1/* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7/* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13#include <linux/init.h> 14#include <linux/input.h> 15#include <linux/module.h> 16#include <linux/random.h> 17#include <linux/major.h> 18#include <linux/proc_fs.h> 19#include <linux/seq_file.h> 20#include <linux/poll.h> 21#include <linux/device.h> 22#include <linux/mutex.h> 23#include <linux/rcupdate.h> 24#include <linux/smp_lock.h> 25 26MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 27MODULE_DESCRIPTION("Input core"); 28MODULE_LICENSE("GPL"); 29 30#define INPUT_DEVICES 256 31 32static LIST_HEAD(input_dev_list); 33static LIST_HEAD(input_handler_list); 34 35/* 36 * input_mutex protects access to both input_dev_list and input_handler_list. 37 * This also causes input_[un]register_device and input_[un]register_handler 38 * be mutually exclusive which simplifies locking in drivers implementing 39 * input handlers. 40 */ 41static DEFINE_MUTEX(input_mutex); 42 43static struct input_handler *input_table[8]; 44 45static inline int is_event_supported(unsigned int code, 46 unsigned long *bm, unsigned int max) 47{ 48 return code <= max && test_bit(code, bm); 49} 50 51static int input_defuzz_abs_event(int value, int old_val, int fuzz) 52{ 53 if (fuzz) { 54 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 55 return old_val; 56 57 if (value > old_val - fuzz && value < old_val + fuzz) 58 return (old_val * 3 + value) / 4; 59 60 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 61 return (old_val + value) / 2; 62 } 63 64 return value; 65} 66 67/* 68 * Pass event through all open handles. This function is called with 69 * dev->event_lock held and interrupts disabled. 70 */ 71static void input_pass_event(struct input_dev *dev, 72 unsigned int type, unsigned int code, int value) 73{ 74 struct input_handle *handle; 75 76 rcu_read_lock(); 77 78 handle = rcu_dereference(dev->grab); 79 if (handle) 80 handle->handler->event(handle, type, code, value); 81 else 82 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 83 if (handle->open) 84 handle->handler->event(handle, 85 type, code, value); 86 rcu_read_unlock(); 87} 88 89/* 90 * Generate software autorepeat event. Note that we take 91 * dev->event_lock here to avoid racing with input_event 92 * which may cause keys get "stuck". 93 */ 94static void input_repeat_key(unsigned long data) 95{ 96 struct input_dev *dev = (void *) data; 97 unsigned long flags; 98 99 spin_lock_irqsave(&dev->event_lock, flags); 100 101 if (test_bit(dev->repeat_key, dev->key) && 102 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 103 104 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 105 106 if (dev->sync) { 107 /* 108 * Only send SYN_REPORT if we are not in a middle 109 * of driver parsing a new hardware packet. 110 * Otherwise assume that the driver will send 111 * SYN_REPORT once it's done. 112 */ 113 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 114 } 115 116 if (dev->rep[REP_PERIOD]) 117 mod_timer(&dev->timer, jiffies + 118 msecs_to_jiffies(dev->rep[REP_PERIOD])); 119 } 120 121 spin_unlock_irqrestore(&dev->event_lock, flags); 122} 123 124static void input_start_autorepeat(struct input_dev *dev, int code) 125{ 126 if (test_bit(EV_REP, dev->evbit) && 127 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 128 dev->timer.data) { 129 dev->repeat_key = code; 130 mod_timer(&dev->timer, 131 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 132 } 133} 134 135static void input_stop_autorepeat(struct input_dev *dev) 136{ 137 del_timer(&dev->timer); 138} 139 140#define INPUT_IGNORE_EVENT 0 141#define INPUT_PASS_TO_HANDLERS 1 142#define INPUT_PASS_TO_DEVICE 2 143#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 144 145static void input_handle_event(struct input_dev *dev, 146 unsigned int type, unsigned int code, int value) 147{ 148 int disposition = INPUT_IGNORE_EVENT; 149 150 switch (type) { 151 152 case EV_SYN: 153 switch (code) { 154 case SYN_CONFIG: 155 disposition = INPUT_PASS_TO_ALL; 156 break; 157 158 case SYN_REPORT: 159 if (!dev->sync) { 160 dev->sync = 1; 161 disposition = INPUT_PASS_TO_HANDLERS; 162 } 163 break; 164 } 165 break; 166 167 case EV_KEY: 168 if (is_event_supported(code, dev->keybit, KEY_MAX) && 169 !!test_bit(code, dev->key) != value) { 170 171 if (value != 2) { 172 __change_bit(code, dev->key); 173 if (value) 174 input_start_autorepeat(dev, code); 175 else 176 input_stop_autorepeat(dev); 177 } 178 179 disposition = INPUT_PASS_TO_HANDLERS; 180 } 181 break; 182 183 case EV_SW: 184 if (is_event_supported(code, dev->swbit, SW_MAX) && 185 !!test_bit(code, dev->sw) != value) { 186 187 __change_bit(code, dev->sw); 188 disposition = INPUT_PASS_TO_HANDLERS; 189 } 190 break; 191 192 case EV_ABS: 193 if (is_event_supported(code, dev->absbit, ABS_MAX)) { 194 195 value = input_defuzz_abs_event(value, 196 dev->abs[code], dev->absfuzz[code]); 197 198 if (dev->abs[code] != value) { 199 dev->abs[code] = value; 200 disposition = INPUT_PASS_TO_HANDLERS; 201 } 202 } 203 break; 204 205 case EV_REL: 206 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 207 disposition = INPUT_PASS_TO_HANDLERS; 208 209 break; 210 211 case EV_MSC: 212 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 213 disposition = INPUT_PASS_TO_ALL; 214 215 break; 216 217 case EV_LED: 218 if (is_event_supported(code, dev->ledbit, LED_MAX) && 219 !!test_bit(code, dev->led) != value) { 220 221 __change_bit(code, dev->led); 222 disposition = INPUT_PASS_TO_ALL; 223 } 224 break; 225 226 case EV_SND: 227 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 228 229 if (!!test_bit(code, dev->snd) != !!value) 230 __change_bit(code, dev->snd); 231 disposition = INPUT_PASS_TO_ALL; 232 } 233 break; 234 235 case EV_REP: 236 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 237 dev->rep[code] = value; 238 disposition = INPUT_PASS_TO_ALL; 239 } 240 break; 241 242 case EV_FF: 243 if (value >= 0) 244 disposition = INPUT_PASS_TO_ALL; 245 break; 246 247 case EV_PWR: 248 disposition = INPUT_PASS_TO_ALL; 249 break; 250 } 251 252 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 253 dev->sync = 0; 254 255 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 256 dev->event(dev, type, code, value); 257 258 if (disposition & INPUT_PASS_TO_HANDLERS) 259 input_pass_event(dev, type, code, value); 260} 261 262/** 263 * input_event() - report new input event 264 * @dev: device that generated the event 265 * @type: type of the event 266 * @code: event code 267 * @value: value of the event 268 * 269 * This function should be used by drivers implementing various input 270 * devices. See also input_inject_event(). 271 */ 272 273void input_event(struct input_dev *dev, 274 unsigned int type, unsigned int code, int value) 275{ 276 unsigned long flags; 277 278 if (is_event_supported(type, dev->evbit, EV_MAX)) { 279 280 spin_lock_irqsave(&dev->event_lock, flags); 281 add_input_randomness(type, code, value); 282 input_handle_event(dev, type, code, value); 283 spin_unlock_irqrestore(&dev->event_lock, flags); 284 } 285} 286EXPORT_SYMBOL(input_event); 287 288/** 289 * input_inject_event() - send input event from input handler 290 * @handle: input handle to send event through 291 * @type: type of the event 292 * @code: event code 293 * @value: value of the event 294 * 295 * Similar to input_event() but will ignore event if device is 296 * "grabbed" and handle injecting event is not the one that owns 297 * the device. 298 */ 299void input_inject_event(struct input_handle *handle, 300 unsigned int type, unsigned int code, int value) 301{ 302 struct input_dev *dev = handle->dev; 303 struct input_handle *grab; 304 unsigned long flags; 305 306 if (is_event_supported(type, dev->evbit, EV_MAX)) { 307 spin_lock_irqsave(&dev->event_lock, flags); 308 309 rcu_read_lock(); 310 grab = rcu_dereference(dev->grab); 311 if (!grab || grab == handle) 312 input_handle_event(dev, type, code, value); 313 rcu_read_unlock(); 314 315 spin_unlock_irqrestore(&dev->event_lock, flags); 316 } 317} 318EXPORT_SYMBOL(input_inject_event); 319 320/** 321 * input_grab_device - grabs device for exclusive use 322 * @handle: input handle that wants to own the device 323 * 324 * When a device is grabbed by an input handle all events generated by 325 * the device are delivered only to this handle. Also events injected 326 * by other input handles are ignored while device is grabbed. 327 */ 328int input_grab_device(struct input_handle *handle) 329{ 330 struct input_dev *dev = handle->dev; 331 int retval; 332 333 retval = mutex_lock_interruptible(&dev->mutex); 334 if (retval) 335 return retval; 336 337 if (dev->grab) { 338 retval = -EBUSY; 339 goto out; 340 } 341 342 rcu_assign_pointer(dev->grab, handle); 343 synchronize_rcu(); 344 345 out: 346 mutex_unlock(&dev->mutex); 347 return retval; 348} 349EXPORT_SYMBOL(input_grab_device); 350 351static void __input_release_device(struct input_handle *handle) 352{ 353 struct input_dev *dev = handle->dev; 354 355 if (dev->grab == handle) { 356 rcu_assign_pointer(dev->grab, NULL); 357 /* Make sure input_pass_event() notices that grab is gone */ 358 synchronize_rcu(); 359 360 list_for_each_entry(handle, &dev->h_list, d_node) 361 if (handle->open && handle->handler->start) 362 handle->handler->start(handle); 363 } 364} 365 366/** 367 * input_release_device - release previously grabbed device 368 * @handle: input handle that owns the device 369 * 370 * Releases previously grabbed device so that other input handles can 371 * start receiving input events. Upon release all handlers attached 372 * to the device have their start() method called so they have a change 373 * to synchronize device state with the rest of the system. 374 */ 375void input_release_device(struct input_handle *handle) 376{ 377 struct input_dev *dev = handle->dev; 378 379 mutex_lock(&dev->mutex); 380 __input_release_device(handle); 381 mutex_unlock(&dev->mutex); 382} 383EXPORT_SYMBOL(input_release_device); 384 385/** 386 * input_open_device - open input device 387 * @handle: handle through which device is being accessed 388 * 389 * This function should be called by input handlers when they 390 * want to start receive events from given input device. 391 */ 392int input_open_device(struct input_handle *handle) 393{ 394 struct input_dev *dev = handle->dev; 395 int retval; 396 397 retval = mutex_lock_interruptible(&dev->mutex); 398 if (retval) 399 return retval; 400 401 if (dev->going_away) { 402 retval = -ENODEV; 403 goto out; 404 } 405 406 handle->open++; 407 408 if (!dev->users++ && dev->open) 409 retval = dev->open(dev); 410 411 if (retval) { 412 dev->users--; 413 if (!--handle->open) { 414 /* 415 * Make sure we are not delivering any more events 416 * through this handle 417 */ 418 synchronize_rcu(); 419 } 420 } 421 422 out: 423 mutex_unlock(&dev->mutex); 424 return retval; 425} 426EXPORT_SYMBOL(input_open_device); 427 428int input_flush_device(struct input_handle *handle, struct file *file) 429{ 430 struct input_dev *dev = handle->dev; 431 int retval; 432 433 retval = mutex_lock_interruptible(&dev->mutex); 434 if (retval) 435 return retval; 436 437 if (dev->flush) 438 retval = dev->flush(dev, file); 439 440 mutex_unlock(&dev->mutex); 441 return retval; 442} 443EXPORT_SYMBOL(input_flush_device); 444 445/** 446 * input_close_device - close input device 447 * @handle: handle through which device is being accessed 448 * 449 * This function should be called by input handlers when they 450 * want to stop receive events from given input device. 