at v2.6.30-rc3 5330 lines 132 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/ethtool.h> 94#include <linux/notifier.h> 95#include <linux/skbuff.h> 96#include <net/net_namespace.h> 97#include <net/sock.h> 98#include <linux/rtnetlink.h> 99#include <linux/proc_fs.h> 100#include <linux/seq_file.h> 101#include <linux/stat.h> 102#include <linux/if_bridge.h> 103#include <linux/if_macvlan.h> 104#include <net/dst.h> 105#include <net/pkt_sched.h> 106#include <net/checksum.h> 107#include <linux/highmem.h> 108#include <linux/init.h> 109#include <linux/kmod.h> 110#include <linux/module.h> 111#include <linux/netpoll.h> 112#include <linux/rcupdate.h> 113#include <linux/delay.h> 114#include <net/wext.h> 115#include <net/iw_handler.h> 116#include <asm/current.h> 117#include <linux/audit.h> 118#include <linux/dmaengine.h> 119#include <linux/err.h> 120#include <linux/ctype.h> 121#include <linux/if_arp.h> 122#include <linux/if_vlan.h> 123#include <linux/ip.h> 124#include <net/ip.h> 125#include <linux/ipv6.h> 126#include <linux/in.h> 127#include <linux/jhash.h> 128#include <linux/random.h> 129 130#include "net-sysfs.h" 131 132/* Instead of increasing this, you should create a hash table. */ 133#define MAX_GRO_SKBS 8 134 135/* This should be increased if a protocol with a bigger head is added. */ 136#define GRO_MAX_HEAD (MAX_HEADER + 128) 137 138/* 139 * The list of packet types we will receive (as opposed to discard) 140 * and the routines to invoke. 141 * 142 * Why 16. Because with 16 the only overlap we get on a hash of the 143 * low nibble of the protocol value is RARP/SNAP/X.25. 144 * 145 * NOTE: That is no longer true with the addition of VLAN tags. Not 146 * sure which should go first, but I bet it won't make much 147 * difference if we are running VLANs. The good news is that 148 * this protocol won't be in the list unless compiled in, so 149 * the average user (w/out VLANs) will not be adversely affected. 150 * --BLG 151 * 152 * 0800 IP 153 * 8100 802.1Q VLAN 154 * 0001 802.3 155 * 0002 AX.25 156 * 0004 802.2 157 * 8035 RARP 158 * 0005 SNAP 159 * 0805 X.25 160 * 0806 ARP 161 * 8137 IPX 162 * 0009 Localtalk 163 * 86DD IPv6 164 */ 165 166#define PTYPE_HASH_SIZE (16) 167#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 168 169static DEFINE_SPINLOCK(ptype_lock); 170static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 171static struct list_head ptype_all __read_mostly; /* Taps */ 172 173/* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192DEFINE_RWLOCK(dev_base_lock); 193 194EXPORT_SYMBOL(dev_base_lock); 195 196#define NETDEV_HASHBITS 8 197#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200{ 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203} 204 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206{ 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208} 209 210/* Device list insertion */ 211static int list_netdevice(struct net_device *dev) 212{ 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223} 224 225/* Device list removal */ 226static void unlist_netdevice(struct net_device *dev) 227{ 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236} 237 238/* 239 * Our notifier list 240 */ 241 242static RAW_NOTIFIER_HEAD(netdev_chain); 243 244/* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 251#ifdef CONFIG_LOCKDEP 252/* 253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 254 * according to dev->type 255 */ 256static const unsigned short netdev_lock_type[] = 257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE}; 272 273static const char *netdev_lock_name[] = 274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"}; 289 290static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 293static inline unsigned short netdev_lock_pos(unsigned short dev_type) 294{ 295 int i; 296 297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 298 if (netdev_lock_type[i] == dev_type) 299 return i; 300 /* the last key is used by default */ 301 return ARRAY_SIZE(netdev_lock_type) - 1; 302} 303 304static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 305 unsigned short dev_type) 306{ 307 int i; 308 309 i = netdev_lock_pos(dev_type); 310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 311 netdev_lock_name[i]); 312} 313 314static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 315{ 316 int i; 317 318 i = netdev_lock_pos(dev->type); 319 lockdep_set_class_and_name(&dev->addr_list_lock, 320 &netdev_addr_lock_key[i], 321 netdev_lock_name[i]); 322} 323#else 324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326{ 327} 328static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329{ 330} 331#endif 332 333/******************************************************************************* 334 335 Protocol management and registration routines 336 337*******************************************************************************/ 338 339/* 340 * Add a protocol ID to the list. Now that the input handler is 341 * smarter we can dispense with all the messy stuff that used to be 342 * here. 343 * 344 * BEWARE!!! Protocol handlers, mangling input packets, 345 * MUST BE last in hash buckets and checking protocol handlers 346 * MUST start from promiscuous ptype_all chain in net_bh. 347 * It is true now, do not change it. 348 * Explanation follows: if protocol handler, mangling packet, will 349 * be the first on list, it is not able to sense, that packet 350 * is cloned and should be copied-on-write, so that it will 351 * change it and subsequent readers will get broken packet. 352 * --ANK (980803) 353 */ 354 355/** 356 * dev_add_pack - add packet handler 357 * @pt: packet type declaration 358 * 359 * Add a protocol handler to the networking stack. The passed &packet_type 360 * is linked into kernel lists and may not be freed until it has been 361 * removed from the kernel lists. 362 * 363 * This call does not sleep therefore it can not 364 * guarantee all CPU's that are in middle of receiving packets 365 * will see the new packet type (until the next received packet). 366 */ 367 368void dev_add_pack(struct packet_type *pt) 369{ 370 int hash; 371 372 spin_lock_bh(&ptype_lock); 373 if (pt->type == htons(ETH_P_ALL)) 374 list_add_rcu(&pt->list, &ptype_all); 375 else { 376 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 377 list_add_rcu(&pt->list, &ptype_base[hash]); 378 } 379 spin_unlock_bh(&ptype_lock); 380} 381 382/** 383 * __dev_remove_pack - remove packet handler 384 * @pt: packet type declaration 385 * 386 * Remove a protocol handler that was previously added to the kernel 387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 388 * from the kernel lists and can be freed or reused once this function 389 * returns. 390 * 391 * The packet type might still be in use by receivers 392 * and must not be freed until after all the CPU's have gone 393 * through a quiescent state. 394 */ 395void __dev_remove_pack(struct packet_type *pt) 396{ 397 struct list_head *head; 398 struct packet_type *pt1; 399 400 spin_lock_bh(&ptype_lock); 401 402 if (pt->type == htons(ETH_P_ALL)) 403 head = &ptype_all; 404 else 405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 415out: 416 spin_unlock_bh(&ptype_lock); 417} 418/** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430void dev_remove_pack(struct packet_type *pt) 431{ 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435} 436 437/****************************************************************************** 438 439 Device Boot-time Settings Routines 440 441*******************************************************************************/ 442 443/* Boot time configuration table */ 444static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 445 446/** 447 * netdev_boot_setup_add - add new setup entry 448 * @name: name of the device 449 * @map: configured settings for the device 450 * 451 * Adds new setup entry to the dev_boot_setup list. The function 452 * returns 0 on error and 1 on success. This is a generic routine to 453 * all netdevices. 454 */ 455static int netdev_boot_setup_add(char *name, struct ifmap *map) 456{ 457 struct netdev_boot_setup *s; 458 int i; 459 460 s = dev_boot_setup; 461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 463 memset(s[i].name, 0, sizeof(s[i].name)); 464 strlcpy(s[i].name, name, IFNAMSIZ); 465 memcpy(&s[i].map, map, sizeof(s[i].map)); 466 break; 467 } 468 } 469 470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 471} 472 473/** 474 * netdev_boot_setup_check - check boot time settings 475 * @dev: the netdevice 476 * 477 * Check boot time settings for the device. 478 * The found settings are set for the device to be used 479 * later in the device probing. 480 * Returns 0 if no settings found, 1 if they are. 481 */ 482int netdev_boot_setup_check(struct net_device *dev) 483{ 484 struct netdev_boot_setup *s = dev_boot_setup; 485 int i; 486 487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 489 !strcmp(dev->name, s[i].name)) { 490 dev->irq = s[i].map.irq; 491 dev->base_addr = s[i].map.base_addr; 492 dev->mem_start = s[i].map.mem_start; 493 dev->mem_end = s[i].map.mem_end; 494 return 1; 495 } 496 } 497 return 0; 498} 499 500 501/** 502 * netdev_boot_base - get address from boot time settings 503 * @prefix: prefix for network device 504 * @unit: id for network device 505 * 506 * Check boot time settings for the base address of device. 507 * The found settings are set for the device to be used 508 * later in the device probing. 509 * Returns 0 if no settings found. 510 */ 511unsigned long netdev_boot_base(const char *prefix, int unit) 512{ 513 const struct netdev_boot_setup *s = dev_boot_setup; 514 char name[IFNAMSIZ]; 515 int i; 516 517 sprintf(name, "%s%d", prefix, unit); 518 519 /* 520 * If device already registered then return base of 1 521 * to indicate not to probe for this interface 522 */ 523 if (__dev_get_by_name(&init_net, name)) 524 return 1; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 527 if (!strcmp(name, s[i].name)) 528 return s[i].map.base_addr; 529 return 0; 530} 531 532/* 533 * Saves at boot time configured settings for any netdevice. 534 */ 535int __init netdev_boot_setup(char *str) 536{ 537 int ints[5]; 538 struct ifmap map; 539 540 str = get_options(str, ARRAY_SIZE(ints), ints); 541 if (!str || !*str) 542 return 0; 543 544 /* Save settings */ 545 memset(&map, 0, sizeof(map)); 546 if (ints[0] > 0) 547 map.irq = ints[1]; 548 if (ints[0] > 1) 549 map.base_addr = ints[2]; 550 if (ints[0] > 2) 551 map.mem_start = ints[3]; 552 if (ints[0] > 3) 553 map.mem_end = ints[4]; 554 555 /* Add new entry to the list */ 556 return netdev_boot_setup_add(str, &map); 557} 558 559__setup("netdev=", netdev_boot_setup); 560 561/******************************************************************************* 562 563 Device Interface Subroutines 564 565*******************************************************************************/ 566 567/** 568 * __dev_get_by_name - find a device by its name 569 * @net: the applicable net namespace 570 * @name: name to find 571 * 572 * Find an interface by name. Must be called under RTNL semaphore 573 * or @dev_base_lock. If the name is found a pointer to the device 574 * is returned. If the name is not found then %NULL is returned. The 575 * reference counters are not incremented so the caller must be 576 * careful with locks. 577 */ 578 579struct net_device *__dev_get_by_name(struct net *net, const char *name) 580{ 581 struct hlist_node *p; 582 583 hlist_for_each(p, dev_name_hash(net, name)) { 584 struct net_device *dev 585 = hlist_entry(p, struct net_device, name_hlist); 586 if (!strncmp(dev->name, name, IFNAMSIZ)) 587 return dev; 588 } 589 return NULL; 590} 591 592/** 593 * dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. This can be called from any 598 * context and does its own locking. The returned handle has 599 * the usage count incremented and the caller must use dev_put() to 600 * release it when it is no longer needed. %NULL is returned if no 601 * matching device is found. 602 */ 603 604struct net_device *dev_get_by_name(struct net *net, const char *name) 605{ 606 struct net_device *dev; 607 608 read_lock(&dev_base_lock); 609 dev = __dev_get_by_name(net, name); 610 if (dev) 611 dev_hold(dev); 612 read_unlock(&dev_base_lock); 613 return dev; 614} 615 616/** 617 * __dev_get_by_index - find a device by its ifindex 618 * @net: the applicable net namespace 619 * @ifindex: index of device 620 * 621 * Search for an interface by index. Returns %NULL if the device 622 * is not found or a pointer to the device. The device has not 623 * had its reference counter increased so the caller must be careful 624 * about locking. The caller must hold either the RTNL semaphore 625 * or @dev_base_lock. 626 */ 627 628struct net_device *__dev_get_by_index(struct net *net, int ifindex) 629{ 630 struct hlist_node *p; 631 632 hlist_for_each(p, dev_index_hash(net, ifindex)) { 633 struct net_device *dev 634 = hlist_entry(p, struct net_device, index_hlist); 635 if (dev->ifindex == ifindex) 636 return dev; 637 } 638 return NULL; 639} 640 641 642/** 643 * dev_get_by_index - find a device by its ifindex 644 * @net: the applicable net namespace 645 * @ifindex: index of device 646 * 647 * Search for an interface by index. Returns NULL if the device 648 * is not found or a pointer to the device. The device returned has 649 * had a reference added and the pointer is safe until the user calls 650 * dev_put to indicate they have finished with it. 651 */ 652 653struct net_device *dev_get_by_index(struct net *net, int ifindex) 654{ 655 struct net_device *dev; 656 657 read_lock(&dev_base_lock); 658 dev = __dev_get_by_index(net, ifindex); 659 if (dev) 660 dev_hold(dev); 661 read_unlock(&dev_base_lock); 662 return dev; 663} 664 665/** 666 * dev_getbyhwaddr - find a device by its hardware address 667 * @net: the applicable net namespace 668 * @type: media type of device 669 * @ha: hardware address 670 * 671 * Search for an interface by MAC address. Returns NULL if the device 672 * is not found or a pointer to the device. The caller must hold the 673 * rtnl semaphore. The returned device has not had its ref count increased 674 * and the caller must therefore be careful about locking 675 * 676 * BUGS: 677 * If the API was consistent this would be __dev_get_by_hwaddr 678 */ 679 680struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 681{ 682 struct net_device *dev; 683 684 ASSERT_RTNL(); 685 686 for_each_netdev(net, dev) 687 if (dev->type == type && 688 !memcmp(dev->dev_addr, ha, dev->addr_len)) 689 return dev; 690 691 return NULL; 692} 693 694EXPORT_SYMBOL(dev_getbyhwaddr); 695 696struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 697{ 698 struct net_device *dev; 699 700 ASSERT_RTNL(); 701 for_each_netdev(net, dev) 702 if (dev->type == type) 703 return dev; 704 705 return NULL; 706} 707 708EXPORT_SYMBOL(__dev_getfirstbyhwtype); 709 710struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 711{ 712 struct net_device *dev; 713 714 rtnl_lock(); 715 dev = __dev_getfirstbyhwtype(net, type); 716 if (dev) 717 dev_hold(dev); 718 rtnl_unlock(); 719 return dev; 720} 721 722EXPORT_SYMBOL(dev_getfirstbyhwtype); 723 724/** 725 * dev_get_by_flags - find any device with given flags 726 * @net: the applicable net namespace 727 * @if_flags: IFF_* values 728 * @mask: bitmask of bits in if_flags to check 729 * 730 * Search for any interface with the given flags. Returns NULL if a device 731 * is not found or a pointer to the device. The device returned has 732 * had a reference added and the pointer is safe until the user calls 733 * dev_put to indicate they have finished with it. 734 */ 735 736struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 737{ 738 struct net_device *dev, *ret; 739 740 ret = NULL; 741 read_lock(&dev_base_lock); 742 for_each_netdev(net, dev) { 743 if (((dev->flags ^ if_flags) & mask) == 0) { 744 dev_hold(dev); 745 ret = dev; 746 break; 747 } 748 } 749 read_unlock(&dev_base_lock); 750 return ret; 751} 752 753/** 754 * dev_valid_name - check if name is okay for network device 755 * @name: name string 756 * 757 * Network device names need to be valid file names to 758 * to allow sysfs to work. We also disallow any kind of 759 * whitespace. 760 */ 761int dev_valid_name(const char *name) 762{ 763 if (*name == '\0') 764 return 0; 765 if (strlen(name) >= IFNAMSIZ) 766 return 0; 767 if (!strcmp(name, ".") || !strcmp(name, "..")) 768 return 0; 769 770 while (*name) { 771 if (*name == '/' || isspace(*name)) 772 return 0; 773 name++; 774 } 775 return 1; 776} 777 778/** 779 * __dev_alloc_name - allocate a name for a device 780 * @net: network namespace to allocate the device name in 781 * @name: name format string 782 * @buf: scratch buffer and result name string 783 * 784 * Passed a format string - eg "lt%d" it will try and find a suitable 785 * id. It scans list of devices to build up a free map, then chooses 786 * the first empty slot. The caller must hold the dev_base or rtnl lock 787 * while allocating the name and adding the device in order to avoid 788 * duplicates. 789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 790 * Returns the number of the unit assigned or a negative errno code. 791 */ 792 793static int __dev_alloc_name(struct net *net, const char *name, char *buf) 794{ 795 int i = 0; 796 const char *p; 797 const int max_netdevices = 8*PAGE_SIZE; 798 unsigned long *inuse; 799 struct net_device *d; 800 801 p = strnchr(name, IFNAMSIZ-1, '%'); 802 if (p) { 803 /* 804 * Verify the string as this thing may have come from 805 * the user. There must be either one "%d" and no other "%" 806 * characters. 