at v2.6.29 26 kB view raw
1/* 2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 3 * 4 * started by Ingo Molnar and Thomas Gleixner. 5 * 6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 9 * Copyright (C) 2006 Esben Nielsen 10 * 11 * See Documentation/rt-mutex-design.txt for details. 12 */ 13#include <linux/spinlock.h> 14#include <linux/module.h> 15#include <linux/sched.h> 16#include <linux/timer.h> 17 18#include "rtmutex_common.h" 19 20/* 21 * lock->owner state tracking: 22 * 23 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1 24 * are used to keep track of the "owner is pending" and "lock has 25 * waiters" state. 26 * 27 * owner bit1 bit0 28 * NULL 0 0 lock is free (fast acquire possible) 29 * NULL 0 1 invalid state 30 * NULL 1 0 Transitional State* 31 * NULL 1 1 invalid state 32 * taskpointer 0 0 lock is held (fast release possible) 33 * taskpointer 0 1 task is pending owner 34 * taskpointer 1 0 lock is held and has waiters 35 * taskpointer 1 1 task is pending owner and lock has more waiters 36 * 37 * Pending ownership is assigned to the top (highest priority) 38 * waiter of the lock, when the lock is released. The thread is woken 39 * up and can now take the lock. Until the lock is taken (bit 0 40 * cleared) a competing higher priority thread can steal the lock 41 * which puts the woken up thread back on the waiters list. 42 * 43 * The fast atomic compare exchange based acquire and release is only 44 * possible when bit 0 and 1 of lock->owner are 0. 45 * 46 * (*) There's a small time where the owner can be NULL and the 47 * "lock has waiters" bit is set. This can happen when grabbing the lock. 48 * To prevent a cmpxchg of the owner releasing the lock, we need to set this 49 * bit before looking at the lock, hence the reason this is a transitional 50 * state. 51 */ 52 53static void 54rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner, 55 unsigned long mask) 56{ 57 unsigned long val = (unsigned long)owner | mask; 58 59 if (rt_mutex_has_waiters(lock)) 60 val |= RT_MUTEX_HAS_WAITERS; 61 62 lock->owner = (struct task_struct *)val; 63} 64 65static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 66{ 67 lock->owner = (struct task_struct *) 68 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 69} 70 71static void fixup_rt_mutex_waiters(struct rt_mutex *lock) 72{ 73 if (!rt_mutex_has_waiters(lock)) 74 clear_rt_mutex_waiters(lock); 75} 76 77/* 78 * We can speed up the acquire/release, if the architecture 79 * supports cmpxchg and if there's no debugging state to be set up 80 */ 81#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES) 82# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c) 83static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 84{ 85 unsigned long owner, *p = (unsigned long *) &lock->owner; 86 87 do { 88 owner = *p; 89 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner); 90} 91#else 92# define rt_mutex_cmpxchg(l,c,n) (0) 93static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 94{ 95 lock->owner = (struct task_struct *) 96 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 97} 98#endif 99 100/* 101 * Calculate task priority from the waiter list priority 102 * 103 * Return task->normal_prio when the waiter list is empty or when 104 * the waiter is not allowed to do priority boosting 105 */ 106int rt_mutex_getprio(struct task_struct *task) 107{ 108 if (likely(!task_has_pi_waiters(task))) 109 return task->normal_prio; 110 111 return min(task_top_pi_waiter(task)->pi_list_entry.prio, 112 task->normal_prio); 113} 114 115/* 116 * Adjust the priority of a task, after its pi_waiters got modified. 