451 */ 452void input_close_device(struct input_handle *handle) 453{ 454 struct input_dev *dev = handle->dev; 455 456 mutex_lock(&dev->mutex); 457 458 __input_release_device(handle); 459 460 if (!--dev->users && dev->close) 461 dev->close(dev); 462 463 if (!--handle->open) { 464 /* 465 * synchronize_rcu() makes sure that input_pass_event() 466 * completed and that no more input events are delivered 467 * through this handle 468 */ 469 synchronize_rcu(); 470 } 471 472 mutex_unlock(&dev->mutex); 473} 474EXPORT_SYMBOL(input_close_device); 475 476/* 477 * Prepare device for unregistering 478 */ 479static void input_disconnect_device(struct input_dev *dev) 480{ 481 struct input_handle *handle; 482 int code; 483 484 /* 485 * Mark device as going away. Note that we take dev->mutex here 486 * not to protect access to dev->going_away but rather to ensure 487 * that there are no threads in the middle of input_open_device() 488 */ 489 mutex_lock(&dev->mutex); 490 dev->going_away = 1; 491 mutex_unlock(&dev->mutex); 492 493 spin_lock_irq(&dev->event_lock); 494 495 /* 496 * Simulate keyup events for all pressed keys so that handlers 497 * are not left with "stuck" keys. The driver may continue 498 * generate events even after we done here but they will not 499 * reach any handlers. 500 */ 501 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 502 for (code = 0; code <= KEY_MAX; code++) { 503 if (is_event_supported(code, dev->keybit, KEY_MAX) && 504 __test_and_clear_bit(code, dev->key)) { 505 input_pass_event(dev, EV_KEY, code, 0); 506 } 507 } 508 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 509 } 510 511 list_for_each_entry(handle, &dev->h_list, d_node) 512 handle->open = 0; 513 514 spin_unlock_irq(&dev->event_lock); 515} 516 517static int input_fetch_keycode(struct input_dev *dev, int scancode) 518{ 519 switch (dev->keycodesize) { 520 case 1: 521 return ((u8 *)dev->keycode)[scancode]; 522 523 case 2: 524 return ((u16 *)dev->keycode)[scancode]; 525 526 default: 527 return ((u32 *)dev->keycode)[scancode]; 528 } 529} 530 531static int input_default_getkeycode(struct input_dev *dev, 532 int scancode, int *keycode) 533{ 534 if (!dev->keycodesize) 535 return -EINVAL; 536 537 if (scancode >= dev->keycodemax) 538 return -EINVAL; 539 540 *keycode = input_fetch_keycode(dev, scancode); 541 542 return 0; 543} 544 545static int input_default_setkeycode(struct input_dev *dev, 546 int scancode, int keycode) 547{ 548 int old_keycode; 549 int i; 550 551 if (scancode >= dev->keycodemax) 552 return -EINVAL; 553 554 if (!dev->keycodesize) 555 return -EINVAL; 556 557 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8))) 558 return -EINVAL; 559 560 switch (dev->keycodesize) { 561 case 1: { 562 u8 *k = (u8 *)dev->keycode; 563 old_keycode = k[scancode]; 564 k[scancode] = keycode; 565 break; 566 } 567 case 2: { 568 u16 *k = (u16 *)dev->keycode; 569 old_keycode = k[scancode]; 570 k[scancode] = keycode; 571 break; 572 } 573 default: { 574 u32 *k = (u32 *)dev->keycode; 575 old_keycode = k[scancode]; 576 k[scancode] = keycode; 577 break; 578 } 579 } 580 581 clear_bit(old_keycode, dev->keybit); 582 set_bit(keycode, dev->keybit); 583 584 for (i = 0; i < dev->keycodemax; i++) { 585 if (input_fetch_keycode(dev, i) == old_keycode) { 586 set_bit(old_keycode, dev->keybit); 587 break; /* Setting the bit twice is useless, so break */ 588 } 589 } 590 591 return 0; 592} 593 594/** 595 * input_get_keycode - retrieve keycode currently mapped to a given scancode 596 * @dev: input device which keymap is being queried 597 * @scancode: scancode (or its equivalent for device in question) for which 598 * keycode is needed 599 * @keycode: result 600 * 601 * This function should be called by anyone interested in retrieving current 602 * keymap. Presently keyboard and evdev handlers use it. 603 */ 604int input_get_keycode(struct input_dev *dev, int scancode, int *keycode) 605{ 606 if (scancode < 0) 607 return -EINVAL; 608 609 return dev->getkeycode(dev, scancode, keycode); 610} 611EXPORT_SYMBOL(input_get_keycode); 612 613/** 614 * input_get_keycode - assign new keycode to a given scancode 615 * @dev: input device which keymap is being updated 616 * @scancode: scancode (or its equivalent for device in question) 617 * @keycode: new keycode to be assigned to the scancode 618 * 619 * This function should be called by anyone needing to update current 620 * keymap. Presently keyboard and evdev handlers use it. 621 */ 622int input_set_keycode(struct input_dev *dev, int scancode, int keycode) 623{ 624 unsigned long flags; 625 int old_keycode; 626 int retval; 627 628 if (scancode < 0) 629 return -EINVAL; 630 631 if (keycode < 0 || keycode > KEY_MAX) 632 return -EINVAL; 633 634 spin_lock_irqsave(&dev->event_lock, flags); 635 636 retval = dev->getkeycode(dev, scancode, &old_keycode); 637 if (retval) 638 goto out; 639 640 retval = dev->setkeycode(dev, scancode, keycode); 641 if (retval) 642 goto out; 643 644 /* 645 * Simulate keyup event if keycode is not present 646 * in the keymap anymore 647 */ 648 if (test_bit(EV_KEY, dev->evbit) && 649 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 650 __test_and_clear_bit(old_keycode, dev->key)) { 651 652 input_pass_event(dev, EV_KEY, old_keycode, 0); 653 if (dev->sync) 654 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 655 } 656 657 out: 658 spin_unlock_irqrestore(&dev->event_lock, flags); 659 660 return retval; 661} 662EXPORT_SYMBOL(input_set_keycode); 663 664#define MATCH_BIT(bit, max) \ 665 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 