807 */ 808 if (p[1] != 'd' || strchr(p + 2, '%')) 809 return -EINVAL; 810 811 /* Use one page as a bit array of possible slots */ 812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 813 if (!inuse) 814 return -ENOMEM; 815 816 for_each_netdev(net, d) { 817 if (!sscanf(d->name, name, &i)) 818 continue; 819 if (i < 0 || i >= max_netdevices) 820 continue; 821 822 /* avoid cases where sscanf is not exact inverse of printf */ 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!strncmp(buf, d->name, IFNAMSIZ)) 825 set_bit(i, inuse); 826 } 827 828 i = find_first_zero_bit(inuse, max_netdevices); 829 free_page((unsigned long) inuse); 830 } 831 832 snprintf(buf, IFNAMSIZ, name, i); 833 if (!__dev_get_by_name(net, buf)) 834 return i; 835 836 /* It is possible to run out of possible slots 837 * when the name is long and there isn't enough space left 838 * for the digits, or if all bits are used. 839 */ 840 return -ENFILE; 841} 842 843/** 844 * dev_alloc_name - allocate a name for a device 845 * @dev: device 846 * @name: name format string 847 * 848 * Passed a format string - eg "lt%d" it will try and find a suitable 849 * id. It scans list of devices to build up a free map, then chooses 850 * the first empty slot. The caller must hold the dev_base or rtnl lock 851 * while allocating the name and adding the device in order to avoid 852 * duplicates. 853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 854 * Returns the number of the unit assigned or a negative errno code. 855 */ 856 857int dev_alloc_name(struct net_device *dev, const char *name) 858{ 859 char buf[IFNAMSIZ]; 860 struct net *net; 861 int ret; 862 863 BUG_ON(!dev_net(dev)); 864 net = dev_net(dev); 865 ret = __dev_alloc_name(net, name, buf); 866 if (ret >= 0) 867 strlcpy(dev->name, buf, IFNAMSIZ); 868 return ret; 869} 870 871 872/** 873 * dev_change_name - change name of a device 874 * @dev: device 875 * @newname: name (or format string) must be at least IFNAMSIZ 876 * 877 * Change name of a device, can pass format strings "eth%d". 878 * for wildcarding. 879 */ 880int dev_change_name(struct net_device *dev, const char *newname) 881{ 882 char oldname[IFNAMSIZ]; 883 int err = 0; 884 int ret; 885 struct net *net; 886 887 ASSERT_RTNL(); 888 BUG_ON(!dev_net(dev)); 889 890 net = dev_net(dev); 891 if (dev->flags & IFF_UP) 892 return -EBUSY; 893 894 if (!dev_valid_name(newname)) 895 return -EINVAL; 896 897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 898 return 0; 899 900 memcpy(oldname, dev->name, IFNAMSIZ); 901 902 if (strchr(newname, '%')) { 903 err = dev_alloc_name(dev, newname); 904 if (err < 0) 905 return err; 906 } 907 else if (__dev_get_by_name(net, newname)) 908 return -EEXIST; 909 else 910 strlcpy(dev->name, newname, IFNAMSIZ); 911 912rollback: 913 /* For now only devices in the initial network namespace 914 * are in sysfs. 915 */ 916 if (net == &init_net) { 917 ret = device_rename(&dev->dev, dev->name); 918 if (ret) { 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 return ret; 921 } 922 } 923 924 write_lock_bh(&dev_base_lock); 925 hlist_del(&dev->name_hlist); 926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 927 write_unlock_bh(&dev_base_lock); 928 929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 930 ret = notifier_to_errno(ret); 931 932 if (ret) { 933 if (err) { 934 printk(KERN_ERR 935 "%s: name change rollback failed: %d.\n", 936 dev->name, ret); 937 } else { 938 err = ret; 939 memcpy(dev->name, oldname, IFNAMSIZ); 940 goto rollback; 941 } 942 } 943 944 return err; 945} 946 947/** 948 * dev_set_alias - change ifalias of a device 949 * @dev: device 950 * @alias: name up to IFALIASZ 951 * @len: limit of bytes to copy from info 952 * 953 * Set ifalias for a device, 954 */ 955int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 956{ 957 ASSERT_RTNL(); 958 959 if (len >= IFALIASZ) 960 return -EINVAL; 961 962 if (!len) { 963 if (dev->ifalias) { 964 kfree(dev->ifalias); 965 dev->ifalias = NULL; 966 } 967 return 0; 968 } 969 970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 971 if (!dev->ifalias) 972 return -ENOMEM; 973 974 strlcpy(dev->ifalias, alias, len+1); 975 return len; 976} 977 978 979/** 980 * netdev_features_change - device changes features 981 * @dev: device to cause notification 982 * 983 * Called to indicate a device has changed features. 984 */ 985void netdev_features_change(struct net_device *dev) 986{ 987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 988} 989EXPORT_SYMBOL(netdev_features_change); 990 991/** 992 * netdev_state_change - device changes state 993 * @dev: device to cause notification 994 * 995 * Called to indicate a device has changed state. This function calls 996 * the notifier chains for netdev_chain and sends a NEWLINK message 997 * to the routing socket. 998 */ 999void netdev_state_change(struct net_device *dev) 1000{ 1001 if (dev->flags & IFF_UP) { 1002 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1004 } 1005} 1006 1007void netdev_bonding_change(struct net_device *dev) 1008{ 1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1010} 1011EXPORT_SYMBOL(netdev_bonding_change); 1012 1013/** 1014 * dev_load - load a network module 1015 * @net: the applicable net namespace 1016 * @name: name of interface 1017 * 1018 * If a network interface is not present and the process has suitable 1019 * privileges this function loads the module. If module loading is not 1020 * available in this kernel then it becomes a nop. 1021 */ 1022 1023void dev_load(struct net *net, const char *name) 1024{ 1025 struct net_device *dev; 1026 1027 read_lock(&dev_base_lock); 1028 dev = __dev_get_by_name(net, name); 1029 read_unlock(&dev_base_lock); 1030 1031 if (!dev && capable(CAP_SYS_MODULE)) 1032 request_module("%s", name); 1033} 1034 1035/** 1036 * dev_open - prepare an interface for use. 1037 * @dev: device to open 1038 * 1039 * Takes a device from down to up state. The device's private open 1040 * function is invoked and then the multicast lists are loaded. Finally 1041 * the device is moved into the up state and a %NETDEV_UP message is 1042 * sent to the netdev notifier chain. 1043 * 1044 * Calling this function on an active interface is a nop. On a failure 1045 * a negative errno code is returned. 1046 */ 1047int dev_open(struct net_device *dev) 1048{ 1049 const struct net_device_ops *ops = dev->netdev_ops; 1050 int ret = 0; 1051 1052 ASSERT_RTNL(); 1053 1054 /* 1055 * Is it already up? 1056 */ 1057 1058 if (dev->flags & IFF_UP) 1059 return 0; 1060 1061 /* 1062 * Is it even present? 1063 */ 1064 if (!netif_device_present(dev)) 1065 return -ENODEV; 1066 1067 /* 1068 * Call device private open method 1069 */ 1070 set_bit(__LINK_STATE_START, &dev->state); 1071 1072 if (ops->ndo_validate_addr) 1073 ret = ops->ndo_validate_addr(dev); 1074 1075 if (!ret && ops->ndo_open) 1076 ret = ops->ndo_open(dev); 1077 1078 /* 1079 * If it went open OK then: 1080 */ 1081 1082 if (ret) 1083 clear_bit(__LINK_STATE_START, &dev->state); 1084 else { 1085 /* 1086 * Set the flags. 1087 */ 1088 dev->flags |= IFF_UP; 1089 1090 /* 1091 * Enable NET_DMA 1092 */ 1093 net_dmaengine_get(); 1094 1095 /* 1096 * Initialize multicasting status 1097 */ 1098 dev_set_rx_mode(dev); 1099 1100 /* 1101 * Wakeup transmit queue engine 1102 */ 1103 dev_activate(dev); 1104 1105 /* 1106 * ... and announce new interface. 1107 */ 1108 call_netdevice_notifiers(NETDEV_UP, dev); 1109 } 1110 1111 return ret; 1112} 1113 1114/** 1115 * dev_close - shutdown an interface. 1116 * @dev: device to shutdown 1117 * 1118 * This function moves an active device into down state. A 1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1121 * chain. 1122 */ 1123int dev_close(struct net_device *dev) 1124{ 1125 const struct net_device_ops *ops = dev->netdev_ops; 1126 ASSERT_RTNL(); 1127 1128 might_sleep(); 1129 1130 if (!(dev->flags & IFF_UP)) 1131 return 0; 1132 1133 /* 1134 * Tell people we are going down, so that they can 1135 * prepare to death, when device is still operating. 1136 */ 1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1138 1139 clear_bit(__LINK_STATE_START, &dev->state); 1140 1141 /* Synchronize to scheduled poll. We cannot touch poll list, 1142 * it can be even on different cpu. So just clear netif_running(). 1143 * 1144 * dev->stop() will invoke napi_disable() on all of it's 1145 * napi_struct instances on this device. 1146 */ 1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1148 1149 dev_deactivate(dev); 1150 1151 /* 1152 * Call the device specific close. This cannot fail. 1153 * Only if device is UP 1154 * 1155 * We allow it to be called even after a DETACH hot-plug 1156 * event. 1157 */ 1158 if (ops->ndo_stop) 1159 ops->ndo_stop(dev); 1160 1161 /* 1162 * Device is now down. 1163 */ 1164 1165 dev->flags &= ~IFF_UP; 1166 1167 /* 1168 * Tell people we are down 1169 */ 1170 call_netdevice_notifiers(NETDEV_DOWN, dev); 1171 1172 /* 1173 * Shutdown NET_DMA 1174 */ 1175 net_dmaengine_put(); 1176 1177 return 0; 1178} 1179 1180 1181/** 1182 * dev_disable_lro - disable Large Receive Offload on a device 1183 * @dev: device 1184 * 1185 * Disable Large Receive Offload (LRO) on a net device. Must be 1186 * called under RTNL. This is needed if received packets may be 1187 * forwarded to another interface. 1188 */ 1189void dev_disable_lro(struct net_device *dev) 1190{ 1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1192 dev->ethtool_ops->set_flags) { 1193 u32 flags = dev->ethtool_ops->get_flags(dev); 1194 if (flags & ETH_FLAG_LRO) { 1195 flags &= ~ETH_FLAG_LRO; 1196 dev->ethtool_ops->set_flags(dev, flags); 1197 } 1198 } 1199 WARN_ON(dev->features & NETIF_F_LRO); 1200} 1201EXPORT_SYMBOL(dev_disable_lro); 1202 1203 1204static int dev_boot_phase = 1; 1205 1206/* 1207 * Device change register/unregister. These are not inline or static 1208 * as we export them to the world. 1209 */ 1210 1211/** 1212 * register_netdevice_notifier - register a network notifier block 1213 * @nb: notifier 1214 * 1215 * Register a notifier to be called when network device events occur. 1216 * The notifier passed is linked into the kernel structures and must 1217 * not be reused until it has been unregistered. A negative errno code 1218 * is returned on a failure. 1219 * 1220 * When registered all registration and up events are replayed 1221 * to the new notifier to allow device to have a race free 1222 * view of the network device list. 1223 */ 1224 1225int register_netdevice_notifier(struct notifier_block *nb) 1226{ 1227 struct net_device *dev; 1228 struct net_device *last; 1229 struct net *net; 1230 int err; 1231 1232 rtnl_lock(); 1233 err = raw_notifier_chain_register(&netdev_chain, nb); 1234 if (err) 1235 goto unlock; 1236 if (dev_boot_phase) 1237 goto unlock; 1238 for_each_net(net) { 1239 for_each_netdev(net, dev) { 1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1241 err = notifier_to_errno(err); 1242 if (err) 1243 goto rollback; 1244 1245 if (!(dev->flags & IFF_UP)) 1246 continue; 1247 1248 nb->notifier_call(nb, NETDEV_UP, dev); 1249 } 1250 } 1251 1252unlock: 1253 rtnl_unlock(); 1254 return err; 1255 1256rollback: 1257 last = dev; 1258 for_each_net(net) { 1259 for_each_netdev(net, dev) { 1260 if (dev == last) 1261 break; 1262 1263 if (dev->flags & IFF_UP) { 1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1265 nb->notifier_call(nb, NETDEV_DOWN, dev); 1266 } 1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1268 } 1269 } 1270 1271 raw_notifier_chain_unregister(&netdev_chain, nb); 1272 goto unlock; 1273} 1274 1275/** 1276 * unregister_netdevice_notifier - unregister a network notifier block 1277 * @nb: notifier 1278 * 1279 * Unregister a notifier previously registered by 1280 * register_netdevice_notifier(). The notifier is unlinked into the 1281 * kernel structures and may then be reused. A negative errno code 1282 * is returned on a failure. 1283 */ 1284 1285int unregister_netdevice_notifier(struct notifier_block *nb) 1286{ 1287 int err; 1288 1289 rtnl_lock(); 1290 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1291 rtnl_unlock(); 1292 return err; 1293} 1294 1295/** 1296 * call_netdevice_notifiers - call all network notifier blocks 1297 * @val: value passed unmodified to notifier function 1298 * @dev: net_device pointer passed unmodified to notifier function 1299 * 1300 * Call all network notifier blocks. Parameters and return value 1301 * are as for raw_notifier_call_chain(). 1302 */ 1303 1304int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1305{ 1306 return raw_notifier_call_chain(&netdev_chain, val, dev); 1307} 1308 1309/* When > 0 there are consumers of rx skb time stamps */ 1310static atomic_t netstamp_needed = ATOMIC_INIT(0); 1311 1312void net_enable_timestamp(void) 1313{ 1314 atomic_inc(&netstamp_needed); 1315} 1316 1317void net_disable_timestamp(void) 1318{ 1319 atomic_dec(&netstamp_needed); 1320} 1321 1322static inline void net_timestamp(struct sk_buff *skb) 1323{ 1324 if (atomic_read(&netstamp_needed)) 1325 __net_timestamp(skb); 1326 else 1327 skb->tstamp.tv64 = 0; 1328} 1329 1330/* 1331 * Support routine. Sends outgoing frames to any network 1332 * taps currently in use. 1333 */ 1334 1335static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1336{ 1337 struct packet_type *ptype; 1338 1339 net_timestamp(skb); 1340 1341 rcu_read_lock(); 1342 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1343 /* Never send packets back to the socket 1344 * they originated from - MvS (miquels@drinkel.ow.org) 1345 */ 1346 if ((ptype->dev == dev || !ptype->dev) && 1347 (ptype->af_packet_priv == NULL || 1348 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1350 if (!skb2) 1351 break; 1352 1353 /* skb->nh should be correctly 1354 set by sender, so that the second statement is 1355 just protection against buggy protocols. 1356 */ 1357 skb_reset_mac_header(skb2); 1358 1359 if (skb_network_header(skb2) < skb2->data || 1360 skb2->network_header > skb2->tail) { 1361 if (net_ratelimit()) 1362 printk(KERN_CRIT "protocol %04x is " 1363 "buggy, dev %s\n", 1364 skb2->protocol, dev->name); 1365 skb_reset_network_header(skb2); 1366 } 1367 1368 skb2->transport_header = skb2->network_header; 1369 skb2->pkt_type = PACKET_OUTGOING; 1370 ptype->func(skb2, skb->dev, ptype, skb->dev); 1371 } 1372 } 1373 rcu_read_unlock(); 1374} 1375 1376 1377static inline void __netif_reschedule(struct Qdisc *q) 1378{ 1379 struct softnet_data *sd; 1380 unsigned long flags; 1381 1382 local_irq_save(flags); 1383 sd = &__get_cpu_var(softnet_data); 1384 q->next_sched = sd->output_queue; 1385 sd->output_queue = q; 1386 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1387 local_irq_restore(flags); 1388} 1389 1390void __netif_schedule(struct Qdisc *q) 1391{ 1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1393 __netif_reschedule(q); 1394} 1395EXPORT_SYMBOL(__netif_schedule); 1396 1397void dev_kfree_skb_irq(struct sk_buff *skb) 1398{ 1399 if (atomic_dec_and_test(&skb->users)) { 1400 struct softnet_data *sd; 1401 unsigned long flags; 1402 1403 local_irq_save(flags); 1404 sd = &__get_cpu_var(softnet_data); 1405 skb->next = sd->completion_queue; 1406 sd->completion_queue = skb; 1407 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1408 local_irq_restore(flags); 1409 } 1410} 1411EXPORT_SYMBOL(dev_kfree_skb_irq); 1412 1413void dev_kfree_skb_any(struct sk_buff *skb) 1414{ 1415 if (in_irq() || irqs_disabled()) 1416 dev_kfree_skb_irq(skb); 1417 else 1418 dev_kfree_skb(skb); 1419} 1420EXPORT_SYMBOL(dev_kfree_skb_any); 1421 1422 1423/** 1424 * netif_device_detach - mark device as removed 1425 * @dev: network device 1426 * 1427 * Mark device as removed from system and therefore no longer available. 1428 */ 1429void netif_device_detach(struct net_device *dev) 1430{ 1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1432 netif_running(dev)) { 1433 netif_tx_stop_all_queues(dev); 1434 } 1435} 1436EXPORT_SYMBOL(netif_device_detach); 1437 1438/** 1439 * netif_device_attach - mark device as attached 1440 * @dev: network device 1441 * 1442 * Mark device as attached from system and restart if needed. 