117 * 118 * This can be both boosting and unboosting. task->pi_lock must be held. 119 */ 120static void __rt_mutex_adjust_prio(struct task_struct *task) 121{ 122 int prio = rt_mutex_getprio(task); 123 124 if (task->prio != prio) 125 rt_mutex_setprio(task, prio); 126} 127 128/* 129 * Adjust task priority (undo boosting). Called from the exit path of 130 * rt_mutex_slowunlock() and rt_mutex_slowlock(). 131 * 132 * (Note: We do this outside of the protection of lock->wait_lock to 133 * allow the lock to be taken while or before we readjust the priority 134 * of task. We do not use the spin_xx_mutex() variants here as we are 135 * outside of the debug path.) 136 */ 137static void rt_mutex_adjust_prio(struct task_struct *task) 138{ 139 unsigned long flags; 140 141 spin_lock_irqsave(&task->pi_lock, flags); 142 __rt_mutex_adjust_prio(task); 143 spin_unlock_irqrestore(&task->pi_lock, flags); 144} 145 146/* 147 * Max number of times we'll walk the boosting chain: 148 */ 149int max_lock_depth = 1024; 150 151/* 152 * Adjust the priority chain. Also used for deadlock detection. 153 * Decreases task's usage by one - may thus free the task. 154 * Returns 0 or -EDEADLK. 155 */ 156static int rt_mutex_adjust_prio_chain(struct task_struct *task, 157 int deadlock_detect, 158 struct rt_mutex *orig_lock, 159 struct rt_mutex_waiter *orig_waiter, 160 struct task_struct *top_task) 161{ 162 struct rt_mutex *lock; 163 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 164 int detect_deadlock, ret = 0, depth = 0; 165 unsigned long flags; 166 167 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter, 168 deadlock_detect); 169 170 /* 171 * The (de)boosting is a step by step approach with a lot of 172 * pitfalls. We want this to be preemptible and we want hold a 173 * maximum of two locks per step. So we have to check 174 * carefully whether things change under us. 175 */ 176 again: 177 if (++depth > max_lock_depth) { 178 static int prev_max; 179 180 /* 181 * Print this only once. If the admin changes the limit, 182 * print a new message when reaching the limit again. 183 */ 184 if (prev_max != max_lock_depth) { 185 prev_max = max_lock_depth; 186 printk(KERN_WARNING "Maximum lock depth %d reached " 187 "task: %s (%d)\n", max_lock_depth, 188 top_task->comm, task_pid_nr(top_task)); 189 } 190 put_task_struct(task); 191 192 return deadlock_detect ? -EDEADLK : 0; 193 } 194 retry: 195 /* 196 * Task can not go away as we did a get_task() before ! 197 */ 198 spin_lock_irqsave(&task->pi_lock, flags); 199 200 waiter = task->pi_blocked_on; 201 /* 202 * Check whether the end of the boosting chain has been 203 * reached or the state of the chain has changed while we 204 * dropped the locks. 205 */ 206 if (!waiter || !waiter->task) 207 goto out_unlock_pi; 208 209 /* 210 * Check the orig_waiter state. After we dropped the locks, 211 * the previous owner of the lock might have released the lock 212 * and made us the pending owner: 213 */ 214 if (orig_waiter && !orig_waiter->task) 215 goto out_unlock_pi; 216 217 /* 218 * Drop out, when the task has no waiters. Note, 219 * top_waiter can be NULL, when we are in the deboosting 220 * mode! 221 */ 222 if (top_waiter && (!task_has_pi_waiters(task) || 223 top_waiter != task_top_pi_waiter(task))) 224 goto out_unlock_pi; 225 226 /* 227 * When deadlock detection is off then we check, if further 228 * priority adjustment is necessary. 