666 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 667 break; \ 668 if (i != BITS_TO_LONGS(max)) \ 669 continue; 670 671static const struct input_device_id *input_match_device(const struct input_device_id *id, 672 struct input_dev *dev) 673{ 674 int i; 675 676 for (; id->flags || id->driver_info; id++) { 677 678 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 679 if (id->bustype != dev->id.bustype) 680 continue; 681 682 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 683 if (id->vendor != dev->id.vendor) 684 continue; 685 686 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 687 if (id->product != dev->id.product) 688 continue; 689 690 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 691 if (id->version != dev->id.version) 692 continue; 693 694 MATCH_BIT(evbit, EV_MAX); 695 MATCH_BIT(keybit, KEY_MAX); 696 MATCH_BIT(relbit, REL_MAX); 697 MATCH_BIT(absbit, ABS_MAX); 698 MATCH_BIT(mscbit, MSC_MAX); 699 MATCH_BIT(ledbit, LED_MAX); 700 MATCH_BIT(sndbit, SND_MAX); 701 MATCH_BIT(ffbit, FF_MAX); 702 MATCH_BIT(swbit, SW_MAX); 703 704 return id; 705 } 706 707 return NULL; 708} 709 710static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 711{ 712 const struct input_device_id *id; 713 int error; 714 715 if (handler->blacklist && input_match_device(handler->blacklist, dev)) 716 return -ENODEV; 717 718 id = input_match_device(handler->id_table, dev); 719 if (!id) 720 return -ENODEV; 721 722 error = handler->connect(handler, dev, id); 723 if (error && error != -ENODEV) 724 printk(KERN_ERR 725 "input: failed to attach handler %s to device %s, " 726 "error: %d\n", 727 handler->name, kobject_name(&dev->dev.kobj), error); 728 729 return error; 730} 731 732 733#ifdef CONFIG_PROC_FS 734 735static struct proc_dir_entry *proc_bus_input_dir; 736static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 737static int input_devices_state; 738 739static inline void input_wakeup_procfs_readers(void) 740{ 741 input_devices_state++; 742 wake_up(&input_devices_poll_wait); 743} 744 745static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 746{ 747 poll_wait(file, &input_devices_poll_wait, wait); 748 if (file->f_version != input_devices_state) { 749 file->f_version = input_devices_state; 750 return POLLIN | POLLRDNORM; 751 } 752 753 return 0; 754} 755 756static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 757{ 758 if (mutex_lock_interruptible(&input_mutex)) 759 return NULL; 760 761 return seq_list_start(&input_dev_list, *pos); 762} 763 764static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 765{ 766 return seq_list_next(v, &input_dev_list, pos); 767} 768 769static void input_devices_seq_stop(struct seq_file *seq, void *v) 770{ 771 mutex_unlock(&input_mutex); 772} 773 774static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 775 unsigned long *bitmap, int max) 776{ 777 int i; 778 779 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--) 780 if (bitmap[i]) 781 break; 782 783 seq_printf(seq, "B: %s=", name); 784 for (; i >= 0; i--) 785 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : ""); 786 seq_putc(seq, '\n'); 787} 788 789static int input_devices_seq_show(struct seq_file *seq, void *v) 790{ 791 struct input_dev *dev = container_of(v, struct input_dev, node); 792 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 793 struct input_handle *handle; 794 795 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 796 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 797 798 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 799 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 800 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 801 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 802 seq_printf(seq, "H: Handlers="); 803 804 list_for_each_entry(handle, &dev->h_list, d_node) 805 seq_printf(seq, "%s ", handle->name); 806 seq_putc(seq, '\n'); 807 808 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 809 if (test_bit(EV_KEY, dev->evbit)) 810 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 811 if (test_bit(EV_REL, dev->evbit)) 812 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 813 if (test_bit(EV_ABS, dev->evbit)) 814 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 815 if (test_bit(EV_MSC, dev->evbit)) 816 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 817 if (test_bit(EV_LED, dev->evbit)) 818 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 819 if (test_bit(EV_SND, dev->evbit)) 820 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 821 if (test_bit(EV_FF, dev->evbit)) 822 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 823 if (test_bit(EV_SW, dev->evbit)) 824 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 825 826 seq_putc(seq, '\n'); 827 828 kfree(path); 829 return 0; 830} 831 832static const struct seq_operations input_devices_seq_ops = { 833 .start = input_devices_seq_start, 834 .next = input_devices_seq_next, 835 .stop = input_devices_seq_stop, 836 .show = input_devices_seq_show, 837}; 838 839static int input_proc_devices_open(struct inode *inode, struct file *file) 840{ 841 return seq_open(file, &input_devices_seq_ops); 842} 843 844static const struct file_operations input_devices_fileops = { 845 .owner = THIS_MODULE, 846 .open = input_proc_devices_open, 847 .poll = input_proc_devices_poll, 848 .read = seq_read, 849 .llseek = seq_lseek, 850 .release = seq_release, 851}; 852 853static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 854{ 855 if (mutex_lock_interruptible(&input_mutex)) 856 return NULL; 857 858 seq->private = (void *)(unsigned long)*pos; 859 return seq_list_start(&input_handler_list, *pos); 860} 861 862static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 