at v2.6.29 66 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26struct wusb_dev; 27 28/*-------------------------------------------------------------------------*/ 29 30/* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * 40 * And there might be other descriptors mixed in with those. 41 * 42 * Devices may also have class-specific or vendor-specific descriptors. 43 */ 44 45struct ep_device; 46 47/** 48 * struct usb_host_endpoint - host-side endpoint descriptor and queue 49 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 50 * @urb_list: urbs queued to this endpoint; maintained by usbcore 51 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 52 * with one or more transfer descriptors (TDs) per urb 53 * @ep_dev: ep_device for sysfs info 54 * @extra: descriptors following this endpoint in the configuration 55 * @extralen: how many bytes of "extra" are valid 56 * @enabled: URBs may be submitted to this endpoint 57 * 58 * USB requests are always queued to a given endpoint, identified by a 59 * descriptor within an active interface in a given USB configuration. 60 */ 61struct usb_host_endpoint { 62 struct usb_endpoint_descriptor desc; 63 struct list_head urb_list; 64 void *hcpriv; 65 struct ep_device *ep_dev; /* For sysfs info */ 66 67 unsigned char *extra; /* Extra descriptors */ 68 int extralen; 69 int enabled; 70}; 71 72/* host-side wrapper for one interface setting's parsed descriptors */ 73struct usb_host_interface { 74 struct usb_interface_descriptor desc; 75 76 /* array of desc.bNumEndpoint endpoints associated with this 77 * interface setting. these will be in no particular order. 78 */ 79 struct usb_host_endpoint *endpoint; 80 81 char *string; /* iInterface string, if present */ 82 unsigned char *extra; /* Extra descriptors */ 83 int extralen; 84}; 85 86enum usb_interface_condition { 87 USB_INTERFACE_UNBOUND = 0, 88 USB_INTERFACE_BINDING, 89 USB_INTERFACE_BOUND, 90 USB_INTERFACE_UNBINDING, 91}; 92 93/** 94 * struct usb_interface - what usb device drivers talk to 95 * @altsetting: array of interface structures, one for each alternate 96 * setting that may be selected. Each one includes a set of 97 * endpoint configurations. They will be in no particular order. 98 * @cur_altsetting: the current altsetting. 99 * @num_altsetting: number of altsettings defined. 100 * @intf_assoc: interface association descriptor 101 * @minor: the minor number assigned to this interface, if this 102 * interface is bound to a driver that uses the USB major number. 103 * If this interface does not use the USB major, this field should 104 * be unused. The driver should set this value in the probe() 105 * function of the driver, after it has been assigned a minor 106 * number from the USB core by calling usb_register_dev(). 107 * @condition: binding state of the interface: not bound, binding 108 * (in probe()), bound to a driver, or unbinding (in disconnect()) 109 * @is_active: flag set when the interface is bound and not suspended. 110 * @sysfs_files_created: sysfs attributes exist 111 * @ep_devs_created: endpoint child pseudo-devices exist 112 * @unregistering: flag set when the interface is being unregistered 113 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 114 * capability during autosuspend. 115 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 116 * has been deferred. 117 * @needs_binding: flag set when the driver should be re-probed or unbound 118 * following a reset or suspend operation it doesn't support. 119 * @dev: driver model's view of this device 120 * @usb_dev: if an interface is bound to the USB major, this will point 121 * to the sysfs representation for that device. 122 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 123 * allowed unless the counter is 0. 124 * @reset_ws: Used for scheduling resets from atomic context. 125 * @reset_running: set to 1 if the interface is currently running a 126 * queued reset so that usb_cancel_queued_reset() doesn't try to 127 * remove from the workqueue when running inside the worker 128 * thread. See __usb_queue_reset_device(). 129 * 130 * USB device drivers attach to interfaces on a physical device. Each 131 * interface encapsulates a single high level function, such as feeding 132 * an audio stream to a speaker or reporting a change in a volume control. 133 * Many USB devices only have one interface. The protocol used to talk to 134 * an interface's endpoints can be defined in a usb "class" specification, 135 * or by a product's vendor. The (default) control endpoint is part of 136 * every interface, but is never listed among the interface's descriptors. 137 * 138 * The driver that is bound to the interface can use standard driver model 139 * calls such as dev_get_drvdata() on the dev member of this structure. 140 * 141 * Each interface may have alternate settings. The initial configuration 142 * of a device sets altsetting 0, but the device driver can change 143 * that setting using usb_set_interface(). Alternate settings are often 144 * used to control the use of periodic endpoints, such as by having 145 * different endpoints use different amounts of reserved USB bandwidth. 146 * All standards-conformant USB devices that use isochronous endpoints 147 * will use them in non-default settings. 148 * 149 * The USB specification says that alternate setting numbers must run from 150 * 0 to one less than the total number of alternate settings. But some 151 * devices manage to mess this up, and the structures aren't necessarily 152 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 153 * look up an alternate setting in the altsetting array based on its number. 154 */ 155struct usb_interface { 156 /* array of alternate settings for this interface, 157 * stored in no particular order */ 158 struct usb_host_interface *altsetting; 159 160 struct usb_host_interface *cur_altsetting; /* the currently 161 * active alternate setting */ 162 unsigned num_altsetting; /* number of alternate settings */ 163 164 /* If there is an interface association descriptor then it will list 165 * the associated interfaces */ 166 struct usb_interface_assoc_descriptor *intf_assoc; 167 168 int minor; /* minor number this interface is 169 * bound to */ 170 enum usb_interface_condition condition; /* state of binding */ 171 unsigned is_active:1; /* the interface is not suspended */ 172 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 173 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 174 unsigned unregistering:1; /* unregistration is in progress */ 175 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 176 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 177 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 178 unsigned reset_running:1; 179 180 struct device dev; /* interface specific device info */ 181 struct device *usb_dev; 182 int pm_usage_cnt; /* usage counter for autosuspend */ 183 struct work_struct reset_ws; /* for resets in atomic context */ 184}; 185#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 186#define interface_to_usbdev(intf) \ 187 container_of(intf->dev.parent, struct usb_device, dev) 188 189static inline void *usb_get_intfdata(struct usb_interface *intf) 190{ 191 return dev_get_drvdata(&intf->dev); 192} 193 194static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 195{ 196 dev_set_drvdata(&intf->dev, data); 197} 198 199struct usb_interface *usb_get_intf(struct usb_interface *intf); 200void usb_put_intf(struct usb_interface *intf); 201 202/* this maximum is arbitrary */ 203#define USB_MAXINTERFACES 32 204#define USB_MAXIADS USB_MAXINTERFACES/2 205 206/** 207 * struct usb_interface_cache - long-term representation of a device interface 208 * @num_altsetting: number of altsettings defined. 209 * @ref: reference counter. 210 * @altsetting: variable-length array of interface structures, one for 211 * each alternate setting that may be selected. Each one includes a 212 * set of endpoint configurations. They will be in no particular order. 213 * 214 * These structures persist for the lifetime of a usb_device, unlike 215 * struct usb_interface (which persists only as long as its configuration 216 * is installed). The altsetting arrays can be accessed through these 217 * structures at any time, permitting comparison of configurations and 218 * providing support for the /proc/bus/usb/devices pseudo-file. 219 */ 220struct usb_interface_cache { 221 unsigned num_altsetting; /* number of alternate settings */ 222 struct kref ref; /* reference counter */ 223 224 /* variable-length array of alternate settings for this interface, 225 * stored in no particular order */ 226 struct usb_host_interface altsetting[0]; 227}; 228#define ref_to_usb_interface_cache(r) \ 229 container_of(r, struct usb_interface_cache, ref) 230#define altsetting_to_usb_interface_cache(a) \ 231 container_of(a, struct usb_interface_cache, altsetting[0]) 232 233/** 234 * struct usb_host_config - representation of a device's configuration 235 * @desc: the device's configuration descriptor. 