at v2.6.30-rc2 2301 lines 63 kB view raw
1/* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21#include <linux/delay.h> 22#include <linux/blkdev.h> 23#include <linux/seq_file.h> 24#include "md.h" 25#include "dm-bio-list.h" 26#include "raid10.h" 27#include "bitmap.h" 28 29/* 30 * RAID10 provides a combination of RAID0 and RAID1 functionality. 31 * The layout of data is defined by 32 * chunk_size 33 * raid_disks 34 * near_copies (stored in low byte of layout) 35 * far_copies (stored in second byte of layout) 36 * far_offset (stored in bit 16 of layout ) 37 * 38 * The data to be stored is divided into chunks using chunksize. 39 * Each device is divided into far_copies sections. 40 * In each section, chunks are laid out in a style similar to raid0, but 41 * near_copies copies of each chunk is stored (each on a different drive). 42 * The starting device for each section is offset near_copies from the starting 43 * device of the previous section. 44 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 45 * drive. 46 * near_copies and far_copies must be at least one, and their product is at most 47 * raid_disks. 48 * 49 * If far_offset is true, then the far_copies are handled a bit differently. 50 * The copies are still in different stripes, but instead of be very far apart 51 * on disk, there are adjacent stripes. 52 */ 53 54/* 55 * Number of guaranteed r10bios in case of extreme VM load: 56 */ 57#define NR_RAID10_BIOS 256 58 59static void unplug_slaves(mddev_t *mddev); 60 61static void allow_barrier(conf_t *conf); 62static void lower_barrier(conf_t *conf); 63 64static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 65{ 66 conf_t *conf = data; 67 r10bio_t *r10_bio; 68 int size = offsetof(struct r10bio_s, devs[conf->copies]); 69 70 /* allocate a r10bio with room for raid_disks entries in the bios array */ 71 r10_bio = kzalloc(size, gfp_flags); 72 if (!r10_bio) 73 unplug_slaves(conf->mddev); 74 75 return r10_bio; 76} 77 78static void r10bio_pool_free(void *r10_bio, void *data) 79{ 80 kfree(r10_bio); 81} 82 83/* Maximum size of each resync request */ 84#define RESYNC_BLOCK_SIZE (64*1024) 85#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 86/* amount of memory to reserve for resync requests */ 87#define RESYNC_WINDOW (1024*1024) 88/* maximum number of concurrent requests, memory permitting */ 89#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 90 91/* 92 * When performing a resync, we need to read and compare, so 93 * we need as many pages are there are copies. 94 * When performing a recovery, we need 2 bios, one for read, 95 * one for write (we recover only one drive per r10buf) 96 * 97 */ 98static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 99{ 100 conf_t *conf = data; 101 struct page *page; 102 r10bio_t *r10_bio; 103 struct bio *bio; 104 int i, j; 105 int nalloc; 106 107 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 108 if (!r10_bio) { 109 unplug_slaves(conf->mddev); 110 return NULL; 111 } 112 113 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 114 nalloc = conf->copies; /* resync */ 115 else 116 nalloc = 2; /* recovery */ 117 118 /* 119 * Allocate bios. 120 */ 121 for (j = nalloc ; j-- ; ) { 122 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 123 if (!bio) 124 goto out_free_bio; 125 r10_bio->devs[j].bio = bio; 126 } 127 /* 128 * Allocate RESYNC_PAGES data pages and attach them 129 * where needed. 130 */ 131 for (j = 0 ; j < nalloc; j++) { 132 bio = r10_bio->devs[j].bio; 133 for (i = 0; i < RESYNC_PAGES; i++) { 134 page = alloc_page(gfp_flags); 135 if (unlikely(!page)) 136 goto out_free_pages; 137 138 bio->bi_io_vec[i].bv_page = page; 139 } 140 } 141 142 return r10_bio; 143 144out_free_pages: 145 for ( ; i > 0 ; i--) 146 safe_put_page(bio->bi_io_vec[i-1].bv_page); 147 while (j--) 148 for (i = 0; i < RESYNC_PAGES ; i++) 149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 150 j = -1; 151out_free_bio: 152 while ( ++j < nalloc ) 153 bio_put(r10_bio->devs[j].bio); 154 r10bio_pool_free(r10_bio, conf); 155 return NULL; 156} 157 158static void r10buf_pool_free(void *__r10_bio, void *data) 159{ 160 int i; 161 conf_t *conf = data; 162 r10bio_t *r10bio = __r10_bio; 163 int j; 164 165 for (j=0; j < conf->copies; j++) { 166 struct bio *bio = r10bio->devs[j].bio; 167 if (bio) { 168 for (i = 0; i < RESYNC_PAGES; i++) { 169 safe_put_page(bio->bi_io_vec[i].bv_page); 170 bio->bi_io_vec[i].bv_page = NULL; 171 } 172 bio_put(bio); 173 } 174 } 175 r10bio_pool_free(r10bio, conf); 176} 177 178static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 179{ 180 int i; 181 182 for (i = 0; i < conf->copies; i++) { 183 struct bio **bio = & r10_bio->devs[i].bio; 184 if (*bio && *bio != IO_BLOCKED) 185 bio_put(*bio); 186 *bio = NULL; 187 } 188} 189 190static void free_r10bio(r10bio_t *r10_bio) 191{ 192 conf_t *conf = mddev_to_conf(r10_bio->mddev); 193 194 /* 195 * Wake up any possible resync thread that waits for the device 196 * to go idle. 197 */ 198 allow_barrier(conf); 199 200 put_all_bios(conf, r10_bio); 201 mempool_free(r10_bio, conf->r10bio_pool); 202} 203 204static void put_buf(r10bio_t *r10_bio) 205{ 206 conf_t *conf = mddev_to_conf(r10_bio->mddev); 207 208 mempool_free(r10_bio, conf->r10buf_pool); 209 210 lower_barrier(conf); 211} 212 213static void reschedule_retry(r10bio_t *r10_bio) 214{ 215 unsigned long flags; 216 mddev_t *mddev = r10_bio->mddev; 217 conf_t *conf = mddev_to_conf(mddev); 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r10_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 /* wake up frozen array... */ 225 wake_up(&conf->wait_barrier); 226 227 md_wakeup_thread(mddev->thread); 228} 229 230/* 231 * raid_end_bio_io() is called when we have finished servicing a mirrored 232 * operation and are ready to return a success/failure code to the buffer 233 * cache layer. 234 */ 235static void raid_end_bio_io(r10bio_t *r10_bio) 236{ 237 struct bio *bio = r10_bio->master_bio; 238 239 bio_endio(bio, 240 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 241 free_r10bio(r10_bio); 242} 243 244/* 245 * Update disk head position estimator based on IRQ completion info. 246 */ 247static inline void update_head_pos(int slot, r10bio_t *r10_bio) 248{ 249 conf_t *conf = mddev_to_conf(r10_bio->mddev); 250 251 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 252 r10_bio->devs[slot].addr + (r10_bio->sectors); 253} 254 255static void raid10_end_read_request(struct bio *bio, int error) 256{ 257 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 258 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 259 int slot, dev; 260 conf_t *conf = mddev_to_conf(r10_bio->mddev); 261 262 263 slot = r10_bio->read_slot; 264 dev = r10_bio->devs[slot].devnum; 265 /* 266 * this branch is our 'one mirror IO has finished' event handler: 267 */ 268 update_head_pos(slot, r10_bio); 269 270 if (uptodate) { 271 /* 272 * Set R10BIO_Uptodate in our master bio, so that 273 * we will return a good error code to the higher 274 * levels even if IO on some other mirrored buffer fails. 275 * 276 * The 'master' represents the composite IO operation to 277 * user-side. So if something waits for IO, then it will 278 * wait for the 'master' bio. 279 */ 280 set_bit(R10BIO_Uptodate, &r10_bio->state); 281 raid_end_bio_io(r10_bio); 282 } else { 283 /* 284 * oops, read error: 285 */ 286 char b[BDEVNAME_SIZE]; 287 if (printk_ratelimit()) 288 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 289 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 290 reschedule_retry(r10_bio); 291 } 292 293 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 294} 295 296static void raid10_end_write_request(struct bio *bio, int error) 297{ 298 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 299 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 300 int slot, dev; 301 conf_t *conf = mddev_to_conf(r10_bio->mddev); 302 303 for (slot = 0; slot < conf->copies; slot++) 304 if (r10_bio->devs[slot].bio == bio) 305 break; 306 dev = r10_bio->devs[slot].devnum; 307 308 /* 309 * this branch is our 'one mirror IO has finished' event handler: 310 */ 311 if (!uptodate) { 312 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 313 /* an I/O failed, we can't clear the bitmap */ 314 set_bit(R10BIO_Degraded, &r10_bio->state); 315 } else 316 /* 317 * Set R10BIO_Uptodate in our master bio, so that 318 * we will return a good error code for to the higher 319 * levels even if IO on some other mirrored buffer fails. 