1443 */ 1444void netif_device_attach(struct net_device *dev) 1445{ 1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1447 netif_running(dev)) { 1448 netif_tx_wake_all_queues(dev); 1449 __netdev_watchdog_up(dev); 1450 } 1451} 1452EXPORT_SYMBOL(netif_device_attach); 1453 1454static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1455{ 1456 return ((features & NETIF_F_GEN_CSUM) || 1457 ((features & NETIF_F_IP_CSUM) && 1458 protocol == htons(ETH_P_IP)) || 1459 ((features & NETIF_F_IPV6_CSUM) && 1460 protocol == htons(ETH_P_IPV6)) || 1461 ((features & NETIF_F_FCOE_CRC) && 1462 protocol == htons(ETH_P_FCOE))); 1463} 1464 1465static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1466{ 1467 if (can_checksum_protocol(dev->features, skb->protocol)) 1468 return true; 1469 1470 if (skb->protocol == htons(ETH_P_8021Q)) { 1471 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1472 if (can_checksum_protocol(dev->features & dev->vlan_features, 1473 veh->h_vlan_encapsulated_proto)) 1474 return true; 1475 } 1476 1477 return false; 1478} 1479 1480/* 1481 * Invalidate hardware checksum when packet is to be mangled, and 1482 * complete checksum manually on outgoing path. 1483 */ 1484int skb_checksum_help(struct sk_buff *skb) 1485{ 1486 __wsum csum; 1487 int ret = 0, offset; 1488 1489 if (skb->ip_summed == CHECKSUM_COMPLETE) 1490 goto out_set_summed; 1491 1492 if (unlikely(skb_shinfo(skb)->gso_size)) { 1493 /* Let GSO fix up the checksum. */ 1494 goto out_set_summed; 1495 } 1496 1497 offset = skb->csum_start - skb_headroom(skb); 1498 BUG_ON(offset >= skb_headlen(skb)); 1499 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1500 1501 offset += skb->csum_offset; 1502 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1503 1504 if (skb_cloned(skb) && 1505 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1506 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1507 if (ret) 1508 goto out; 1509 } 1510 1511 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1512out_set_summed: 1513 skb->ip_summed = CHECKSUM_NONE; 1514out: 1515 return ret; 1516} 1517 1518/** 1519 * skb_gso_segment - Perform segmentation on skb. 1520 * @skb: buffer to segment 1521 * @features: features for the output path (see dev->features) 1522 * 1523 * This function segments the given skb and returns a list of segments. 1524 * 1525 * It may return NULL if the skb requires no segmentation. This is 1526 * only possible when GSO is used for verifying header integrity. 1527 */ 1528struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1529{ 1530 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1531 struct packet_type *ptype; 1532 __be16 type = skb->protocol; 1533 int err; 1534 1535 skb_reset_mac_header(skb); 1536 skb->mac_len = skb->network_header - skb->mac_header; 1537 __skb_pull(skb, skb->mac_len); 1538 1539 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1540 struct net_device *dev = skb->dev; 1541 struct ethtool_drvinfo info = {}; 1542 1543 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1544 dev->ethtool_ops->get_drvinfo(dev, &info); 1545 1546 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1547 "ip_summed=%d", 1548 info.driver, dev ? dev->features : 0L, 1549 skb->sk ? skb->sk->sk_route_caps : 0L, 1550 skb->len, skb->data_len, skb->ip_summed); 1551 1552 if (skb_header_cloned(skb) && 1553 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1554 return ERR_PTR(err); 1555 } 1556 1557 rcu_read_lock(); 1558 list_for_each_entry_rcu(ptype, 1559 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1560 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1561 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1562 err = ptype->gso_send_check(skb); 1563 segs = ERR_PTR(err); 1564 if (err || skb_gso_ok(skb, features)) 1565 break; 1566 __skb_push(skb, (skb->data - 1567 skb_network_header(skb))); 1568 } 1569 segs = ptype->gso_segment(skb, features); 1570 break; 1571 } 1572 } 1573 rcu_read_unlock(); 1574 1575 __skb_push(skb, skb->data - skb_mac_header(skb)); 1576 1577 return segs; 1578} 1579 1580EXPORT_SYMBOL(skb_gso_segment); 1581 1582/* Take action when hardware reception checksum errors are detected. */ 1583#ifdef CONFIG_BUG 1584void netdev_rx_csum_fault(struct net_device *dev) 1585{ 1586 if (net_ratelimit()) { 1587 printk(KERN_ERR "%s: hw csum failure.\n", 1588 dev ? dev->name : "<unknown>"); 1589 dump_stack(); 1590 } 1591} 1592EXPORT_SYMBOL(netdev_rx_csum_fault); 1593#endif 1594 1595/* Actually, we should eliminate this check as soon as we know, that: 1596 * 1. IOMMU is present and allows to map all the memory. 1597 * 2. No high memory really exists on this machine. 1598 */ 1599 1600static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1601{ 1602#ifdef CONFIG_HIGHMEM 1603 int i; 1604 1605 if (dev->features & NETIF_F_HIGHDMA) 1606 return 0; 1607 1608 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1609 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1610 return 1; 1611 1612#endif 1613 return 0; 1614} 1615 1616struct dev_gso_cb { 1617 void (*destructor)(struct sk_buff *skb); 1618}; 1619 1620#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1621 1622static void dev_gso_skb_destructor(struct sk_buff *skb) 1623{ 1624 struct dev_gso_cb *cb; 1625 1626 do { 1627 struct sk_buff *nskb = skb->next; 1628 1629 skb->next = nskb->next; 1630 nskb->next = NULL; 1631 kfree_skb(nskb); 1632 } while (skb->next); 1633 1634 cb = DEV_GSO_CB(skb); 1635 if (cb->destructor) 1636 cb->destructor(skb); 1637} 1638 1639/** 1640 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1641 * @skb: buffer to segment 1642 * 1643 * This function segments the given skb and stores the list of segments 1644 * in skb->next. 1645 */ 1646static int dev_gso_segment(struct sk_buff *skb) 1647{ 1648 struct net_device *dev = skb->dev; 1649 struct sk_buff *segs; 1650 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1651 NETIF_F_SG : 0); 1652 1653 segs = skb_gso_segment(skb, features); 1654 1655 /* Verifying header integrity only. */ 1656 if (!segs) 1657 return 0; 1658 1659 if (IS_ERR(segs)) 1660 return PTR_ERR(segs); 1661 1662 skb->next = segs; 1663 DEV_GSO_CB(skb)->destructor = skb->destructor; 1664 skb->destructor = dev_gso_skb_destructor; 1665 1666 return 0; 1667} 1668 1669int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1670 struct netdev_queue *txq) 1671{ 1672 const struct net_device_ops *ops = dev->netdev_ops; 1673 int rc; 1674 1675 if (likely(!skb->next)) { 1676 if (!list_empty(&ptype_all)) 1677 dev_queue_xmit_nit(skb, dev); 1678 1679 if (netif_needs_gso(dev, skb)) { 1680 if (unlikely(dev_gso_segment(skb))) 1681 goto out_kfree_skb; 1682 if (skb->next) 1683 goto gso; 1684 } 1685 1686 rc = ops->ndo_start_xmit(skb, dev); 1687 /* 1688 * TODO: if skb_orphan() was called by 1689 * dev->hard_start_xmit() (for example, the unmodified 1690 * igb driver does that; bnx2 doesn't), then 1691 * skb_tx_software_timestamp() will be unable to send 1692 * back the time stamp. 1693 * 1694 * How can this be prevented? Always create another 1695 * reference to the socket before calling 1696 * dev->hard_start_xmit()? Prevent that skb_orphan() 1697 * does anything in dev->hard_start_xmit() by clearing 1698 * the skb destructor before the call and restoring it 1699 * afterwards, then doing the skb_orphan() ourselves? 1700 */ 1701 return rc; 1702 } 1703 1704gso: 1705 do { 1706 struct sk_buff *nskb = skb->next; 1707 1708 skb->next = nskb->next; 1709 nskb->next = NULL; 1710 rc = ops->ndo_start_xmit(nskb, dev); 1711 if (unlikely(rc)) { 1712 nskb->next = skb->next; 1713 skb->next = nskb; 1714 return rc; 1715 } 1716 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1717 return NETDEV_TX_BUSY; 1718 } while (skb->next); 1719 1720 skb->destructor = DEV_GSO_CB(skb)->destructor; 1721 1722out_kfree_skb: 1723 kfree_skb(skb); 1724 return 0; 1725} 1726 1727static u32 skb_tx_hashrnd; 1728 1729u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1730{ 1731 u32 hash; 1732 1733 if (skb_rx_queue_recorded(skb)) { 1734 hash = skb_get_rx_queue(skb); 1735 } else if (skb->sk && skb->sk->sk_hash) { 1736 hash = skb->sk->sk_hash; 1737 } else 1738 hash = skb->protocol; 1739 1740 hash = jhash_1word(hash, skb_tx_hashrnd); 1741 1742 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1743} 1744EXPORT_SYMBOL(skb_tx_hash); 1745 1746static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1747 struct sk_buff *skb) 1748{ 1749 const struct net_device_ops *ops = dev->netdev_ops; 1750 u16 queue_index = 0; 1751 1752 if (ops->ndo_select_queue) 1753 queue_index = ops->ndo_select_queue(dev, skb); 1754 else if (dev->real_num_tx_queues > 1) 1755 queue_index = skb_tx_hash(dev, skb); 1756 1757 skb_set_queue_mapping(skb, queue_index); 1758 return netdev_get_tx_queue(dev, queue_index); 1759} 1760 1761/** 1762 * dev_queue_xmit - transmit a buffer 1763 * @skb: buffer to transmit 1764 * 1765 * Queue a buffer for transmission to a network device. The caller must 1766 * have set the device and priority and built the buffer before calling 1767 * this function. The function can be called from an interrupt. 1768 * 1769 * A negative errno code is returned on a failure. A success does not 1770 * guarantee the frame will be transmitted as it may be dropped due 1771 * to congestion or traffic shaping. 1772 * 1773 * ----------------------------------------------------------------------------------- 1774 * I notice this method can also return errors from the queue disciplines, 1775 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1776 * be positive. 1777 * 1778 * Regardless of the return value, the skb is consumed, so it is currently 1779 * difficult to retry a send to this method. (You can bump the ref count 1780 * before sending to hold a reference for retry if you are careful.) 1781 * 1782 * When calling this method, interrupts MUST be enabled. This is because 1783 * the BH enable code must have IRQs enabled so that it will not deadlock. 1784 * --BLG 1785 */ 1786int dev_queue_xmit(struct sk_buff *skb) 1787{ 1788 struct net_device *dev = skb->dev; 1789 struct netdev_queue *txq; 1790 struct Qdisc *q; 1791 int rc = -ENOMEM; 1792 1793 /* GSO will handle the following emulations directly. */ 1794 if (netif_needs_gso(dev, skb)) 1795 goto gso; 1796 1797 if (skb_shinfo(skb)->frag_list && 1798 !(dev->features & NETIF_F_FRAGLIST) && 1799 __skb_linearize(skb)) 1800 goto out_kfree_skb; 1801 1802 /* Fragmented skb is linearized if device does not support SG, 1803 * or if at least one of fragments is in highmem and device 1804 * does not support DMA from it. 1805 */ 1806 if (skb_shinfo(skb)->nr_frags && 1807 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1808 __skb_linearize(skb)) 1809 goto out_kfree_skb; 1810 1811 /* If packet is not checksummed and device does not support 1812 * checksumming for this protocol, complete checksumming here. 1813 */ 1814 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1815 skb_set_transport_header(skb, skb->csum_start - 1816 skb_headroom(skb)); 1817 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1818 goto out_kfree_skb; 1819 } 1820 1821gso: 1822 /* Disable soft irqs for various locks below. Also 1823 * stops preemption for RCU. 1824 */ 1825 rcu_read_lock_bh(); 1826 1827 txq = dev_pick_tx(dev, skb); 1828 q = rcu_dereference(txq->qdisc); 1829 1830#ifdef CONFIG_NET_CLS_ACT 1831 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1832#endif 1833 if (q->enqueue) { 1834 spinlock_t *root_lock = qdisc_lock(q); 1835 1836 spin_lock(root_lock); 1837 1838 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1839 kfree_skb(skb); 1840 rc = NET_XMIT_DROP; 1841 } else { 1842 rc = qdisc_enqueue_root(skb, q); 1843 qdisc_run(q); 1844 } 1845 spin_unlock(root_lock); 1846 1847 goto out; 1848 } 1849 1850 /* The device has no queue. Common case for software devices: 1851 loopback, all the sorts of tunnels... 1852 1853 Really, it is unlikely that netif_tx_lock protection is necessary 1854 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1855 counters.) 1856 However, it is possible, that they rely on protection 1857 made by us here. 1858 1859 Check this and shot the lock. It is not prone from deadlocks. 1860 Either shot noqueue qdisc, it is even simpler 8) 1861 */ 1862 if (dev->flags & IFF_UP) { 1863 int cpu = smp_processor_id(); /* ok because BHs are off */ 1864 1865 if (txq->xmit_lock_owner != cpu) { 1866 1867 HARD_TX_LOCK(dev, txq, cpu); 1868 1869 if (!netif_tx_queue_stopped(txq)) { 1870 rc = 0; 1871 if (!dev_hard_start_xmit(skb, dev, txq)) { 1872 HARD_TX_UNLOCK(dev, txq); 1873 goto out; 1874 } 1875 } 1876 HARD_TX_UNLOCK(dev, txq); 1877 if (net_ratelimit()) 1878 printk(KERN_CRIT "Virtual device %s asks to " 1879 "queue packet!\n", dev->name); 1880 } else { 1881 /* Recursion is detected! It is possible, 1882 * unfortunately */ 1883 if (net_ratelimit()) 1884 printk(KERN_CRIT "Dead loop on virtual device " 1885 "%s, fix it urgently!\n", dev->name); 1886 } 1887 } 1888 1889 rc = -ENETDOWN; 1890 rcu_read_unlock_bh(); 1891 1892out_kfree_skb: 1893 kfree_skb(skb); 1894 return rc; 1895out: 1896 rcu_read_unlock_bh(); 1897 return rc; 1898} 1899 1900 1901/*======================================================================= 1902 Receiver routines 1903 =======================================================================*/ 1904 1905int netdev_max_backlog __read_mostly = 1000; 1906int netdev_budget __read_mostly = 300; 1907int weight_p __read_mostly = 64; /* old backlog weight */ 1908 1909DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1910 1911 1912/** 1913 * netif_rx - post buffer to the network code 1914 * @skb: buffer to post 1915 * 1916 * This function receives a packet from a device driver and queues it for 1917 * the upper (protocol) levels to process. It always succeeds. The buffer 1918 * may be dropped during processing for congestion control or by the 1919 * protocol layers. 1920 * 1921 * return values: 1922 * NET_RX_SUCCESS (no congestion) 1923 * NET_RX_DROP (packet was dropped) 1924 * 1925 */ 1926 1927int netif_rx(struct sk_buff *skb) 1928{ 1929 struct softnet_data *queue; 1930 unsigned long flags; 1931 1932 /* if netpoll wants it, pretend we never saw it */ 1933 if (netpoll_rx(skb)) 1934 return NET_RX_DROP; 1935 1936 if (!skb->tstamp.tv64) 1937 net_timestamp(skb); 1938 1939 /* 1940 * The code is rearranged so that the path is the most 1941 * short when CPU is congested, but is still operating. 1942 */ 1943 local_irq_save(flags); 1944 queue = &__get_cpu_var(softnet_data); 1945 1946 __get_cpu_var(netdev_rx_stat).total++; 1947 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1948 if (queue->input_pkt_queue.qlen) { 1949enqueue: 1950 __skb_queue_tail(&queue->input_pkt_queue, skb); 1951 local_irq_restore(flags); 1952 return NET_RX_SUCCESS; 1953 } 1954 1955 napi_schedule(&queue->backlog); 1956 goto enqueue; 1957 } 1958 1959 __get_cpu_var(netdev_rx_stat).dropped++; 1960 local_irq_restore(flags); 1961 1962 kfree_skb(skb); 1963 return NET_RX_DROP; 1964} 1965 1966int netif_rx_ni(struct sk_buff *skb) 1967{ 1968 int err; 1969 1970 preempt_disable(); 1971 err = netif_rx(skb); 1972 if (local_softirq_pending()) 1973 do_softirq(); 1974 preempt_enable(); 1975 1976 return err; 1977} 1978 1979EXPORT_SYMBOL(netif_rx_ni); 1980 1981static void net_tx_action(struct softirq_action *h) 1982{ 1983 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1984 1985 if (sd->completion_queue) { 1986 struct sk_buff *clist; 1987 1988 local_irq_disable(); 1989 clist = sd->completion_queue; 1990 sd->completion_queue = NULL; 1991 local_irq_enable(); 1992 1993 while (clist) { 1994 struct sk_buff *skb = clist; 1995 clist = clist->next; 1996 1997 WARN_ON(atomic_read(&skb->users)); 1998 __kfree_skb(skb); 1999 } 2000 } 2001 2002 if (sd->output_queue) { 2003 struct Qdisc *head; 2004 2005 local_irq_disable(); 2006 head = sd->output_queue; 2007 sd->output_queue = NULL; 2008 local_irq_enable(); 2009 2010 while (head) { 2011 struct Qdisc *q = head; 2012 spinlock_t *root_lock; 2013 2014 head = head->next_sched; 2015 2016 root_lock = qdisc_lock(q); 2017 if (spin_trylock(root_lock)) { 2018 smp_mb__before_clear_bit(); 2019 clear_bit(__QDISC_STATE_SCHED, 2020 &q->state); 2021 qdisc_run(q); 2022 spin_unlock(root_lock); 2023 } else { 2024 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2025 &q->state)) { 2026 __netif_reschedule(q); 2027 } else { 2028 smp_mb__before_clear_bit(); 2029 clear_bit(__QDISC_STATE_SCHED, 2030 &q->state); 2031 } 2032 } 2033 } 2034 } 2035} 2036 2037static inline int deliver_skb(struct sk_buff *skb, 2038 struct packet_type *pt_prev, 2039 struct net_device *orig_dev) 2040{ 2041 atomic_inc(&skb->users); 2042 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2043} 2044 2045#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2046/* These hooks defined here for ATM */ 2047struct net_bridge; 2048struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2049 unsigned char *addr); 2050void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2051 2052/* 2053 * If bridge module is loaded call bridging hook. 2054 * returns NULL if packet was consumed. 2055 */ 2056struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2057 struct sk_buff *skb) __read_mostly; 2058static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2059 struct packet_type **pt_prev, int *ret, 2060 struct net_device *orig_dev) 2061{ 2062 struct net_bridge_port *port; 2063 2064 if (skb->pkt_type == PACKET_LOOPBACK || 2065 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2066 return skb; 2067 2068 if (*pt_prev) { 2069 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2070 *pt_prev = NULL; 2071 } 2072 2073 return br_handle_frame_hook(port, skb); 2074} 2075#else 2076#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2077#endif 2078 2079#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2080struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2081EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2082 2083static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2084 struct packet_type **pt_prev, 2085 int *ret, 2086 struct net_device *orig_dev) 2087{ 2088 if (skb->dev->macvlan_port == NULL) 2089 return skb; 2090 2091 if (*pt_prev) { 2092 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2093 *pt_prev = NULL; 2094 } 2095 return macvlan_handle_frame_hook(skb); 2096} 2097#else 2098#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2099#endif 2100 2101#ifdef CONFIG_NET_CLS_ACT 2102/* TODO: Maybe we should just force sch_ingress to be compiled in 2103 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2104 * a compare and 2 stores extra right now if we dont have it on 2105 * but have CONFIG_NET_CLS_ACT 2106 * NOTE: This doesnt stop any functionality; if you dont have 2107 * the ingress scheduler, you just cant add policies on ingress. 