229 */ 230 if (!detect_deadlock && waiter->list_entry.prio == task->prio) 231 goto out_unlock_pi; 232 233 lock = waiter->lock; 234 if (!spin_trylock(&lock->wait_lock)) { 235 spin_unlock_irqrestore(&task->pi_lock, flags); 236 cpu_relax(); 237 goto retry; 238 } 239 240 /* Deadlock detection */ 241 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 242 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock); 243 spin_unlock(&lock->wait_lock); 244 ret = deadlock_detect ? -EDEADLK : 0; 245 goto out_unlock_pi; 246 } 247 248 top_waiter = rt_mutex_top_waiter(lock); 249 250 /* Requeue the waiter */ 251 plist_del(&waiter->list_entry, &lock->wait_list); 252 waiter->list_entry.prio = task->prio; 253 plist_add(&waiter->list_entry, &lock->wait_list); 254 255 /* Release the task */ 256 spin_unlock_irqrestore(&task->pi_lock, flags); 257 put_task_struct(task); 258 259 /* Grab the next task */ 260 task = rt_mutex_owner(lock); 261 get_task_struct(task); 262 spin_lock_irqsave(&task->pi_lock, flags); 263 264 if (waiter == rt_mutex_top_waiter(lock)) { 265 /* Boost the owner */ 266 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters); 267 waiter->pi_list_entry.prio = waiter->list_entry.prio; 268 plist_add(&waiter->pi_list_entry, &task->pi_waiters); 269 __rt_mutex_adjust_prio(task); 270 271 } else if (top_waiter == waiter) { 272 /* Deboost the owner */ 273 plist_del(&waiter->pi_list_entry, &task->pi_waiters); 274 waiter = rt_mutex_top_waiter(lock); 275 waiter->pi_list_entry.prio = waiter->list_entry.prio; 276 plist_add(&waiter->pi_list_entry, &task->pi_waiters); 277 __rt_mutex_adjust_prio(task); 278 } 279 280 spin_unlock_irqrestore(&task->pi_lock, flags); 281 282 top_waiter = rt_mutex_top_waiter(lock); 283 spin_unlock(&lock->wait_lock); 284 285 if (!detect_deadlock && waiter != top_waiter) 286 goto out_put_task; 287 288 goto again; 289 290 out_unlock_pi: 291 spin_unlock_irqrestore(&task->pi_lock, flags); 292 out_put_task: 293 put_task_struct(task); 294 295 return ret; 296} 297 298/* 299 * Optimization: check if we can steal the lock from the 300 * assigned pending owner [which might not have taken the 301 * lock yet]: 302 */ 303static inline int try_to_steal_lock(struct rt_mutex *lock) 304{ 305 struct task_struct *pendowner = rt_mutex_owner(lock); 306 struct rt_mutex_waiter *next; 307 unsigned long flags; 308 309 if (!rt_mutex_owner_pending(lock)) 310 return 0; 311 312 if (pendowner == current) 313 return 1; 314 315 spin_lock_irqsave(&pendowner->pi_lock, flags); 316 if (current->prio >= pendowner->prio) { 317 spin_unlock_irqrestore(&pendowner->pi_lock, flags); 318 return 0; 319 } 320 321 /* 322 * Check if a waiter is enqueued on the pending owners 323 * pi_waiters list. Remove it and readjust pending owners 324 * priority. 325 */ 326 if (likely(!rt_mutex_has_waiters(lock))) { 327 spin_unlock_irqrestore(&pendowner->pi_lock, flags); 328 return 1; 329 } 330 331 /* No chain handling, pending owner is not blocked on anything: */ 332 next = rt_mutex_top_waiter(lock); 333 plist_del(&next->pi_list_entry, &pendowner->pi_waiters); 334 __rt_mutex_adjust_prio(pendowner); 335 spin_unlock_irqrestore(&pendowner->pi_lock, flags); 336 337 /* 338 * We are going to steal the lock and a waiter was 339 * enqueued on the pending owners pi_waiters queue. So 340 * we have to enqueue this waiter into 341 * current->pi_waiters list. This covers the case, 342 * where current is boosted because it holds another 343 * lock and gets unboosted because the booster is 344 * interrupted, so we would delay a waiter with higher 345 * priority as current->normal_prio. 346 * 347 * Note: in the rare case of a SCHED_OTHER task changing 