices. Ensuring the loopback devices 5262 * is the first device that appears and the last network device 5263 * that disappears. 5264 */ 5265 if (register_pernet_device(&loopback_net_ops)) 5266 goto out; 5267 5268 if (register_pernet_device(&default_device_ops)) 5269 goto out; 5270 5271 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5272 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5273 5274 hotcpu_notifier(dev_cpu_callback, 0); 5275 dst_init(); 5276 dev_mcast_init(); 5277 rc = 0; 5278out: 5279 return rc; 5280} 5281 5282subsys_initcall(net_dev_init); 5283 5284static int __init initialize_hashrnd(void) 5285{ 5286 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5287 return 0; 5288} 5289 5290late_initcall_sync(initialize_hashrnd); 5291 5292EXPORT_SYMBOL(__dev_get_by_index); 5293EXPORT_SYMBOL(__dev_get_by_name); 5294EXPORT_SYMBOL(__dev_remove_pack); 5295EXPORT_SYMBOL(dev_valid_name); 5296EXPORT_SYMBOL(dev_add_pack); 5297EXPORT_SYMBOL(dev_alloc_name); 5298EXPORT_SYMBOL(dev_close); 5299EXPORT_SYMBOL(dev_get_by_flags); 5300EXPORT_SYMBOL(dev_get_by_index); 5301EXPORT_SYMBOL(dev_get_by_name); 5302EXPORT_SYMBOL(dev_open); 5303EXPORT_SYMBOL(dev_queue_xmit); 5304EXPORT_SYMBOL(dev_remove_pack); 5305EXPORT_SYMBOL(dev_set_allmulti); 5306EXPORT_SYMBOL(dev_set_promiscuity); 5307EXPORT_SYMBOL(dev_change_flags); 5308EXPORT_SYMBOL(dev_set_mtu); 5309EXPORT_SYMBOL(dev_set_mac_address); 5310EXPORT_SYMBOL(free_netdev); 5311EXPORT_SYMBOL(netdev_boot_setup_check); 5312EXPORT_SYMBOL(netdev_set_master); 5313EXPORT_SYMBOL(netdev_state_change); 5314EXPORT_SYMBOL(netif_receive_skb); 5315EXPORT_SYMBOL(netif_rx); 5316EXPORT_SYMBOL(register_gifconf); 5317EXPORT_SYMBOL(register_netdevice); 5318EXPORT_SYMBOL(register_netdevice_notifier); 5319EXPORT_SYMBOL(skb_checksum_help); 5320EXPORT_SYMBOL(synchronize_net); 5321EXPORT_SYMBOL(unregister_netdevice); 5322EXPORT_SYMBOL(unregister_netdevice_notifier); 5323EXPORT_SYMBOL(net_enable_timestamp); 5324EXPORT_SYMBOL(net_disable_timestamp); 5325EXPORT_SYMBOL(dev_get_flags); 5326 5327#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5328EXPORT_SYMBOL(br_handle_frame_hook); 5329EXPORT_SYMBOL(br_fdb_get_hook); 5330EXPORT_SYMBOL(br_fdb_put_hook); 5331#endif 5332 5333EXPORT_SYMBOL(dev_load); 5334 5335EXPORT_PER_CPU_SYMBOL(softnet_data);