236 * @string: pointer to the cached version of the iConfiguration string, if 237 * present for this configuration. 238 * @intf_assoc: list of any interface association descriptors in this config 239 * @interface: array of pointers to usb_interface structures, one for each 240 * interface in the configuration. The number of interfaces is stored 241 * in desc.bNumInterfaces. These pointers are valid only while the 242 * the configuration is active. 243 * @intf_cache: array of pointers to usb_interface_cache structures, one 244 * for each interface in the configuration. These structures exist 245 * for the entire life of the device. 246 * @extra: pointer to buffer containing all extra descriptors associated 247 * with this configuration (those preceding the first interface 248 * descriptor). 249 * @extralen: length of the extra descriptors buffer. 250 * 251 * USB devices may have multiple configurations, but only one can be active 252 * at any time. Each encapsulates a different operational environment; 253 * for example, a dual-speed device would have separate configurations for 254 * full-speed and high-speed operation. The number of configurations 255 * available is stored in the device descriptor as bNumConfigurations. 256 * 257 * A configuration can contain multiple interfaces. Each corresponds to 258 * a different function of the USB device, and all are available whenever 259 * the configuration is active. The USB standard says that interfaces 260 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 261 * of devices get this wrong. In addition, the interface array is not 262 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 263 * look up an interface entry based on its number. 264 * 265 * Device drivers should not attempt to activate configurations. The choice 266 * of which configuration to install is a policy decision based on such 267 * considerations as available power, functionality provided, and the user's 268 * desires (expressed through userspace tools). However, drivers can call 269 * usb_reset_configuration() to reinitialize the current configuration and 270 * all its interfaces. 271 */ 272struct usb_host_config { 273 struct usb_config_descriptor desc; 274 275 char *string; /* iConfiguration string, if present */ 276 277 /* List of any Interface Association Descriptors in this 278 * configuration. */ 279 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 280 281 /* the interfaces associated with this configuration, 282 * stored in no particular order */ 283 struct usb_interface *interface[USB_MAXINTERFACES]; 284 285 /* Interface information available even when this is not the 286 * active configuration */ 287 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 288 289 unsigned char *extra; /* Extra descriptors */ 290 int extralen; 291}; 292 293int __usb_get_extra_descriptor(char *buffer, unsigned size, 294 unsigned char type, void **ptr); 295#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 296 __usb_get_extra_descriptor((ifpoint)->extra, \ 297 (ifpoint)->extralen, \ 298 type, (void **)ptr) 299 300/* ----------------------------------------------------------------------- */ 301 302/* USB device number allocation bitmap */ 303struct usb_devmap { 304 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 305}; 306 307/* 308 * Allocated per bus (tree of devices) we have: 309 */ 310struct usb_bus { 311 struct device *controller; /* host/master side hardware */ 312 int busnum; /* Bus number (in order of reg) */ 313 const char *bus_name; /* stable id (PCI slot_name etc) */ 314 u8 uses_dma; /* Does the host controller use DMA? */ 315 u8 otg_port; /* 0, or number of OTG/HNP port */ 316 unsigned is_b_host:1; /* true during some HNP roleswitches */ 317 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 318 319 int devnum_next; /* Next open device number in 320 * round-robin allocation */ 321 322 struct usb_devmap devmap; /* device address allocation map */ 323 struct usb_device *root_hub; /* Root hub */ 324 struct list_head bus_list; /* list of busses */ 325 326 int bandwidth_allocated; /* on this bus: how much of the time 327 * reserved for periodic (intr/iso) 328 * requests is used, on average? 329 * Units: microseconds/frame. 330 * Limits: Full/low speed reserve 90%, 331 * while high speed reserves 80%. 332 */ 333 int bandwidth_int_reqs; /* number of Interrupt requests */ 334 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 335 336#ifdef CONFIG_USB_DEVICEFS 337 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 338#endif 339 struct device *dev; /* device for this bus */ 340 341#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 342 struct mon_bus *mon_bus; /* non-null when associated */ 343 int monitored; /* non-zero when monitored */ 344#endif 345}; 346 347/* ----------------------------------------------------------------------- */ 348 349/* This is arbitrary. 350 * From USB 2.0 spec Table 11-13, offset 7, a hub can 351 * have up to 255 ports. The most yet reported is 10. 352 * 353 * Current Wireless USB host hardware (Intel i1480 for example) allows 354 * up to 22 devices to connect. Upcoming hardware might raise that 355 * limit. Because the arrays need to add a bit for hub status data, we 356 * do 31, so plus one evens out to four bytes. 357 */ 358#define USB_MAXCHILDREN (31) 359 360struct usb_tt; 361 362/** 363 * struct usb_device - kernel's representation of a USB device 364 * @devnum: device number; address on a USB bus 365 * @devpath: device ID string for use in messages (e.g., /port/...) 366 * @state: device state: configured, not attached, etc. 367 * @speed: device speed: high/full/low (or error) 368 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 369 * @ttport: device port on that tt hub 370 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 371 * @parent: our hub, unless we're the root 372 * @bus: bus we're part of 373 * @ep0: endpoint 0 data (default control pipe) 374 * @dev: generic device interface 375 * @descriptor: USB device descriptor 376 * @config: all of the device's configs 377 * @actconfig: the active configuration 378 * @ep_in: array of IN endpoints 379 * @ep_out: array of OUT endpoints 380 * @rawdescriptors: raw descriptors for each config 381 * @bus_mA: Current available from the bus 382 * @portnum: parent port number (origin 1) 383 * @level: number of USB hub ancestors 384 * @can_submit: URBs may be submitted 385 * @discon_suspended: disconnected while suspended 386 * @persist_enabled: USB_PERSIST enabled for this device 387 * @have_langid: whether string_langid is valid 388 * @authorized: policy has said we can use it; 389 * (user space) policy determines if we authorize this device to be 390 * used or not. By default, wired USB devices are authorized. 391 * WUSB devices are not, until we authorize them from user space. 392 * FIXME -- complete doc 393 * @authenticated: Crypto authentication passed 394 * @wusb: device is Wireless USB 395 * @string_langid: language ID for strings 396 * @product: iProduct string, if present (static) 397 * @manufacturer: iManufacturer string, if present (static) 398 * @serial: iSerialNumber string, if present (static) 399 * @filelist: usbfs files that are open to this device 400 * @usb_classdev: USB class device that was created for usbfs device 401 * access from userspace 402 * @usbfs_dentry: usbfs dentry entry for the device 403 * @maxchild: number of ports if hub 404 * @children: child devices - USB devices that are attached to this hub 405 * @pm_usage_cnt: usage counter for autosuspend 406 * @quirks: quirks of the whole device 407 * @urbnum: number of URBs submitted for the whole device 408 * @active_duration: total time device is not suspended 409 * @autosuspend: for delayed autosuspends 410 * @autoresume: for autoresumes requested while in_interrupt 411 * @pm_mutex: protects PM operations 412 * @last_busy: time of last use 413 * @autosuspend_delay: in jiffies 414 * @connect_time: time device was first connected 415 * @auto_pm: autosuspend/resume in progress 416 * @do_remote_wakeup: remote wakeup should be enabled 417 * @reset_resume: needs reset instead of resume 418 * @autosuspend_disabled: autosuspend disabled by the user 419 * @autoresume_disabled: autoresume disabled by the user 420 * @skip_sys_resume: skip the next system resume 421 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 422 * specific data for the device. 