320 * 321 * The 'master' represents the composite IO operation to 322 * user-side. So if something waits for IO, then it will 323 * wait for the 'master' bio. 324 */ 325 set_bit(R10BIO_Uptodate, &r10_bio->state); 326 327 update_head_pos(slot, r10_bio); 328 329 /* 330 * 331 * Let's see if all mirrored write operations have finished 332 * already. 333 */ 334 if (atomic_dec_and_test(&r10_bio->remaining)) { 335 /* clear the bitmap if all writes complete successfully */ 336 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 337 r10_bio->sectors, 338 !test_bit(R10BIO_Degraded, &r10_bio->state), 339 0); 340 md_write_end(r10_bio->mddev); 341 raid_end_bio_io(r10_bio); 342 } 343 344 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 345} 346 347 348/* 349 * RAID10 layout manager 350 * Aswell as the chunksize and raid_disks count, there are two 351 * parameters: near_copies and far_copies. 352 * near_copies * far_copies must be <= raid_disks. 353 * Normally one of these will be 1. 354 * If both are 1, we get raid0. 355 * If near_copies == raid_disks, we get raid1. 356 * 357 * Chunks are layed out in raid0 style with near_copies copies of the 358 * first chunk, followed by near_copies copies of the next chunk and 359 * so on. 360 * If far_copies > 1, then after 1/far_copies of the array has been assigned 361 * as described above, we start again with a device offset of near_copies. 362 * So we effectively have another copy of the whole array further down all 363 * the drives, but with blocks on different drives. 364 * With this layout, and block is never stored twice on the one device. 365 * 366 * raid10_find_phys finds the sector offset of a given virtual sector 367 * on each device that it is on. 368 * 369 * raid10_find_virt does the reverse mapping, from a device and a 370 * sector offset to a virtual address 371 */ 372 373static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 374{ 375 int n,f; 376 sector_t sector; 377 sector_t chunk; 378 sector_t stripe; 379 int dev; 380 381 int slot = 0; 382 383 /* now calculate first sector/dev */ 384 chunk = r10bio->sector >> conf->chunk_shift; 385 sector = r10bio->sector & conf->chunk_mask; 386 387 chunk *= conf->near_copies; 388 stripe = chunk; 389 dev = sector_div(stripe, conf->raid_disks); 390 if (conf->far_offset) 391 stripe *= conf->far_copies; 392 393 sector += stripe << conf->chunk_shift; 394 395 /* and calculate all the others */ 396 for (n=0; n < conf->near_copies; n++) { 397 int d = dev; 398 sector_t s = sector; 399 r10bio->devs[slot].addr = sector; 400 r10bio->devs[slot].devnum = d; 401 slot++; 402 403 for (f = 1; f < conf->far_copies; f++) { 404 d += conf->near_copies; 405 if (d >= conf->raid_disks) 406 d -= conf->raid_disks; 407 s += conf->stride; 408 r10bio->devs[slot].devnum = d; 409 r10bio->devs[slot].addr = s; 410 slot++; 411 } 412 dev++; 413 if (dev >= conf->raid_disks) { 414 dev = 0; 415 sector += (conf->chunk_mask + 1); 416 } 417 } 418 BUG_ON(slot != conf->copies); 419} 420 421static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 422{ 423 sector_t offset, chunk, vchunk; 424 425 offset = sector & conf->chunk_mask; 426 if (conf->far_offset) { 427 int fc; 428 chunk = sector >> conf->chunk_shift; 429 fc = sector_div(chunk, conf->far_copies); 430 dev -= fc * conf->near_copies; 431 if (dev < 0) 432 dev += conf->raid_disks; 433 } else { 434 while (sector >= conf->stride) { 435 sector -= conf->stride; 436 if (dev < conf->near_copies) 437 dev += conf->raid_disks - conf->near_copies; 438 else 439 dev -= conf->near_copies; 440 } 441 chunk = sector >> conf->chunk_shift; 442 } 443 vchunk = chunk * conf->raid_disks + dev; 444 sector_div(vchunk, conf->near_copies); 445 return (vchunk << conf->chunk_shift) + offset; 446} 447 448/** 449 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 450 * @q: request queue 451 * @bvm: properties of new bio 452 * @biovec: the request that could be merged to it. 453 * 454 * Return amount of bytes we can accept at this offset 455 * If near_copies == raid_disk, there are no striping issues, 456 * but in that case, the function isn't called at all. 457 */ 458static int raid10_mergeable_bvec(struct request_queue *q, 459 struct bvec_merge_data *bvm, 460 struct bio_vec *biovec) 461{ 462 mddev_t *mddev = q->queuedata; 463 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 464 int max; 465 unsigned int chunk_sectors = mddev->chunk_size >> 9; 466 unsigned int bio_sectors = bvm->bi_size >> 9; 467 468 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 469 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 470 if (max <= biovec->bv_len && bio_sectors == 0) 471 return biovec->bv_len; 472 else 473 return max; 474} 475 476/* 477 * This routine returns the disk from which the requested read should 478 * be done. There is a per-array 'next expected sequential IO' sector 479 * number - if this matches on the next IO then we use the last disk. 480 * There is also a per-disk 'last know head position' sector that is 481 * maintained from IRQ contexts, both the normal and the resync IO 482 * completion handlers update this position correctly. If there is no 483 * perfect sequential match then we pick the disk whose head is closest. 484 * 485 * If there are 2 mirrors in the same 2 devices, performance degrades 486 * because position is mirror, not device based. 487 * 488 * The rdev for the device selected will have nr_pending incremented. 489 */ 490 491/* 492 * FIXME: possibly should rethink readbalancing and do it differently 493 * depending on near_copies / far_copies geometry. 494 */ 495static int read_balance(conf_t *conf, r10bio_t *r10_bio) 496{ 497 const unsigned long this_sector = r10_bio->sector; 498 int disk, slot, nslot; 499 const int sectors = r10_bio->sectors; 500 sector_t new_distance, current_distance; 501 mdk_rdev_t *rdev; 502 503 raid10_find_phys(conf, r10_bio); 504 rcu_read_lock(); 505 /* 506 * Check if we can balance. We can balance on the whole 507 * device if no resync is going on (recovery is ok), or below 508 * the resync window. We take the first readable disk when 509 * above the resync window. 510 */ 511 if (conf->mddev->recovery_cp < MaxSector 512 && (this_sector + sectors >= conf->next_resync)) { 513 /* make sure that disk is operational */ 514 slot = 0; 515 disk = r10_bio->devs[slot].devnum; 516 517 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 518 r10_bio->devs[slot].bio == IO_BLOCKED || 519 !test_bit(In_sync, &rdev->flags)) { 520 slot++; 521 if (slot == conf->copies) { 522 slot = 0; 523 disk = -1; 524 break; 525 } 526 disk = r10_bio->devs[slot].devnum; 527 } 528 goto rb_out; 529 } 530 531 532 /* make sure the disk is operational */ 533 slot = 0; 534 disk = r10_bio->devs[slot].devnum; 535 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 536 r10_bio->devs[slot].bio == IO_BLOCKED || 537 !test_bit(In_sync, &rdev->flags)) { 538 slot ++; 539 if (slot == conf->copies) { 540 disk = -1; 541 goto rb_out; 542 } 543 disk = r10_bio->devs[slot].devnum; 544 } 545 546 547 current_distance = abs(r10_bio->devs[slot].addr - 548 conf->mirrors[disk].head_position); 549 550 /* Find the disk whose head is closest, 551 * or - for far > 1 - find the closest to partition beginning */ 552 553 for (nslot = slot; nslot < conf->copies; nslot++) { 554 int ndisk = r10_bio->devs[nslot].devnum; 555 556 557 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 558 r10_bio->devs[nslot].bio == IO_BLOCKED || 559 !test_bit(In_sync, &rdev->flags)) 560 continue; 561 562 /* This optimisation is debatable, and completely destroys 563 * sequential read speed for 'far copies' arrays. So only 564 * keep it for 'near' arrays, and review those later. 