2108 * 2109 */ 2110static int ing_filter(struct sk_buff *skb) 2111{ 2112 struct net_device *dev = skb->dev; 2113 u32 ttl = G_TC_RTTL(skb->tc_verd); 2114 struct netdev_queue *rxq; 2115 int result = TC_ACT_OK; 2116 struct Qdisc *q; 2117 2118 if (MAX_RED_LOOP < ttl++) { 2119 printk(KERN_WARNING 2120 "Redir loop detected Dropping packet (%d->%d)\n", 2121 skb->iif, dev->ifindex); 2122 return TC_ACT_SHOT; 2123 } 2124 2125 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2126 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2127 2128 rxq = &dev->rx_queue; 2129 2130 q = rxq->qdisc; 2131 if (q != &noop_qdisc) { 2132 spin_lock(qdisc_lock(q)); 2133 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2134 result = qdisc_enqueue_root(skb, q); 2135 spin_unlock(qdisc_lock(q)); 2136 } 2137 2138 return result; 2139} 2140 2141static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2142 struct packet_type **pt_prev, 2143 int *ret, struct net_device *orig_dev) 2144{ 2145 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2146 goto out; 2147 2148 if (*pt_prev) { 2149 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2150 *pt_prev = NULL; 2151 } else { 2152 /* Huh? Why does turning on AF_PACKET affect this? */ 2153 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2154 } 2155 2156 switch (ing_filter(skb)) { 2157 case TC_ACT_SHOT: 2158 case TC_ACT_STOLEN: 2159 kfree_skb(skb); 2160 return NULL; 2161 } 2162 2163out: 2164 skb->tc_verd = 0; 2165 return skb; 2166} 2167#endif 2168 2169/* 2170 * netif_nit_deliver - deliver received packets to network taps 2171 * @skb: buffer 2172 * 2173 * This function is used to deliver incoming packets to network 2174 * taps. It should be used when the normal netif_receive_skb path 2175 * is bypassed, for example because of VLAN acceleration. 2176 */ 2177void netif_nit_deliver(struct sk_buff *skb) 2178{ 2179 struct packet_type *ptype; 2180 2181 if (list_empty(&ptype_all)) 2182 return; 2183 2184 skb_reset_network_header(skb); 2185 skb_reset_transport_header(skb); 2186 skb->mac_len = skb->network_header - skb->mac_header; 2187 2188 rcu_read_lock(); 2189 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2190 if (!ptype->dev || ptype->dev == skb->dev) 2191 deliver_skb(skb, ptype, skb->dev); 2192 } 2193 rcu_read_unlock(); 2194} 2195 2196/** 2197 * netif_receive_skb - process receive buffer from network 2198 * @skb: buffer to process 2199 * 2200 * netif_receive_skb() is the main receive data processing function. 2201 * It always succeeds. The buffer may be dropped during processing 2202 * for congestion control or by the protocol layers. 2203 * 2204 * This function may only be called from softirq context and interrupts 2205 * should be enabled. 2206 * 2207 * Return values (usually ignored): 2208 * NET_RX_SUCCESS: no congestion 2209 * NET_RX_DROP: packet was dropped 2210 */ 2211int netif_receive_skb(struct sk_buff *skb) 2212{ 2213 struct packet_type *ptype, *pt_prev; 2214 struct net_device *orig_dev; 2215 struct net_device *null_or_orig; 2216 int ret = NET_RX_DROP; 2217 __be16 type; 2218 2219 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2220 return NET_RX_SUCCESS; 2221 2222 /* if we've gotten here through NAPI, check netpoll */ 2223 if (netpoll_receive_skb(skb)) 2224 return NET_RX_DROP; 2225 2226 if (!skb->tstamp.tv64) 2227 net_timestamp(skb); 2228 2229 if (!skb->iif) 2230 skb->iif = skb->dev->ifindex; 2231 2232 null_or_orig = NULL; 2233 orig_dev = skb->dev; 2234 if (orig_dev->master) { 2235 if (skb_bond_should_drop(skb)) 2236 null_or_orig = orig_dev; /* deliver only exact match */ 2237 else 2238 skb->dev = orig_dev->master; 2239 } 2240 2241 __get_cpu_var(netdev_rx_stat).total++; 2242 2243 skb_reset_network_header(skb); 2244 skb_reset_transport_header(skb); 2245 skb->mac_len = skb->network_header - skb->mac_header; 2246 2247 pt_prev = NULL; 2248 2249 rcu_read_lock(); 2250 2251#ifdef CONFIG_NET_CLS_ACT 2252 if (skb->tc_verd & TC_NCLS) { 2253 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2254 goto ncls; 2255 } 2256#endif 2257 2258 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2259 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2260 ptype->dev == orig_dev) { 2261 if (pt_prev) 2262 ret = deliver_skb(skb, pt_prev, orig_dev); 2263 pt_prev = ptype; 2264 } 2265 } 2266 2267#ifdef CONFIG_NET_CLS_ACT 2268 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2269 if (!skb) 2270 goto out; 2271ncls: 2272#endif 2273 2274 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2275 if (!skb) 2276 goto out; 2277 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2278 if (!skb) 2279 goto out; 2280 2281 skb_orphan(skb); 2282 2283 type = skb->protocol; 2284 list_for_each_entry_rcu(ptype, 2285 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2286 if (ptype->type == type && 2287 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2288 ptype->dev == orig_dev)) { 2289 if (pt_prev) 2290 ret = deliver_skb(skb, pt_prev, orig_dev); 2291 pt_prev = ptype; 2292 } 2293 } 2294 2295 if (pt_prev) { 2296 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2297 } else { 2298 kfree_skb(skb); 2299 /* Jamal, now you will not able to escape explaining 2300 * me how you were going to use this. :-) 2301 */ 2302 ret = NET_RX_DROP; 2303 } 2304 2305out: 2306 rcu_read_unlock(); 2307 return ret; 2308} 2309 2310/* Network device is going away, flush any packets still pending */ 2311static void flush_backlog(void *arg) 2312{ 2313 struct net_device *dev = arg; 2314 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2315 struct sk_buff *skb, *tmp; 2316 2317 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2318 if (skb->dev == dev) { 2319 __skb_unlink(skb, &queue->input_pkt_queue); 2320 kfree_skb(skb); 2321 } 2322} 2323 2324static int napi_gro_complete(struct sk_buff *skb) 2325{ 2326 struct packet_type *ptype; 2327 __be16 type = skb->protocol; 2328 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2329 int err = -ENOENT; 2330 2331 if (NAPI_GRO_CB(skb)->count == 1) { 2332 skb_shinfo(skb)->gso_size = 0; 2333 goto out; 2334 } 2335 2336 rcu_read_lock(); 2337 list_for_each_entry_rcu(ptype, head, list) { 2338 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2339 continue; 2340 2341 err = ptype->gro_complete(skb); 2342 break; 2343 } 2344 rcu_read_unlock(); 2345 2346 if (err) { 2347 WARN_ON(&ptype->list == head); 2348 kfree_skb(skb); 2349 return NET_RX_SUCCESS; 2350 } 2351 2352out: 2353 return netif_receive_skb(skb); 2354} 2355 2356void napi_gro_flush(struct napi_struct *napi) 2357{ 2358 struct sk_buff *skb, *next; 2359 2360 for (skb = napi->gro_list; skb; skb = next) { 2361 next = skb->next; 2362 skb->next = NULL; 2363 napi_gro_complete(skb); 2364 } 2365 2366 napi->gro_count = 0; 2367 napi->gro_list = NULL; 2368} 2369EXPORT_SYMBOL(napi_gro_flush); 2370 2371void *skb_gro_header(struct sk_buff *skb, unsigned int hlen) 2372{ 2373 unsigned int offset = skb_gro_offset(skb); 2374 2375 hlen += offset; 2376 if (hlen <= skb_headlen(skb)) 2377 return skb->data + offset; 2378 2379 if (unlikely(!skb_shinfo(skb)->nr_frags || 2380 skb_shinfo(skb)->frags[0].size <= 2381 hlen - skb_headlen(skb) || 2382 PageHighMem(skb_shinfo(skb)->frags[0].page))) 2383 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL; 2384 2385 return page_address(skb_shinfo(skb)->frags[0].page) + 2386 skb_shinfo(skb)->frags[0].page_offset + 2387 offset - skb_headlen(skb); 2388} 2389EXPORT_SYMBOL(skb_gro_header); 2390 2391int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2392{ 2393 struct sk_buff **pp = NULL; 2394 struct packet_type *ptype; 2395 __be16 type = skb->protocol; 2396 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2397 int same_flow; 2398 int mac_len; 2399 int ret; 2400 2401 if (!(skb->dev->features & NETIF_F_GRO)) 2402 goto normal; 2403 2404 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list) 2405 goto normal; 2406 2407 rcu_read_lock(); 2408 list_for_each_entry_rcu(ptype, head, list) { 2409 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2410 continue; 2411 2412 skb_set_network_header(skb, skb_gro_offset(skb)); 2413 mac_len = skb->network_header - skb->mac_header; 2414 skb->mac_len = mac_len; 2415 NAPI_GRO_CB(skb)->same_flow = 0; 2416 NAPI_GRO_CB(skb)->flush = 0; 2417 NAPI_GRO_CB(skb)->free = 0; 2418 2419 pp = ptype->gro_receive(&napi->gro_list, skb); 2420 break; 2421 } 2422 rcu_read_unlock(); 2423 2424 if (&ptype->list == head) 2425 goto normal; 2426 2427 same_flow = NAPI_GRO_CB(skb)->same_flow; 2428 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2429 2430 if (pp) { 2431 struct sk_buff *nskb = *pp; 2432 2433 *pp = nskb->next; 2434 nskb->next = NULL; 2435 napi_gro_complete(nskb); 2436 napi->gro_count--; 2437 } 2438 2439 if (same_flow) 2440 goto ok; 2441 2442 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2443 goto normal; 2444 2445 napi->gro_count++; 2446 NAPI_GRO_CB(skb)->count = 1; 2447 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2448 skb->next = napi->gro_list; 2449 napi->gro_list = skb; 2450 ret = GRO_HELD; 2451 2452pull: 2453 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) { 2454 if (napi->gro_list == skb) 2455 napi->gro_list = skb->next; 2456 ret = GRO_DROP; 2457 } 2458 2459ok: 2460 return ret; 2461 2462normal: 2463 ret = GRO_NORMAL; 2464 goto pull; 2465} 2466EXPORT_SYMBOL(dev_gro_receive); 2467 2468static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2469{ 2470 struct sk_buff *p; 2471 2472 if (netpoll_rx_on(skb)) 2473 return GRO_NORMAL; 2474 2475 for (p = napi->gro_list; p; p = p->next) { 2476 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev) 2477 && !compare_ether_header(skb_mac_header(p), 2478 skb_gro_mac_header(skb)); 2479 NAPI_GRO_CB(p)->flush = 0; 2480 } 2481 2482 return dev_gro_receive(napi, skb); 2483} 2484 2485int napi_skb_finish(int ret, struct sk_buff *skb) 2486{ 2487 int err = NET_RX_SUCCESS; 2488 2489 switch (ret) { 2490 case GRO_NORMAL: 2491 return netif_receive_skb(skb); 2492 2493 case GRO_DROP: 2494 err = NET_RX_DROP; 2495 /* fall through */ 2496 2497 case GRO_MERGED_FREE: 2498 kfree_skb(skb); 2499 break; 2500 } 2501 2502 return err; 2503} 2504EXPORT_SYMBOL(napi_skb_finish); 2505 2506int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2507{ 2508 skb_gro_reset_offset(skb); 2509 2510 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2511} 2512EXPORT_SYMBOL(napi_gro_receive); 2513 2514void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2515{ 2516 __skb_pull(skb, skb_headlen(skb)); 2517 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2518 2519 napi->skb = skb; 2520} 2521EXPORT_SYMBOL(napi_reuse_skb); 2522 2523struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi, 2524 struct napi_gro_fraginfo *info) 2525{ 2526 struct net_device *dev = napi->dev; 2527 struct sk_buff *skb = napi->skb; 2528 struct ethhdr *eth; 2529 skb_frag_t *frag; 2530 int i; 2531 2532 napi->skb = NULL; 2533 2534 if (!skb) { 2535 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2536 if (!skb) 2537 goto out; 2538 2539 skb_reserve(skb, NET_IP_ALIGN); 2540 } 2541 2542 BUG_ON(info->nr_frags > MAX_SKB_FRAGS); 2543 frag = &info->frags[info->nr_frags - 1]; 2544 2545 for (i = skb_shinfo(skb)->nr_frags; i < info->nr_frags; i++) { 2546 skb_fill_page_desc(skb, i, frag->page, frag->page_offset, 2547 frag->size); 2548 frag++; 2549 } 2550 skb_shinfo(skb)->nr_frags = info->nr_frags; 2551 2552 skb->data_len = info->len; 2553 skb->len += info->len; 2554 skb->truesize += info->len; 2555 2556 skb_reset_mac_header(skb); 2557 skb_gro_reset_offset(skb); 2558 2559 eth = skb_gro_header(skb, sizeof(*eth)); 2560 if (!eth) { 2561 napi_reuse_skb(napi, skb); 2562 skb = NULL; 2563 goto out; 2564 } 2565 2566 skb_gro_pull(skb, sizeof(*eth)); 2567 2568 /* 2569 * This works because the only protocols we care about don't require 2570 * special handling. We'll fix it up properly at the end. 2571 */ 2572 skb->protocol = eth->h_proto; 2573 2574 skb->ip_summed = info->ip_summed; 2575 skb->csum = info->csum; 2576 2577out: 2578 return skb; 2579} 2580EXPORT_SYMBOL(napi_fraginfo_skb); 2581 2582int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret) 2583{ 2584 int err = NET_RX_SUCCESS; 2585 2586 switch (ret) { 2587 case GRO_NORMAL: 2588 case GRO_HELD: 2589 skb->protocol = eth_type_trans(skb, napi->dev); 2590 2591 if (ret == GRO_NORMAL) 2592 return netif_receive_skb(skb); 2593 2594 skb_gro_pull(skb, -ETH_HLEN); 2595 break; 2596 2597 case GRO_DROP: 2598 err = NET_RX_DROP; 2599 /* fall through */ 2600 2601 case GRO_MERGED_FREE: 2602 napi_reuse_skb(napi, skb); 2603 break; 2604 } 2605 2606 return err; 2607} 2608EXPORT_SYMBOL(napi_frags_finish); 2609 2610int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info) 2611{ 2612 struct sk_buff *skb = napi_fraginfo_skb(napi, info); 2613 2614 if (!skb) 2615 return NET_RX_DROP; 2616 2617 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2618} 2619EXPORT_SYMBOL(napi_gro_frags); 2620 2621static int process_backlog(struct napi_struct *napi, int quota) 2622{ 2623 int work = 0; 2624 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2625 unsigned long start_time = jiffies; 2626 2627 napi->weight = weight_p; 2628 do { 2629 struct sk_buff *skb; 2630 2631 local_irq_disable(); 2632 skb = __skb_dequeue(&queue->input_pkt_queue); 2633 if (!skb) { 2634 __napi_complete(napi); 2635 local_irq_enable(); 2636 break; 2637 } 2638 local_irq_enable(); 2639 2640 netif_receive_skb(skb); 2641 } while (++work < quota && jiffies == start_time); 2642 2643 return work; 2644} 2645 2646/** 2647 * __napi_schedule - schedule for receive 2648 * @n: entry to schedule 2649 * 2650 * The entry's receive function will be scheduled to run 2651 */ 2652void __napi_schedule(struct napi_struct *n) 2653{ 2654 unsigned long flags; 2655 2656 local_irq_save(flags); 2657 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2658 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2659 local_irq_restore(flags); 2660} 2661EXPORT_SYMBOL(__napi_schedule); 2662 2663void __napi_complete(struct napi_struct *n) 2664{ 2665 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2666 BUG_ON(n->gro_list); 2667 2668 list_del(&n->poll_list); 2669 smp_mb__before_clear_bit(); 2670 clear_bit(NAPI_STATE_SCHED, &n->state); 2671} 2672EXPORT_SYMBOL(__napi_complete); 2673 2674void napi_complete(struct napi_struct *n) 2675{ 2676 unsigned long flags; 2677 2678 /* 2679 * don't let napi dequeue from the cpu poll list 2680 * just in case its running on a different cpu 2681 */ 2682 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2683 return; 2684 2685 napi_gro_flush(n); 2686 local_irq_save(flags); 2687 __napi_complete(n); 2688 local_irq_restore(flags); 2689} 2690EXPORT_SYMBOL(napi_complete); 2691 2692void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2693 int (*poll)(struct napi_struct *, int), int weight) 2694{ 2695 INIT_LIST_HEAD(&napi->poll_list); 2696 napi->gro_count = 0; 2697 napi->gro_list = NULL; 2698 napi->skb = NULL; 2699 napi->poll = poll; 2700 napi->weight = weight; 2701 list_add(&napi->dev_list, &dev->napi_list); 2702 napi->dev = dev; 2703#ifdef CONFIG_NETPOLL 2704 spin_lock_init(&napi->poll_lock); 2705 napi->poll_owner = -1; 2706#endif 2707 set_bit(NAPI_STATE_SCHED, &napi->state); 2708} 2709EXPORT_SYMBOL(netif_napi_add); 2710 2711void netif_napi_del(struct napi_struct *napi) 2712{ 2713 struct sk_buff *skb, *next; 2714 2715 list_del_init(&napi->dev_list); 2716 kfree_skb(napi->skb); 2717 2718 for (skb = napi->gro_list; skb; skb = next) { 2719 next = skb->next; 2720 skb->next = NULL; 2721 kfree_skb(skb); 2722 } 2723 2724 napi->gro_list = NULL; 2725 napi->gro_count = 0; 2726} 2727EXPORT_SYMBOL(netif_napi_del); 2728 2729 2730static void net_rx_action(struct softirq_action *h) 2731{ 2732 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2733 unsigned long time_limit = jiffies + 2; 2734 int budget = netdev_budget; 2735 void *have; 2736 2737 local_irq_disable(); 2738 2739 while (!list_empty(list)) { 2740 struct napi_struct *n; 2741 int work, weight; 2742 2743 /* If softirq window is exhuasted then punt. 2744 * Allow this to run for 2 jiffies since which will allow 2745 * an average latency of 1.5/HZ. 2746 */ 2747 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2748 goto softnet_break; 2749 2750 local_irq_enable(); 2751 2752 /* Even though interrupts have been re-enabled, this 2753 * access is safe because interrupts can only add new 2754 * entries to the tail of this list, and only ->poll() 2755 * calls can remove this head entry from the list. 2756 */ 2757 n = list_entry(list->next, struct napi_struct, poll_list); 2758 2759 have = netpoll_poll_lock(n); 2760 2761 weight = n->weight; 2762 2763 /* This NAPI_STATE_SCHED test is for avoiding a race 2764 * with netpoll's poll_napi(). Only the entity which 2765 * obtains the lock and sees NAPI_STATE_SCHED set will 2766 * actually make the ->poll() call. Therefore we avoid 2767 * accidently calling ->poll() when NAPI is not scheduled. 