423 * 424 * Notes: 425 * Usbcore drivers should not set usbdev->state directly. Instead use 426 * usb_set_device_state(). 427 */ 428struct usb_device { 429 int devnum; 430 char devpath [16]; 431 enum usb_device_state state; 432 enum usb_device_speed speed; 433 434 struct usb_tt *tt; 435 int ttport; 436 437 unsigned int toggle[2]; 438 439 struct usb_device *parent; 440 struct usb_bus *bus; 441 struct usb_host_endpoint ep0; 442 443 struct device dev; 444 445 struct usb_device_descriptor descriptor; 446 struct usb_host_config *config; 447 448 struct usb_host_config *actconfig; 449 struct usb_host_endpoint *ep_in[16]; 450 struct usb_host_endpoint *ep_out[16]; 451 452 char **rawdescriptors; 453 454 unsigned short bus_mA; 455 u8 portnum; 456 u8 level; 457 458 unsigned can_submit:1; 459 unsigned discon_suspended:1; 460 unsigned persist_enabled:1; 461 unsigned have_langid:1; 462 unsigned authorized:1; 463 unsigned authenticated:1; 464 unsigned wusb:1; 465 int string_langid; 466 467 /* static strings from the device */ 468 char *product; 469 char *manufacturer; 470 char *serial; 471 472 struct list_head filelist; 473#ifdef CONFIG_USB_DEVICE_CLASS 474 struct device *usb_classdev; 475#endif 476#ifdef CONFIG_USB_DEVICEFS 477 struct dentry *usbfs_dentry; 478#endif 479 480 int maxchild; 481 struct usb_device *children[USB_MAXCHILDREN]; 482 483 int pm_usage_cnt; 484 u32 quirks; 485 atomic_t urbnum; 486 487 unsigned long active_duration; 488 489#ifdef CONFIG_PM 490 struct delayed_work autosuspend; 491 struct work_struct autoresume; 492 struct mutex pm_mutex; 493 494 unsigned long last_busy; 495 int autosuspend_delay; 496 unsigned long connect_time; 497 498 unsigned auto_pm:1; 499 unsigned do_remote_wakeup:1; 500 unsigned reset_resume:1; 501 unsigned autosuspend_disabled:1; 502 unsigned autoresume_disabled:1; 503 unsigned skip_sys_resume:1; 504#endif 505 struct wusb_dev *wusb_dev; 506}; 507#define to_usb_device(d) container_of(d, struct usb_device, dev) 508 509extern struct usb_device *usb_get_dev(struct usb_device *dev); 510extern void usb_put_dev(struct usb_device *dev); 511 512/* USB device locking */ 513#define usb_lock_device(udev) down(&(udev)->dev.sem) 514#define usb_unlock_device(udev) up(&(udev)->dev.sem) 515#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 516extern int usb_lock_device_for_reset(struct usb_device *udev, 517 const struct usb_interface *iface); 518 519/* USB port reset for device reinitialization */ 520extern int usb_reset_device(struct usb_device *dev); 521extern void usb_queue_reset_device(struct usb_interface *dev); 522 523extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 524 525/* USB autosuspend and autoresume */ 526#ifdef CONFIG_USB_SUSPEND 527extern int usb_autopm_set_interface(struct usb_interface *intf); 528extern int usb_autopm_get_interface(struct usb_interface *intf); 529extern void usb_autopm_put_interface(struct usb_interface *intf); 530extern int usb_autopm_get_interface_async(struct usb_interface *intf); 531extern void usb_autopm_put_interface_async(struct usb_interface *intf); 532 533static inline void usb_autopm_enable(struct usb_interface *intf) 534{ 535 intf->pm_usage_cnt = 0; 536 usb_autopm_set_interface(intf); 537} 538 539static inline void usb_autopm_disable(struct usb_interface *intf) 540{ 541 intf->pm_usage_cnt = 1; 542 usb_autopm_set_interface(intf); 543} 544 545static inline void usb_mark_last_busy(struct usb_device *udev) 546{ 547 udev->last_busy = jiffies; 548} 549 550#else 551 552static inline int usb_autopm_set_interface(struct usb_interface *intf) 553{ return 0; } 554 555static inline int usb_autopm_get_interface(struct usb_interface *intf) 556{ return 0; } 557 558static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 559{ return 0; } 560 561static inline void usb_autopm_put_interface(struct usb_interface *intf) 562{ } 563static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 564{ } 565static inline void usb_autopm_enable(struct usb_interface *intf) 566{ } 567static inline void usb_autopm_disable(struct usb_interface *intf) 568{ } 569static inline void usb_mark_last_busy(struct usb_device *udev) 570{ } 571#endif 572 573/*-------------------------------------------------------------------------*/ 574 575/* for drivers using iso endpoints */ 576extern int usb_get_current_frame_number(struct usb_device *usb_dev); 577 578/* used these for multi-interface device registration */ 579extern int usb_driver_claim_interface(struct usb_driver *driver, 580 struct usb_interface *iface, void *priv); 581 582/** 583 * usb_interface_claimed - returns true iff an interface is claimed 584 * @iface: the interface being checked 585 * 586 * Returns true (nonzero) iff the interface is claimed, else false (zero). 587 * Callers must own the driver model's usb bus readlock. So driver 588 * probe() entries don't need extra locking, but other call contexts 589 * may need to explicitly claim that lock. 590 * 591 */ 592static inline int usb_interface_claimed(struct usb_interface *iface) 593{ 594 return (iface->dev.driver != NULL); 595} 596 597extern void usb_driver_release_interface(struct usb_driver *driver, 598 struct usb_interface *iface); 599const struct usb_device_id *usb_match_id(struct usb_interface *interface, 600 const struct usb_device_id *id); 601extern int usb_match_one_id(struct usb_interface *interface, 602 const struct usb_device_id *id); 603 604extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 605 int minor); 606extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 607 unsigned ifnum); 608extern struct usb_host_interface *usb_altnum_to_altsetting( 609 const struct usb_interface *intf, unsigned int altnum); 610 611 612/** 613 * usb_make_path - returns stable device path in the usb tree 614 * @dev: the device whose path is being constructed 615 * @buf: where to put the string 616 * @size: how big is "buf"? 617 * 618 * Returns length of the string (> 0) or negative if size was too small. 619 * 620 * This identifier is intended to be "stable", reflecting physical paths in 621 * hardware such as physical bus addresses for host controllers or ports on 622 * USB hubs. That makes it stay the same until systems are physically 623 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 624 * controllers. Adding and removing devices, including virtual root hubs 625 * in host controller driver modules, does not change these path identifers; 626 * neither does rebooting or re-enumerating. These are more useful identifiers 627 * than changeable ("unstable") ones like bus numbers or device addresses. 628 * 629 * With a partial exception for devices connected to USB 2.0 root hubs, these 630 * identifiers are also predictable. So long as the device tree isn't changed, 631 * plugging any USB device into a given hub port always gives it the same path. 632 * Because of the use of "companion" controllers, devices connected to ports on 633 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 634 * high speed, and a different one if they are full or low speed. 635 */ 636static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 637{ 638 int actual; 639 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 640 dev->devpath); 641 return (actual >= (int)size) ? -1 : actual; 642} 643 644/*-------------------------------------------------------------------------*/ 645 646/** 647 * usb_endpoint_num - get the endpoint's number 648 * @epd: endpoint to be checked 649 * 650 * Returns @epd's number: 0 to 15. 651 */ 652static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) 653{ 654 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 655} 656 657/** 658 * usb_endpoint_type - get the endpoint's transfer type 659 * @epd: endpoint to be checked 660 * 661 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according 662 * to @epd's transfer type. 663 */ 664static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) 665{ 666 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 667} 668 669/** 670 * usb_endpoint_dir_in - check if the endpoint has IN direction 671 * @epd: endpoint to be checked 672 * 673 * Returns true if the endpoint is of type IN, otherwise it returns false. 