565 */ 566 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 567 disk = ndisk; 568 slot = nslot; 569 break; 570 } 571 572 /* for far > 1 always use the lowest address */ 573 if (conf->far_copies > 1) 574 new_distance = r10_bio->devs[nslot].addr; 575 else 576 new_distance = abs(r10_bio->devs[nslot].addr - 577 conf->mirrors[ndisk].head_position); 578 if (new_distance < current_distance) { 579 current_distance = new_distance; 580 disk = ndisk; 581 slot = nslot; 582 } 583 } 584 585rb_out: 586 r10_bio->read_slot = slot; 587/* conf->next_seq_sect = this_sector + sectors;*/ 588 589 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 590 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 591 else 592 disk = -1; 593 rcu_read_unlock(); 594 595 return disk; 596} 597 598static void unplug_slaves(mddev_t *mddev) 599{ 600 conf_t *conf = mddev_to_conf(mddev); 601 int i; 602 603 rcu_read_lock(); 604 for (i=0; i<mddev->raid_disks; i++) { 605 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 606 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 607 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 608 609 atomic_inc(&rdev->nr_pending); 610 rcu_read_unlock(); 611 612 blk_unplug(r_queue); 613 614 rdev_dec_pending(rdev, mddev); 615 rcu_read_lock(); 616 } 617 } 618 rcu_read_unlock(); 619} 620 621static void raid10_unplug(struct request_queue *q) 622{ 623 mddev_t *mddev = q->queuedata; 624 625 unplug_slaves(q->queuedata); 626 md_wakeup_thread(mddev->thread); 627} 628 629static int raid10_congested(void *data, int bits) 630{ 631 mddev_t *mddev = data; 632 conf_t *conf = mddev_to_conf(mddev); 633 int i, ret = 0; 634 635 rcu_read_lock(); 636 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 637 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 638 if (rdev && !test_bit(Faulty, &rdev->flags)) { 639 struct request_queue *q = bdev_get_queue(rdev->bdev); 640 641 ret |= bdi_congested(&q->backing_dev_info, bits); 642 } 643 } 644 rcu_read_unlock(); 645 return ret; 646} 647 648static int flush_pending_writes(conf_t *conf) 649{ 650 /* Any writes that have been queued but are awaiting 651 * bitmap updates get flushed here. 652 * We return 1 if any requests were actually submitted. 653 */ 654 int rv = 0; 655 656 spin_lock_irq(&conf->device_lock); 657 658 if (conf->pending_bio_list.head) { 659 struct bio *bio; 660 bio = bio_list_get(&conf->pending_bio_list); 661 blk_remove_plug(conf->mddev->queue); 662 spin_unlock_irq(&conf->device_lock); 663 /* flush any pending bitmap writes to disk 664 * before proceeding w/ I/O */ 665 bitmap_unplug(conf->mddev->bitmap); 666 667 while (bio) { /* submit pending writes */ 668 struct bio *next = bio->bi_next; 669 bio->bi_next = NULL; 670 generic_make_request(bio); 671 bio = next; 672 } 673 rv = 1; 674 } else 675 spin_unlock_irq(&conf->device_lock); 676 return rv; 677} 678/* Barriers.... 679 * Sometimes we need to suspend IO while we do something else, 680 * either some resync/recovery, or reconfigure the array. 681 * To do this we raise a 'barrier'. 682 * The 'barrier' is a counter that can be raised multiple times 683 * to count how many activities are happening which preclude 684 * normal IO. 685 * We can only raise the barrier if there is no pending IO. 686 * i.e. if nr_pending == 0. 687 * We choose only to raise the barrier if no-one is waiting for the 688 * barrier to go down. This means that as soon as an IO request 689 * is ready, no other operations which require a barrier will start 690 * until the IO request has had a chance. 691 * 692 * So: regular IO calls 'wait_barrier'. When that returns there 693 * is no backgroup IO happening, It must arrange to call 694 * allow_barrier when it has finished its IO. 695 * backgroup IO calls must call raise_barrier. Once that returns 696 * there is no normal IO happeing. It must arrange to call 697 * lower_barrier when the particular background IO completes. 698 */ 699 700static void raise_barrier(conf_t *conf, int force) 701{ 702 BUG_ON(force && !conf->barrier); 703 spin_lock_irq(&conf->resync_lock); 704 705 /* Wait until no block IO is waiting (unless 'force') */ 706 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 707 conf->resync_lock, 708 raid10_unplug(conf->mddev->queue)); 709 710 /* block any new IO from starting */ 711 conf->barrier++; 712 713 /* No wait for all pending IO to complete */ 714 wait_event_lock_irq(conf->wait_barrier, 715 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 716 conf->resync_lock, 717 raid10_unplug(conf->mddev->queue)); 718 719 spin_unlock_irq(&conf->resync_lock); 720} 721 722static void lower_barrier(conf_t *conf) 723{ 724 unsigned long flags; 725 spin_lock_irqsave(&conf->resync_lock, flags); 726 conf->barrier--; 727 spin_unlock_irqrestore(&conf->resync_lock, flags); 728 wake_up(&conf->wait_barrier); 729} 730 731static void wait_barrier(conf_t *conf) 732{ 733 spin_lock_irq(&conf->resync_lock); 734 if (conf->barrier) { 735 conf->nr_waiting++; 736 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 737 conf->resync_lock, 738 raid10_unplug(conf->mddev->queue)); 739 conf->nr_waiting--; 740 } 741 conf->nr_pending++; 742 spin_unlock_irq(&conf->resync_lock); 743} 744 745static void allow_barrier(conf_t *conf) 746{ 747 unsigned long flags; 748 spin_lock_irqsave(&conf->resync_lock, flags); 749 conf->nr_pending--; 750 spin_unlock_irqrestore(&conf->resync_lock, flags); 751 wake_up(&conf->wait_barrier); 752} 753 754static void freeze_array(conf_t *conf) 755{ 756 /* stop syncio and normal IO and wait for everything to 757 * go quiet. 758 * We increment barrier and nr_waiting, and then 759 * wait until nr_pending match nr_queued+1 760 * This is called in the context of one normal IO request 761 * that has failed. Thus any sync request that might be pending 762 * will be blocked by nr_pending, and we need to wait for 763 * pending IO requests to complete or be queued for re-try. 764 * Thus the number queued (nr_queued) plus this request (1) 765 * must match the number of pending IOs (nr_pending) before 766 * we continue. 767 */ 768 spin_lock_irq(&conf->resync_lock); 769 conf->barrier++; 770 conf->nr_waiting++; 771 wait_event_lock_irq(conf->wait_barrier, 772 conf->nr_pending == conf->nr_queued+1, 773 conf->resync_lock, 774 ({ flush_pending_writes(conf); 775 raid10_unplug(conf->mddev->queue); })); 776 spin_unlock_irq(&conf->resync_lock); 777} 778 779static void unfreeze_array(conf_t *conf) 780{ 781 /* reverse the effect of the freeze */ 782 spin_lock_irq(&conf->resync_lock); 783 conf->barrier--; 784 conf->nr_waiting--; 785 wake_up(&conf->wait_barrier); 786 spin_unlock_irq(&conf->resync_lock); 787} 788 789static int make_request(struct request_queue *q, struct bio * bio) 790{ 791 mddev_t *mddev = q->queuedata; 792 conf_t *conf = mddev_to_conf(mddev); 793 mirror_info_t *mirror; 794 r10bio_t *r10_bio; 795 struct bio *read_bio; 796 int cpu; 797 int i; 798 int chunk_sects = conf->chunk_mask + 1; 799 const int rw = bio_data_dir(bio); 800 const int do_sync = bio_sync(bio); 801 struct bio_list bl; 802 unsigned long flags; 803 mdk_rdev_t *blocked_rdev; 804 805 if (unlikely(bio_barrier(bio))) { 806 bio_endio(bio, -EOPNOTSUPP); 807 return 0; 808 } 809 810 /* If this request crosses a chunk boundary, we need to 811 * split it. This will only happen for 1 PAGE (or less) requests. 812 */ 813 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 814 > chunk_sects && 815 conf->near_copies < conf->raid_disks)) { 816 struct bio_pair *bp; 817 /* Sanity check -- queue functions should prevent this happening */ 818 if (bio->bi_vcnt != 1 || 819 bio->bi_idx != 0) 820 goto bad_map; 821 /* This is a one page bio that upper layers 822 * refuse to split for us, so we need to split it. 823 */ 824 bp = bio_split(bio, 825 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 826 if (make_request(q, &bp->bio1)) 827 generic_make_request(&bp->bio1); 828 if (make_request(q, &bp->bio2)) 829 generic_make_request(&bp->bio2); 830 831 bio_pair_release(bp); 832 return 0; 833 bad_map: 834 printk("raid10_make_request bug: can't convert block across chunks" 835 " or bigger than %dk %llu %d\n", chunk_sects/2, 836 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 837 838 bio_io_error(bio); 839 return 0; 840 } 841 842 md_write_start(mddev, bio); 843 844 /* 845 * Register the new request and wait if the reconstruction 846 * thread has put up a bar for new requests. 847 * Continue immediately if no resync is active currently. 