348 * its priority and thus stealing the lock, next->task 349 * might be current: 350 */ 351 if (likely(next->task != current)) { 352 spin_lock_irqsave(&current->pi_lock, flags); 353 plist_add(&next->pi_list_entry, &current->pi_waiters); 354 __rt_mutex_adjust_prio(current); 355 spin_unlock_irqrestore(&current->pi_lock, flags); 356 } 357 return 1; 358} 359 360/* 361 * Try to take an rt-mutex 362 * 363 * This fails 364 * - when the lock has a real owner 365 * - when a different pending owner exists and has higher priority than current 366 * 367 * Must be called with lock->wait_lock held. 368 */ 369static int try_to_take_rt_mutex(struct rt_mutex *lock) 370{ 371 /* 372 * We have to be careful here if the atomic speedups are 373 * enabled, such that, when 374 * - no other waiter is on the lock 375 * - the lock has been released since we did the cmpxchg 376 * the lock can be released or taken while we are doing the 377 * checks and marking the lock with RT_MUTEX_HAS_WAITERS. 378 * 379 * The atomic acquire/release aware variant of 380 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting 381 * the WAITERS bit, the atomic release / acquire can not 382 * happen anymore and lock->wait_lock protects us from the 383 * non-atomic case. 384 * 385 * Note, that this might set lock->owner = 386 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended 387 * any more. This is fixed up when we take the ownership. 388 * This is the transitional state explained at the top of this file. 389 */ 390 mark_rt_mutex_waiters(lock); 391 392 if (rt_mutex_owner(lock) && !try_to_steal_lock(lock)) 393 return 0; 394 395 /* We got the lock. */ 396 debug_rt_mutex_lock(lock); 397 398 rt_mutex_set_owner(lock, current, 0); 399 400 rt_mutex_deadlock_account_lock(lock, current); 401 402 return 1; 403} 404 405/* 406 * Task blocks on lock. 407 * 408 * Prepare waiter and propagate pi chain 409 * 410 * This must be called with lock->wait_lock held. 411 */ 412static int task_blocks_on_rt_mutex(struct rt_mutex *lock, 413 struct rt_mutex_waiter *waiter, 414 int detect_deadlock) 415{ 416 struct task_struct *owner = rt_mutex_owner(lock); 417 struct rt_mutex_waiter *top_waiter = waiter; 418 unsigned long flags; 419 int chain_walk = 0, res; 420 421 spin_lock_irqsave(&current->pi_lock, flags); 422 __rt_mutex_adjust_prio(current); 423 waiter->task = current; 424 waiter->lock = lock; 425 plist_node_init(&waiter->list_entry, current->prio); 426 plist_node_init(&waiter->pi_list_entry, current->prio); 427 428 /* Get the top priority waiter on the lock */ 429 if (rt_mutex_has_waiters(lock)) 430 top_waiter = rt_mutex_top_waiter(lock); 431 plist_add(&waiter->list_entry, &lock->wait_list); 432 433 current->pi_blocked_on = waiter; 434 435 spin_unlock_irqrestore(&current->pi_lock, flags); 436 437 if (waiter == rt_mutex_top_waiter(lock)) { 438 spin_lock_irqsave(&owner->pi_lock, flags); 439 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters); 440 plist_add(&waiter->pi_list_entry, &owner->pi_waiters); 441 442 __rt_mutex_adjust_prio(owner); 443 if (owner->pi_blocked_on) 444 chain_walk = 1; 445 spin_unlock_irqrestore(&owner->pi_lock, flags); 446 } 447 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) 448 chain_walk = 1; 449 450 if (!chain_walk) 451 return 0; 452 453 /* 454 * The owner can't disappear while holding a lock, 455 * so the owner struct is protected by wait_lock. 456 * Gets dropped in rt_mutex_adjust_prio_chain()! 