674 */ 675static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 676{ 677 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 678} 679 680/** 681 * usb_endpoint_dir_out - check if the endpoint has OUT direction 682 * @epd: endpoint to be checked 683 * 684 * Returns true if the endpoint is of type OUT, otherwise it returns false. 685 */ 686static inline int usb_endpoint_dir_out( 687 const struct usb_endpoint_descriptor *epd) 688{ 689 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 690} 691 692/** 693 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 694 * @epd: endpoint to be checked 695 * 696 * Returns true if the endpoint is of type bulk, otherwise it returns false. 697 */ 698static inline int usb_endpoint_xfer_bulk( 699 const struct usb_endpoint_descriptor *epd) 700{ 701 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 702 USB_ENDPOINT_XFER_BULK); 703} 704 705/** 706 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 707 * @epd: endpoint to be checked 708 * 709 * Returns true if the endpoint is of type control, otherwise it returns false. 710 */ 711static inline int usb_endpoint_xfer_control( 712 const struct usb_endpoint_descriptor *epd) 713{ 714 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 715 USB_ENDPOINT_XFER_CONTROL); 716} 717 718/** 719 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 720 * @epd: endpoint to be checked 721 * 722 * Returns true if the endpoint is of type interrupt, otherwise it returns 723 * false. 724 */ 725static inline int usb_endpoint_xfer_int( 726 const struct usb_endpoint_descriptor *epd) 727{ 728 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 729 USB_ENDPOINT_XFER_INT); 730} 731 732/** 733 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 734 * @epd: endpoint to be checked 735 * 736 * Returns true if the endpoint is of type isochronous, otherwise it returns 737 * false. 738 */ 739static inline int usb_endpoint_xfer_isoc( 740 const struct usb_endpoint_descriptor *epd) 741{ 742 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 743 USB_ENDPOINT_XFER_ISOC); 744} 745 746/** 747 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 748 * @epd: endpoint to be checked 749 * 750 * Returns true if the endpoint has bulk transfer type and IN direction, 751 * otherwise it returns false. 752 */ 753static inline int usb_endpoint_is_bulk_in( 754 const struct usb_endpoint_descriptor *epd) 755{ 756 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 757} 758 759/** 760 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 761 * @epd: endpoint to be checked 762 * 763 * Returns true if the endpoint has bulk transfer type and OUT direction, 764 * otherwise it returns false. 765 */ 766static inline int usb_endpoint_is_bulk_out( 767 const struct usb_endpoint_descriptor *epd) 768{ 769 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 770} 771 772/** 773 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 774 * @epd: endpoint to be checked 775 * 776 * Returns true if the endpoint has interrupt transfer type and IN direction, 777 * otherwise it returns false. 778 */ 779static inline int usb_endpoint_is_int_in( 780 const struct usb_endpoint_descriptor *epd) 781{ 782 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 783} 784 785/** 786 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 787 * @epd: endpoint to be checked 788 * 789 * Returns true if the endpoint has interrupt transfer type and OUT direction, 790 * otherwise it returns false. 791 */ 792static inline int usb_endpoint_is_int_out( 793 const struct usb_endpoint_descriptor *epd) 794{ 795 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 796} 797 798/** 799 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 800 * @epd: endpoint to be checked 801 * 802 * Returns true if the endpoint has isochronous transfer type and IN direction, 803 * otherwise it returns false. 804 */ 805static inline int usb_endpoint_is_isoc_in( 806 const struct usb_endpoint_descriptor *epd) 807{ 808 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 809} 810 811/** 812 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 813 * @epd: endpoint to be checked 814 * 815 * Returns true if the endpoint has isochronous transfer type and OUT direction, 816 * otherwise it returns false. 817 */ 818static inline int usb_endpoint_is_isoc_out( 819 const struct usb_endpoint_descriptor *epd) 820{ 821 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 822} 823 824/*-------------------------------------------------------------------------*/ 825 826#define USB_DEVICE_ID_MATCH_DEVICE \ 827 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 828#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 829 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 830#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 831 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 832#define USB_DEVICE_ID_MATCH_DEV_INFO \ 833 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 834 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 835 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 836#define USB_DEVICE_ID_MATCH_INT_INFO \ 837 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 838 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 839 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 840 841/** 842 * USB_DEVICE - macro used to describe a specific usb device 843 * @vend: the 16 bit USB Vendor ID 844 * @prod: the 16 bit USB Product ID 845 * 846 * This macro is used to create a struct usb_device_id that matches a 847 * specific device. 848 */ 849#define USB_DEVICE(vend,prod) \ 850 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 851 .idVendor = (vend), \ 852 .idProduct = (prod) 853/** 854 * USB_DEVICE_VER - describe a specific usb device with a version range 855 * @vend: the 16 bit USB Vendor ID 856 * @prod: the 16 bit USB Product ID 857 * @lo: the bcdDevice_lo value 858 * @hi: the bcdDevice_hi value 859 * 860 * This macro is used to create a struct usb_device_id that matches a 861 * specific device, with a version range. 862 */ 863#define USB_DEVICE_VER(vend, prod, lo, hi) \ 864 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 865 .idVendor = (vend), \ 866 .idProduct = (prod), \ 867 .bcdDevice_lo = (lo), \ 868 .bcdDevice_hi = (hi) 869 870/** 871 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 872 * @vend: the 16 bit USB Vendor ID 873 * @prod: the 16 bit USB Product ID 874 * @pr: bInterfaceProtocol value 875 * 876 * This macro is used to create a struct usb_device_id that matches a 877 * specific interface protocol of devices. 878 */ 879#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 880 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 881 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 882 .idVendor = (vend), \ 883 .idProduct = (prod), \ 884 .bInterfaceProtocol = (pr) 885 886/** 887 * USB_DEVICE_INFO - macro used to describe a class of usb devices 888 * @cl: bDeviceClass value 889 * @sc: bDeviceSubClass value 890 * @pr: bDeviceProtocol value 891 * 892 * This macro is used to create a struct usb_device_id that matches a 893 * specific class of devices. 894 */ 895#define USB_DEVICE_INFO(cl, sc, pr) \ 896 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 897 .bDeviceClass = (cl), \ 898 .bDeviceSubClass = (sc), \ 899 .bDeviceProtocol = (pr) 900 901/** 902 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 903 * @cl: bInterfaceClass value 904 * @sc: bInterfaceSubClass value 905 * @pr: bInterfaceProtocol value 906 * 907 * This macro is used to create a struct usb_device_id that matches a 908 * specific class of interfaces. 909 */ 910#define USB_INTERFACE_INFO(cl, sc, pr) \ 911 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 912 .bInterfaceClass = (cl), \ 913 .bInterfaceSubClass = (sc), \ 914 .bInterfaceProtocol = (pr) 915 916/** 917 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 918 * @vend: the 16 bit USB Vendor ID 919 * @prod: the 16 bit USB Product ID 920 * @cl: bInterfaceClass value 921 * @sc: bInterfaceSubClass value 922 * @pr: bInterfaceProtocol value 923 * 924 * This macro is used to create a struct usb_device_id that matches a 925 * specific device with a specific class of interfaces. 926 * 927 * This is especially useful when explicitly matching devices that have 928 * vendor specific bDeviceClass values, but standards-compliant interfaces. 