at v2.6.29 46 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmdebug.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/prio_tree.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16 17struct mempolicy; 18struct anon_vma; 19struct file_ra_state; 20struct user_struct; 21struct writeback_control; 22 23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 24extern unsigned long max_mapnr; 25#endif 26 27extern unsigned long num_physpages; 28extern void * high_memory; 29extern int page_cluster; 30 31#ifdef CONFIG_SYSCTL 32extern int sysctl_legacy_va_layout; 33#else 34#define sysctl_legacy_va_layout 0 35#endif 36 37extern unsigned long mmap_min_addr; 38 39#include <asm/page.h> 40#include <asm/pgtable.h> 41#include <asm/processor.h> 42 43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45/* to align the pointer to the (next) page boundary */ 46#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 47 48/* 49 * Linux kernel virtual memory manager primitives. 50 * The idea being to have a "virtual" mm in the same way 51 * we have a virtual fs - giving a cleaner interface to the 52 * mm details, and allowing different kinds of memory mappings 53 * (from shared memory to executable loading to arbitrary 54 * mmap() functions). 55 */ 56 57extern struct kmem_cache *vm_area_cachep; 58 59#ifndef CONFIG_MMU 60extern struct rb_root nommu_region_tree; 61extern struct rw_semaphore nommu_region_sem; 62 63extern unsigned int kobjsize(const void *objp); 64#endif 65 66/* 67 * vm_flags in vm_area_struct, see mm_types.h. 68 */ 69#define VM_READ 0x00000001 /* currently active flags */ 70#define VM_WRITE 0x00000002 71#define VM_EXEC 0x00000004 72#define VM_SHARED 0x00000008 73 74/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 75#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 76#define VM_MAYWRITE 0x00000020 77#define VM_MAYEXEC 0x00000040 78#define VM_MAYSHARE 0x00000080 79 80#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 81#define VM_GROWSUP 0x00000200 82#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 83#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 84 85#define VM_EXECUTABLE 0x00001000 86#define VM_LOCKED 0x00002000 87#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 88 89 /* Used by sys_madvise() */ 90#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 91#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 92 93#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 94#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 95#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 96#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 97#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 98#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 99#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 100#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 101#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 102#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 103 104#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 105#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 106#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 107 108#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 109#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 110#endif 111 112#ifdef CONFIG_STACK_GROWSUP 113#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 114#else 115#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 116#endif 117 118#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 119#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 120#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 121#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 122#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 123 124/* 125 * special vmas that are non-mergable, non-mlock()able 126 */ 127#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 128 129/* 130 * mapping from the currently active vm_flags protection bits (the 131 * low four bits) to a page protection mask.. 132 */ 133extern pgprot_t protection_map[16]; 134 135#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 136#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 137 138/* 139 * This interface is used by x86 PAT code to identify a pfn mapping that is 140 * linear over entire vma. This is to optimize PAT code that deals with 141 * marking the physical region with a particular prot. This is not for generic 142 * mm use. Note also that this check will not work if the pfn mapping is 143 * linear for a vma starting at physical address 0. In which case PAT code 144 * falls back to slow path of reserving physical range page by page. 145 */ 146static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 147{ 148 return ((vma->vm_flags & VM_PFNMAP) && vma->vm_pgoff); 149} 150 151static inline int is_pfn_mapping(struct vm_area_struct *vma) 152{ 153 return (vma->vm_flags & VM_PFNMAP); 154} 155 156/* 157 * vm_fault is filled by the the pagefault handler and passed to the vma's 158 * ->fault function. The vma's ->fault is responsible for returning a bitmask 159 * of VM_FAULT_xxx flags that give details about how the fault was handled. 160 * 161 * pgoff should be used in favour of virtual_address, if possible. If pgoff 162 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 163 * mapping support. 164 */ 165struct vm_fault { 166 unsigned int flags; /* FAULT_FLAG_xxx flags */ 167 pgoff_t pgoff; /* Logical page offset based on vma */ 168 void __user *virtual_address; /* Faulting virtual address */ 169 170 struct page *page; /* ->fault handlers should return a 171 * page here, unless VM_FAULT_NOPAGE 172 * is set (which is also implied by 173 * VM_FAULT_ERROR). 174 */ 175}; 176 177/* 178 * These are the virtual MM functions - opening of an area, closing and 179 * unmapping it (needed to keep files on disk up-to-date etc), pointer 180 * to the functions called when a no-page or a wp-page exception occurs. 181 */ 182struct vm_operations_struct { 183 void (*open)(struct vm_area_struct * area); 184 void (*close)(struct vm_area_struct * area); 185 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 186 187 /* notification that a previously read-only page is about to become 188 * writable, if an error is returned it will cause a SIGBUS */ 189 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 190 191 /* called by access_process_vm when get_user_pages() fails, typically 192 * for use by special VMAs that can switch between memory and hardware 193 */ 194 int (*access)(struct vm_area_struct *vma, unsigned long addr, 195 void *buf, int len, int write); 196#ifdef CONFIG_NUMA 197 /* 198 * set_policy() op must add a reference to any non-NULL @new mempolicy 199 * to hold the policy upon return. Caller should pass NULL @new to 200 * remove a policy and fall back to surrounding context--i.e. do not 201 * install a MPOL_DEFAULT policy, nor the task or system default 202 * mempolicy. 