457 */ 458 get_task_struct(owner); 459 460 spin_unlock(&lock->wait_lock); 461 462 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter, 463 current); 464 465 spin_lock(&lock->wait_lock); 466 467 return res; 468} 469 470/* 471 * Wake up the next waiter on the lock. 472 * 473 * Remove the top waiter from the current tasks waiter list and from 474 * the lock waiter list. Set it as pending owner. Then wake it up. 475 * 476 * Called with lock->wait_lock held. 477 */ 478static void wakeup_next_waiter(struct rt_mutex *lock) 479{ 480 struct rt_mutex_waiter *waiter; 481 struct task_struct *pendowner; 482 unsigned long flags; 483 484 spin_lock_irqsave(&current->pi_lock, flags); 485 486 waiter = rt_mutex_top_waiter(lock); 487 plist_del(&waiter->list_entry, &lock->wait_list); 488 489 /* 490 * Remove it from current->pi_waiters. We do not adjust a 491 * possible priority boost right now. We execute wakeup in the 492 * boosted mode and go back to normal after releasing 493 * lock->wait_lock. 494 */ 495 plist_del(&waiter->pi_list_entry, &current->pi_waiters); 496 pendowner = waiter->task; 497 waiter->task = NULL; 498 499 rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING); 500 501 spin_unlock_irqrestore(&current->pi_lock, flags); 502 503 /* 504 * Clear the pi_blocked_on variable and enqueue a possible 505 * waiter into the pi_waiters list of the pending owner. This 506 * prevents that in case the pending owner gets unboosted a 507 * waiter with higher priority than pending-owner->normal_prio 508 * is blocked on the unboosted (pending) owner. 509 */ 510 spin_lock_irqsave(&pendowner->pi_lock, flags); 511 512 WARN_ON(!pendowner->pi_blocked_on); 513 WARN_ON(pendowner->pi_blocked_on != waiter); 514 WARN_ON(pendowner->pi_blocked_on->lock != lock); 515 516 pendowner->pi_blocked_on = NULL; 517 518 if (rt_mutex_has_waiters(lock)) { 519 struct rt_mutex_waiter *next; 520 521 next = rt_mutex_top_waiter(lock); 522 plist_add(&next->pi_list_entry, &pendowner->pi_waiters); 523 } 524 spin_unlock_irqrestore(&pendowner->pi_lock, flags); 525 526 wake_up_process(pendowner); 527} 528 529/* 530 * Remove a waiter from a lock 531 * 532 * Must be called with lock->wait_lock held 533 */ 534static void remove_waiter(struct rt_mutex *lock, 535 struct rt_mutex_waiter *waiter) 536{ 537 int first = (waiter == rt_mutex_top_waiter(lock)); 538 struct task_struct *owner = rt_mutex_owner(lock); 539 unsigned long flags; 540 int chain_walk = 0; 541 542 spin_lock_irqsave(&current->pi_lock, flags); 543 plist_del(&waiter->list_entry, &lock->wait_list); 544 waiter->task = NULL; 545 current->pi_blocked_on = NULL; 546 spin_unlock_irqrestore(&current->pi_lock, flags); 547 548 if (first && owner != current) { 549 550 spin_lock_irqsave(&owner->pi_lock, flags); 551 552 plist_del(&waiter->pi_list_entry, &owner->pi_waiters); 553 554 if (rt_mutex_has_waiters(lock)) { 555 struct rt_mutex_waiter *next; 556 557 next = rt_mutex_top_waiter(lock); 558 plist_add(&next->pi_list_entry, &owner->pi_waiters); 559 } 560 __rt_mutex_adjust_prio(owner); 561 562 if (owner->pi_blocked_on) 563 chain_walk = 1; 564 565 spin_unlock_irqrestore(&owner->pi_lock, flags); 566 } 567 568 WARN_ON(!plist_node_empty(&waiter->pi_list_entry)); 569 570 if (!chain_walk) 571 return; 572 573 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 574 get_task_struct(owner); 575 576 spin_unlock(&lock->wait_lock); 577 578 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current); 579 580 spin_lock(&lock->wait_lock); 581} 582 583/* 584 * Recheck the pi chain, in case we got a priority setting 585 * 586 * Called from sched_setscheduler 587 */ 588void rt_mutex_adjust_pi(struct task_struct *task) 589{ 590 