863{ 864 seq->private = (void *)(unsigned long)(*pos + 1); 865 return seq_list_next(v, &input_handler_list, pos); 866} 867 868static void input_handlers_seq_stop(struct seq_file *seq, void *v) 869{ 870 mutex_unlock(&input_mutex); 871} 872 873static int input_handlers_seq_show(struct seq_file *seq, void *v) 874{ 875 struct input_handler *handler = container_of(v, struct input_handler, node); 876 877 seq_printf(seq, "N: Number=%ld Name=%s", 878 (unsigned long)seq->private, handler->name); 879 if (handler->fops) 880 seq_printf(seq, " Minor=%d", handler->minor); 881 seq_putc(seq, '\n'); 882 883 return 0; 884} 885static const struct seq_operations input_handlers_seq_ops = { 886 .start = input_handlers_seq_start, 887 .next = input_handlers_seq_next, 888 .stop = input_handlers_seq_stop, 889 .show = input_handlers_seq_show, 890}; 891 892static int input_proc_handlers_open(struct inode *inode, struct file *file) 893{ 894 return seq_open(file, &input_handlers_seq_ops); 895} 896 897static const struct file_operations input_handlers_fileops = { 898 .owner = THIS_MODULE, 899 .open = input_proc_handlers_open, 900 .read = seq_read, 901 .llseek = seq_lseek, 902 .release = seq_release, 903}; 904 905static int __init input_proc_init(void) 906{ 907 struct proc_dir_entry *entry; 908 909 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 910 if (!proc_bus_input_dir) 911 return -ENOMEM; 912 913 entry = proc_create("devices", 0, proc_bus_input_dir, 914 &input_devices_fileops); 915 if (!entry) 916 goto fail1; 917 918 entry = proc_create("handlers", 0, proc_bus_input_dir, 919 &input_handlers_fileops); 920 if (!entry) 921 goto fail2; 922 923 return 0; 924 925 fail2: remove_proc_entry("devices", proc_bus_input_dir); 926 fail1: remove_proc_entry("bus/input", NULL); 927 return -ENOMEM; 928} 929 930static void input_proc_exit(void) 931{ 932 remove_proc_entry("devices", proc_bus_input_dir); 933 remove_proc_entry("handlers", proc_bus_input_dir); 934 remove_proc_entry("bus/input", NULL); 935} 936 937#else /* !CONFIG_PROC_FS */ 938static inline void input_wakeup_procfs_readers(void) { } 939static inline int input_proc_init(void) { return 0; } 940static inline void input_proc_exit(void) { } 941#endif 942 943#define INPUT_DEV_STRING_ATTR_SHOW(name) \ 944static ssize_t input_dev_show_##name(struct device *dev, \ 945 struct device_attribute *attr, \ 946 char *buf) \ 947{ \ 948 struct input_dev *input_dev = to_input_dev(dev); \ 949 \ 950 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 951 input_dev->name ? input_dev->name : ""); \ 952} \ 953static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 954 955INPUT_DEV_STRING_ATTR_SHOW(name); 956INPUT_DEV_STRING_ATTR_SHOW(phys); 957INPUT_DEV_STRING_ATTR_SHOW(uniq); 958 959static int input_print_modalias_bits(char *buf, int size, 960 char name, unsigned long *bm, 961 unsigned int min_bit, unsigned int max_bit) 962{ 963 int len = 0, i; 964 965 len += snprintf(buf, max(size, 0), "%c", name); 966 for (i = min_bit; i < max_bit; i++) 967 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 968 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 969 return len; 970} 971 972static int input_print_modalias(char *buf, int size, struct input_dev *id, 973 int add_cr) 974{ 975 int len; 976 977 len = snprintf(buf, max(size, 0), 978 "input:b%04Xv%04Xp%04Xe%04X-", 979 id->id.bustype, id->id.vendor, 980 id->id.product, id->id.version); 981 982 len += input_print_modalias_bits(buf + len, size - len, 983 'e', id->evbit, 0, EV_MAX); 984 len += input_print_modalias_bits(buf + len, size - len, 985 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 986 len += input_print_modalias_bits(buf + len, size - len, 987 'r', id->relbit, 0, REL_MAX); 988 len += input_print_modalias_bits(buf + len, size - len, 989 'a', id->absbit, 0, ABS_MAX); 990 len += input_print_modalias_bits(buf + len, size - len, 991 'm', id->mscbit, 0, MSC_MAX); 992 len += input_print_modalias_bits(buf + len, size - len, 993 'l', id->ledbit, 0, LED_MAX); 994 len += input_print_modalias_bits(buf + len, size - len, 995 's', id->sndbit, 0, SND_MAX); 996 len += input_print_modalias_bits(buf + len, size - len, 997 'f', id->ffbit, 0, FF_MAX); 998 len += input_print_modalias_bits(buf + len, size - len, 999 'w', id->swbit, 0, SW_MAX); 1000 1001 if (add_cr) 1002 len += snprintf(buf + len, max(size - len, 0), "\n"); 1003 1004 return len; 1005} 1006 1007static ssize_t input_dev_show_modalias(struct device *dev, 1008 struct device_attribute *attr, 1009 char *buf) 1010{ 1011 struct input_dev *id = to_input_dev(dev); 1012 ssize_t len; 1013 1014 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1015 1016 return min_t(int, len, PAGE_SIZE); 1017} 1018static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1019 1020static struct attribute *input_dev_attrs[] = { 1021 &dev_attr_name.attr, 1022 &dev_attr_phys.attr, 1023 &dev_attr_uniq.attr, 1024 &dev_attr_modalias.attr, 1025 NULL 1026}; 1027 1028static struct attribute_group input_dev_attr_group = { 1029 .attrs = input_dev_attrs, 1030}; 1031 1032#define INPUT_DEV_ID_ATTR(name) \ 1033static ssize_t input_dev_show_id_##name(struct device *dev, \ 1034 struct device_attribute *attr, \ 1035 char *buf) \ 1036{ \ 1037 struct input_dev *input_dev = to_input_dev(dev); \ 1038 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1039} \ 1040static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1041 1042INPUT_DEV_ID_ATTR(bustype); 1043INPUT_DEV_ID_ATTR(vendor); 1044INPUT_DEV_ID_ATTR(product); 1045INPUT_DEV_ID_ATTR(version); 1046 1047static struct attribute *input_dev_id_attrs[] = { 1048 &dev_attr_bustype.attr, 1049 &dev_attr_vendor.attr, 1050 &dev_attr_product.attr, 