2768 */ 2769 work = 0; 2770 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2771 work = n->poll(n, weight); 2772 2773 WARN_ON_ONCE(work > weight); 2774 2775 budget -= work; 2776 2777 local_irq_disable(); 2778 2779 /* Drivers must not modify the NAPI state if they 2780 * consume the entire weight. In such cases this code 2781 * still "owns" the NAPI instance and therefore can 2782 * move the instance around on the list at-will. 2783 */ 2784 if (unlikely(work == weight)) { 2785 if (unlikely(napi_disable_pending(n))) 2786 __napi_complete(n); 2787 else 2788 list_move_tail(&n->poll_list, list); 2789 } 2790 2791 netpoll_poll_unlock(have); 2792 } 2793out: 2794 local_irq_enable(); 2795 2796#ifdef CONFIG_NET_DMA 2797 /* 2798 * There may not be any more sk_buffs coming right now, so push 2799 * any pending DMA copies to hardware 2800 */ 2801 dma_issue_pending_all(); 2802#endif 2803 2804 return; 2805 2806softnet_break: 2807 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2808 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2809 goto out; 2810} 2811 2812static gifconf_func_t * gifconf_list [NPROTO]; 2813 2814/** 2815 * register_gifconf - register a SIOCGIF handler 2816 * @family: Address family 2817 * @gifconf: Function handler 2818 * 2819 * Register protocol dependent address dumping routines. The handler 2820 * that is passed must not be freed or reused until it has been replaced 2821 * by another handler. 2822 */ 2823int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2824{ 2825 if (family >= NPROTO) 2826 return -EINVAL; 2827 gifconf_list[family] = gifconf; 2828 return 0; 2829} 2830 2831 2832/* 2833 * Map an interface index to its name (SIOCGIFNAME) 2834 */ 2835 2836/* 2837 * We need this ioctl for efficient implementation of the 2838 * if_indextoname() function required by the IPv6 API. Without 2839 * it, we would have to search all the interfaces to find a 2840 * match. --pb 2841 */ 2842 2843static int dev_ifname(struct net *net, struct ifreq __user *arg) 2844{ 2845 struct net_device *dev; 2846 struct ifreq ifr; 2847 2848 /* 2849 * Fetch the caller's info block. 2850 */ 2851 2852 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2853 return -EFAULT; 2854 2855 read_lock(&dev_base_lock); 2856 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2857 if (!dev) { 2858 read_unlock(&dev_base_lock); 2859 return -ENODEV; 2860 } 2861 2862 strcpy(ifr.ifr_name, dev->name); 2863 read_unlock(&dev_base_lock); 2864 2865 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2866 return -EFAULT; 2867 return 0; 2868} 2869 2870/* 2871 * Perform a SIOCGIFCONF call. This structure will change 2872 * size eventually, and there is nothing I can do about it. 2873 * Thus we will need a 'compatibility mode'. 2874 */ 2875 2876static int dev_ifconf(struct net *net, char __user *arg) 2877{ 2878 struct ifconf ifc; 2879 struct net_device *dev; 2880 char __user *pos; 2881 int len; 2882 int total; 2883 int i; 2884 2885 /* 2886 * Fetch the caller's info block. 2887 */ 2888 2889 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2890 return -EFAULT; 2891 2892 pos = ifc.ifc_buf; 2893 len = ifc.ifc_len; 2894 2895 /* 2896 * Loop over the interfaces, and write an info block for each. 2897 */ 2898 2899 total = 0; 2900 for_each_netdev(net, dev) { 2901 for (i = 0; i < NPROTO; i++) { 2902 if (gifconf_list[i]) { 2903 int done; 2904 if (!pos) 2905 done = gifconf_list[i](dev, NULL, 0); 2906 else 2907 done = gifconf_list[i](dev, pos + total, 2908 len - total); 2909 if (done < 0) 2910 return -EFAULT; 2911 total += done; 2912 } 2913 } 2914 } 2915 2916 /* 2917 * All done. Write the updated control block back to the caller. 2918 */ 2919 ifc.ifc_len = total; 2920 2921 /* 2922 * Both BSD and Solaris return 0 here, so we do too. 2923 */ 2924 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2925} 2926 2927#ifdef CONFIG_PROC_FS 2928/* 2929 * This is invoked by the /proc filesystem handler to display a device 2930 * in detail. 2931 */ 2932void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2933 __acquires(dev_base_lock) 2934{ 2935 struct net *net = seq_file_net(seq); 2936 loff_t off; 2937 struct net_device *dev; 2938 2939 read_lock(&dev_base_lock); 2940 if (!*pos) 2941 return SEQ_START_TOKEN; 2942 2943 off = 1; 2944 for_each_netdev(net, dev) 2945 if (off++ == *pos) 2946 return dev; 2947 2948 return NULL; 2949} 2950 2951void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2952{ 2953 struct net *net = seq_file_net(seq); 2954 ++*pos; 2955 return v == SEQ_START_TOKEN ? 2956 first_net_device(net) : next_net_device((struct net_device *)v); 2957} 2958 2959void dev_seq_stop(struct seq_file *seq, void *v) 2960 __releases(dev_base_lock) 2961{ 2962 read_unlock(&dev_base_lock); 2963} 2964 2965static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2966{ 2967 const struct net_device_stats *stats = dev_get_stats(dev); 2968 2969 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2970 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2971 dev->name, stats->rx_bytes, stats->rx_packets, 2972 stats->rx_errors, 2973 stats->rx_dropped + stats->rx_missed_errors, 2974 stats->rx_fifo_errors, 2975 stats->rx_length_errors + stats->rx_over_errors + 2976 stats->rx_crc_errors + stats->rx_frame_errors, 2977 stats->rx_compressed, stats->multicast, 2978 stats->tx_bytes, stats->tx_packets, 2979 stats->tx_errors, stats->tx_dropped, 2980 stats->tx_fifo_errors, stats->collisions, 2981 stats->tx_carrier_errors + 2982 stats->tx_aborted_errors + 2983 stats->tx_window_errors + 2984 stats->tx_heartbeat_errors, 2985 stats->tx_compressed); 2986} 2987 2988/* 2989 * Called from the PROCfs module. This now uses the new arbitrary sized 2990 * /proc/net interface to create /proc/net/dev 2991 */ 2992static int dev_seq_show(struct seq_file *seq, void *v) 2993{ 2994 if (v == SEQ_START_TOKEN) 2995 seq_puts(seq, "Inter-| Receive " 2996 " | Transmit\n" 2997 " face |bytes packets errs drop fifo frame " 2998 "compressed multicast|bytes packets errs " 2999 "drop fifo colls carrier compressed\n"); 3000 else 3001 dev_seq_printf_stats(seq, v); 3002 return 0; 3003} 3004 3005static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3006{ 3007 struct netif_rx_stats *rc = NULL; 3008 3009 while (*pos < nr_cpu_ids) 3010 if (cpu_online(*pos)) { 3011 rc = &per_cpu(netdev_rx_stat, *pos); 3012 break; 3013 } else 3014 ++*pos; 3015 return rc; 3016} 3017 3018static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3019{ 3020 return softnet_get_online(pos); 3021} 3022 3023static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3024{ 3025 ++*pos; 3026 return softnet_get_online(pos); 3027} 3028 3029static void softnet_seq_stop(struct seq_file *seq, void *v) 3030{ 3031} 3032 3033static int softnet_seq_show(struct seq_file *seq, void *v) 3034{ 3035 struct netif_rx_stats *s = v; 3036 3037 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3038 s->total, s->dropped, s->time_squeeze, 0, 3039 0, 0, 0, 0, /* was fastroute */ 3040 s->cpu_collision ); 3041 return 0; 3042} 3043 3044static const struct seq_operations dev_seq_ops = { 3045 .start = dev_seq_start, 3046 .next = dev_seq_next, 3047 .stop = dev_seq_stop, 3048 .show = dev_seq_show, 3049}; 3050 3051static int dev_seq_open(struct inode *inode, struct file *file) 3052{ 3053 return seq_open_net(inode, file, &dev_seq_ops, 3054 sizeof(struct seq_net_private)); 3055} 3056 3057static const struct file_operations dev_seq_fops = { 3058 .owner = THIS_MODULE, 3059 .open = dev_seq_open, 3060 .read = seq_read, 3061 .llseek = seq_lseek, 3062 .release = seq_release_net, 3063}; 3064 3065static const struct seq_operations softnet_seq_ops = { 3066 .start = softnet_seq_start, 3067 .next = softnet_seq_next, 3068 .stop = softnet_seq_stop, 3069 .show = softnet_seq_show, 3070}; 3071 3072static int softnet_seq_open(struct inode *inode, struct file *file) 3073{ 3074 return seq_open(file, &softnet_seq_ops); 3075} 3076 3077static const struct file_operations softnet_seq_fops = { 3078 .owner = THIS_MODULE, 3079 .open = softnet_seq_open, 3080 .read = seq_read, 3081 .llseek = seq_lseek, 3082 .release = seq_release, 3083}; 3084 3085static void *ptype_get_idx(loff_t pos) 3086{ 3087 struct packet_type *pt = NULL; 3088 loff_t i = 0; 3089 int t; 3090 3091 list_for_each_entry_rcu(pt, &ptype_all, list) { 3092 if (i == pos) 3093 return pt; 3094 ++i; 3095 } 3096 3097 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3098 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3099 if (i == pos) 3100 return pt; 3101 ++i; 3102 } 3103 } 3104 return NULL; 3105} 3106 3107static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3108 __acquires(RCU) 3109{ 3110 rcu_read_lock(); 3111 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3112} 3113 3114static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3115{ 3116 struct packet_type *pt; 3117 struct list_head *nxt; 3118 int hash; 3119 3120 ++*pos; 3121 if (v == SEQ_START_TOKEN) 3122 return ptype_get_idx(0); 3123 3124 pt = v; 3125 nxt = pt->list.next; 3126 if (pt->type == htons(ETH_P_ALL)) { 3127 if (nxt != &ptype_all) 3128 goto found; 3129 hash = 0; 3130 nxt = ptype_base[0].next; 3131 } else 3132 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3133 3134 while (nxt == &ptype_base[hash]) { 3135 if (++hash >= PTYPE_HASH_SIZE) 3136 return NULL; 3137 nxt = ptype_base[hash].next; 3138 } 3139found: 3140 return list_entry(nxt, struct packet_type, list); 3141} 3142 3143static void ptype_seq_stop(struct seq_file *seq, void *v) 3144 __releases(RCU) 3145{ 3146 rcu_read_unlock(); 3147} 3148 3149static int ptype_seq_show(struct seq_file *seq, void *v) 3150{ 3151 struct packet_type *pt = v; 3152 3153 if (v == SEQ_START_TOKEN) 3154 seq_puts(seq, "Type Device Function\n"); 3155 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3156 if (pt->type == htons(ETH_P_ALL)) 3157 seq_puts(seq, "ALL "); 3158 else 3159 seq_printf(seq, "%04x", ntohs(pt->type)); 3160 3161 seq_printf(seq, " %-8s %pF\n", 3162 pt->dev ? pt->dev->name : "", pt->func); 3163 } 3164 3165 return 0; 3166} 3167 3168static const struct seq_operations ptype_seq_ops = { 3169 .start = ptype_seq_start, 3170 .next = ptype_seq_next, 3171 .stop = ptype_seq_stop, 3172 .show = ptype_seq_show, 3173}; 3174 3175static int ptype_seq_open(struct inode *inode, struct file *file) 3176{ 3177 return seq_open_net(inode, file, &ptype_seq_ops, 3178 sizeof(struct seq_net_private)); 3179} 3180 3181static const struct file_operations ptype_seq_fops = { 3182 .owner = THIS_MODULE, 3183 .open = ptype_seq_open, 3184 .read = seq_read, 3185 .llseek = seq_lseek, 3186 .release = seq_release_net, 3187}; 3188 3189 3190static int __net_init dev_proc_net_init(struct net *net) 3191{ 3192 int rc = -ENOMEM; 3193 3194 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3195 goto out; 3196 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3197 goto out_dev; 3198 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3199 goto out_softnet; 3200 3201 if (wext_proc_init(net)) 3202 goto out_ptype; 3203 rc = 0; 3204out: 3205 return rc; 3206out_ptype: 3207 proc_net_remove(net, "ptype"); 3208out_softnet: 3209 proc_net_remove(net, "softnet_stat"); 3210out_dev: 3211 proc_net_remove(net, "dev"); 3212 goto out; 3213} 3214 3215static void __net_exit dev_proc_net_exit(struct net *net) 3216{ 3217 wext_proc_exit(net); 3218 3219 proc_net_remove(net, "ptype"); 3220 proc_net_remove(net, "softnet_stat"); 3221 proc_net_remove(net, "dev"); 3222} 3223 3224static struct pernet_operations __net_initdata dev_proc_ops = { 3225 .init = dev_proc_net_init, 3226 .exit = dev_proc_net_exit, 3227}; 3228 3229static int __init dev_proc_init(void) 3230{ 3231 return register_pernet_subsys(&dev_proc_ops); 3232} 3233#else 3234#define dev_proc_init() 0 3235#endif /* CONFIG_PROC_FS */ 3236 3237 3238/** 3239 * netdev_set_master - set up master/slave pair 3240 * @slave: slave device 3241 * @master: new master device 3242 * 3243 * Changes the master device of the slave. Pass %NULL to break the 3244 * bonding. The caller must hold the RTNL semaphore. On a failure 3245 * a negative errno code is returned. On success the reference counts 3246 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3247 * function returns zero. 3248 */ 3249int netdev_set_master(struct net_device *slave, struct net_device *master) 3250{ 3251 struct net_device *old = slave->master; 3252 3253 ASSERT_RTNL(); 3254 3255 if (master) { 3256 if (old) 3257 return -EBUSY; 3258 dev_hold(master); 3259 } 3260 3261 slave->master = master; 3262 3263 synchronize_net(); 3264 3265 if (old) 3266 dev_put(old); 3267 3268 if (master) 3269 slave->flags |= IFF_SLAVE; 3270 else 3271 slave->flags &= ~IFF_SLAVE; 3272 3273 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3274 return 0; 3275} 3276 3277static void dev_change_rx_flags(struct net_device *dev, int flags) 3278{ 3279 const struct net_device_ops *ops = dev->netdev_ops; 3280 3281 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3282 ops->ndo_change_rx_flags(dev, flags); 3283} 3284 3285static int __dev_set_promiscuity(struct net_device *dev, int inc) 3286{ 3287 unsigned short old_flags = dev->flags; 3288 uid_t uid; 3289 gid_t gid; 3290 3291 ASSERT_RTNL(); 3292 3293 dev->flags |= IFF_PROMISC; 3294 dev->promiscuity += inc; 3295 if (dev->promiscuity == 0) { 3296 /* 3297 * Avoid overflow. 3298 * If inc causes overflow, untouch promisc and return error. 3299 */ 3300 if (inc < 0) 3301 dev->flags &= ~IFF_PROMISC; 3302 else { 3303 dev->promiscuity -= inc; 3304 printk(KERN_WARNING "%s: promiscuity touches roof, " 3305 "set promiscuity failed, promiscuity feature " 3306 "of device might be broken.\n", dev->name); 3307 return -EOVERFLOW; 3308 } 3309 } 3310 if (dev->flags != old_flags) { 3311 printk(KERN_INFO "device %s %s promiscuous mode\n", 3312 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3313 "left"); 3314 if (audit_enabled) { 3315 current_uid_gid(&uid, &gid); 3316 audit_log(current->audit_context, GFP_ATOMIC, 3317 AUDIT_ANOM_PROMISCUOUS, 3318 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3319 dev->name, (dev->flags & IFF_PROMISC), 3320 (old_flags & IFF_PROMISC), 3321 audit_get_loginuid(current), 3322 uid, gid, 3323 audit_get_sessionid(current)); 3324 } 3325 3326 dev_change_rx_flags(dev, IFF_PROMISC); 3327 } 3328 return 0; 3329} 3330 3331/** 3332 * dev_set_promiscuity - update promiscuity count on a device 3333 * @dev: device 3334 * @inc: modifier 3335 * 3336 * Add or remove promiscuity from a device. While the count in the device 3337 * remains above zero the interface remains promiscuous. Once it hits zero 3338 * the device reverts back to normal filtering operation. A negative inc 3339 * value is used to drop promiscuity on the device. 3340 * Return 0 if successful or a negative errno code on error. 3341 */ 3342int dev_set_promiscuity(struct net_device *dev, int inc) 3343{ 3344 unsigned short old_flags = dev->flags; 3345 int err; 3346 3347 err = __dev_set_promiscuity(dev, inc); 3348 if (err < 0) 3349 return err; 3350 if (dev->flags != old_flags) 3351 dev_set_rx_mode(dev); 3352 return err; 3353} 3354 3355/** 3356 * dev_set_allmulti - update allmulti count on a device 3357 * @dev: device 3358 * @inc: modifier 3359 * 3360 * Add or remove reception of all multicast frames to a device. While the 3361 * count in the device remains above zero the interface remains listening 3362 * to all interfaces. Once it hits zero the device reverts back to normal 3363 * filtering operation. A negative @inc value is used to drop the counter 3364 * when releasing a resource needing all multicasts. 3365 * Return 0 if successful or a negative errno code on error. 3366 */ 3367 3368int dev_set_allmulti(struct net_device *dev, int inc) 3369{ 3370 unsigned short old_flags = dev->flags; 3371 3372 ASSERT_RTNL(); 3373 3374 dev->flags |= IFF_ALLMULTI; 3375 dev->allmulti += inc; 3376 if (dev->allmulti == 0) { 3377 /* 3378 * Avoid overflow. 3379 * If inc causes overflow, untouch allmulti and return error. 3380 */ 3381 if (inc < 0) 3382 dev->flags &= ~IFF_ALLMULTI; 3383 else { 3384 dev->allmulti -= inc; 3385 printk(KERN_WARNING "%s: allmulti touches roof, " 3386 "set allmulti failed, allmulti feature of " 3387 "device might be broken.\n", dev->name); 3388 return -EOVERFLOW; 3389 } 3390 } 3391 if (dev->flags ^ old_flags) { 3392 dev_change_rx_flags(dev, IFF_ALLMULTI); 3393 dev_set_rx_mode(dev); 3394 } 3395 return 0; 3396} 3397 3398/* 3399 * Upload unicast and multicast address lists to device and 3400 * configure RX filtering. When the device doesn't support unicast 3401 * filtering it is put in promiscuous mode while unicast addresses 3402 * are present. 3403 */ 3404void __dev_set_rx_mode(struct net_device *dev) 3405{ 3406 const struct net_device_ops *ops = dev->netdev_ops; 3407 3408 /* dev_open will call this function so the list will stay sane. */ 3409 if (!