848 */ 849 wait_barrier(conf); 850 851 cpu = part_stat_lock(); 852 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 853 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 854 bio_sectors(bio)); 855 part_stat_unlock(); 856 857 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 858 859 r10_bio->master_bio = bio; 860 r10_bio->sectors = bio->bi_size >> 9; 861 862 r10_bio->mddev = mddev; 863 r10_bio->sector = bio->bi_sector; 864 r10_bio->state = 0; 865 866 if (rw == READ) { 867 /* 868 * read balancing logic: 869 */ 870 int disk = read_balance(conf, r10_bio); 871 int slot = r10_bio->read_slot; 872 if (disk < 0) { 873 raid_end_bio_io(r10_bio); 874 return 0; 875 } 876 mirror = conf->mirrors + disk; 877 878 read_bio = bio_clone(bio, GFP_NOIO); 879 880 r10_bio->devs[slot].bio = read_bio; 881 882 read_bio->bi_sector = r10_bio->devs[slot].addr + 883 mirror->rdev->data_offset; 884 read_bio->bi_bdev = mirror->rdev->bdev; 885 read_bio->bi_end_io = raid10_end_read_request; 886 read_bio->bi_rw = READ | do_sync; 887 read_bio->bi_private = r10_bio; 888 889 generic_make_request(read_bio); 890 return 0; 891 } 892 893 /* 894 * WRITE: 895 */ 896 /* first select target devices under rcu_lock and 897 * inc refcount on their rdev. Record them by setting 898 * bios[x] to bio 899 */ 900 raid10_find_phys(conf, r10_bio); 901 retry_write: 902 blocked_rdev = NULL; 903 rcu_read_lock(); 904 for (i = 0; i < conf->copies; i++) { 905 int d = r10_bio->devs[i].devnum; 906 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 907 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 908 atomic_inc(&rdev->nr_pending); 909 blocked_rdev = rdev; 910 break; 911 } 912 if (rdev && !test_bit(Faulty, &rdev->flags)) { 913 atomic_inc(&rdev->nr_pending); 914 r10_bio->devs[i].bio = bio; 915 } else { 916 r10_bio->devs[i].bio = NULL; 917 set_bit(R10BIO_Degraded, &r10_bio->state); 918 } 919 } 920 rcu_read_unlock(); 921 922 if (unlikely(blocked_rdev)) { 923 /* Have to wait for this device to get unblocked, then retry */ 924 int j; 925 int d; 926 927 for (j = 0; j < i; j++) 928 if (r10_bio->devs[j].bio) { 929 d = r10_bio->devs[j].devnum; 930 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 931 } 932 allow_barrier(conf); 933 md_wait_for_blocked_rdev(blocked_rdev, mddev); 934 wait_barrier(conf); 935 goto retry_write; 936 } 937 938 atomic_set(&r10_bio->remaining, 0); 939 940 bio_list_init(&bl); 941 for (i = 0; i < conf->copies; i++) { 942 struct bio *mbio; 943 int d = r10_bio->devs[i].devnum; 944 if (!r10_bio->devs[i].bio) 945 continue; 946 947 mbio = bio_clone(bio, GFP_NOIO); 948 r10_bio->devs[i].bio = mbio; 949 950 mbio->bi_sector = r10_bio->devs[i].addr+ 951 conf->mirrors[d].rdev->data_offset; 952 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 953 mbio->bi_end_io = raid10_end_write_request; 954 mbio->bi_rw = WRITE | do_sync; 955 mbio->bi_private = r10_bio; 956 957 atomic_inc(&r10_bio->remaining); 958 bio_list_add(&bl, mbio); 959 } 960 961 if (unlikely(!atomic_read(&r10_bio->remaining))) { 962 /* the array is dead */ 963 md_write_end(mddev); 964 raid_end_bio_io(r10_bio); 965 return 0; 966 } 967 968 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 969 spin_lock_irqsave(&conf->device_lock, flags); 970 bio_list_merge(&conf->pending_bio_list, &bl); 971 blk_plug_device(mddev->queue); 972 spin_unlock_irqrestore(&conf->device_lock, flags); 973 974 /* In case raid10d snuck in to freeze_array */ 975 wake_up(&conf->wait_barrier); 976 977 if (do_sync) 978 md_wakeup_thread(mddev->thread); 979 980 return 0; 981} 982 983static void status(struct seq_file *seq, mddev_t *mddev) 984{ 985 conf_t *conf = mddev_to_conf(mddev); 986 int i; 987 988 if (conf->near_copies < conf->raid_disks) 989 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 990 if (conf->near_copies > 1) 991 seq_printf(seq, " %d near-copies", conf->near_copies); 992 if (conf->far_copies > 1) { 993 if (conf->far_offset) 994 seq_printf(seq, " %d offset-copies", conf->far_copies); 995 else 996 seq_printf(seq, " %d far-copies", conf->far_copies); 997 } 998 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 999 conf->raid_disks - mddev->degraded); 1000 for (i = 0; i < conf->raid_disks; i++) 1001 seq_printf(seq, "%s", 1002 conf->mirrors[i].rdev && 1003 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1004 seq_printf(seq, "]"); 1005} 1006 1007static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1008{ 1009 char b[BDEVNAME_SIZE]; 1010 conf_t *conf = mddev_to_conf(mddev); 1011 1012 /* 1013 * If it is not operational, then we have already marked it as dead 1014 * else if it is the last working disks, ignore the error, let the 1015 * next level up know. 1016 * else mark the drive as failed 1017 */ 1018 if (test_bit(In_sync, &rdev->flags) 1019 && conf->raid_disks-mddev->degraded == 1) 1020 /* 1021 * Don't fail the drive, just return an IO error. 1022 * The test should really be more sophisticated than 1023 * "working_disks == 1", but it isn't critical, and 1024 * can wait until we do more sophisticated "is the drive 1025 * really dead" tests... 1026 */ 1027 return; 1028 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1029 unsigned long flags; 1030 spin_lock_irqsave(&conf->device_lock, flags); 1031 mddev->degraded++; 1032 spin_unlock_irqrestore(&conf->device_lock, flags); 1033 /* 1034 * if recovery is running, make sure it aborts. 1035 */ 1036 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1037 } 1038 set_bit(Faulty, &rdev->flags); 1039 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1040 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1041 "raid10: Operation continuing on %d devices.\n", 1042 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1043} 1044 1045static void print_conf(conf_t *conf) 1046{ 1047 int i; 1048 mirror_info_t *tmp; 1049 1050 printk("RAID10 conf printout:\n"); 1051 if (!conf) { 1052 printk("(!conf)\n"); 1053 return; 1054 } 1055 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1056 conf->raid_disks); 1057 1058 for (i = 0; i < conf->raid_disks; i++) { 1059 char b[BDEVNAME_SIZE]; 1060 tmp = conf->mirrors + i; 1061 if (tmp->rdev) 1062 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1063 i, !test_bit(In_sync, &tmp->rdev->flags), 1064 !test_bit(Faulty, &tmp->rdev->flags), 1065 bdevname(tmp->rdev->bdev,b)); 1066 } 1067} 1068 1069static void close_sync(conf_t *conf) 1070{ 1071 wait_barrier(conf); 1072 allow_barrier(conf); 1073 1074 mempool_destroy(conf->r10buf_pool); 1075 conf->r10buf_pool = NULL; 1076} 1077 1078/* check if there are enough drives for 1079 * every block to appear on atleast one 1080 */ 1081static int enough(conf_t *conf) 1082{ 1083 int first = 0; 1084 1085 do { 1086 int n = conf->copies; 1087 int cnt = 0; 1088 while (n--) { 1089 if (conf->mirrors[first].rdev) 1090 cnt++; 1091 first = (first+1) % conf->raid_disks; 1092 } 1093 if (cnt == 0) 1094 return 0; 1095 } while (first != 0); 1096 return 1; 1097} 1098 1099static int raid10_spare_active(mddev_t *mddev) 1100{ 1101 int i; 1102 conf_t *conf = mddev->private; 1103 mirror_info_t *tmp; 1104 1105 /* 1106 * Find all non-in_sync disks within the RAID10 configuration 1107 * and mark them in_sync 1108 */ 1109 for (i = 0; i < conf->raid_disks; i++) { 1110 tmp = conf->mirrors + i; 1111 if (tmp->rdev 1112 && !test_bit(Faulty, &tmp->rdev->flags) 1113 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1114 unsigned long flags; 1115 spin_lock_irqsave(&conf->device_lock, flags); 1116 mddev->degraded--; 1117 spin_unlock_irqrestore(&conf->device_lock, flags); 1118 } 1119 } 1120 1121 print_conf(conf); 1122 return 0; 1123} 1124 1125 1126static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1127{ 1128 conf_t *conf = mddev->private; 1129 int err = -EEXIST; 1130 int mirror; 1131 mirror_info_t *p; 1132 int first = 0; 1133 int last = mddev->raid_disks - 1; 1134 1135 if (mddev->recovery_cp < MaxSector) 1136 /* only hot-add to in-sync arrays, as recovery is 1137 * very different from resync 1138 */ 1139 return -EBUSY; 1140 if (!enough(conf)) 1141 return -EINVAL; 1142 1143 if (rdev->raid_disk >= 0) 1144 first = last = rdev->raid_disk; 1145 1146 if (rdev->saved_raid_disk >= 0 && 1147 rdev->saved_raid_disk >= first && 1148 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1149 mirror = rdev->saved_raid_disk; 1150 else 1151 mirror = first; 1152 for ( ; mirror <= last ; mirror++) 1153 if ( !(p=conf->mirrors+mirror)->rdev) { 1154 1155 blk_queue_stack_limits(mddev->queue, 1156 rdev->bdev->bd_disk->queue); 1157 /* as we don't honour merge_bvec_fn, we must never risk 1158 * violating it, so limit ->max_sector to one PAGE, as 1159 * a one page request is never in violation. 