1051 &dev_attr_version.attr, 1052 NULL 1053}; 1054 1055static struct attribute_group input_dev_id_attr_group = { 1056 .name = "id", 1057 .attrs = input_dev_id_attrs, 1058}; 1059 1060static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1061 int max, int add_cr) 1062{ 1063 int i; 1064 int len = 0; 1065 1066 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--) 1067 if (bitmap[i]) 1068 break; 1069 1070 for (; i >= 0; i--) 1071 len += snprintf(buf + len, max(buf_size - len, 0), 1072 "%lx%s", bitmap[i], i > 0 ? " " : ""); 1073 1074 if (add_cr) 1075 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1076 1077 return len; 1078} 1079 1080#define INPUT_DEV_CAP_ATTR(ev, bm) \ 1081static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1082 struct device_attribute *attr, \ 1083 char *buf) \ 1084{ \ 1085 struct input_dev *input_dev = to_input_dev(dev); \ 1086 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1087 input_dev->bm##bit, ev##_MAX, 1); \ 1088 return min_t(int, len, PAGE_SIZE); \ 1089} \ 1090static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1091 1092INPUT_DEV_CAP_ATTR(EV, ev); 1093INPUT_DEV_CAP_ATTR(KEY, key); 1094INPUT_DEV_CAP_ATTR(REL, rel); 1095INPUT_DEV_CAP_ATTR(ABS, abs); 1096INPUT_DEV_CAP_ATTR(MSC, msc); 1097INPUT_DEV_CAP_ATTR(LED, led); 1098INPUT_DEV_CAP_ATTR(SND, snd); 1099INPUT_DEV_CAP_ATTR(FF, ff); 1100INPUT_DEV_CAP_ATTR(SW, sw); 1101 1102static struct attribute *input_dev_caps_attrs[] = { 1103 &dev_attr_ev.attr, 1104 &dev_attr_key.attr, 1105 &dev_attr_rel.attr, 1106 &dev_attr_abs.attr, 1107 &dev_attr_msc.attr, 1108 &dev_attr_led.attr, 1109 &dev_attr_snd.attr, 1110 &dev_attr_ff.attr, 1111 &dev_attr_sw.attr, 1112 NULL 1113}; 1114 1115static struct attribute_group input_dev_caps_attr_group = { 1116 .name = "capabilities", 1117 .attrs = input_dev_caps_attrs, 1118}; 1119 1120static struct attribute_group *input_dev_attr_groups[] = { 1121 &input_dev_attr_group, 1122 &input_dev_id_attr_group, 1123 &input_dev_caps_attr_group, 1124 NULL 1125}; 1126 1127static void input_dev_release(struct device *device) 1128{ 1129 struct input_dev *dev = to_input_dev(device); 1130 1131 input_ff_destroy(dev); 1132 kfree(dev); 1133 1134 module_put(THIS_MODULE); 1135} 1136 1137/* 1138 * Input uevent interface - loading event handlers based on 1139 * device bitfields. 1140 */ 1141static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1142 const char *name, unsigned long *bitmap, int max) 1143{ 1144 int len; 1145 1146 if (add_uevent_var(env, "%s=", name)) 1147 return -ENOMEM; 1148 1149 len = input_print_bitmap(&env->buf[env->buflen - 1], 1150 sizeof(env->buf) - env->buflen, 1151 bitmap, max, 0); 1152 if (len >= (sizeof(env->buf) - env->buflen)) 1153 return -ENOMEM; 1154 1155 env->buflen += len; 1156 return 0; 1157} 1158 1159static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1160 struct input_dev *dev) 1161{ 1162 int len; 1163 1164 if (add_uevent_var(env, "MODALIAS=")) 1165 return -ENOMEM; 1166 1167 len = input_print_modalias(&env->buf[env->buflen - 1], 1168 sizeof(env->buf) - env->buflen, 1169 dev, 0); 1170 if (len >= (sizeof(env->buf) - env->buflen)) 1171 return -ENOMEM; 1172 1173 env->buflen += len; 1174 return 0; 1175} 1176 1177#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1178 do { \ 1179 int err = add_uevent_var(env, fmt, val); \ 1180 if (err) \ 1181 return err; \ 1182 } while (0) 1183 1184#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1185 do { \ 1186 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1187 if (err) \ 1188 return err; \ 1189 } while (0) 1190 1191#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1192 do { \ 1193 int err = input_add_uevent_modalias_var(env, dev); \ 1194 if (err) \ 1195 return err; \ 1196 } while (0) 1197 1198static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1199{ 1200 struct input_dev *dev = to_input_dev(device); 1201 1202 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1203 dev->id.bustype, dev->id.vendor, 1204 dev->id.product, dev->id.version); 1205 if (dev->name) 1206 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1207 if (dev->phys) 1208 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1209 if (dev->uniq) 1210 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1211 1212 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1213 if (test_bit(EV_KEY, dev->evbit)) 1214 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1215 if (test_bit(EV_REL, dev->evbit)) 1216 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1217 if (test_bit(EV_ABS, dev->evbit)) 1218 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1219 if (test_bit(EV_MSC, dev->evbit)) 1220 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1221 if (test_bit(EV_LED, dev->evbit)) 1222 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1223 if (test_bit(EV_SND, dev->evbit)) 1224 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1225 if (test_bit(EV_FF, dev->evbit)) 1226 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1227 if (test_bit(EV_SW, dev->evbit)) 1228 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1229 1230 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1231 1232 return 0; 1233} 1234 1235static struct device_type input_dev_type = { 1236 .groups = input_dev_attr_groups, 1237 .release = input_dev_release, 1238 .uevent = input_dev_uevent, 1239}; 1240 1241struct class input_class = { 1242 .name = "input", 1243}; 1244EXPORT_SYMBOL_GPL(input_class); 1245 1246/** 1247 * input_allocate_device - allocate memory for new input device 1248 * 1249 * Returns prepared struct input_dev or NULL. 1250 * 1251 * NOTE: Use input_free_device() to free devices that have not been 1252 * registered; input_unregister_device() should be used for already 1253 * registered devices. 