(dev->flags&IFF_UP)) 3410 return; 3411 3412 if (!netif_device_present(dev)) 3413 return; 3414 3415 if (ops->ndo_set_rx_mode) 3416 ops->ndo_set_rx_mode(dev); 3417 else { 3418 /* Unicast addresses changes may only happen under the rtnl, 3419 * therefore calling __dev_set_promiscuity here is safe. 3420 */ 3421 if (dev->uc_count > 0 && !dev->uc_promisc) { 3422 __dev_set_promiscuity(dev, 1); 3423 dev->uc_promisc = 1; 3424 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3425 __dev_set_promiscuity(dev, -1); 3426 dev->uc_promisc = 0; 3427 } 3428 3429 if (ops->ndo_set_multicast_list) 3430 ops->ndo_set_multicast_list(dev); 3431 } 3432} 3433 3434void dev_set_rx_mode(struct net_device *dev) 3435{ 3436 netif_addr_lock_bh(dev); 3437 __dev_set_rx_mode(dev); 3438 netif_addr_unlock_bh(dev); 3439} 3440 3441int __dev_addr_delete(struct dev_addr_list **list, int *count, 3442 void *addr, int alen, int glbl) 3443{ 3444 struct dev_addr_list *da; 3445 3446 for (; (da = *list) != NULL; list = &da->next) { 3447 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3448 alen == da->da_addrlen) { 3449 if (glbl) { 3450 int old_glbl = da->da_gusers; 3451 da->da_gusers = 0; 3452 if (old_glbl == 0) 3453 break; 3454 } 3455 if (--da->da_users) 3456 return 0; 3457 3458 *list = da->next; 3459 kfree(da); 3460 (*count)--; 3461 return 0; 3462 } 3463 } 3464 return -ENOENT; 3465} 3466 3467int __dev_addr_add(struct dev_addr_list **list, int *count, 3468 void *addr, int alen, int glbl) 3469{ 3470 struct dev_addr_list *da; 3471 3472 for (da = *list; da != NULL; da = da->next) { 3473 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3474 da->da_addrlen == alen) { 3475 if (glbl) { 3476 int old_glbl = da->da_gusers; 3477 da->da_gusers = 1; 3478 if (old_glbl) 3479 return 0; 3480 } 3481 da->da_users++; 3482 return 0; 3483 } 3484 } 3485 3486 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3487 if (da == NULL) 3488 return -ENOMEM; 3489 memcpy(da->da_addr, addr, alen); 3490 da->da_addrlen = alen; 3491 da->da_users = 1; 3492 da->da_gusers = glbl ? 1 : 0; 3493 da->next = *list; 3494 *list = da; 3495 (*count)++; 3496 return 0; 3497} 3498 3499/** 3500 * dev_unicast_delete - Release secondary unicast address. 3501 * @dev: device 3502 * @addr: address to delete 3503 * @alen: length of @addr 3504 * 3505 * Release reference to a secondary unicast address and remove it 3506 * from the device if the reference count drops to zero. 3507 * 3508 * The caller must hold the rtnl_mutex. 3509 */ 3510int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3511{ 3512 int err; 3513 3514 ASSERT_RTNL(); 3515 3516 netif_addr_lock_bh(dev); 3517 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3518 if (!err) 3519 __dev_set_rx_mode(dev); 3520 netif_addr_unlock_bh(dev); 3521 return err; 3522} 3523EXPORT_SYMBOL(dev_unicast_delete); 3524 3525/** 3526 * dev_unicast_add - add a secondary unicast address 3527 * @dev: device 3528 * @addr: address to add 3529 * @alen: length of @addr 3530 * 3531 * Add a secondary unicast address to the device or increase 3532 * the reference count if it already exists. 3533 * 3534 * The caller must hold the rtnl_mutex. 3535 */ 3536int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3537{ 3538 int err; 3539 3540 ASSERT_RTNL(); 3541 3542 netif_addr_lock_bh(dev); 3543 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3544 if (!err) 3545 __dev_set_rx_mode(dev); 3546 netif_addr_unlock_bh(dev); 3547 return err; 3548} 3549EXPORT_SYMBOL(dev_unicast_add); 3550 3551int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3552 struct dev_addr_list **from, int *from_count) 3553{ 3554 struct dev_addr_list *da, *next; 3555 int err = 0; 3556 3557 da = *from; 3558 while (da != NULL) { 3559 next = da->next; 3560 if (!da->da_synced) { 3561 err = __dev_addr_add(to, to_count, 3562 da->da_addr, da->da_addrlen, 0); 3563 if (err < 0) 3564 break; 3565 da->da_synced = 1; 3566 da->da_users++; 3567 } else if (da->da_users == 1) { 3568 __dev_addr_delete(to, to_count, 3569 da->da_addr, da->da_addrlen, 0); 3570 __dev_addr_delete(from, from_count, 3571 da->da_addr, da->da_addrlen, 0); 3572 } 3573 da = next; 3574 } 3575 return err; 3576} 3577 3578void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3579 struct dev_addr_list **from, int *from_count) 3580{ 3581 struct dev_addr_list *da, *next; 3582 3583 da = *from; 3584 while (da != NULL) { 3585 next = da->next; 3586 if (da->da_synced) { 3587 __dev_addr_delete(to, to_count, 3588 da->da_addr, da->da_addrlen, 0); 3589 da->da_synced = 0; 3590 __dev_addr_delete(from, from_count, 3591 da->da_addr, da->da_addrlen, 0); 3592 } 3593 da = next; 3594 } 3595} 3596 3597/** 3598 * dev_unicast_sync - Synchronize device's unicast list to another device 3599 * @to: destination device 3600 * @from: source device 3601 * 3602 * Add newly added addresses to the destination device and release 3603 * addresses that have no users left. The source device must be 3604 * locked by netif_tx_lock_bh. 3605 * 3606 * This function is intended to be called from the dev->set_rx_mode 3607 * function of layered software devices. 3608 */ 3609int dev_unicast_sync(struct net_device *to, struct net_device *from) 3610{ 3611 int err = 0; 3612 3613 netif_addr_lock_bh(to); 3614 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3615 &from->uc_list, &from->uc_count); 3616 if (!err) 3617 __dev_set_rx_mode(to); 3618 netif_addr_unlock_bh(to); 3619 return err; 3620} 3621EXPORT_SYMBOL(dev_unicast_sync); 3622 3623/** 3624 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3625 * @to: destination device 3626 * @from: source device 3627 * 3628 * Remove all addresses that were added to the destination device by 3629 * dev_unicast_sync(). This function is intended to be called from the 3630 * dev->stop function of layered software devices. 3631 */ 3632void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3633{ 3634 netif_addr_lock_bh(from); 3635 netif_addr_lock(to); 3636 3637 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3638 &from->uc_list, &from->uc_count); 3639 __dev_set_rx_mode(to); 3640 3641 netif_addr_unlock(to); 3642 netif_addr_unlock_bh(from); 3643} 3644EXPORT_SYMBOL(dev_unicast_unsync); 3645 3646static void __dev_addr_discard(struct dev_addr_list **list) 3647{ 3648 struct dev_addr_list *tmp; 3649 3650 while (*list != NULL) { 3651 tmp = *list; 3652 *list = tmp->next; 3653 if (tmp->da_users > tmp->da_gusers) 3654 printk("__dev_addr_discard: address leakage! " 3655 "da_users=%d\n", tmp->da_users); 3656 kfree(tmp); 3657 } 3658} 3659 3660static void dev_addr_discard(struct net_device *dev) 3661{ 3662 netif_addr_lock_bh(dev); 3663 3664 __dev_addr_discard(&dev->uc_list); 3665 dev->uc_count = 0; 3666 3667 __dev_addr_discard(&dev->mc_list); 3668 dev->mc_count = 0; 3669 3670 netif_addr_unlock_bh(dev); 3671} 3672 3673/** 3674 * dev_get_flags - get flags reported to userspace 3675 * @dev: device 3676 * 3677 * Get the combination of flag bits exported through APIs to userspace. 3678 */ 3679unsigned dev_get_flags(const struct net_device *dev) 3680{ 3681 unsigned flags; 3682 3683 flags = (dev->flags & ~(IFF_PROMISC | 3684 IFF_ALLMULTI | 3685 IFF_RUNNING | 3686 IFF_LOWER_UP | 3687 IFF_DORMANT)) | 3688 (dev->gflags & (IFF_PROMISC | 3689 IFF_ALLMULTI)); 3690 3691 if (netif_running(dev)) { 3692 if (netif_oper_up(dev)) 3693 flags |= IFF_RUNNING; 3694 if (netif_carrier_ok(dev)) 3695 flags |= IFF_LOWER_UP; 3696 if (netif_dormant(dev)) 3697 flags |= IFF_DORMANT; 3698 } 3699 3700 return flags; 3701} 3702 3703/** 3704 * dev_change_flags - change device settings 3705 * @dev: device 3706 * @flags: device state flags 3707 * 3708 * Change settings on device based state flags. The flags are 3709 * in the userspace exported format. 3710 */ 3711int dev_change_flags(struct net_device *dev, unsigned flags) 3712{ 3713 int ret, changes; 3714 int old_flags = dev->flags; 3715 3716 ASSERT_RTNL(); 3717 3718 /* 3719 * Set the flags on our device. 3720 */ 3721 3722 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3723 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3724 IFF_AUTOMEDIA)) | 3725 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3726 IFF_ALLMULTI)); 3727 3728 /* 3729 * Load in the correct multicast list now the flags have changed. 3730 */ 3731 3732 if ((old_flags ^ flags) & IFF_MULTICAST) 3733 dev_change_rx_flags(dev, IFF_MULTICAST); 3734 3735 dev_set_rx_mode(dev); 3736 3737 /* 3738 * Have we downed the interface. We handle IFF_UP ourselves 3739 * according to user attempts to set it, rather than blindly 3740 * setting it. 3741 */ 3742 3743 ret = 0; 3744 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3745 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3746 3747 if (!ret) 3748 dev_set_rx_mode(dev); 3749 } 3750 3751 if (dev->flags & IFF_UP && 3752 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3753 IFF_VOLATILE))) 3754 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3755 3756 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3757 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3758 dev->gflags ^= IFF_PROMISC; 3759 dev_set_promiscuity(dev, inc); 3760 } 3761 3762 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3763 is important. Some (broken) drivers set IFF_PROMISC, when 3764 IFF_ALLMULTI is requested not asking us and not reporting. 3765 */ 3766 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3767 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3768 dev->gflags ^= IFF_ALLMULTI; 3769 dev_set_allmulti(dev, inc); 3770 } 3771 3772 /* Exclude state transition flags, already notified */ 3773 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3774 if (changes) 3775 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3776 3777 return ret; 3778} 3779 3780/** 3781 * dev_set_mtu - Change maximum transfer unit 3782 * @dev: device 3783 * @new_mtu: new transfer unit 3784 * 3785 * Change the maximum transfer size of the network device. 3786 */ 3787int dev_set_mtu(struct net_device *dev, int new_mtu) 3788{ 3789 const struct net_device_ops *ops = dev->netdev_ops; 3790 int err; 3791 3792 if (new_mtu == dev->mtu) 3793 return 0; 3794 3795 /* MTU must be positive. */ 3796 if (new_mtu < 0) 3797 return -EINVAL; 3798 3799 if (!netif_device_present(dev)) 3800 return -ENODEV; 3801 3802 err = 0; 3803 if (ops->ndo_change_mtu) 3804 err = ops->ndo_change_mtu(dev, new_mtu); 3805 else 3806 dev->mtu = new_mtu; 3807 3808 if (!err && dev->flags & IFF_UP) 3809 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3810 return err; 3811} 3812 3813/** 3814 * dev_set_mac_address - Change Media Access Control Address 3815 * @dev: device 3816 * @sa: new address 3817 * 3818 * Change the hardware (MAC) address of the device 3819 */ 3820int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3821{ 3822 const struct net_device_ops *ops = dev->netdev_ops; 3823 int err; 3824 3825 if (!ops->ndo_set_mac_address) 3826 return -EOPNOTSUPP; 3827 if (sa->sa_family != dev->type) 3828 return -EINVAL; 3829 if (!netif_device_present(dev)) 3830 return -ENODEV; 3831 err = ops->ndo_set_mac_address(dev, sa); 3832 if (!err) 3833 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3834 return err; 3835} 3836 3837/* 3838 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3839 */ 3840static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3841{ 3842 int err; 3843 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3844 3845 if (!dev) 3846 return -ENODEV; 3847 3848 switch (cmd) { 3849 case SIOCGIFFLAGS: /* Get interface flags */ 3850 ifr->ifr_flags = dev_get_flags(dev); 3851 return 0; 3852 3853 case SIOCGIFMETRIC: /* Get the metric on the interface 3854 (currently unused) */ 3855 ifr->ifr_metric = 0; 3856 return 0; 3857 3858 case SIOCGIFMTU: /* Get the MTU of a device */ 3859 ifr->ifr_mtu = dev->mtu; 3860 return 0; 3861 3862 case SIOCGIFHWADDR: 3863 if (!dev->addr_len) 3864 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3865 else 3866 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3867 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3868 ifr->ifr_hwaddr.sa_family = dev->type; 3869 return 0; 3870 3871 case SIOCGIFSLAVE: 3872 err = -EINVAL; 3873 break; 3874 3875 case SIOCGIFMAP: 3876 ifr->ifr_map.mem_start = dev->mem_start; 3877 ifr->ifr_map.mem_end = dev->mem_end; 3878 ifr->ifr_map.base_addr = dev->base_addr; 3879 ifr->ifr_map.irq = dev->irq; 3880 ifr->ifr_map.dma = dev->dma; 3881 ifr->ifr_map.port = dev->if_port; 3882 return 0; 3883 3884 case SIOCGIFINDEX: 3885 ifr->ifr_ifindex = dev->ifindex; 3886 return 0; 3887 3888 case SIOCGIFTXQLEN: 3889 ifr->ifr_qlen = dev->tx_queue_len; 3890 return 0; 3891 3892 default: 3893 /* dev_ioctl() should ensure this case 3894 * is never reached 3895 */ 3896 WARN_ON(1); 3897 err = -EINVAL; 3898 break; 3899 3900 } 3901 return err; 3902} 3903 3904/* 3905 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3906 */ 3907static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3908{ 3909 int err; 3910 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3911 const struct net_device_ops *ops; 3912 3913 if (!dev) 3914 return -ENODEV; 3915 3916 ops = dev->netdev_ops; 3917 3918 switch (cmd) { 3919 case SIOCSIFFLAGS: /* Set interface flags */ 3920 return dev_change_flags(dev, ifr->ifr_flags); 3921 3922 case SIOCSIFMETRIC: /* Set the metric on the interface 3923 (currently unused) */ 3924 return -EOPNOTSUPP; 3925 3926 case SIOCSIFMTU: /* Set the MTU of a device */ 3927 return dev_set_mtu(dev, ifr->ifr_mtu); 3928 3929 case SIOCSIFHWADDR: 3930 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3931 3932 case SIOCSIFHWBROADCAST: 3933 if (ifr->ifr_hwaddr.sa_family != dev->type) 3934 return -EINVAL; 3935 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3936 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3937 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3938 return 0; 3939 3940 case SIOCSIFMAP: 3941 if (ops->ndo_set_config) { 3942 if (!netif_device_present(dev)) 3943 return -ENODEV; 3944 return ops->ndo_set_config(dev, &ifr->ifr_map); 3945 } 3946 return -EOPNOTSUPP; 3947 3948 case SIOCADDMULTI: 3949 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3950 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3951 return -EINVAL; 3952 if (!netif_device_present(dev)) 3953 return -ENODEV; 3954 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3955 dev->addr_len, 1); 3956 3957 case SIOCDELMULTI: 3958 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3959 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3960 return -EINVAL; 3961 if (!netif_device_present(dev)) 3962 return -ENODEV; 3963 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3964 dev->addr_len, 1); 3965 3966 case SIOCSIFTXQLEN: 3967 if (ifr->ifr_qlen < 0) 3968 return -EINVAL; 3969 dev->tx_queue_len = ifr->ifr_qlen; 3970 return 0; 3971 3972 case SIOCSIFNAME: 3973 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3974 return dev_change_name(dev, ifr->ifr_newname); 3975 3976 /* 3977 * Unknown or private ioctl 3978 */ 3979 3980 default: 3981 if ((cmd >= SIOCDEVPRIVATE && 3982 cmd <= SIOCDEVPRIVATE + 15) || 3983 cmd == SIOCBONDENSLAVE || 3984 cmd == SIOCBONDRELEASE || 3985 cmd == SIOCBONDSETHWADDR || 3986 cmd == SIOCBONDSLAVEINFOQUERY || 3987 cmd == SIOCBONDINFOQUERY || 3988 cmd == SIOCBONDCHANGEACTIVE || 3989 cmd == SIOCGMIIPHY || 3990 cmd == SIOCGMIIREG || 3991 cmd == SIOCSMIIREG || 3992 cmd == SIOCBRADDIF || 3993 cmd == SIOCBRDELIF || 3994 cmd == SIOCSHWTSTAMP || 3995 cmd == SIOCWANDEV) { 3996 err = -EOPNOTSUPP; 3997 if (ops->ndo_do_ioctl) { 3998 if (netif_device_present(dev)) 3999 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4000 else 4001 err = -ENODEV; 4002 } 4003 } else 4004 err = -EINVAL; 4005 4006 } 4007 return err; 4008} 4009 4010/* 4011 * This function handles all "interface"-type I/O control requests. The actual 4012 * 'doing' part of this is dev_ifsioc above. 4013 */ 4014 4015/** 4016 * dev_ioctl - network device ioctl 4017 * @net: the applicable net namespace 4018 * @cmd: command to issue 4019 * @arg: pointer to a struct ifreq in user space 4020 * 4021 * Issue ioctl functions to devices. This is normally called by the 4022 * user space syscall interfaces but can sometimes be useful for 4023 * other purposes. The return value is the return from the syscall if 4024 * positive or a negative errno code on error. 4025 */ 4026 4027int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4028{ 4029 struct ifreq ifr; 4030 int ret; 4031 char *colon; 4032 4033 /* One special case: SIOCGIFCONF takes ifconf argument 4034 and requires shared lock, because it sleeps writing 4035 to user space. 4036 */ 4037 4038 if (cmd == SIOCGIFCONF) { 4039 rtnl_lock(); 4040 ret = dev_ifconf(net, (char __user *) arg); 4041 rtnl_unlock(); 4042 return ret; 4043 } 4044 if (cmd == SIOCGIFNAME) 4045 return dev_ifname(net, (struct ifreq __user *)arg); 4046 4047 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4048 return -EFAULT; 4049 4050 ifr.ifr_name[IFNAMSIZ-1] = 0; 4051 4052 colon = strchr(ifr.ifr_name, ':'); 4053 if (colon) 4054 *colon = 0; 4055 4056 /* 4057 * See which interface the caller is talking about. 4058 */ 4059 4060 switch (cmd) { 4061 /* 4062 * These ioctl calls: 4063 * - can be done by all. 4064 * - atomic and do not require locking. 4065 * - return a value 4066 */ 4067 case SIOCGIFFLAGS: 4068 case SIOCGIFMETRIC: 4069 case SIOCGIFMTU: 4070 case SIOCGIFHWADDR: 4071 case SIOCGIFSLAVE: 4072 case SIOCGIFMAP: 4073 case SIOCGIFINDEX: 4074 case SIOCGIFTXQLEN: 4075 dev_load(net, ifr.ifr_name); 4076 read_lock(&dev_base_lock); 4077 ret = dev_ifsioc_locked(net, &ifr, cmd); 4078 read_unlock(&dev_base_lock); 4079 if (!ret) { 4080 if (colon) 4081 *colon = ':'; 4082 if (copy_to_user(arg, &ifr, 4083 sizeof(struct ifreq))) 4084 ret = -EFAULT; 4085 } 4086 return ret; 4087 4088 case SIOCETHTOOL: 4089 dev_load(net, ifr.ifr_name); 4090 rtnl_lock(); 4091 ret = dev_ethtool(net, &ifr); 4092 rtnl_unlock(); 4093 if (!ret) { 4094 if (colon) 4095 *colon = ':'; 4096 if (copy_to_user(arg, &ifr, 4097 sizeof(struct ifreq))) 4098 ret = -EFAULT; 4099 } 4100 return ret; 4101 4102 /* 4103 * These ioctl calls: 4104 * - require superuser power. 