1160 */ 1161 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1162 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1163 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1164 1165 p->head_position = 0; 1166 rdev->raid_disk = mirror; 1167 err = 0; 1168 if (rdev->saved_raid_disk != mirror) 1169 conf->fullsync = 1; 1170 rcu_assign_pointer(p->rdev, rdev); 1171 break; 1172 } 1173 1174 print_conf(conf); 1175 return err; 1176} 1177 1178static int raid10_remove_disk(mddev_t *mddev, int number) 1179{ 1180 conf_t *conf = mddev->private; 1181 int err = 0; 1182 mdk_rdev_t *rdev; 1183 mirror_info_t *p = conf->mirrors+ number; 1184 1185 print_conf(conf); 1186 rdev = p->rdev; 1187 if (rdev) { 1188 if (test_bit(In_sync, &rdev->flags) || 1189 atomic_read(&rdev->nr_pending)) { 1190 err = -EBUSY; 1191 goto abort; 1192 } 1193 /* Only remove faulty devices in recovery 1194 * is not possible. 1195 */ 1196 if (!test_bit(Faulty, &rdev->flags) && 1197 enough(conf)) { 1198 err = -EBUSY; 1199 goto abort; 1200 } 1201 p->rdev = NULL; 1202 synchronize_rcu(); 1203 if (atomic_read(&rdev->nr_pending)) { 1204 /* lost the race, try later */ 1205 err = -EBUSY; 1206 p->rdev = rdev; 1207 } 1208 } 1209abort: 1210 1211 print_conf(conf); 1212 return err; 1213} 1214 1215 1216static void end_sync_read(struct bio *bio, int error) 1217{ 1218 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1219 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1220 int i,d; 1221 1222 for (i=0; i<conf->copies; i++) 1223 if (r10_bio->devs[i].bio == bio) 1224 break; 1225 BUG_ON(i == conf->copies); 1226 update_head_pos(i, r10_bio); 1227 d = r10_bio->devs[i].devnum; 1228 1229 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1230 set_bit(R10BIO_Uptodate, &r10_bio->state); 1231 else { 1232 atomic_add(r10_bio->sectors, 1233 &conf->mirrors[d].rdev->corrected_errors); 1234 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1235 md_error(r10_bio->mddev, 1236 conf->mirrors[d].rdev); 1237 } 1238 1239 /* for reconstruct, we always reschedule after a read. 1240 * for resync, only after all reads 1241 */ 1242 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1243 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1244 atomic_dec_and_test(&r10_bio->remaining)) { 1245 /* we have read all the blocks, 1246 * do the comparison in process context in raid10d 1247 */ 1248 reschedule_retry(r10_bio); 1249 } 1250} 1251 1252static void end_sync_write(struct bio *bio, int error) 1253{ 1254 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1255 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1256 mddev_t *mddev = r10_bio->mddev; 1257 conf_t *conf = mddev_to_conf(mddev); 1258 int i,d; 1259 1260 for (i = 0; i < conf->copies; i++) 1261 if (r10_bio->devs[i].bio == bio) 1262 break; 1263 d = r10_bio->devs[i].devnum; 1264 1265 if (!uptodate) 1266 md_error(mddev, conf->mirrors[d].rdev); 1267 1268 update_head_pos(i, r10_bio); 1269 1270 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1271 while (atomic_dec_and_test(&r10_bio->remaining)) { 1272 if (r10_bio->master_bio == NULL) { 1273 /* the primary of several recovery bios */ 1274 sector_t s = r10_bio->sectors; 1275 put_buf(r10_bio); 1276 md_done_sync(mddev, s, 1); 1277 break; 1278 } else { 1279 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1280 put_buf(r10_bio); 1281 r10_bio = r10_bio2; 1282 } 1283 } 1284} 1285 1286/* 1287 * Note: sync and recover and handled very differently for raid10 1288 * This code is for resync. 1289 * For resync, we read through virtual addresses and read all blocks. 1290 * If there is any error, we schedule a write. The lowest numbered 1291 * drive is authoritative. 1292 * However requests come for physical address, so we need to map. 1293 * For every physical address there are raid_disks/copies virtual addresses, 1294 * which is always are least one, but is not necessarly an integer. 1295 * This means that a physical address can span multiple chunks, so we may 1296 * have to submit multiple io requests for a single sync request. 1297 */ 1298/* 1299 * We check if all blocks are in-sync and only write to blocks that 1300 * aren't in sync 1301 */ 1302static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1303{ 1304 conf_t *conf = mddev_to_conf(mddev); 1305 int i, first; 1306 struct bio *tbio, *fbio; 1307 1308 atomic_set(&r10_bio->remaining, 1); 1309 1310 /* find the first device with a block */ 1311 for (i=0; i<conf->copies; i++) 1312 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1313 break; 1314 1315 if (i == conf->copies) 1316 goto done; 1317 1318 first = i; 1319 fbio = r10_bio->devs[i].bio; 1320 1321 /* now find blocks with errors */ 1322 for (i=0 ; i < conf->copies ; i++) { 1323 int j, d; 1324 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1325 1326 tbio = r10_bio->devs[i].bio; 1327 1328 if (tbio->bi_end_io != end_sync_read) 1329 continue; 1330 if (i == first) 1331 continue; 1332 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1333 /* We know that the bi_io_vec layout is the same for 1334 * both 'first' and 'i', so we just compare them. 1335 * All vec entries are PAGE_SIZE; 1336 */ 1337 for (j = 0; j < vcnt; j++) 1338 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1339 page_address(tbio->bi_io_vec[j].bv_page), 1340 PAGE_SIZE)) 1341 break; 1342 if (j == vcnt) 1343 continue; 1344 mddev->resync_mismatches += r10_bio->sectors; 1345 } 1346 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1347 /* Don't fix anything. */ 1348 continue; 1349 /* Ok, we need to write this bio 1350 * First we need to fixup bv_offset, bv_len and 1351 * bi_vecs, as the read request might have corrupted these 1352 */ 1353 tbio->bi_vcnt = vcnt; 1354 tbio->bi_size = r10_bio->sectors << 9; 1355 tbio->bi_idx = 0; 1356 tbio->bi_phys_segments = 0; 1357 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1358 tbio->bi_flags |= 1 << BIO_UPTODATE; 1359 tbio->bi_next = NULL; 1360 tbio->bi_rw = WRITE; 1361 tbio->bi_private = r10_bio; 1362 tbio->bi_sector = r10_bio->devs[i].addr; 1363 1364 for (j=0; j < vcnt ; j++) { 1365 tbio->bi_io_vec[j].bv_offset = 0; 1366 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1367 1368 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1369 page_address(fbio->bi_io_vec[j].bv_page), 1370 PAGE_SIZE); 1371 } 1372 tbio->bi_end_io = end_sync_write; 1373 1374 d = r10_bio->devs[i].devnum; 1375 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1376 atomic_inc(&r10_bio->remaining); 1377 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1378 1379 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1380 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1381 generic_make_request(tbio); 1382 } 1383 1384done: 1385 if (atomic_dec_and_test(&r10_bio->remaining)) { 1386 md_done_sync(mddev, r10_bio->sectors, 1); 1387 put_buf(r10_bio); 1388 } 1389} 1390 1391/* 1392 * Now for the recovery code. 1393 * Recovery happens across physical sectors. 1394 * We recover all non-is_sync drives by finding the virtual address of 1395 * each, and then choose a working drive that also has that virt address. 1396 * There is a separate r10_bio for each non-in_sync drive. 1397 * Only the first two slots are in use. The first for reading, 1398 * The second for writing. 1399 * 1400 */ 1401 1402static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1403{ 1404 conf_t *conf = mddev_to_conf(mddev); 1405 int i, d; 1406 struct bio *bio, *wbio; 1407 1408 1409 /* move the pages across to the second bio 1410 * and submit the write request 1411 */ 1412 bio = r10_bio->devs[0].bio; 1413 wbio = r10_bio->devs[1].bio; 1414 for (i=0; i < wbio->bi_vcnt; i++) { 1415 struct page *p = bio->bi_io_vec[i].bv_page; 1416 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1417 wbio->bi_io_vec[i].bv_page = p; 1418 } 1419 d = r10_bio->devs[1].devnum; 1420 1421 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1422 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1423 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1424 generic_make_request(wbio); 1425 else 1426 bio_endio(wbio, -EIO); 1427} 1428 1429 1430/* 1431 * This is a kernel thread which: 1432 * 1433 * 1. Retries failed read operations on working mirrors. 1434 * 2. Updates the raid superblock when problems encounter. 1435 * 3. Performs writes following reads for array synchronising. 