struct rt_mutex_waiter *waiter; 591 unsigned long flags; 592 593 spin_lock_irqsave(&task->pi_lock, flags); 594 595 waiter = task->pi_blocked_on; 596 if (!waiter || waiter->list_entry.prio == task->prio) { 597 spin_unlock_irqrestore(&task->pi_lock, flags); 598 return; 599 } 600 601 spin_unlock_irqrestore(&task->pi_lock, flags); 602 603 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 604 get_task_struct(task); 605 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task); 606} 607 608/* 609 * Slow path lock function: 610 */ 611static int __sched 612rt_mutex_slowlock(struct rt_mutex *lock, int state, 613 struct hrtimer_sleeper *timeout, 614 int detect_deadlock) 615{ 616 struct rt_mutex_waiter waiter; 617 int ret = 0; 618 619 debug_rt_mutex_init_waiter(&waiter); 620 waiter.task = NULL; 621 622 spin_lock(&lock->wait_lock); 623 624 /* Try to acquire the lock again: */ 625 if (try_to_take_rt_mutex(lock)) { 626 spin_unlock(&lock->wait_lock); 627 return 0; 628 } 629 630 set_current_state(state); 631 632 /* Setup the timer, when timeout != NULL */ 633 if (unlikely(timeout)) { 634 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 635 if (!hrtimer_active(&timeout->timer)) 636 timeout->task = NULL; 637 } 638 639 for (;;) { 640 /* Try to acquire the lock: */ 641 if (try_to_take_rt_mutex(lock)) 642 break; 643 644 /* 645 * TASK_INTERRUPTIBLE checks for signals and 646 * timeout. Ignored otherwise. 647 */ 648 if (unlikely(state == TASK_INTERRUPTIBLE)) { 649 /* Signal pending? */ 650 if (signal_pending(current)) 651 ret = -EINTR; 652 if (timeout && !timeout->task) 653 ret = -ETIMEDOUT; 654 if (ret) 655 break; 656 } 657 658 /* 659 * waiter.task is NULL the first time we come here and 660 * when we have been woken up by the previous owner 661 * but the lock got stolen by a higher prio task. 662 */ 663 if (!waiter.task) { 664 ret = task_blocks_on_rt_mutex(lock, &waiter, 665 detect_deadlock); 666 /* 667 * If we got woken up by the owner then start loop 668 * all over without going into schedule to try 669 * to get the lock now: 670 */ 671 if (unlikely(!waiter.task)) { 672 /* 673 * Reset the return value. We might 674 * have returned with -EDEADLK and the 675 * owner released the lock while we 676 * were walking the pi chain. 677 */ 678 ret = 0; 679 continue; 680 } 681 if (unlikely(ret)) 682 break; 683 } 684 685 spin_unlock(&lock->wait_lock); 686 687 debug_rt_mutex_print_deadlock(&waiter); 688 689 if (waiter.task) 690 schedule_rt_mutex(lock); 691 692 spin_lock(&lock->wait_lock); 693 set_current_state(state); 694 } 695 696 set_current_state(TASK_RUNNING); 697 698 if (unlikely(waiter.task)) 699 remove_waiter(lock, &waiter); 700 701 /* 702 * try_to_take_rt_mutex() sets the waiter bit 703 * unconditionally. We might have to fix that up. 704 */ 705 fixup_rt_mutex_waiters(lock); 706 707 spin_unlock(&lock->wait_lock); 708 709 /* Remove pending timer: */ 710 if (unlikely(timeout)) 711 hrtimer_cancel(&timeout->timer); 712 713 /* 714 * Readjust priority, when we did not get the lock. We might 715 * have been the pending owner and boosted. Since we did not 716 * take the lock, the PI boost has to go. 717 */ 718 if (unlikely(ret)) 719 rt_mutex_adjust_prio(current); 720 721 debug_rt_mutex_free_waiter(&waiter); 722 723 return ret; 724} 725 726/* 727 * Slow path try-lock function: 728 */ 729static inline int 730rt_mutex_slowtrylock(struct rt_mutex *lock) 731{ 732 int ret = 0; 733 734 spin_lock(&lock->wait_lock); 735 736 if (likely(rt_mutex_owner(lock) != current)) { 737 738 ret = try_to_take_rt_mutex(lock); 739 /* 740 * try_to_take_rt_mutex() sets the lock waiters 741 * bit unconditionally. Clean this up. 742 */ 743 fixup_rt_mutex_waiters(lock); 744 } 745 746 spin_unlock(&lock->wait_lock); 747 748 return ret; 749} 750 751/* 752 * Slow path to release a rt-mutex: 753 */ 754static void __sched 755rt_mutex_slowunlock(struct rt_mutex *lock) 756{ 757 spin_lock(&lock->wait_lock); 758 759 debug_rt_mutex_unlock(lock); 760 761 rt_mutex_deadlock_account_unlock(current); 762 763 if (!rt_mutex_has_waiters(lock)) { 764 lock->owner = NULL; 765 spin_unlock(&lock->wait_lock); 766 return; 767 } 768 769 wakeup_next_waiter(lock); 770 771 spin_unlock(&lock->wait_lock); 772 773 /* Undo pi boosting if necessary: */ 774 rt_mutex_adjust_prio(current); 775} 776 777/* 778 * debug aware fast / slowpath lock,trylock,unlock 779 * 780 * The atomic acquire/release ops are compiled away, when either the 781 * architecture does not support cmpxchg or when debugging is enabled. 782 */ 783static inline int 784rt_mutex_fastlock(struct rt_mutex *lock, int state, 785 int detect_deadlock, 786 int (*slowfn)(struct rt_mutex *lock, int state, 787 struct hrtimer_sleeper *timeout, 788 int detect_deadlock)) 789{ 790 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 791 rt_mutex_deadlock_account_lock(lock, current); 792 return 0; 793 } else 794 return slowfn(lock, state, NULL, detect_deadlock); 795} 796 797static inline int 798rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, 799 struct hrtimer_sleeper *timeout, int detect_deadlock, 800 int (*slowfn)(struct rt_mutex *lock, int state, 801 struct hrtimer_sleeper *timeout, 802 int detect_deadlock)) 803{ 804 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 805 rt_mutex_deadlock_account_lock(lock, current); 806 return 0; 807 } else 808 return slowfn(lock, state, timeout, detect_deadlock); 809} 810 811static inline int 812rt_mutex_fasttrylock(struct rt_mutex *lock, 813 int (*slowfn)(struct rt_mutex *lock)) 814{ 815 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { 816 rt_mutex_deadlock_account_lock(lock, current); 817 return 1; 818 } 819 return slowfn(lock); 820} 821 822static inline void 823rt_mutex_fastunlock(struct rt_mutex *lock, 824 void (*slowfn)(struct rt_mutex *lock)) 825{ 826 if (likely(rt_mutex_cmpxchg(lock, current, NULL))) 827 rt_mutex_deadlock_account_unlock(current); 828 else 829 slowfn(lock); 830} 831 832/** 833 * rt_mutex_lock - lock a rt_mutex 834 * 835 * @lock: the rt_mutex to be locked 836 */ 837void __sched rt_mutex_lock(struct rt_mutex *lock) 838{ 839 might_sleep(); 840 841 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock); 842} 843EXPORT_SYMBOL_GPL(rt_mutex_lock); 844 845/** 846 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 847 * 848 * @lock: the rt_mutex to be locked 849 * @detect_deadlock: deadlock detection on/off 850 * 851 * Returns: 852 * 0 on success 853 * -EINTR when interrupted by a signal 854 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 855 */ 856int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock, 857 int detect_deadlock) 858{ 859 might_sleep(); 860 861 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, 862 detect_deadlock, rt_mutex_slowlock); 863} 864EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 865 866/** 867 * rt_mutex_lock_interruptible_ktime - lock a rt_mutex interruptible 868 * the timeout structure is provided 869 * by the caller 870 * 871 * @lock: the rt_mutex to be locked 872 * @timeout: timeout structure or NULL (no timeout) 873 * @detect_deadlock: deadlock detection on/off 874 * 875 * Returns: 876 * 