4105 * - require strict serialization. 4106 * - return a value 4107 */ 4108 case SIOCGMIIPHY: 4109 case SIOCGMIIREG: 4110 case SIOCSIFNAME: 4111 if (!capable(CAP_NET_ADMIN)) 4112 return -EPERM; 4113 dev_load(net, ifr.ifr_name); 4114 rtnl_lock(); 4115 ret = dev_ifsioc(net, &ifr, cmd); 4116 rtnl_unlock(); 4117 if (!ret) { 4118 if (colon) 4119 *colon = ':'; 4120 if (copy_to_user(arg, &ifr, 4121 sizeof(struct ifreq))) 4122 ret = -EFAULT; 4123 } 4124 return ret; 4125 4126 /* 4127 * These ioctl calls: 4128 * - require superuser power. 4129 * - require strict serialization. 4130 * - do not return a value 4131 */ 4132 case SIOCSIFFLAGS: 4133 case SIOCSIFMETRIC: 4134 case SIOCSIFMTU: 4135 case SIOCSIFMAP: 4136 case SIOCSIFHWADDR: 4137 case SIOCSIFSLAVE: 4138 case SIOCADDMULTI: 4139 case SIOCDELMULTI: 4140 case SIOCSIFHWBROADCAST: 4141 case SIOCSIFTXQLEN: 4142 case SIOCSMIIREG: 4143 case SIOCBONDENSLAVE: 4144 case SIOCBONDRELEASE: 4145 case SIOCBONDSETHWADDR: 4146 case SIOCBONDCHANGEACTIVE: 4147 case SIOCBRADDIF: 4148 case SIOCBRDELIF: 4149 case SIOCSHWTSTAMP: 4150 if (!capable(CAP_NET_ADMIN)) 4151 return -EPERM; 4152 /* fall through */ 4153 case SIOCBONDSLAVEINFOQUERY: 4154 case SIOCBONDINFOQUERY: 4155 dev_load(net, ifr.ifr_name); 4156 rtnl_lock(); 4157 ret = dev_ifsioc(net, &ifr, cmd); 4158 rtnl_unlock(); 4159 return ret; 4160 4161 case SIOCGIFMEM: 4162 /* Get the per device memory space. We can add this but 4163 * currently do not support it */ 4164 case SIOCSIFMEM: 4165 /* Set the per device memory buffer space. 4166 * Not applicable in our case */ 4167 case SIOCSIFLINK: 4168 return -EINVAL; 4169 4170 /* 4171 * Unknown or private ioctl. 4172 */ 4173 default: 4174 if (cmd == SIOCWANDEV || 4175 (cmd >= SIOCDEVPRIVATE && 4176 cmd <= SIOCDEVPRIVATE + 15)) { 4177 dev_load(net, ifr.ifr_name); 4178 rtnl_lock(); 4179 ret = dev_ifsioc(net, &ifr, cmd); 4180 rtnl_unlock(); 4181 if (!ret && copy_to_user(arg, &ifr, 4182 sizeof(struct ifreq))) 4183 ret = -EFAULT; 4184 return ret; 4185 } 4186 /* Take care of Wireless Extensions */ 4187 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4188 return wext_handle_ioctl(net, &ifr, cmd, arg); 4189 return -EINVAL; 4190 } 4191} 4192 4193 4194/** 4195 * dev_new_index - allocate an ifindex 4196 * @net: the applicable net namespace 4197 * 4198 * Returns a suitable unique value for a new device interface 4199 * number. The caller must hold the rtnl semaphore or the 4200 * dev_base_lock to be sure it remains unique. 4201 */ 4202static int dev_new_index(struct net *net) 4203{ 4204 static int ifindex; 4205 for (;;) { 4206 if (++ifindex <= 0) 4207 ifindex = 1; 4208 if (!__dev_get_by_index(net, ifindex)) 4209 return ifindex; 4210 } 4211} 4212 4213/* Delayed registration/unregisteration */ 4214static LIST_HEAD(net_todo_list); 4215 4216static void net_set_todo(struct net_device *dev) 4217{ 4218 list_add_tail(&dev->todo_list, &net_todo_list); 4219} 4220 4221static void rollback_registered(struct net_device *dev) 4222{ 4223 BUG_ON(dev_boot_phase); 4224 ASSERT_RTNL(); 4225 4226 /* Some devices call without registering for initialization unwind. */ 4227 if (dev->reg_state == NETREG_UNINITIALIZED) { 4228 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4229 "was registered\n", dev->name, dev); 4230 4231 WARN_ON(1); 4232 return; 4233 } 4234 4235 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4236 4237 /* If device is running, close it first. */ 4238 dev_close(dev); 4239 4240 /* And unlink it from device chain. */ 4241 unlist_netdevice(dev); 4242 4243 dev->reg_state = NETREG_UNREGISTERING; 4244 4245 synchronize_net(); 4246 4247 /* Shutdown queueing discipline. */ 4248 dev_shutdown(dev); 4249 4250 4251 /* Notify protocols, that we are about to destroy 4252 this device. They should clean all the things. 4253 */ 4254 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4255 4256 /* 4257 * Flush the unicast and multicast chains 4258 */ 4259 dev_addr_discard(dev); 4260 4261 if (dev->netdev_ops->ndo_uninit) 4262 dev->netdev_ops->ndo_uninit(dev); 4263 4264 /* Notifier chain MUST detach us from master device. */ 4265 WARN_ON(dev->master); 4266 4267 /* Remove entries from kobject tree */ 4268 netdev_unregister_kobject(dev); 4269 4270 synchronize_net(); 4271 4272 dev_put(dev); 4273} 4274 4275static void __netdev_init_queue_locks_one(struct net_device *dev, 4276 struct netdev_queue *dev_queue, 4277 void *_unused) 4278{ 4279 spin_lock_init(&dev_queue->_xmit_lock); 4280 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4281 dev_queue->xmit_lock_owner = -1; 4282} 4283 4284static void netdev_init_queue_locks(struct net_device *dev) 4285{ 4286 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4287 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4288} 4289 4290unsigned long netdev_fix_features(unsigned long features, const char *name) 4291{ 4292 /* Fix illegal SG+CSUM combinations. */ 4293 if ((features & NETIF_F_SG) && 4294 !(features & NETIF_F_ALL_CSUM)) { 4295 if (name) 4296 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4297 "checksum feature.\n", name); 4298 features &= ~NETIF_F_SG; 4299 } 4300 4301 /* TSO requires that SG is present as well. */ 4302 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4303 if (name) 4304 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4305 "SG feature.\n", name); 4306 features &= ~NETIF_F_TSO; 4307 } 4308 4309 if (features & NETIF_F_UFO) { 4310 if (!(features & NETIF_F_GEN_CSUM)) { 4311 if (name) 4312 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4313 "since no NETIF_F_HW_CSUM feature.\n", 4314 name); 4315 features &= ~NETIF_F_UFO; 4316 } 4317 4318 if (!(features & NETIF_F_SG)) { 4319 if (name) 4320 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4321 "since no NETIF_F_SG feature.\n", name); 4322 features &= ~NETIF_F_UFO; 4323 } 4324 } 4325 4326 return features; 4327} 4328EXPORT_SYMBOL(netdev_fix_features); 4329 4330/* Some devices need to (re-)set their netdev_ops inside 4331 * ->init() or similar. If that happens, we have to setup 4332 * the compat pointers again. 4333 */ 4334void netdev_resync_ops(struct net_device *dev) 4335{ 4336#ifdef CONFIG_COMPAT_NET_DEV_OPS 4337 const struct net_device_ops *ops = dev->netdev_ops; 4338 4339 dev->init = ops->ndo_init; 4340 dev->uninit = ops->ndo_uninit; 4341 dev->open = ops->ndo_open; 4342 dev->change_rx_flags = ops->ndo_change_rx_flags; 4343 dev->set_rx_mode = ops->ndo_set_rx_mode; 4344 dev->set_multicast_list = ops->ndo_set_multicast_list; 4345 dev->set_mac_address = ops->ndo_set_mac_address; 4346 dev->validate_addr = ops->ndo_validate_addr; 4347 dev->do_ioctl = ops->ndo_do_ioctl; 4348 dev->set_config = ops->ndo_set_config; 4349 dev->change_mtu = ops->ndo_change_mtu; 4350 dev->neigh_setup = ops->ndo_neigh_setup; 4351 dev->tx_timeout = ops->ndo_tx_timeout; 4352 dev->get_stats = ops->ndo_get_stats; 4353 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4354 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4355 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4356#ifdef CONFIG_NET_POLL_CONTROLLER 4357 dev->poll_controller = ops->ndo_poll_controller; 4358#endif 4359#endif 4360} 4361EXPORT_SYMBOL(netdev_resync_ops); 4362 4363/** 4364 * register_netdevice - register a network device 4365 * @dev: device to register 4366 * 4367 * Take a completed network device structure and add it to the kernel 4368 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4369 * chain. 0 is returned on success. A negative errno code is returned 4370 * on a failure to set up the device, or if the name is a duplicate. 4371 * 4372 * Callers must hold the rtnl semaphore. You may want 4373 * register_netdev() instead of this. 4374 * 4375 * BUGS: 4376 * The locking appears insufficient to guarantee two parallel registers 4377 * will not get the same name. 4378 */ 4379 4380int register_netdevice(struct net_device *dev) 4381{ 4382 struct hlist_head *head; 4383 struct hlist_node *p; 4384 int ret; 4385 struct net *net = dev_net(dev); 4386 4387 BUG_ON(dev_boot_phase); 4388 ASSERT_RTNL(); 4389 4390 might_sleep(); 4391 4392 /* When net_device's are persistent, this will be fatal. */ 4393 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4394 BUG_ON(!net); 4395 4396 spin_lock_init(&dev->addr_list_lock); 4397 netdev_set_addr_lockdep_class(dev); 4398 netdev_init_queue_locks(dev); 4399 4400 dev->iflink = -1; 4401 4402#ifdef CONFIG_COMPAT_NET_DEV_OPS 4403 /* Netdevice_ops API compatiability support. 4404 * This is temporary until all network devices are converted. 4405 */ 4406 if (dev->netdev_ops) { 4407 netdev_resync_ops(dev); 4408 } else { 4409 char drivername[64]; 4410 pr_info("%s (%s): not using net_device_ops yet\n", 4411 dev->name, netdev_drivername(dev, drivername, 64)); 4412 4413 /* This works only because net_device_ops and the 4414 compatiablity structure are the same. */ 4415 dev->netdev_ops = (void *) &(dev->init); 4416 } 4417#endif 4418 4419 /* Init, if this function is available */ 4420 if (dev->netdev_ops->ndo_init) { 4421 ret = dev->netdev_ops->ndo_init(dev); 4422 if (ret) { 4423 if (ret > 0) 4424 ret = -EIO; 4425 goto out; 4426 } 4427 } 4428 4429 if (!dev_valid_name(dev->name)) { 4430 ret = -EINVAL; 4431 goto err_uninit; 4432 } 4433 4434 dev->ifindex = dev_new_index(net); 4435 if (dev->iflink == -1) 4436 dev->iflink = dev->ifindex; 4437 4438 /* Check for existence of name */ 4439 head = dev_name_hash(net, dev->name); 4440 hlist_for_each(p, head) { 4441 struct net_device *d 4442 = hlist_entry(p, struct net_device, name_hlist); 4443 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4444 ret = -EEXIST; 4445 goto err_uninit; 4446 } 4447 } 4448 4449 /* Fix illegal checksum combinations */ 4450 if ((dev->features & NETIF_F_HW_CSUM) && 4451 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4452 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4453 dev->name); 4454 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4455 } 4456 4457 if ((dev->features & NETIF_F_NO_CSUM) && 4458 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4459 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4460 dev->name); 4461 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4462 } 4463 4464 dev->features = netdev_fix_features(dev->features, dev->name); 4465 4466 /* Enable software GSO if SG is supported. */ 4467 if (dev->features & NETIF_F_SG) 4468 dev->features |= NETIF_F_GSO; 4469 4470 netdev_initialize_kobject(dev); 4471 ret = netdev_register_kobject(dev); 4472 if (ret) 4473 goto err_uninit; 4474 dev->reg_state = NETREG_REGISTERED; 4475 4476 /* 4477 * Default initial state at registry is that the 4478 * device is present. 4479 */ 4480 4481 set_bit(__LINK_STATE_PRESENT, &dev->state); 4482 4483 dev_init_scheduler(dev); 4484 dev_hold(dev); 4485 list_netdevice(dev); 4486 4487 /* Notify protocols, that a new device appeared. */ 4488 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4489 ret = notifier_to_errno(ret); 4490 if (ret) { 4491 rollback_registered(dev); 4492 dev->reg_state = NETREG_UNREGISTERED; 4493 } 4494 4495out: 4496 return ret; 4497 4498err_uninit: 4499 if (dev->netdev_ops->ndo_uninit) 4500 dev->netdev_ops->ndo_uninit(dev); 4501 goto out; 4502} 4503 4504/** 4505 * init_dummy_netdev - init a dummy network device for NAPI 4506 * @dev: device to init 4507 * 4508 * This takes a network device structure and initialize the minimum 4509 * amount of fields so it can be used to schedule NAPI polls without 4510 * registering a full blown interface. This is to be used by drivers 4511 * that need to tie several hardware interfaces to a single NAPI 4512 * poll scheduler due to HW limitations. 4513 */ 4514int init_dummy_netdev(struct net_device *dev) 4515{ 4516 /* Clear everything. Note we don't initialize spinlocks 4517 * are they aren't supposed to be taken by any of the 4518 * NAPI code and this dummy netdev is supposed to be 4519 * only ever used for NAPI polls 4520 */ 4521 memset(dev, 0, sizeof(struct net_device)); 4522 4523 /* make sure we BUG if trying to hit standard 4524 * register/unregister code path 4525 */ 4526 dev->reg_state = NETREG_DUMMY; 4527 4528 /* initialize the ref count */ 4529 atomic_set(&dev->refcnt, 1); 4530 4531 /* NAPI wants this */ 4532 INIT_LIST_HEAD(&dev->napi_list); 4533 4534 /* a dummy interface is started by default */ 4535 set_bit(__LINK_STATE_PRESENT, &dev->state); 4536 set_bit(__LINK_STATE_START, &dev->state); 4537 4538 return 0; 4539} 4540EXPORT_SYMBOL_GPL(init_dummy_netdev); 4541 4542 4543/** 4544 * register_netdev - register a network device 4545 * @dev: device to register 4546 * 4547 * Take a completed network device structure and add it to the kernel 4548 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4549 * chain. 0 is returned on success. A negative errno code is returned 4550 * on a failure to set up the device, or if the name is a duplicate. 4551 * 4552 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4553 * and expands the device name if you passed a format string to 4554 * alloc_netdev. 4555 */ 4556int register_netdev(struct net_device *dev) 4557{ 4558 int err; 4559 4560 rtnl_lock(); 4561 4562 /* 4563 * If the name is a format string the caller wants us to do a 4564 * name allocation. 4565 */ 4566 if (strchr(dev->name, '%')) { 4567 err = dev_alloc_name(dev, dev->name); 4568 if (err < 0) 4569 goto out; 4570 } 4571 4572 err = register_netdevice(dev); 4573out: 4574 rtnl_unlock(); 4575 return err; 4576} 4577EXPORT_SYMBOL(register_netdev); 4578 4579/* 4580 * netdev_wait_allrefs - wait until all references are gone. 4581 * 4582 * This is called when unregistering network devices. 4583 * 4584 * Any protocol or device that holds a reference should register 4585 * for netdevice notification, and cleanup and put back the 4586 * reference if they receive an UNREGISTER event. 4587 * We can get stuck here if buggy protocols don't correctly 4588 * call dev_put. 4589 */ 4590static void netdev_wait_allrefs(struct net_device *dev) 4591{ 4592 unsigned long rebroadcast_time, warning_time; 4593 4594 rebroadcast_time = warning_time = jiffies; 4595 while (atomic_read(&dev->refcnt) != 0) { 4596 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4597 rtnl_lock(); 4598 4599 /* Rebroadcast unregister notification */ 4600 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4601 4602 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4603 &dev->state)) { 4604 /* We must not have linkwatch events 4605 * pending on unregister. If this 4606 * happens, we simply run the queue 4607 * unscheduled, resulting in a noop 4608 * for this device. 4609 */ 4610 linkwatch_run_queue(); 4611 } 4612 4613 __rtnl_unlock(); 4614 4615 rebroadcast_time = jiffies; 4616 } 4617 4618 msleep(250); 4619 4620 if (time_after(jiffies, warning_time + 10 * HZ)) { 4621 printk(KERN_EMERG "unregister_netdevice: " 4622 "waiting for %s to become free. Usage " 4623 "count = %d\n", 4624 dev->name, atomic_read(&dev->refcnt)); 4625 warning_time = jiffies; 4626 } 4627 } 4628} 4629 4630/* The sequence is: 4631 * 4632 * rtnl_lock(); 4633 * ... 4634 * register_netdevice(x1); 4635 * register_netdevice(x2); 4636 * ... 4637 * unregister_netdevice(y1); 4638 * unregister_netdevice(y2); 4639 * ... 4640 * rtnl_unlock(); 4641 * free_netdev(y1); 4642 * free_netdev(y2); 4643 * 4644 * We are invoked by rtnl_unlock(). 4645 * This allows us to deal with problems: 4646 * 1) We can delete sysfs objects which invoke hotplug 4647 * without deadlocking with linkwatch via keventd. 4648 * 2) Since we run with the RTNL semaphore not held, we can sleep 4649 * safely in order to wait for the netdev refcnt to drop to zero. 4650 * 4651 * We must not return until all unregister events added during 4652 * the interval the lock was held have been completed. 4653 */ 4654void netdev_run_todo(void) 4655{ 4656 struct list_head list; 4657 4658 /* Snapshot list, allow later requests */ 4659 list_replace_init(&net_todo_list, &list); 4660 4661 __rtnl_unlock(); 4662 4663 while (!list_empty(&list)) { 4664 struct net_device *dev 4665 = list_entry(list.next, struct net_device, todo_list); 4666 list_del(&dev->todo_list); 4667 4668 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4669 printk(KERN_ERR "network todo '%s' but state %d\n", 4670 dev->name, dev->reg_state); 4671 dump_stack(); 4672 continue; 4673 } 4674 4675 dev->reg_state = NETREG_UNREGISTERED; 4676 4677 on_each_cpu(flush_backlog, dev, 1); 4678 4679 netdev_wait_allrefs(dev); 4680 4681 /* paranoia */ 4682 BUG_ON(atomic_read(&dev->refcnt)); 4683 WARN_ON(dev->ip_ptr); 4684 WARN_ON(dev->ip6_ptr); 4685 WARN_ON(dev->dn_ptr); 4686 4687 if (dev->destructor) 4688 dev->destructor(dev); 4689 4690 /* Free network device */ 4691 kobject_put(&dev->dev.kobj); 4692 } 4693} 4694 4695/** 4696 * dev_get_stats - get network device statistics 4697 * @dev: device to get statistics from 4698 * 4699 * Get network statistics from device. The device driver may provide 4700 * its own method by setting dev->netdev_ops->get_stats; otherwise 4701 * the internal statistics structure is used. 4702 */ 4703const struct net_device_stats *dev_get_stats(struct net_device *dev) 4704 { 4705 const struct net_device_ops *ops = dev->netdev_ops; 4706 4707 if (ops->ndo_get_stats) 4708 return ops->ndo_get_stats(dev); 4709 else 4710 return &dev->stats; 4711} 4712EXPORT_SYMBOL(dev_get_stats); 4713 4714static void netdev_init_one_queue(struct net_device *dev, 4715 struct netdev_queue *queue, 4716 void *_unused) 4717{ 4718 queue->dev = dev; 4719} 4720 4721static void netdev_init_queues(struct net_device *dev) 4722{ 4723 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4724 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4725 spin_lock_init(&dev->tx_global_lock); 4726} 4727 4728/** 4729 * alloc_netdev_mq - allocate network device 4730 * @sizeof_priv: size of private data to allocate space for 4731 * @name: device name format string 4732 * @setup: callback to initialize device 4733 * @queue_count: the number of subqueues to allocate 4734 * 4735 * Allocates a struct net_device with private data area for driver use 4736 * and performs basic initialization. Also allocates subquue structs 4737 * for each queue on the device at the end of the netdevice. 