1254 */ 1255struct input_dev *input_allocate_device(void) 1256{ 1257 struct input_dev *dev; 1258 1259 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1260 if (dev) { 1261 dev->dev.type = &input_dev_type; 1262 dev->dev.class = &input_class; 1263 device_initialize(&dev->dev); 1264 mutex_init(&dev->mutex); 1265 spin_lock_init(&dev->event_lock); 1266 INIT_LIST_HEAD(&dev->h_list); 1267 INIT_LIST_HEAD(&dev->node); 1268 1269 __module_get(THIS_MODULE); 1270 } 1271 1272 return dev; 1273} 1274EXPORT_SYMBOL(input_allocate_device); 1275 1276/** 1277 * input_free_device - free memory occupied by input_dev structure 1278 * @dev: input device to free 1279 * 1280 * This function should only be used if input_register_device() 1281 * was not called yet or if it failed. Once device was registered 1282 * use input_unregister_device() and memory will be freed once last 1283 * reference to the device is dropped. 1284 * 1285 * Device should be allocated by input_allocate_device(). 1286 * 1287 * NOTE: If there are references to the input device then memory 1288 * will not be freed until last reference is dropped. 1289 */ 1290void input_free_device(struct input_dev *dev) 1291{ 1292 if (dev) 1293 input_put_device(dev); 1294} 1295EXPORT_SYMBOL(input_free_device); 1296 1297/** 1298 * input_set_capability - mark device as capable of a certain event 1299 * @dev: device that is capable of emitting or accepting event 1300 * @type: type of the event (EV_KEY, EV_REL, etc...) 1301 * @code: event code 1302 * 1303 * In addition to setting up corresponding bit in appropriate capability 1304 * bitmap the function also adjusts dev->evbit. 1305 */ 1306void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1307{ 1308 switch (type) { 1309 case EV_KEY: 1310 __set_bit(code, dev->keybit); 1311 break; 1312 1313 case EV_REL: 1314 __set_bit(code, dev->relbit); 1315 break; 1316 1317 case EV_ABS: 1318 __set_bit(code, dev->absbit); 1319 break; 1320 1321 case EV_MSC: 1322 __set_bit(code, dev->mscbit); 1323 break; 1324 1325 case EV_SW: 1326 __set_bit(code, dev->swbit); 1327 break; 1328 1329 case EV_LED: 1330 __set_bit(code, dev->ledbit); 1331 break; 1332 1333 case EV_SND: 1334 __set_bit(code, dev->sndbit); 1335 break; 1336 1337 case EV_FF: 1338 __set_bit(code, dev->ffbit); 1339 break; 1340 1341 case EV_PWR: 1342 /* do nothing */ 1343 break; 1344 1345 default: 1346 printk(KERN_ERR 1347 "input_set_capability: unknown type %u (code %u)\n", 1348 type, code); 1349 dump_stack(); 1350 return; 1351 } 1352 1353 __set_bit(type, dev->evbit); 1354} 1355EXPORT_SYMBOL(input_set_capability); 1356 1357/** 1358 * input_register_device - register device with input core 1359 * @dev: device to be registered 1360 * 1361 * This function registers device with input core. The device must be 1362 * allocated with input_allocate_device() and all it's capabilities 1363 * set up before registering. 1364 * If function fails the device must be freed with input_free_device(). 1365 * Once device has been successfully registered it can be unregistered 1366 * with input_unregister_device(); input_free_device() should not be 1367 * called in this case. 1368 */ 1369int input_register_device(struct input_dev *dev) 1370{ 1371 static atomic_t input_no = ATOMIC_INIT(0); 1372 struct input_handler *handler; 1373 const char *path; 1374 int error; 1375 1376 __set_bit(EV_SYN, dev->evbit); 1377 1378 /* 1379 * If delay and period are pre-set by the driver, then autorepeating 1380 * is handled by the driver itself and we don't do it in input.c. 1381 */ 1382 1383 init_timer(&dev->timer); 1384 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1385 dev->timer.data = (long) dev; 1386 dev->timer.function = input_repeat_key; 1387 dev->rep[REP_DELAY] = 250; 1388 dev->rep[REP_PERIOD] = 33; 1389 } 1390 1391 if (!dev->getkeycode) 1392 dev->getkeycode = input_default_getkeycode; 1393 1394 if (!dev->setkeycode) 1395 dev->setkeycode = input_default_setkeycode; 1396 1397 dev_set_name(&dev->dev, "input%ld", 1398 (unsigned long) atomic_inc_return(&input_no) - 1); 1399 1400 error = device_add(&dev->dev); 1401 if (error) 1402 return error; 1403 1404 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1405 printk(KERN_INFO "input: %s as %s\n", 1406 dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); 1407 kfree(path); 1408 1409 error = mutex_lock_interruptible(&input_mutex); 1410 if (error) { 1411 device_del(&dev->dev); 1412 return error; 1413 } 1414 1415 list_add_tail(&dev->node, &input_dev_list); 1416 1417 list_for_each_entry(handler, &input_handler_list, node) 1418 input_attach_handler(dev, handler); 1419 1420 input_wakeup_procfs_readers(); 1421 1422 mutex_unlock(&input_mutex); 1423 1424 return 0; 1425} 1426EXPORT_SYMBOL(input_register_device); 1427 1428/** 1429 * input_unregister_device - unregister previously registered device 1430 * @dev: device to be unregistered 1431 * 1432 * This function unregisters an input device. Once device is unregistered 1433 * the caller should not try to access it as it may get freed at any moment. 1434 */ 1435void input_unregister_device(struct input_dev *dev) 1436{ 1437 struct input_handle *handle, *next; 1438 1439 input_disconnect_device(dev); 1440 1441 mutex_lock(&input_mutex); 1442 1443 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1444 handle->handler->disconnect(handle); 1445 WARN_ON(!list_empty(&dev->h_list)); 1446 1447 del_timer_sync(&dev->timer); 1448 list_del_init(&dev->node); 1449 1450 input_wakeup_procfs_readers(); 1451 1452 mutex_unlock(&input_mutex); 1453 1454 device_unregister(&dev->dev); 1455} 1456EXPORT_SYMBOL(input_unregister_device); 1457 1458/** 1459 * input_register_handler - register a new input handler 1460 * @handler: handler to be registered 1461 * 1462 * This function registers a new input handler (interface) for input 1463 * devices in the system and attaches it to all input devices that 1464 * are compatible with the handler. 