929 */ 930#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 931 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 932 | USB_DEVICE_ID_MATCH_DEVICE, \ 933 .idVendor = (vend), \ 934 .idProduct = (prod), \ 935 .bInterfaceClass = (cl), \ 936 .bInterfaceSubClass = (sc), \ 937 .bInterfaceProtocol = (pr) 938 939/* ----------------------------------------------------------------------- */ 940 941/* Stuff for dynamic usb ids */ 942struct usb_dynids { 943 spinlock_t lock; 944 struct list_head list; 945}; 946 947struct usb_dynid { 948 struct list_head node; 949 struct usb_device_id id; 950}; 951 952extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 953 struct device_driver *driver, 954 const char *buf, size_t count); 955 956/** 957 * struct usbdrv_wrap - wrapper for driver-model structure 958 * @driver: The driver-model core driver structure. 959 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 960 */ 961struct usbdrv_wrap { 962 struct device_driver driver; 963 int for_devices; 964}; 965 966/** 967 * struct usb_driver - identifies USB interface driver to usbcore 968 * @name: The driver name should be unique among USB drivers, 969 * and should normally be the same as the module name. 970 * @probe: Called to see if the driver is willing to manage a particular 971 * interface on a device. If it is, probe returns zero and uses 972 * usb_set_intfdata() to associate driver-specific data with the 973 * interface. It may also use usb_set_interface() to specify the 974 * appropriate altsetting. If unwilling to manage the interface, 975 * return -ENODEV, if genuine IO errors occured, an appropriate 976 * negative errno value. 977 * @disconnect: Called when the interface is no longer accessible, usually 978 * because its device has been (or is being) disconnected or the 979 * driver module is being unloaded. 980 * @ioctl: Used for drivers that want to talk to userspace through 981 * the "usbfs" filesystem. This lets devices provide ways to 982 * expose information to user space regardless of where they 983 * do (or don't) show up otherwise in the filesystem. 984 * @suspend: Called when the device is going to be suspended by the system. 985 * @resume: Called when the device is being resumed by the system. 986 * @reset_resume: Called when the suspended device has been reset instead 987 * of being resumed. 988 * @pre_reset: Called by usb_reset_device() when the device 989 * is about to be reset. 990 * @post_reset: Called by usb_reset_device() after the device 991 * has been reset 992 * @id_table: USB drivers use ID table to support hotplugging. 993 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 994 * or your driver's probe function will never get called. 995 * @dynids: used internally to hold the list of dynamically added device 996 * ids for this driver. 997 * @drvwrap: Driver-model core structure wrapper. 998 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 999 * added to this driver by preventing the sysfs file from being created. 1000 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1001 * for interfaces bound to this driver. 1002 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1003 * endpoints before calling the driver's disconnect method. 1004 * 1005 * USB interface drivers must provide a name, probe() and disconnect() 1006 * methods, and an id_table. Other driver fields are optional. 1007 * 1008 * The id_table is used in hotplugging. It holds a set of descriptors, 1009 * and specialized data may be associated with each entry. That table 1010 * is used by both user and kernel mode hotplugging support. 1011 * 1012 * The probe() and disconnect() methods are called in a context where 1013 * they can sleep, but they should avoid abusing the privilege. Most 1014 * work to connect to a device should be done when the device is opened, 1015 * and undone at the last close. The disconnect code needs to address 1016 * concurrency issues with respect to open() and close() methods, as 1017 * well as forcing all pending I/O requests to complete (by unlinking 1018 * them as necessary, and blocking until the unlinks complete). 1019 */ 1020struct usb_driver { 1021 const char *name; 1022 1023 int (*probe) (struct usb_interface *intf, 1024 const struct usb_device_id *id); 1025 1026 void (*disconnect) (struct usb_interface *intf); 1027 1028 int (*ioctl) (struct usb_interface *intf, unsigned int code, 1029 void *buf); 1030 1031 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1032 int (*resume) (struct usb_interface *intf); 1033 int (*reset_resume)(struct usb_interface *intf); 1034 1035 int (*pre_reset)(struct usb_interface *intf); 1036 int (*post_reset)(struct usb_interface *intf); 1037 1038 const struct usb_device_id *id_table; 1039 1040 struct usb_dynids dynids; 1041 struct usbdrv_wrap drvwrap; 1042 unsigned int no_dynamic_id:1; 1043 unsigned int supports_autosuspend:1; 1044 unsigned int soft_unbind:1; 1045}; 1046#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1047 1048/** 1049 * struct usb_device_driver - identifies USB device driver to usbcore 1050 * @name: The driver name should be unique among USB drivers, 1051 * and should normally be the same as the module name. 1052 * @probe: Called to see if the driver is willing to manage a particular 1053 * device. If it is, probe returns zero and uses dev_set_drvdata() 1054 * to associate driver-specific data with the device. If unwilling 1055 * to manage the device, return a negative errno value. 1056 * @disconnect: Called when the device is no longer accessible, usually 1057 * because it has been (or is being) disconnected or the driver's 1058 * module is being unloaded. 1059 * @suspend: Called when the device is going to be suspended by the system. 1060 * @resume: Called when the device is being resumed by the system. 1061 * @drvwrap: Driver-model core structure wrapper. 1062 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1063 * for devices bound to this driver. 1064 * 1065 * USB drivers must provide all the fields listed above except drvwrap. 1066 */ 1067struct usb_device_driver { 1068 const char *name; 1069 1070 int (*probe) (struct usb_device *udev); 1071 void (*disconnect) (struct usb_device *udev); 1072 1073 int (*suspend) (struct usb_device *udev, pm_message_t message); 1074 int (*resume) (struct usb_device *udev, pm_message_t message); 1075 struct usbdrv_wrap drvwrap; 1076 unsigned int supports_autosuspend:1; 1077}; 1078#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1079 drvwrap.driver) 1080 1081extern struct bus_type usb_bus_type; 1082 1083/** 1084 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1085 * @name: the usb class device name for this driver. Will show up in sysfs. 1086 * @fops: pointer to the struct file_operations of this driver. 1087 * @minor_base: the start of the minor range for this driver. 1088 * 1089 * This structure is used for the usb_register_dev() and 1090 * usb_unregister_dev() functions, to consolidate a number of the 1091 * parameters used for them. 1092 */ 1093struct usb_class_driver { 1094 char *name; 1095 const struct file_operations *fops; 1096 int minor_base; 1097}; 1098 1099/* 1100 * use these in module_init()/module_exit() 1101 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1102 */ 1103extern int usb_register_driver(struct usb_driver *, struct module *, 1104 const char *); 1105static inline int usb_register(struct usb_driver *driver) 1106{ 1107 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 1108} 1109extern void usb_deregister(struct usb_driver *); 1110 1111extern int usb_register_device_driver(struct usb_device_driver *, 1112 struct module *); 1113extern void usb_deregister_device_driver(struct usb_device_driver *); 1114 1115extern int usb_register_dev(struct usb_interface *intf, 1116 struct usb_class_driver *class_driver); 1117extern void usb_deregister_dev(struct usb_interface *intf, 1118 struct usb_class_driver *class_driver); 1119 1120extern int usb_disabled(void); 1121 1122/* ----------------------------------------------------------------------- */ 1123 1124/* 1125 * URB support, for asynchronous request completions 1126 */ 1127 1128/* 1129 * urb->transfer_flags: 1130 * 1131 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1132 */ 1133#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1134#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1135 * ignored */ 1136#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1137#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1138#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1139#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1140#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1141 * needed */ 1142#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1143 1144#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1145#define