4738 */ 4739struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4740 void (*setup)(struct net_device *), unsigned int queue_count) 4741{ 4742 struct netdev_queue *tx; 4743 struct net_device *dev; 4744 size_t alloc_size; 4745 void *p; 4746 4747 BUG_ON(strlen(name) >= sizeof(dev->name)); 4748 4749 alloc_size = sizeof(struct net_device); 4750 if (sizeof_priv) { 4751 /* ensure 32-byte alignment of private area */ 4752 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4753 alloc_size += sizeof_priv; 4754 } 4755 /* ensure 32-byte alignment of whole construct */ 4756 alloc_size += NETDEV_ALIGN_CONST; 4757 4758 p = kzalloc(alloc_size, GFP_KERNEL); 4759 if (!p) { 4760 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4761 return NULL; 4762 } 4763 4764 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4765 if (!tx) { 4766 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4767 "tx qdiscs.\n"); 4768 kfree(p); 4769 return NULL; 4770 } 4771 4772 dev = (struct net_device *) 4773 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4774 dev->padded = (char *)dev - (char *)p; 4775 dev_net_set(dev, &init_net); 4776 4777 dev->_tx = tx; 4778 dev->num_tx_queues = queue_count; 4779 dev->real_num_tx_queues = queue_count; 4780 4781 dev->gso_max_size = GSO_MAX_SIZE; 4782 4783 netdev_init_queues(dev); 4784 4785 INIT_LIST_HEAD(&dev->napi_list); 4786 setup(dev); 4787 strcpy(dev->name, name); 4788 return dev; 4789} 4790EXPORT_SYMBOL(alloc_netdev_mq); 4791 4792/** 4793 * free_netdev - free network device 4794 * @dev: device 4795 * 4796 * This function does the last stage of destroying an allocated device 4797 * interface. The reference to the device object is released. 4798 * If this is the last reference then it will be freed. 4799 */ 4800void free_netdev(struct net_device *dev) 4801{ 4802 struct napi_struct *p, *n; 4803 4804 release_net(dev_net(dev)); 4805 4806 kfree(dev->_tx); 4807 4808 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 4809 netif_napi_del(p); 4810 4811 /* Compatibility with error handling in drivers */ 4812 if (dev->reg_state == NETREG_UNINITIALIZED) { 4813 kfree((char *)dev - dev->padded); 4814 return; 4815 } 4816 4817 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4818 dev->reg_state = NETREG_RELEASED; 4819 4820 /* will free via device release */ 4821 put_device(&dev->dev); 4822} 4823 4824/** 4825 * synchronize_net - Synchronize with packet receive processing 4826 * 4827 * Wait for packets currently being received to be done. 4828 * Does not block later packets from starting. 4829 */ 4830void synchronize_net(void) 4831{ 4832 might_sleep(); 4833 synchronize_rcu(); 4834} 4835 4836/** 4837 * unregister_netdevice - remove device from the kernel 4838 * @dev: device 4839 * 4840 * This function shuts down a device interface and removes it 4841 * from the kernel tables. 4842 * 4843 * Callers must hold the rtnl semaphore. You may want 4844 * unregister_netdev() instead of this. 4845 */ 4846 4847void unregister_netdevice(struct net_device *dev) 4848{ 4849 ASSERT_RTNL(); 4850 4851 rollback_registered(dev); 4852 /* Finish processing unregister after unlock */ 4853 net_set_todo(dev); 4854} 4855 4856/** 4857 * unregister_netdev - remove device from the kernel 4858 * @dev: device 4859 * 4860 * This function shuts down a device interface and removes it 4861 * from the kernel tables. 4862 * 4863 * This is just a wrapper for unregister_netdevice that takes 4864 * the rtnl semaphore. In general you want to use this and not 4865 * unregister_netdevice. 4866 */ 4867void unregister_netdev(struct net_device *dev) 4868{ 4869 rtnl_lock(); 4870 unregister_netdevice(dev); 4871 rtnl_unlock(); 4872} 4873 4874EXPORT_SYMBOL(unregister_netdev); 4875 4876/** 4877 * dev_change_net_namespace - move device to different nethost namespace 4878 * @dev: device 4879 * @net: network namespace 4880 * @pat: If not NULL name pattern to try if the current device name 4881 * is already taken in the destination network namespace. 4882 * 4883 * This function shuts down a device interface and moves it 4884 * to a new network namespace. On success 0 is returned, on 4885 * a failure a netagive errno code is returned. 4886 * 4887 * Callers must hold the rtnl semaphore. 4888 */ 4889 4890int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4891{ 4892 char buf[IFNAMSIZ]; 4893 const char *destname; 4894 int err; 4895 4896 ASSERT_RTNL(); 4897 4898 /* Don't allow namespace local devices to be moved. */ 4899 err = -EINVAL; 4900 if (dev->features & NETIF_F_NETNS_LOCAL) 4901 goto out; 4902 4903#ifdef CONFIG_SYSFS 4904 /* Don't allow real devices to be moved when sysfs 4905 * is enabled. 4906 */ 4907 err = -EINVAL; 4908 if (dev->dev.parent) 4909 goto out; 4910#endif 4911 4912 /* Ensure the device has been registrered */ 4913 err = -EINVAL; 4914 if (dev->reg_state != NETREG_REGISTERED) 4915 goto out; 4916 4917 /* Get out if there is nothing todo */ 4918 err = 0; 4919 if (net_eq(dev_net(dev), net)) 4920 goto out; 4921 4922 /* Pick the destination device name, and ensure 4923 * we can use it in the destination network namespace. 4924 */ 4925 err = -EEXIST; 4926 destname = dev->name; 4927 if (__dev_get_by_name(net, destname)) { 4928 /* We get here if we can't use the current device name */ 4929 if (!pat) 4930 goto out; 4931 if (!dev_valid_name(pat)) 4932 goto out; 4933 if (strchr(pat, '%')) { 4934 if (__dev_alloc_name(net, pat, buf) < 0) 4935 goto out; 4936 destname = buf; 4937 } else 4938 destname = pat; 4939 if (__dev_get_by_name(net, destname)) 4940 goto out; 4941 } 4942 4943 /* 4944 * And now a mini version of register_netdevice unregister_netdevice. 4945 */ 4946 4947 /* If device is running close it first. */ 4948 dev_close(dev); 4949 4950 /* And unlink it from device chain */ 4951 err = -ENODEV; 4952 unlist_netdevice(dev); 4953 4954 synchronize_net(); 4955 4956 /* Shutdown queueing discipline. */ 4957 dev_shutdown(dev); 4958 4959 /* Notify protocols, that we are about to destroy 4960 this device. They should clean all the things. 4961 */ 4962 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4963 4964 /* 4965 * Flush the unicast and multicast chains 4966 */ 4967 dev_addr_discard(dev); 4968 4969 netdev_unregister_kobject(dev); 4970 4971 /* Actually switch the network namespace */ 4972 dev_net_set(dev, net); 4973 4974 /* Assign the new device name */ 4975 if (destname != dev->name) 4976 strcpy(dev->name, destname); 4977 4978 /* If there is an ifindex conflict assign a new one */ 4979 if (__dev_get_by_index(net, dev->ifindex)) { 4980 int iflink = (dev->iflink == dev->ifindex); 4981 dev->ifindex = dev_new_index(net); 4982 if (iflink) 4983 dev->iflink = dev->ifindex; 4984 } 4985 4986 /* Fixup kobjects */ 4987 err = netdev_register_kobject(dev); 4988 WARN_ON(err); 4989 4990 /* Add the device back in the hashes */ 4991 list_netdevice(dev); 4992 4993 /* Notify protocols, that a new device appeared. */ 4994 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4995 4996 synchronize_net(); 4997 err = 0; 4998out: 4999 return err; 5000} 5001 5002static int dev_cpu_callback(struct notifier_block *nfb, 5003 unsigned long action, 5004 void *ocpu) 5005{ 5006 struct sk_buff **list_skb; 5007 struct Qdisc **list_net; 5008 struct sk_buff *skb; 5009 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5010 struct softnet_data *sd, *oldsd; 5011 5012 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5013 return NOTIFY_OK; 5014 5015 local_irq_disable(); 5016 cpu = smp_processor_id(); 5017 sd = &per_cpu(softnet_data, cpu); 5018 oldsd = &per_cpu(softnet_data, oldcpu); 5019 5020 /* Find end of our completion_queue. */ 5021 list_skb = &sd->completion_queue; 5022 while (*list_skb) 5023 list_skb = &(*list_skb)->next; 5024 /* Append completion queue from offline CPU. */ 5025 *list_skb = oldsd->completion_queue; 5026 oldsd->completion_queue = NULL; 5027 5028 /* Find end of our output_queue. */ 5029 list_net = &sd->output_queue; 5030 while (*list_net) 5031 list_net = &(*list_net)->next_sched; 5032 /* Append output queue from offline CPU. */ 5033 *list_net = oldsd->output_queue; 5034 oldsd->output_queue = NULL; 5035 5036 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5037 local_irq_enable(); 5038 5039 /* Process offline CPU's input_pkt_queue */ 5040 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5041 netif_rx(skb); 5042 5043 return NOTIFY_OK; 5044} 5045 5046 5047/** 5048 * netdev_increment_features - increment feature set by one 5049 * @all: current feature set 5050 * @one: new feature set 5051 * @mask: mask feature set 5052 * 5053 * Computes a new feature set after adding a device with feature set 5054 * @one to the master device with current feature set @all. Will not 5055 * enable anything that is off in @mask. Returns the new feature set. 5056 */ 5057unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5058 unsigned long mask) 5059{ 5060 /* If device needs checksumming, downgrade to it. */ 5061 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5062 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5063 else if (mask & NETIF_F_ALL_CSUM) { 5064 /* If one device supports v4/v6 checksumming, set for all. */ 5065 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5066 !(all & NETIF_F_GEN_CSUM)) { 5067 all &= ~NETIF_F_ALL_CSUM; 5068 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5069 } 5070 5071 /* If one device supports hw checksumming, set for all. */ 5072 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5073 all &= ~NETIF_F_ALL_CSUM; 5074 all |= NETIF_F_HW_CSUM; 5075 } 5076 } 5077 5078 one |= NETIF_F_ALL_CSUM; 5079 5080 one |= all & NETIF_F_ONE_FOR_ALL; 5081 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5082 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5083 5084 return all; 5085} 5086EXPORT_SYMBOL(netdev_increment_features); 5087 5088static struct hlist_head *netdev_create_hash(void) 5089{ 5090 int i; 5091 struct hlist_head *hash; 5092 5093 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5094 if (hash != NULL) 5095 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5096 INIT_HLIST_HEAD(&hash[i]); 5097 5098 return hash; 5099} 5100 5101/* Initialize per network namespace state */ 5102static int __net_init netdev_init(struct net *net) 5103{ 5104 INIT_LIST_HEAD(&net->dev_base_head); 5105 5106 net->dev_name_head = netdev_create_hash(); 5107 if (net->dev_name_head == NULL) 5108 goto err_name; 5109 5110 net->dev_index_head = netdev_create_hash(); 5111 if (net->dev_index_head == NULL) 5112 goto err_idx; 5113 5114 return 0; 5115 5116err_idx: 5117 kfree(net->dev_name_head); 5118err_name: 5119 return -ENOMEM; 5120} 5121 5122/** 5123 * netdev_drivername - network driver for the device 5124 * @dev: network device 5125 * @buffer: buffer for resulting name 5126 * @len: size of buffer 5127 * 5128 * Determine network driver for device. 5129 */ 5130char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5131{ 5132 const struct device_driver *driver; 5133 const struct device *parent; 5134 5135 if (len <= 0 || !buffer) 5136 return buffer; 5137 buffer[0] = 0; 5138 5139 parent = dev->dev.parent; 5140 5141 if (!parent) 5142 return buffer; 5143 5144 driver = parent->driver; 5145 if (driver && driver->name) 5146 strlcpy(buffer, driver->name, len); 5147 return buffer; 5148} 5149 5150static void __net_exit netdev_exit(struct net *net) 5151{ 5152 kfree(net->dev_name_head); 5153 kfree(net->dev_index_head); 5154} 5155 5156static struct pernet_operations __net_initdata netdev_net_ops = { 5157 .init = netdev_init, 5158 .exit = netdev_exit, 5159}; 5160 5161static void __net_exit default_device_exit(struct net *net) 5162{ 5163 struct net_device *dev; 5164 /* 5165 * Push all migratable of the network devices back to the 5166 * initial network namespace 5167 */ 5168 rtnl_lock(); 5169restart: 5170 for_each_netdev(net, dev) { 5171 int err; 5172 char fb_name[IFNAMSIZ]; 5173 5174 /* Ignore unmoveable devices (i.e. loopback) */ 5175 if (dev->features & NETIF_F_NETNS_LOCAL) 5176 continue; 5177 5178 /* Delete virtual devices */ 5179 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5180 dev->rtnl_link_ops->dellink(dev); 5181 goto restart; 5182 } 5183 5184 /* Push remaing network devices to init_net */ 5185 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5186 err = dev_change_net_namespace(dev, &init_net, fb_name); 5187 if (err) { 5188 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5189 __func__, dev->name, err); 5190 BUG(); 5191 } 5192 goto restart; 5193 } 5194 rtnl_unlock(); 5195} 5196 5197static struct pernet_operations __net_initdata default_device_ops = { 5198 .exit = default_device_exit, 5199}; 5200 5201/* 5202 * Initialize the DEV module. At boot time this walks the device list and 5203 * unhooks any devices that fail to initialise (normally hardware not 5204 * present) and leaves us with a valid list of present and active devices. 5205 * 5206 */ 5207 5208/* 5209 * This is called single threaded during boot, so no need 5210 * to take the rtnl semaphore. 5211 */ 5212static int __init net_dev_init(void) 5213{ 5214 int i, rc = -ENOMEM; 5215 5216 BUG_ON(!dev_boot_phase); 5217 5218 if (dev_proc_init()) 5219 goto out; 5220 5221 if (netdev_kobject_init()) 5222 goto out; 5223 5224 INIT_LIST_HEAD(&ptype_all); 5225 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5226 INIT_LIST_HEAD(&ptype_base[i]); 5227 5228 if (register_pernet_subsys(&netdev_net_ops)) 5229 goto out; 5230 5231 /* 5232 * Initialise the packet receive queues. 5233 */ 5234 5235 for_each_possible_cpu(i) { 5236 struct softnet_data *queue; 5237 5238 queue = &per_cpu(softnet_data, i); 5239 skb_queue_head_init(&queue->input_pkt_queue); 5240 queue->completion_queue = NULL; 5241 INIT_LIST_HEAD(&queue->poll_list); 5242 5243 queue->backlog.poll = process_backlog; 5244 queue->backlog.weight = weight_p; 5245 queue->backlog.gro_list = NULL; 5246 queue->backlog.gro_count = 0; 5247 } 5248 5249 dev_boot_phase = 0; 5250 5251 /* The loopback device is special if any other network devices 5252 * is present in a network namespace the loopback device must 5253 * be present. Since we now dynamically allocate and free the 5254 * loopback device ensure this invariant is maintained by 5255 * keeping the loopback device as the first device on the 5256 * list of network devices. Ensuring the loopback devices 5257 * is the first device that appears and the last network device 5258 * that disappears. 5259 */ 5260 if (register_pernet_device(&loopback_net_ops)) 5261 goto out; 5262 5263 if (register_pernet_device(&default_device_ops)) 5264 goto out; 5265 5266 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5267 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5268 5269 hotcpu_notifier(dev_cpu_callback, 0); 5270 dst_init(); 5271 dev_mcast_init(); 5272 rc = 0; 5273out: 5274 return rc; 5275} 5276 5277subsys_initcall(net_dev_init); 5278 5279static int __init initialize_hashrnd(void) 5280{ 5281 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5282 return 0; 5283} 5284 5285late_initcall_sync(initialize_hashrnd); 5286 5287EXPORT_SYMBOL(__dev_get_by_index); 5288EXPORT_SYMBOL(__dev_get_by_name); 5289EXPORT_SYMBOL(__dev_remove_pack); 5290EXPORT_SYMBOL(dev_valid_name); 5291EXPORT_SYMBOL(dev_add_pack); 5292EXPORT_SYMBOL(dev_alloc_name); 5293EXPORT_SYMBOL(dev_close); 5294EXPORT_SYMBOL(dev_get_by_flags); 5295EXPORT_SYMBOL(dev_get_by_index); 5296EXPORT_SYMBOL(dev_get_by_name); 5297EXPORT_SYMBOL(dev_open); 5298EXPORT_SYMBOL(dev_queue_xmit); 5299EXPORT_SYMBOL(dev_remove_pack); 5300EXPORT_SYMBOL(dev_set_allmulti); 5301EXPORT_SYMBOL(dev_set_promiscuity); 5302EXPORT_SYMBOL(dev_change_flags); 5303EXPORT_SYMBOL(dev_set_mtu); 5304EXPORT_SYMBOL(dev_set_mac_address); 5305EXPORT_SYMBOL(free_netdev); 5306EXPORT_SYMBOL(netdev_boot_setup_check); 5307EXPORT_SYMBOL(netdev_set_master); 5308EXPORT_SYMBOL(netdev_state_change); 5309EXPORT_SYMBOL(netif_receive_skb); 5310EXPORT_SYMBOL(netif_rx); 5311EXPORT_SYMBOL(register_gifconf); 5312EXPORT_SYMBOL(register_netdevice); 5313EXPORT_SYMBOL(register_netdevice_notifier); 5314EXPORT_SYMBOL(skb_checksum_help); 5315EXPORT_SYMBOL(synchronize_net); 5316EXPORT_SYMBOL(unregister_netdevice); 5317EXPORT_SYMBOL(unregister_netdevice_notifier); 5318EXPORT_SYMBOL(net_enable_timestamp); 5319EXPORT_SYMBOL(net_disable_timestamp); 5320EXPORT_SYMBOL(dev_get_flags); 5321 5322#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5323EXPORT_SYMBOL(br_handle_frame_hook); 5324EXPORT_SYMBOL(br_fdb_get_hook); 5325EXPORT_SYMBOL(br_fdb_put_hook); 5326#endif 5327 5328EXPORT_SYMBOL(dev_load); 5329 5330EXPORT_PER_CPU_SYMBOL(softnet_data);