1436 */ 1437 1438static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1439{ 1440 int sect = 0; /* Offset from r10_bio->sector */ 1441 int sectors = r10_bio->sectors; 1442 mdk_rdev_t*rdev; 1443 while(sectors) { 1444 int s = sectors; 1445 int sl = r10_bio->read_slot; 1446 int success = 0; 1447 int start; 1448 1449 if (s > (PAGE_SIZE>>9)) 1450 s = PAGE_SIZE >> 9; 1451 1452 rcu_read_lock(); 1453 do { 1454 int d = r10_bio->devs[sl].devnum; 1455 rdev = rcu_dereference(conf->mirrors[d].rdev); 1456 if (rdev && 1457 test_bit(In_sync, &rdev->flags)) { 1458 atomic_inc(&rdev->nr_pending); 1459 rcu_read_unlock(); 1460 success = sync_page_io(rdev->bdev, 1461 r10_bio->devs[sl].addr + 1462 sect + rdev->data_offset, 1463 s<<9, 1464 conf->tmppage, READ); 1465 rdev_dec_pending(rdev, mddev); 1466 rcu_read_lock(); 1467 if (success) 1468 break; 1469 } 1470 sl++; 1471 if (sl == conf->copies) 1472 sl = 0; 1473 } while (!success && sl != r10_bio->read_slot); 1474 rcu_read_unlock(); 1475 1476 if (!success) { 1477 /* Cannot read from anywhere -- bye bye array */ 1478 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1479 md_error(mddev, conf->mirrors[dn].rdev); 1480 break; 1481 } 1482 1483 start = sl; 1484 /* write it back and re-read */ 1485 rcu_read_lock(); 1486 while (sl != r10_bio->read_slot) { 1487 int d; 1488 if (sl==0) 1489 sl = conf->copies; 1490 sl--; 1491 d = r10_bio->devs[sl].devnum; 1492 rdev = rcu_dereference(conf->mirrors[d].rdev); 1493 if (rdev && 1494 test_bit(In_sync, &rdev->flags)) { 1495 atomic_inc(&rdev->nr_pending); 1496 rcu_read_unlock(); 1497 atomic_add(s, &rdev->corrected_errors); 1498 if (sync_page_io(rdev->bdev, 1499 r10_bio->devs[sl].addr + 1500 sect + rdev->data_offset, 1501 s<<9, conf->tmppage, WRITE) 1502 == 0) 1503 /* Well, this device is dead */ 1504 md_error(mddev, rdev); 1505 rdev_dec_pending(rdev, mddev); 1506 rcu_read_lock(); 1507 } 1508 } 1509 sl = start; 1510 while (sl != r10_bio->read_slot) { 1511 int d; 1512 if (sl==0) 1513 sl = conf->copies; 1514 sl--; 1515 d = r10_bio->devs[sl].devnum; 1516 rdev = rcu_dereference(conf->mirrors[d].rdev); 1517 if (rdev && 1518 test_bit(In_sync, &rdev->flags)) { 1519 char b[BDEVNAME_SIZE]; 1520 atomic_inc(&rdev->nr_pending); 1521 rcu_read_unlock(); 1522 if (sync_page_io(rdev->bdev, 1523 r10_bio->devs[sl].addr + 1524 sect + rdev->data_offset, 1525 s<<9, conf->tmppage, READ) == 0) 1526 /* Well, this device is dead */ 1527 md_error(mddev, rdev); 1528 else 1529 printk(KERN_INFO 1530 "raid10:%s: read error corrected" 1531 " (%d sectors at %llu on %s)\n", 1532 mdname(mddev), s, 1533 (unsigned long long)(sect+ 1534 rdev->data_offset), 1535 bdevname(rdev->bdev, b)); 1536 1537 rdev_dec_pending(rdev, mddev); 1538 rcu_read_lock(); 1539 } 1540 } 1541 rcu_read_unlock(); 1542 1543 sectors -= s; 1544 sect += s; 1545 } 1546} 1547 1548static void raid10d(mddev_t *mddev) 1549{ 1550 r10bio_t *r10_bio; 1551 struct bio *bio; 1552 unsigned long flags; 1553 conf_t *conf = mddev_to_conf(mddev); 1554 struct list_head *head = &conf->retry_list; 1555 int unplug=0; 1556 mdk_rdev_t *rdev; 1557 1558 md_check_recovery(mddev); 1559 1560 for (;;) { 1561 char b[BDEVNAME_SIZE]; 1562 1563 unplug += flush_pending_writes(conf); 1564 1565 spin_lock_irqsave(&conf->device_lock, flags); 1566 if (list_empty(head)) { 1567 spin_unlock_irqrestore(&conf->device_lock, flags); 1568 break; 1569 } 1570 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1571 list_del(head->prev); 1572 conf->nr_queued--; 1573 spin_unlock_irqrestore(&conf->device_lock, flags); 1574 1575 mddev = r10_bio->mddev; 1576 conf = mddev_to_conf(mddev); 1577 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1578 sync_request_write(mddev, r10_bio); 1579 unplug = 1; 1580 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1581 recovery_request_write(mddev, r10_bio); 1582 unplug = 1; 1583 } else { 1584 int mirror; 1585 /* we got a read error. Maybe the drive is bad. Maybe just 1586 * the block and we can fix it. 1587 * We freeze all other IO, and try reading the block from 1588 * other devices. When we find one, we re-write 1589 * and check it that fixes the read error. 1590 * This is all done synchronously while the array is 1591 * frozen. 1592 */ 1593 if (mddev->ro == 0) { 1594 freeze_array(conf); 1595 fix_read_error(conf, mddev, r10_bio); 1596 unfreeze_array(conf); 1597 } 1598 1599 bio = r10_bio->devs[r10_bio->read_slot].bio; 1600 r10_bio->devs[r10_bio->read_slot].bio = 1601 mddev->ro ? IO_BLOCKED : NULL; 1602 mirror = read_balance(conf, r10_bio); 1603 if (mirror == -1) { 1604 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1605 " read error for block %llu\n", 1606 bdevname(bio->bi_bdev,b), 1607 (unsigned long long)r10_bio->sector); 1608 raid_end_bio_io(r10_bio); 1609 bio_put(bio); 1610 } else { 1611 const int do_sync = bio_sync(r10_bio->master_bio); 1612 bio_put(bio); 1613 rdev = conf->mirrors[mirror].rdev; 1614 if (printk_ratelimit()) 1615 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1616 " another mirror\n", 1617 bdevname(rdev->bdev,b), 1618 (unsigned long long)r10_bio->sector); 1619 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1620 r10_bio->devs[r10_bio->read_slot].bio = bio; 1621 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1622 + rdev->data_offset; 1623 bio->bi_bdev = rdev->bdev; 1624 bio->bi_rw = READ | do_sync; 1625 bio->bi_private = r10_bio; 1626 bio->bi_end_io = raid10_end_read_request; 1627 unplug = 1; 1628 generic_make_request(bio); 1629 } 1630 } 1631 } 1632 if (unplug) 1633 unplug_slaves(mddev); 1634} 1635 1636 1637static int init_resync(conf_t *conf) 1638{ 1639 int buffs; 1640 1641 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1642 BUG_ON(conf->r10buf_pool); 1643 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1644 if (!conf->r10buf_pool) 1645 return -ENOMEM; 1646 conf->next_resync = 0; 1647 return 0; 1648} 1649 1650/* 1651 * perform a "sync" on one "block" 1652 * 1653 * We need to make sure that no normal I/O request - particularly write 1654 * requests - conflict with active sync requests. 1655 * 1656 * This is achieved by tracking pending requests and a 'barrier' concept 1657 * that can be installed to exclude normal IO requests. 1658 * 1659 * Resync and recovery are handled very differently. 1660 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1661 * 1662 * For resync, we iterate over virtual addresses, read all copies, 1663 * and update if there are differences. If only one copy is live, 1664 * skip it. 1665 * For recovery, we iterate over physical addresses, read a good 1666 * value for each non-in_sync drive, and over-write. 1667 * 1668 * So, for recovery we may have several outstanding complex requests for a 1669 * given address, one for each out-of-sync device. We model this by allocating 1670 * a number of r10_bio structures, one for each out-of-sync device. 1671 * As we setup these structures, we collect all bio's together into a list 1672 * which we then process collectively to add pages, and then process again 1673 * to pass to generic_make_request. 1674 * 1675 * The r10_bio structures are linked using a borrowed master_bio pointer. 1676 * This link is counted in ->remaining. When the r10_bio that points to NULL 1677 * has its remaining count decremented to 0, the whole complex operation 1678 * is complete. 1679 * 1680 */ 1681 1682static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1683{ 1684 conf_t *conf = mddev_to_conf(mddev); 1685 r10bio_t *r10_bio; 1686 struct bio *biolist = NULL, *bio; 1687 sector_t max_sector, nr_sectors; 1688 int disk; 1689 int i; 1690 int max_sync; 1691 int sync_blocks; 1692 1693 sector_t sectors_skipped = 0; 1694 int chunks_skipped = 0; 1695 1696 if (!conf->r10buf_pool) 1697 if (init_resync(conf)) 1698 return 0; 1699 1700 skipped: 1701 max_sector = mddev->dev_sectors; 1702 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1703 max_sector = mddev->resync_max_sectors; 1704 if (sector_nr >= max_sector) { 1705 /* If we aborted, we need to abort the 1706 * sync on the 'current' bitmap chucks (there can 1707 * be several when recovering multiple devices). 1708 * as we may have started syncing it but not finished. 1709 * We can find the current address in 1710 * mddev->curr_resync, but for recovery, 1711 * we need to convert that to several 1712 * virtual addresses. 