1465 */ 1466int input_register_handler(struct input_handler *handler) 1467{ 1468 struct input_dev *dev; 1469 int retval; 1470 1471 retval = mutex_lock_interruptible(&input_mutex); 1472 if (retval) 1473 return retval; 1474 1475 INIT_LIST_HEAD(&handler->h_list); 1476 1477 if (handler->fops != NULL) { 1478 if (input_table[handler->minor >> 5]) { 1479 retval = -EBUSY; 1480 goto out; 1481 } 1482 input_table[handler->minor >> 5] = handler; 1483 } 1484 1485 list_add_tail(&handler->node, &input_handler_list); 1486 1487 list_for_each_entry(dev, &input_dev_list, node) 1488 input_attach_handler(dev, handler); 1489 1490 input_wakeup_procfs_readers(); 1491 1492 out: 1493 mutex_unlock(&input_mutex); 1494 return retval; 1495} 1496EXPORT_SYMBOL(input_register_handler); 1497 1498/** 1499 * input_unregister_handler - unregisters an input handler 1500 * @handler: handler to be unregistered 1501 * 1502 * This function disconnects a handler from its input devices and 1503 * removes it from lists of known handlers. 1504 */ 1505void input_unregister_handler(struct input_handler *handler) 1506{ 1507 struct input_handle *handle, *next; 1508 1509 mutex_lock(&input_mutex); 1510 1511 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1512 handler->disconnect(handle); 1513 WARN_ON(!list_empty(&handler->h_list)); 1514 1515 list_del_init(&handler->node); 1516 1517 if (handler->fops != NULL) 1518 input_table[handler->minor >> 5] = NULL; 1519 1520 input_wakeup_procfs_readers(); 1521 1522 mutex_unlock(&input_mutex); 1523} 1524EXPORT_SYMBOL(input_unregister_handler); 1525 1526/** 1527 * input_register_handle - register a new input handle 1528 * @handle: handle to register 1529 * 1530 * This function puts a new input handle onto device's 1531 * and handler's lists so that events can flow through 1532 * it once it is opened using input_open_device(). 1533 * 1534 * This function is supposed to be called from handler's 1535 * connect() method. 1536 */ 1537int input_register_handle(struct input_handle *handle) 1538{ 1539 struct input_handler *handler = handle->handler; 1540 struct input_dev *dev = handle->dev; 1541 int error; 1542 1543 /* 1544 * We take dev->mutex here to prevent race with 1545 * input_release_device(). 1546 */ 1547 error = mutex_lock_interruptible(&dev->mutex); 1548 if (error) 1549 return error; 1550 list_add_tail_rcu(&handle->d_node, &dev->h_list); 1551 mutex_unlock(&dev->mutex); 1552 1553 /* 1554 * Since we are supposed to be called from ->connect() 1555 * which is mutually exclusive with ->disconnect() 1556 * we can't be racing with input_unregister_handle() 1557 * and so separate lock is not needed here. 1558 */ 1559 list_add_tail(&handle->h_node, &handler->h_list); 1560 1561 if (handler->start) 1562 handler->start(handle); 1563 1564 return 0; 1565} 1566EXPORT_SYMBOL(input_register_handle); 1567 1568/** 1569 * input_unregister_handle - unregister an input handle 1570 * @handle: handle to unregister 1571 * 1572 * This function removes input handle from device's 1573 * and handler's lists. 1574 * 1575 * This function is supposed to be called from handler's 1576 * disconnect() method. 1577 */ 1578void input_unregister_handle(struct input_handle *handle) 1579{ 1580 struct input_dev *dev = handle->dev; 1581 1582 list_del_init(&handle->h_node); 1583 1584 /* 1585 * Take dev->mutex to prevent race with input_release_device(). 1586 */ 1587 mutex_lock(&dev->mutex); 1588 list_del_rcu(&handle->d_node); 1589 mutex_unlock(&dev->mutex); 1590 synchronize_rcu(); 1591} 1592EXPORT_SYMBOL(input_unregister_handle); 1593 1594static int input_open_file(struct inode *inode, struct file *file) 1595{ 1596 struct input_handler *handler; 1597 const struct file_operations *old_fops, *new_fops = NULL; 1598 int err; 1599 1600 lock_kernel(); 1601 /* No load-on-demand here? */ 1602 handler = input_table[iminor(inode) >> 5]; 1603 if (!handler || !(new_fops = fops_get(handler->fops))) { 1604 err = -ENODEV; 1605 goto out; 1606 } 1607 1608 /* 1609 * That's _really_ odd. Usually NULL ->open means "nothing special", 1610 * not "no device". Oh, well... 1611 */ 1612 if (!new_fops->open) { 1613 fops_put(new_fops); 1614 err = -ENODEV; 1615 goto out; 1616 } 1617 old_fops = file->f_op; 1618 file->f_op = new_fops; 1619 1620 err = new_fops->open(inode, file); 1621 1622 if (err) { 1623 fops_put(file->f_op); 1624 file->f_op = fops_get(old_fops); 1625 } 1626 fops_put(old_fops); 1627out: 1628 unlock_kernel(); 1629 return err; 1630} 1631 1632static const struct file_operations input_fops = { 1633 .owner = THIS_MODULE, 1634 .open = input_open_file, 1635}; 1636 1637static int __init input_init(void) 1638{ 1639 int err; 1640 1641 err = class_register(&input_class); 1642 if (err) { 1643 printk(KERN_ERR "input: unable to register input_dev class\n"); 1644 return err; 1645 } 1646 1647 err = input_proc_init(); 1648 if (err) 1649 goto fail1; 1650 1651 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 1652 if (err) { 1653 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR); 1654 goto fail2; 1655 } 1656 1657 return 0; 1658 1659 fail2: input_proc_exit(); 1660 fail1: class_unregister(&input_class); 1661 return err; 1662} 1663 1664static void __exit input_exit(void) 1665{ 1666 input_proc_exit(); 1667 unregister_chrdev(INPUT_MAJOR, "input"); 1668 class_unregister(&input_class); 1669} 1670 1671subsys_initcall(input_init); 1672module_exit(input_exit);