0 on success 877 * -EINTR when interrupted by a signal 878 * -ETIMEOUT when the timeout expired 879 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 880 */ 881int 882rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout, 883 int detect_deadlock) 884{ 885 might_sleep(); 886 887 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 888 detect_deadlock, rt_mutex_slowlock); 889} 890EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); 891 892/** 893 * rt_mutex_trylock - try to lock a rt_mutex 894 * 895 * @lock: the rt_mutex to be locked 896 * 897 * Returns 1 on success and 0 on contention 898 */ 899int __sched rt_mutex_trylock(struct rt_mutex *lock) 900{ 901 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); 902} 903EXPORT_SYMBOL_GPL(rt_mutex_trylock); 904 905/** 906 * rt_mutex_unlock - unlock a rt_mutex 907 * 908 * @lock: the rt_mutex to be unlocked 909 */ 910void __sched rt_mutex_unlock(struct rt_mutex *lock) 911{ 912 rt_mutex_fastunlock(lock, rt_mutex_slowunlock); 913} 914EXPORT_SYMBOL_GPL(rt_mutex_unlock); 915 916/*** 917 * rt_mutex_destroy - mark a mutex unusable 918 * @lock: the mutex to be destroyed 919 * 920 * This function marks the mutex uninitialized, and any subsequent 921 * use of the mutex is forbidden. The mutex must not be locked when 922 * this function is called. 923 */ 924void rt_mutex_destroy(struct rt_mutex *lock) 925{ 926 WARN_ON(rt_mutex_is_locked(lock)); 927#ifdef CONFIG_DEBUG_RT_MUTEXES 928 lock->magic = NULL; 929#endif 930} 931 932EXPORT_SYMBOL_GPL(rt_mutex_destroy); 933 934/** 935 * __rt_mutex_init - initialize the rt lock 936 * 937 * @lock: the rt lock to be initialized 938 * 939 * Initialize the rt lock to unlocked state. 940 * 941 * Initializing of a locked rt lock is not allowed 942 */ 943void __rt_mutex_init(struct rt_mutex *lock, const char *name) 944{ 945 lock->owner = NULL; 946 spin_lock_init(&lock->wait_lock); 947 plist_head_init(&lock->wait_list, &lock->wait_lock); 948 949 debug_rt_mutex_init(lock, name); 950} 951EXPORT_SYMBOL_GPL(__rt_mutex_init); 952 953/** 954 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 955 * proxy owner 956 * 957 * @lock: the rt_mutex to be locked 958 * @proxy_owner:the task to set as owner 959 * 960 * No locking. Caller has to do serializing itself 961 * Special API call for PI-futex support 962 */ 963void rt_mutex_init_proxy_locked(struct rt_mutex *lock, 964 struct task_struct *proxy_owner) 965{ 966 __rt_mutex_init(lock, NULL); 967 debug_rt_mutex_proxy_lock(lock, proxy_owner); 968 rt_mutex_set_owner(lock, proxy_owner, 0); 969 rt_mutex_deadlock_account_lock(lock, proxy_owner); 970} 971 972/** 973 * rt_mutex_proxy_unlock - release a lock on behalf of owner 974 * 975 * @lock: the rt_mutex to be locked 976 * 977 * No locking. Caller has to do serializing itself 978 * Special API call for PI-futex support 979 */ 980void rt_mutex_proxy_unlock(struct rt_mutex *lock, 981 struct task_struct *proxy_owner) 982{ 983 debug_rt_mutex_proxy_unlock(lock); 984 rt_mutex_set_owner(lock, NULL, 0); 985 rt_mutex_deadlock_account_unlock(proxy_owner); 986} 987 988/** 989 * rt_mutex_next_owner - return the next owner of the lock 990 * 991 * @lock: the rt lock query 992 * 993 * Returns the next owner of the lock or NULL 994 * 995 * Caller has to serialize against other accessors to the lock 996 * itself. 997 * 998 * Special API call for PI-futex support 999 */ 1000struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) 1001{ 1002 if (!rt_mutex_has_waiters(lock)) 1003 return NULL; 1004 1005 return rt_mutex_top_waiter(lock)->task; 1006}