URB_DIR_OUT 0 1146#define URB_DIR_MASK URB_DIR_IN 1147 1148struct usb_iso_packet_descriptor { 1149 unsigned int offset; 1150 unsigned int length; /* expected length */ 1151 unsigned int actual_length; 1152 int status; 1153}; 1154 1155struct urb; 1156 1157struct usb_anchor { 1158 struct list_head urb_list; 1159 wait_queue_head_t wait; 1160 spinlock_t lock; 1161 unsigned int poisoned:1; 1162}; 1163 1164static inline void init_usb_anchor(struct usb_anchor *anchor) 1165{ 1166 INIT_LIST_HEAD(&anchor->urb_list); 1167 init_waitqueue_head(&anchor->wait); 1168 spin_lock_init(&anchor->lock); 1169} 1170 1171typedef void (*usb_complete_t)(struct urb *); 1172 1173/** 1174 * struct urb - USB Request Block 1175 * @urb_list: For use by current owner of the URB. 1176 * @anchor_list: membership in the list of an anchor 1177 * @anchor: to anchor URBs to a common mooring 1178 * @ep: Points to the endpoint's data structure. Will eventually 1179 * replace @pipe. 1180 * @pipe: Holds endpoint number, direction, type, and more. 1181 * Create these values with the eight macros available; 1182 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1183 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1184 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1185 * numbers range from zero to fifteen. Note that "in" endpoint two 1186 * is a different endpoint (and pipe) from "out" endpoint two. 1187 * The current configuration controls the existence, type, and 1188 * maximum packet size of any given endpoint. 1189 * @dev: Identifies the USB device to perform the request. 1190 * @status: This is read in non-iso completion functions to get the 1191 * status of the particular request. ISO requests only use it 1192 * to tell whether the URB was unlinked; detailed status for 1193 * each frame is in the fields of the iso_frame-desc. 1194 * @transfer_flags: A variety of flags may be used to affect how URB 1195 * submission, unlinking, or operation are handled. Different 1196 * kinds of URB can use different flags. 1197 * @transfer_buffer: This identifies the buffer to (or from) which 1198 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1199 * is set). This buffer must be suitable for DMA; allocate it with 1200 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1201 * of this buffer will be modified. This buffer is used for the data 1202 * stage of control transfers. 1203 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1204 * the device driver is saying that it provided this DMA address, 1205 * which the host controller driver should use in preference to the 1206 * transfer_buffer. 1207 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1208 * be broken up into chunks according to the current maximum packet 1209 * size for the endpoint, which is a function of the configuration 1210 * and is encoded in the pipe. When the length is zero, neither 1211 * transfer_buffer nor transfer_dma is used. 1212 * @actual_length: This is read in non-iso completion functions, and 1213 * it tells how many bytes (out of transfer_buffer_length) were 1214 * transferred. It will normally be the same as requested, unless 1215 * either an error was reported or a short read was performed. 1216 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1217 * short reads be reported as errors. 1218 * @setup_packet: Only used for control transfers, this points to eight bytes 1219 * of setup data. Control transfers always start by sending this data 1220 * to the device. Then transfer_buffer is read or written, if needed. 1221 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1222 * device driver has provided this DMA address for the setup packet. 1223 * The host controller driver should use this in preference to 1224 * setup_packet. 1225 * @start_frame: Returns the initial frame for isochronous transfers. 1226 * @number_of_packets: Lists the number of ISO transfer buffers. 1227 * @interval: Specifies the polling interval for interrupt or isochronous 1228 * transfers. The units are frames (milliseconds) for for full and low 1229 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1230 * @error_count: Returns the number of ISO transfers that reported errors. 1231 * @context: For use in completion functions. This normally points to 1232 * request-specific driver context. 1233 * @complete: Completion handler. This URB is passed as the parameter to the 1234 * completion function. The completion function may then do what 1235 * it likes with the URB, including resubmitting or freeing it. 1236 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1237 * collect the transfer status for each buffer. 1238 * 1239 * This structure identifies USB transfer requests. URBs must be allocated by 1240 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1241 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1242 * are submitted using usb_submit_urb(), and pending requests may be canceled 1243 * using usb_unlink_urb() or usb_kill_urb(). 1244 * 1245 * Data Transfer Buffers: 1246 * 1247 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1248 * taken from the general page pool. That is provided by transfer_buffer 1249 * (control requests also use setup_packet), and host controller drivers 1250 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1251 * mapping operations can be expensive on some platforms (perhaps using a dma 1252 * bounce buffer or talking to an IOMMU), 1253 * although they're cheap on commodity x86 and ppc hardware. 1254 * 1255 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1256 * which tell the host controller driver that no such mapping is needed since 1257 * the device driver is DMA-aware. For example, a device driver might 1258 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1259 * When these transfer flags are provided, host controller drivers will 1260 * attempt to use the dma addresses found in the transfer_dma and/or 1261 * setup_dma fields rather than determining a dma address themselves. (Note 1262 * that transfer_buffer and setup_packet must still be set because not all 1263 * host controllers use DMA, nor do virtual root hubs). 1264 * 1265 * Initialization: 1266 * 1267 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1268 * zero), and complete fields. All URBs must also initialize 1269 * transfer_buffer and transfer_buffer_length. They may provide the 1270 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1271 * to be treated as errors; that flag is invalid for write requests. 1272 * 1273 * Bulk URBs may 1274 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1275 * should always terminate with a short packet, even if it means adding an 1276 * extra zero length packet. 1277 * 1278 * Control URBs must provide a setup_packet. The setup_packet and 1279 * transfer_buffer may each be mapped for DMA or not, independently of 1280 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1281 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1282 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1283 * 1284 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1285 * or, for highspeed devices, 125 microsecond units) 1286 * to poll for transfers. After the URB has been submitted, the interval 1287 * field reflects how the transfer was actually scheduled. 1288 * The polling interval may be more frequent than requested. 1289 * For example, some controllers have a maximum interval of 32 milliseconds, 1290 * while others support intervals of up to 1024 milliseconds. 1291 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1292 * endpoints, as well as high speed interrupt endpoints, the encoding of 1293 * the transfer interval in the endpoint descriptor is logarithmic. 1294 * Device drivers must convert that value to linear units themselves.) 1295 * 1296 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1297 * the host controller to schedule the transfer as soon as bandwidth 1298 * utilization allows, and then set start_frame to reflect the actual frame 1299 * selected during submission. Otherwise drivers must specify the start_frame 1300 * and handle the case where the transfer can't begin then. However, drivers 1301 * won't know how bandwidth is currently allocated, and while they can 1302 * find the current frame using usb_get_current_frame_number () they can't 1303 * know the range for that frame number. (Ranges for frame counter values 1304 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1305 * 1306 * Isochronous URBs have a different data transfer model, in part because 1307 * the quality of service is only "best effort". Callers provide specially 1308 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1309 * at the end. Each such packet is an individual ISO transfer. Isochronous 1310 * URBs are normally queued, submitted by drivers to arrange that 1311 * transfers are at least double buffered, and then explicitly resubmitted 1312 * in completion handlers, so 1313 * that data (such as audio or video) streams at as constant a rate as the 1314 * host controller scheduler can support. 