1713 */ 1714 if (mddev->curr_resync < max_sector) { /* aborted */ 1715 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1716 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1717 &sync_blocks, 1); 1718 else for (i=0; i<conf->raid_disks; i++) { 1719 sector_t sect = 1720 raid10_find_virt(conf, mddev->curr_resync, i); 1721 bitmap_end_sync(mddev->bitmap, sect, 1722 &sync_blocks, 1); 1723 } 1724 } else /* completed sync */ 1725 conf->fullsync = 0; 1726 1727 bitmap_close_sync(mddev->bitmap); 1728 close_sync(conf); 1729 *skipped = 1; 1730 return sectors_skipped; 1731 } 1732 if (chunks_skipped >= conf->raid_disks) { 1733 /* if there has been nothing to do on any drive, 1734 * then there is nothing to do at all.. 1735 */ 1736 *skipped = 1; 1737 return (max_sector - sector_nr) + sectors_skipped; 1738 } 1739 1740 if (max_sector > mddev->resync_max) 1741 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1742 1743 /* make sure whole request will fit in a chunk - if chunks 1744 * are meaningful 1745 */ 1746 if (conf->near_copies < conf->raid_disks && 1747 max_sector > (sector_nr | conf->chunk_mask)) 1748 max_sector = (sector_nr | conf->chunk_mask) + 1; 1749 /* 1750 * If there is non-resync activity waiting for us then 1751 * put in a delay to throttle resync. 1752 */ 1753 if (!go_faster && conf->nr_waiting) 1754 msleep_interruptible(1000); 1755 1756 /* Again, very different code for resync and recovery. 1757 * Both must result in an r10bio with a list of bios that 1758 * have bi_end_io, bi_sector, bi_bdev set, 1759 * and bi_private set to the r10bio. 1760 * For recovery, we may actually create several r10bios 1761 * with 2 bios in each, that correspond to the bios in the main one. 1762 * In this case, the subordinate r10bios link back through a 1763 * borrowed master_bio pointer, and the counter in the master 1764 * includes a ref from each subordinate. 1765 */ 1766 /* First, we decide what to do and set ->bi_end_io 1767 * To end_sync_read if we want to read, and 1768 * end_sync_write if we will want to write. 1769 */ 1770 1771 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1772 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1773 /* recovery... the complicated one */ 1774 int i, j, k; 1775 r10_bio = NULL; 1776 1777 for (i=0 ; i<conf->raid_disks; i++) 1778 if (conf->mirrors[i].rdev && 1779 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1780 int still_degraded = 0; 1781 /* want to reconstruct this device */ 1782 r10bio_t *rb2 = r10_bio; 1783 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1784 int must_sync; 1785 /* Unless we are doing a full sync, we only need 1786 * to recover the block if it is set in the bitmap 1787 */ 1788 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1789 &sync_blocks, 1); 1790 if (sync_blocks < max_sync) 1791 max_sync = sync_blocks; 1792 if (!must_sync && 1793 !conf->fullsync) { 1794 /* yep, skip the sync_blocks here, but don't assume 1795 * that there will never be anything to do here 1796 */ 1797 chunks_skipped = -1; 1798 continue; 1799 } 1800 1801 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1802 raise_barrier(conf, rb2 != NULL); 1803 atomic_set(&r10_bio->remaining, 0); 1804 1805 r10_bio->master_bio = (struct bio*)rb2; 1806 if (rb2) 1807 atomic_inc(&rb2->remaining); 1808 r10_bio->mddev = mddev; 1809 set_bit(R10BIO_IsRecover, &r10_bio->state); 1810 r10_bio->sector = sect; 1811 1812 raid10_find_phys(conf, r10_bio); 1813 /* Need to check if this section will still be 1814 * degraded 1815 */ 1816 for (j=0; j<conf->copies;j++) { 1817 int d = r10_bio->devs[j].devnum; 1818 if (conf->mirrors[d].rdev == NULL || 1819 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1820 still_degraded = 1; 1821 break; 1822 } 1823 } 1824 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1825 &sync_blocks, still_degraded); 1826 1827 for (j=0; j<conf->copies;j++) { 1828 int d = r10_bio->devs[j].devnum; 1829 if (conf->mirrors[d].rdev && 1830 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1831 /* This is where we read from */ 1832 bio = r10_bio->devs[0].bio; 1833 bio->bi_next = biolist; 1834 biolist = bio; 1835 bio->bi_private = r10_bio; 1836 bio->bi_end_io = end_sync_read; 1837 bio->bi_rw = READ; 1838 bio->bi_sector = r10_bio->devs[j].addr + 1839 conf->mirrors[d].rdev->data_offset; 1840 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1841 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1842 atomic_inc(&r10_bio->remaining); 1843 /* and we write to 'i' */ 1844 1845 for (k=0; k<conf->copies; k++) 1846 if (r10_bio->devs[k].devnum == i) 1847 break; 1848 BUG_ON(k == conf->copies); 1849 bio = r10_bio->devs[1].bio; 1850 bio->bi_next = biolist; 1851 biolist = bio; 1852 bio->bi_private = r10_bio; 1853 bio->bi_end_io = end_sync_write; 1854 bio->bi_rw = WRITE; 1855 bio->bi_sector = r10_bio->devs[k].addr + 1856 conf->mirrors[i].rdev->data_offset; 1857 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1858 1859 r10_bio->devs[0].devnum = d; 1860 r10_bio->devs[1].devnum = i; 1861 1862 break; 1863 } 1864 } 1865 if (j == conf->copies) { 1866 /* Cannot recover, so abort the recovery */ 1867 put_buf(r10_bio); 1868 if (rb2) 1869 atomic_dec(&rb2->remaining); 1870 r10_bio = rb2; 1871 if (!test_and_set_bit(MD_RECOVERY_INTR, 1872 &mddev->recovery)) 1873 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1874 mdname(mddev)); 1875 break; 1876 } 1877 } 1878 if (biolist == NULL) { 1879 while (r10_bio) { 1880 r10bio_t *rb2 = r10_bio; 1881 r10_bio = (r10bio_t*) rb2->master_bio; 1882 rb2->master_bio = NULL; 1883 put_buf(rb2); 1884 } 1885 goto giveup; 1886 } 1887 } else { 1888 /* resync. Schedule a read for every block at this virt offset */ 1889 int count = 0; 1890 1891 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1892 1893 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1894 &sync_blocks, mddev->degraded) && 1895 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1896 /* We can skip this block */ 1897 *skipped = 1; 1898 return sync_blocks + sectors_skipped; 1899 } 1900 if (sync_blocks < max_sync) 1901 max_sync = sync_blocks; 1902 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1903 1904 r10_bio->mddev = mddev; 1905 atomic_set(&r10_bio->remaining, 0); 1906 raise_barrier(conf, 0); 1907 conf->next_resync = sector_nr; 1908 1909 r10_bio->master_bio = NULL; 1910 r10_bio->sector = sector_nr; 1911 set_bit(R10BIO_IsSync, &r10_bio->state); 1912 raid10_find_phys(conf, r10_bio); 1913 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1914 1915 for (i=0; i<conf->copies; i++) { 1916 int d = r10_bio->devs[i].devnum; 1917 bio = r10_bio->devs[i].bio; 1918 bio->bi_end_io = NULL; 1919 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1920 if (conf->mirrors[d].rdev == NULL || 1921 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1922 continue; 1923 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1924 atomic_inc(&r10_bio->remaining); 1925 bio->bi_next = biolist; 1926 biolist = bio; 1927 bio->bi_private = r10_bio; 1928 bio->bi_end_io = end_sync_read; 1929 bio->bi_rw = READ; 1930 bio->bi_sector = r10_bio->devs[i].addr + 1931 conf->mirrors[d].rdev->data_offset; 1932 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1933 count++; 1934 } 1935 1936 if (count < 2) { 1937 for (i=0; i<conf->copies; i++) { 1938 int d = r10_bio->devs[i].devnum; 1939 if (r10_bio->devs[i].bio->bi_end_io) 1940 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1941 } 1942 put_buf(r10_bio); 1943 biolist = NULL; 1944 goto giveup; 1945 } 1946 } 1947 1948 for (bio = biolist; bio ; bio=bio->bi_next) { 1949 1950 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1951 if (bio->bi_end_io) 1952 bio->bi_flags |= 1 << BIO_UPTODATE; 1953 bio->bi_vcnt = 0; 1954 bio->bi_idx = 0; 1955 bio->bi_phys_segments = 0; 1956 bio->bi_size = 0; 1957 } 1958 1959 nr_sectors = 0; 1960 if (sector_nr + max_sync < max_sector) 1961 max_sector = sector_nr + max_sync; 1962 do { 1963 struct page *page; 1964 int len = PAGE_SIZE; 1965 disk = 0; 1966 if (sector_nr + (len>>9) > max_sector) 1967 len = (max_sector - sector_nr) << 9; 1968 if (len == 0) 1969 break; 1970 for (bio= biolist ; bio ; bio=bio->bi_next) { 1971 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1972 if (bio_add_page(bio, page, len, 0) == 0) { 1973 /* stop here */ 1974 struct bio *bio2; 1975 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1976 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1977 /* remove last page from this bio */ 1978 bio2->bi_vcnt--; 1979 bio2->bi_size -= len; 1980 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1981 } 1982 goto bio_full; 1983 } 1984 disk = i; 1985 } 1986 nr_sectors += len>>9; 1987 sector_nr += len>>9; 1988 } while (biolist->bi_vcnt < RESYNC_PAGES); 1989 bio_full: 1990 r10_bio->sectors = nr_sectors; 1991 1992 while (biolist) { 1993 bio = biolist; 1994 biolist = biolist->bi_next; 1995 1996 bio->bi_next = NULL; 1997 r10_bio = bio->bi_private; 1998 r10_bio->sectors = nr_sectors; 1999 2000 if (bio->bi_end_io == end_sync_read) { 2001 md_sync_acct(bio->bi_bdev, nr_sectors); 2002 generic_make_request(bio); 2003 } 2004 } 2005 2006 if (sectors_skipped) 2007 /* pretend they weren't skipped, it makes 2008 * no important difference in this case 2009 */ 2010 md_done_sync(mddev, sectors_skipped, 1); 2011 2012 return sectors_skipped + nr_sectors; 2013 giveup: 2014 /* There is nowhere to write, so all non-sync 2015 * drives must be failed, so try the next chunk... 