1315 * 1316 * Completion Callbacks: 1317 * 1318 * The completion callback is made in_interrupt(), and one of the first 1319 * things that a completion handler should do is check the status field. 1320 * The status field is provided for all URBs. It is used to report 1321 * unlinked URBs, and status for all non-ISO transfers. It should not 1322 * be examined before the URB is returned to the completion handler. 1323 * 1324 * The context field is normally used to link URBs back to the relevant 1325 * driver or request state. 1326 * 1327 * When the completion callback is invoked for non-isochronous URBs, the 1328 * actual_length field tells how many bytes were transferred. This field 1329 * is updated even when the URB terminated with an error or was unlinked. 1330 * 1331 * ISO transfer status is reported in the status and actual_length fields 1332 * of the iso_frame_desc array, and the number of errors is reported in 1333 * error_count. Completion callbacks for ISO transfers will normally 1334 * (re)submit URBs to ensure a constant transfer rate. 1335 * 1336 * Note that even fields marked "public" should not be touched by the driver 1337 * when the urb is owned by the hcd, that is, since the call to 1338 * usb_submit_urb() till the entry into the completion routine. 1339 */ 1340struct urb { 1341 /* private: usb core and host controller only fields in the urb */ 1342 struct kref kref; /* reference count of the URB */ 1343 void *hcpriv; /* private data for host controller */ 1344 atomic_t use_count; /* concurrent submissions counter */ 1345 atomic_t reject; /* submissions will fail */ 1346 int unlinked; /* unlink error code */ 1347 1348 /* public: documented fields in the urb that can be used by drivers */ 1349 struct list_head urb_list; /* list head for use by the urb's 1350 * current owner */ 1351 struct list_head anchor_list; /* the URB may be anchored */ 1352 struct usb_anchor *anchor; 1353 struct usb_device *dev; /* (in) pointer to associated device */ 1354 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1355 unsigned int pipe; /* (in) pipe information */ 1356 int status; /* (return) non-ISO status */ 1357 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1358 void *transfer_buffer; /* (in) associated data buffer */ 1359 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1360 int transfer_buffer_length; /* (in) data buffer length */ 1361 int actual_length; /* (return) actual transfer length */ 1362 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1363 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1364 int start_frame; /* (modify) start frame (ISO) */ 1365 int number_of_packets; /* (in) number of ISO packets */ 1366 int interval; /* (modify) transfer interval 1367 * (INT/ISO) */ 1368 int error_count; /* (return) number of ISO errors */ 1369 void *context; /* (in) context for completion */ 1370 usb_complete_t complete; /* (in) completion routine */ 1371 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1372 /* (in) ISO ONLY */ 1373}; 1374 1375/* ----------------------------------------------------------------------- */ 1376 1377/** 1378 * usb_fill_control_urb - initializes a control urb 1379 * @urb: pointer to the urb to initialize. 1380 * @dev: pointer to the struct usb_device for this urb. 1381 * @pipe: the endpoint pipe 1382 * @setup_packet: pointer to the setup_packet buffer 1383 * @transfer_buffer: pointer to the transfer buffer 1384 * @buffer_length: length of the transfer buffer 1385 * @complete_fn: pointer to the usb_complete_t function 1386 * @context: what to set the urb context to. 1387 * 1388 * Initializes a control urb with the proper information needed to submit 1389 * it to a device. 1390 */ 1391static inline void usb_fill_control_urb(struct urb *urb, 1392 struct usb_device *dev, 1393 unsigned int pipe, 1394 unsigned char *setup_packet, 1395 void *transfer_buffer, 1396 int buffer_length, 1397 usb_complete_t complete_fn, 1398 void *context) 1399{ 1400 urb->dev = dev; 1401 urb->pipe = pipe; 1402 urb->setup_packet = setup_packet; 1403 urb->transfer_buffer = transfer_buffer; 1404 urb->transfer_buffer_length = buffer_length; 1405 urb->complete = complete_fn; 1406 urb->context = context; 1407} 1408 1409/** 1410 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1411 * @urb: pointer to the urb to initialize. 1412 * @dev: pointer to the struct usb_device for this urb. 1413 * @pipe: the endpoint pipe 1414 * @transfer_buffer: pointer to the transfer buffer 1415 * @buffer_length: length of the transfer buffer 1416 * @complete_fn: pointer to the usb_complete_t function 1417 * @context: what to set the urb context to. 1418 * 1419 * Initializes a bulk urb with the proper information needed to submit it 1420 * to a device. 1421 */ 1422static inline void usb_fill_bulk_urb(struct urb *urb, 1423 struct usb_device *dev, 1424 unsigned int pipe, 1425 void *transfer_buffer, 1426 int buffer_length, 1427 usb_complete_t complete_fn, 1428 void *context) 1429{ 1430 urb->dev = dev; 1431 urb->pipe = pipe; 1432 urb->transfer_buffer = transfer_buffer; 1433 urb->transfer_buffer_length = buffer_length; 1434 urb->complete = complete_fn; 1435 urb->context = context; 1436} 1437 1438/** 1439 * usb_fill_int_urb - macro to help initialize a interrupt urb 1440 * @urb: pointer to the urb to initialize. 1441 * @dev: pointer to the struct usb_device for this urb. 1442 * @pipe: the endpoint pipe 1443 * @transfer_buffer: pointer to the transfer buffer 1444 * @buffer_length: length of the transfer buffer 1445 * @complete_fn: pointer to the usb_complete_t function 1446 * @context: what to set the urb context to. 1447 * @interval: what to set the urb interval to, encoded like 1448 * the endpoint descriptor's bInterval value. 1449 * 1450 * Initializes a interrupt urb with the proper information needed to submit 1451 * it to a device. 1452 * Note that high speed interrupt endpoints use a logarithmic encoding of 1453 * the endpoint interval, and express polling intervals in microframes 1454 * (eight per millisecond) rather than in frames (one per millisecond). 1455 */ 1456static inline void usb_fill_int_urb(struct urb *urb, 1457 struct usb_device *dev, 1458 unsigned int pipe, 1459 void *transfer_buffer, 1460 int buffer_length, 1461 usb_complete_t complete_fn, 1462 void *context, 1463 int interval) 1464{ 1465 urb->dev = dev; 1466 urb->pipe = pipe; 1467 urb->transfer_buffer = transfer_buffer; 1468 urb->transfer_buffer_length = buffer_length; 1469 urb->complete = complete_fn; 1470 urb->context = context; 1471 if (dev->speed == USB_SPEED_HIGH) 1472 urb->interval = 1 << (interval - 1); 1473 else 1474 urb->interval = interval; 1475 urb->start_frame = -1; 1476} 1477 1478extern void usb_init_urb(struct urb *urb); 1479extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1480extern void usb_free_urb(struct urb *urb); 1481#define usb_put_urb usb_free_urb 1482extern struct urb *usb_get_urb(struct urb *urb); 1483extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1484extern int usb_unlink_urb(struct urb *urb); 1485extern void usb_kill_urb(struct urb *urb); 1486extern void usb_poison_urb(struct urb *urb); 1487extern void usb_unpoison_urb(struct urb *urb); 1488extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1489extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1490extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1491extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1492extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1493extern void usb_unanchor_urb(struct urb *urb); 1494extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1495 unsigned int timeout); 1496extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1497extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1498extern int usb_anchor_empty(struct usb_anchor *anchor); 1499 1500/** 1501 * usb_urb_dir_in - check if an URB describes an IN transfer 1502 * @urb: URB to be checked 1503 * 1504 * Returns 1 if @urb describes an IN transfer (device-to-host), 1505 * otherwise 0. 1506 */ 1507static inline int usb_urb_dir_in(struct urb *urb) 1508{ 1509 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1510} 1511 1512/** 1513 * usb_urb_dir_out - check if an URB describes an OUT transfer 1514 * @urb: URB to be checked 1515 * 1516 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1517 * otherwise 0. 1518 */ 1519static inline int usb_urb_dir_out(struct urb *urb) 1520{ 1521 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1522} 1523 1524void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1525 gfp_t mem_flags, dma_addr_t *dma); 1526void usb_buffer_free(struct usb_device *dev, size_t size, 1527 void *addr, dma_addr_t dma); 1528 1529#if 0 1530struct urb *usb_buffer_map(struct urb *urb); 1531void usb_buffer_dmasync(struct urb *urb); 1532void usb_buffer_unmap(struct urb *urb); 1533#endif 1534 1535struct scatterlist; 1536int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1537 struct scatterlist *sg, int nents); 1538#if 0 1539void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1540 struct scatterlist *sg, int n_hw_ents); 1541#endif 1542void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1543 struct scatterlist *sg, int n_hw_ents); 1544 1545/*-------------------------------------------------------------------* 1546 * SYNCHRONOUS CALL SUPPORT * 1547 *-------------------------------------------------------------------*/ 1548 1549extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1550 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1551 void *data, __u16 size, int timeout); 1552extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1553 void *data, int len, int *actual_length, int timeout); 1554extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1555 void *data, int len, int *actual_length, 1556 int timeout); 1557 1558/* wrappers around usb_control_msg() for the most common standard requests */ 1559extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1560 unsigned char descindex, void *buf, int size); 1561extern int usb_get_status(struct usb_device *dev, 1562 int type, int target, void *data); 1563extern int usb_string(struct usb_device *dev, int index, 1564 char *buf, size_t size); 1565 1566/* wrappers that also update important state inside usbcore */ 1567extern int usb_clear_halt(struct usb_device *dev, int pipe); 1568extern int usb_reset_configuration(struct usb_device *dev); 1569extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1570 1571/* this request isn't really synchronous, but it belongs with the others */ 1572extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1573 1574/* 1575 * timeouts, in milliseconds, used for sending/receiving control messages 1576 * they typically complete within a few frames (msec) after they're issued 1577 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1578 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1579 */ 1580#define USB_CTRL_GET_TIMEOUT 5000 1581#define USB_CTRL_SET_TIMEOUT 5000 1582 1583 1584/** 1585 * struct usb_sg_request - support for scatter/gather I/O 1586 * @status: zero indicates success, else negative errno 1587 * @bytes: counts bytes transferred. 1588 * 1589 * These requests are initialized using usb_sg_init(), and then are used 1590 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1591 * members of the request object aren't for driver access. 1592 * 1593 * The status and bytecount values are valid only after usb_sg_wait() 1594 * returns. If the status is zero, then the bytecount matches the total 1595 * from the request. 1596 * 1597 * After an error completion, drivers may need to clear a halt condition 1598 * on the endpoint. 1599 */ 1600struct usb_sg_request { 1601 int status; 1602 size_t bytes; 1603 1604 /* 1605 * members below are private: to usbcore, 1606 * and are not provided for driver access! 1607 */ 1608 spinlock_t lock; 1609 1610 struct usb_device *dev; 1611 int pipe; 1612 struct scatterlist *sg; 1613 int nents; 1614 1615 int entries; 1616 struct urb **urbs; 1617 1618 int count; 1619 struct completion complete; 1620}; 1621 1622int usb_sg_init( 1623 struct usb_sg_request *io, 1624 struct usb_device *dev, 1625 unsigned pipe, 1626 unsigned period, 1627 struct scatterlist *sg, 1628 int nents, 1629 size_t length, 1630 gfp_t mem_flags 1631); 1632void usb_sg_cancel(struct usb_sg_request *io); 1633void usb_sg_wait(struct usb_sg_request *io); 1634 1635 1636/* ----------------------------------------------------------------------- */ 1637 1638/* 1639 * For various legacy reasons, Linux has a small cookie that's paired with 1640 * a struct usb_device to identify an endpoint queue. Queue characteristics 1641 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1642 * an unsigned int encoded as: 1643 * 1644 * - direction: bit 7 (0 = Host-to-Device [Out], 1645 * 1 = Device-to-Host [In] ... 1646 * like endpoint bEndpointAddress) 1647 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1648 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1649 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1650 * 10 = control, 11 = bulk) 1651 * 1652 * Given the device address and endpoint descriptor, pipes are redundant. 1653 */ 1654 1655/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1656/* (yet ... they're the values used by usbfs) */ 1657#define PIPE_ISOCHRONOUS 0 1658#define PIPE_INTERRUPT 1 1659#define PIPE_CONTROL 2 1660#define PIPE_BULK 3 1661 1662#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1663#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1664 1665#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1666#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1667 1668#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1669#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1670#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1671#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1672#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1673 1674/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1675#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1676#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1677#define usb_settoggle(dev, ep, out, bit) \ 1678 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1679 ((bit) << (ep))) 1680 1681 1682static inline unsigned int __create_pipe(struct usb_device *dev, 1683 unsigned int endpoint) 1684{ 1685 return (dev->devnum << 8) | (endpoint << 15); 1686} 1687 1688/* Create various pipes... */ 1689#define usb_sndctrlpipe(dev,endpoint) \ 1690 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1691#define usb_rcvctrlpipe(dev,endpoint) \ 1692 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1693#define usb_sndisocpipe(dev,endpoint) \ 1694 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1695#define usb_rcvisocpipe(dev,endpoint) \ 1696 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1697#define usb_sndbulkpipe(dev,endpoint) \ 1698 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1699#define usb_rcvbulkpipe(dev,endpoint) \ 1700 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1701#define usb_sndintpipe(dev,endpoint) \ 1702 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1703#define usb_rcvintpipe(dev,endpoint) \ 1704 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1705 1706/*-------------------------------------------------------------------------*/ 1707 1708static inline __u16 1709usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1710{ 1711 struct usb_host_endpoint *ep; 1712 unsigned epnum = usb_pipeendpoint(pipe); 1713 1714 if (is_out) { 1715 WARN_ON(usb_pipein(pipe)); 1716 ep = udev->ep_out[epnum]; 1717 } else { 1718 WARN_ON(usb_pipeout(pipe)); 1719 ep = udev->ep_in[epnum]; 1720 } 1721 if (!ep) 1722 return 0; 1723 1724 /* NOTE: only 0x07ff bits are for packet size... */ 1725 return le16_to_cpu(ep->desc.wMaxPacketSize); 1726} 1727 1728/* ----------------------------------------------------------------------- */ 1729 1730/* Events from the usb core */ 1731#define USB_DEVICE_ADD 0x0001 1732#define USB_DEVICE_REMOVE 0x0002 1733#define USB_BUS_ADD 0x0003 1734#define USB_BUS_REMOVE 0x0004 1735extern void usb_register_notify(struct notifier_block *nb); 1736extern void usb_unregister_notify(struct notifier_block *nb); 1737 1738#ifdef DEBUG 1739#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1740 __FILE__ , ## arg) 1741#else 1742#define dbg(format, arg...) do {} while (0) 1743#endif 1744 1745#define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \ 1746 format "\n" , ## arg) 1747 1748#endif /* __KERNEL__ */ 1749 1750#endif