2016 */ 2017 if (sector_nr + max_sync < max_sector) 2018 max_sector = sector_nr + max_sync; 2019 2020 sectors_skipped += (max_sector - sector_nr); 2021 chunks_skipped ++; 2022 sector_nr = max_sector; 2023 goto skipped; 2024} 2025 2026static sector_t 2027raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2028{ 2029 sector_t size; 2030 conf_t *conf = mddev_to_conf(mddev); 2031 2032 if (!raid_disks) 2033 raid_disks = mddev->raid_disks; 2034 if (!sectors) 2035 sectors = mddev->dev_sectors; 2036 2037 size = sectors >> conf->chunk_shift; 2038 sector_div(size, conf->far_copies); 2039 size = size * raid_disks; 2040 sector_div(size, conf->near_copies); 2041 2042 return size << conf->chunk_shift; 2043} 2044 2045static int run(mddev_t *mddev) 2046{ 2047 conf_t *conf; 2048 int i, disk_idx; 2049 mirror_info_t *disk; 2050 mdk_rdev_t *rdev; 2051 int nc, fc, fo; 2052 sector_t stride, size; 2053 2054 if (mddev->chunk_size < PAGE_SIZE) { 2055 printk(KERN_ERR "md/raid10: chunk size must be " 2056 "at least PAGE_SIZE(%ld).\n", PAGE_SIZE); 2057 return -EINVAL; 2058 } 2059 2060 nc = mddev->layout & 255; 2061 fc = (mddev->layout >> 8) & 255; 2062 fo = mddev->layout & (1<<16); 2063 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2064 (mddev->layout >> 17)) { 2065 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2066 mdname(mddev), mddev->layout); 2067 goto out; 2068 } 2069 /* 2070 * copy the already verified devices into our private RAID10 2071 * bookkeeping area. [whatever we allocate in run(), 2072 * should be freed in stop()] 2073 */ 2074 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2075 mddev->private = conf; 2076 if (!conf) { 2077 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2078 mdname(mddev)); 2079 goto out; 2080 } 2081 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2082 GFP_KERNEL); 2083 if (!conf->mirrors) { 2084 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2085 mdname(mddev)); 2086 goto out_free_conf; 2087 } 2088 2089 conf->tmppage = alloc_page(GFP_KERNEL); 2090 if (!conf->tmppage) 2091 goto out_free_conf; 2092 2093 conf->mddev = mddev; 2094 conf->raid_disks = mddev->raid_disks; 2095 conf->near_copies = nc; 2096 conf->far_copies = fc; 2097 conf->copies = nc*fc; 2098 conf->far_offset = fo; 2099 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2100 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2101 size = mddev->dev_sectors >> conf->chunk_shift; 2102 sector_div(size, fc); 2103 size = size * conf->raid_disks; 2104 sector_div(size, nc); 2105 /* 'size' is now the number of chunks in the array */ 2106 /* calculate "used chunks per device" in 'stride' */ 2107 stride = size * conf->copies; 2108 2109 /* We need to round up when dividing by raid_disks to 2110 * get the stride size. 2111 */ 2112 stride += conf->raid_disks - 1; 2113 sector_div(stride, conf->raid_disks); 2114 mddev->dev_sectors = stride << conf->chunk_shift; 2115 2116 if (fo) 2117 stride = 1; 2118 else 2119 sector_div(stride, fc); 2120 conf->stride = stride << conf->chunk_shift; 2121 2122 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2123 r10bio_pool_free, conf); 2124 if (!conf->r10bio_pool) { 2125 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2126 mdname(mddev)); 2127 goto out_free_conf; 2128 } 2129 2130 spin_lock_init(&conf->device_lock); 2131 mddev->queue->queue_lock = &conf->device_lock; 2132 2133 list_for_each_entry(rdev, &mddev->disks, same_set) { 2134 disk_idx = rdev->raid_disk; 2135 if (disk_idx >= mddev->raid_disks 2136 || disk_idx < 0) 2137 continue; 2138 disk = conf->mirrors + disk_idx; 2139 2140 disk->rdev = rdev; 2141 2142 blk_queue_stack_limits(mddev->queue, 2143 rdev->bdev->bd_disk->queue); 2144 /* as we don't honour merge_bvec_fn, we must never risk 2145 * violating it, so limit ->max_sector to one PAGE, as 2146 * a one page request is never in violation. 2147 */ 2148 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2149 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2150 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2151 2152 disk->head_position = 0; 2153 } 2154 INIT_LIST_HEAD(&conf->retry_list); 2155 2156 spin_lock_init(&conf->resync_lock); 2157 init_waitqueue_head(&conf->wait_barrier); 2158 2159 /* need to check that every block has at least one working mirror */ 2160 if (!enough(conf)) { 2161 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2162 mdname(mddev)); 2163 goto out_free_conf; 2164 } 2165 2166 mddev->degraded = 0; 2167 for (i = 0; i < conf->raid_disks; i++) { 2168 2169 disk = conf->mirrors + i; 2170 2171 if (!disk->rdev || 2172 !test_bit(In_sync, &disk->rdev->flags)) { 2173 disk->head_position = 0; 2174 mddev->degraded++; 2175 if (disk->rdev) 2176 conf->fullsync = 1; 2177 } 2178 } 2179 2180 2181 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2182 if (!mddev->thread) { 2183 printk(KERN_ERR 2184 "raid10: couldn't allocate thread for %s\n", 2185 mdname(mddev)); 2186 goto out_free_conf; 2187 } 2188 2189 printk(KERN_INFO 2190 "raid10: raid set %s active with %d out of %d devices\n", 2191 mdname(mddev), mddev->raid_disks - mddev->degraded, 2192 mddev->raid_disks); 2193 /* 2194 * Ok, everything is just fine now 2195 */ 2196 md_set_array_sectors(mddev, raid10_size(mddev, 0, 0)); 2197 mddev->resync_max_sectors = raid10_size(mddev, 0, 0); 2198 2199 mddev->queue->unplug_fn = raid10_unplug; 2200 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2201 mddev->queue->backing_dev_info.congested_data = mddev; 2202 2203 /* Calculate max read-ahead size. 2204 * We need to readahead at least twice a whole stripe.... 2205 * maybe... 2206 */ 2207 { 2208 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2209 stripe /= conf->near_copies; 2210 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2211 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2212 } 2213 2214 if (conf->near_copies < mddev->raid_disks) 2215 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2216 return 0; 2217 2218out_free_conf: 2219 if (conf->r10bio_pool) 2220 mempool_destroy(conf->r10bio_pool); 2221 safe_put_page(conf->tmppage); 2222 kfree(conf->mirrors); 2223 kfree(conf); 2224 mddev->private = NULL; 2225out: 2226 return -EIO; 2227} 2228 2229static int stop(mddev_t *mddev) 2230{ 2231 conf_t *conf = mddev_to_conf(mddev); 2232 2233 raise_barrier(conf, 0); 2234 lower_barrier(conf); 2235 2236 md_unregister_thread(mddev->thread); 2237 mddev->thread = NULL; 2238 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2239 if (conf->r10bio_pool) 2240 mempool_destroy(conf->r10bio_pool); 2241 kfree(conf->mirrors); 2242 kfree(conf); 2243 mddev->private = NULL; 2244 return 0; 2245} 2246 2247static void raid10_quiesce(mddev_t *mddev, int state) 2248{ 2249 conf_t *conf = mddev_to_conf(mddev); 2250 2251 switch(state) { 2252 case 1: 2253 raise_barrier(conf, 0); 2254 break; 2255 case 0: 2256 lower_barrier(conf); 2257 break; 2258 } 2259 if (mddev->thread) { 2260 if (mddev->bitmap) 2261 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2262 else 2263 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2264 md_wakeup_thread(mddev->thread); 2265 } 2266} 2267 2268static struct mdk_personality raid10_personality = 2269{ 2270 .name = "raid10", 2271 .level = 10, 2272 .owner = THIS_MODULE, 2273 .make_request = make_request, 2274 .run = run, 2275 .stop = stop, 2276 .status = status, 2277 .error_handler = error, 2278 .hot_add_disk = raid10_add_disk, 2279 .hot_remove_disk= raid10_remove_disk, 2280 .spare_active = raid10_spare_active, 2281 .sync_request = sync_request, 2282 .quiesce = raid10_quiesce, 2283 .size = raid10_size, 2284}; 2285 2286static int __init raid_init(void) 2287{ 2288 return register_md_personality(&raid10_personality); 2289} 2290 2291static void raid_exit(void) 2292{ 2293 unregister_md_personality(&raid10_personality); 2294} 2295 2296module_init(raid_init); 2297module_exit(raid_exit); 2298MODULE_LICENSE("GPL"); 2299MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2300MODULE_ALIAS("md-raid10"); 2301MODULE_ALIAS("md-level-10");