203 */ 204 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 205 206 /* 207 * get_policy() op must add reference [mpol_get()] to any policy at 208 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 209 * in mm/mempolicy.c will do this automatically. 210 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 211 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 212 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 213 * must return NULL--i.e., do not "fallback" to task or system default 214 * policy. 215 */ 216 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 217 unsigned long addr); 218 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 219 const nodemask_t *to, unsigned long flags); 220#endif 221}; 222 223struct mmu_gather; 224struct inode; 225 226#define page_private(page) ((page)->private) 227#define set_page_private(page, v) ((page)->private = (v)) 228 229/* 230 * FIXME: take this include out, include page-flags.h in 231 * files which need it (119 of them) 232 */ 233#include <linux/page-flags.h> 234 235/* 236 * Methods to modify the page usage count. 237 * 238 * What counts for a page usage: 239 * - cache mapping (page->mapping) 240 * - private data (page->private) 241 * - page mapped in a task's page tables, each mapping 242 * is counted separately 243 * 244 * Also, many kernel routines increase the page count before a critical 245 * routine so they can be sure the page doesn't go away from under them. 246 */ 247 248/* 249 * Drop a ref, return true if the refcount fell to zero (the page has no users) 250 */ 251static inline int put_page_testzero(struct page *page) 252{ 253 VM_BUG_ON(atomic_read(&page->_count) == 0); 254 return atomic_dec_and_test(&page->_count); 255} 256 257/* 258 * Try to grab a ref unless the page has a refcount of zero, return false if 259 * that is the case. 260 */ 261static inline int get_page_unless_zero(struct page *page) 262{ 263 return atomic_inc_not_zero(&page->_count); 264} 265 266/* Support for virtually mapped pages */ 267struct page *vmalloc_to_page(const void *addr); 268unsigned long vmalloc_to_pfn(const void *addr); 269 270/* 271 * Determine if an address is within the vmalloc range 272 * 273 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 274 * is no special casing required. 275 */ 276static inline int is_vmalloc_addr(const void *x) 277{ 278#ifdef CONFIG_MMU 279 unsigned long addr = (unsigned long)x; 280 281 return addr >= VMALLOC_START && addr < VMALLOC_END; 282#else 283 return 0; 284#endif 285} 286 287static inline struct page *compound_head(struct page *page) 288{ 289 if (unlikely(PageTail(page))) 290 return page->first_page; 291 return page; 292} 293 294static inline int page_count(struct page *page) 295{ 296 return atomic_read(&compound_head(page)->_count); 297} 298 299static inline void get_page(struct page *page) 300{ 301 page = compound_head(page); 302 VM_BUG_ON(atomic_read(&page->_count) == 0); 303 atomic_inc(&page->_count); 304} 305 306static inline struct page *virt_to_head_page(const void *x) 307{ 308 struct page *page = virt_to_page(x); 309 return compound_head(page); 310} 311 312/* 313 * Setup the page count before being freed into the page allocator for 314 * the first time (boot or memory hotplug) 315 */ 316static inline void init_page_count(struct page *page) 317{ 318 atomic_set(&page->_count, 1); 319} 320 321void put_page(struct page *page); 322void put_pages_list(struct list_head *pages); 323 324void split_page(struct page *page, unsigned int order); 325 326/* 327 * Compound pages have a destructor function. Provide a 328 * prototype for that function and accessor functions. 329 * These are _only_ valid on the head of a PG_compound page. 330 */ 331typedef void compound_page_dtor(struct page *); 332 333static inline void set_compound_page_dtor(struct page *page, 334 compound_page_dtor *dtor) 335{ 336 page[1].lru.next = (void *)dtor; 337} 338 339static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 340{ 341 return (compound_page_dtor *)page[1].lru.next; 342} 343 344static inline int compound_order(struct page *page) 345{ 346 if (!PageHead(page)) 347 return 0; 348 return (unsigned long)page[1].lru.prev; 349} 350 351static inline void set_compound_order(struct page *page, unsigned long order) 352{ 353 page[1].lru.prev = (void *)order; 354} 355 356/* 357 * Multiple processes may "see" the same page. E.g. for untouched 358 * mappings of /dev/null, all processes see the same page full of 359 * zeroes, and text pages of executables and shared libraries have 360 * only one copy in memory, at most, normally. 361 * 362 * For the non-reserved pages, page_count(page) denotes a reference count. 363 * page_count() == 0 means the page is free. page->lru is then used for 364 * freelist management in the buddy allocator. 365 * page_count() > 0 means the page has been allocated. 366 * 367 * Pages are allocated by the slab allocator in order to provide memory 368 * to kmalloc and kmem_cache_alloc. In this case, the management of the 369 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 370 * unless a particular usage is carefully commented. (the responsibility of 371 * freeing the kmalloc memory is the caller's, of course). 372 * 373 * A page may be used by anyone else who does a __get_free_page(). 374 * In this case, page_count still tracks the references, and should only 375 * be used through the normal accessor functions. The top bits of page->flags 376 * and page->virtual store page management information, but all other fields 377 * are unused and could be used privately, carefully. The management of this 378 * page is the responsibility of the one who allocated it, and those who have 379 * subsequently been given references to it. 380 * 381 * The other pages (we may call them "pagecache pages") are completely 382 * managed by the Linux memory manager: I/O, buffers, swapping etc. 383 * The following discussion applies only to them. 384 * 385 * A pagecache page contains an opaque `private' member, which belongs to the 386 * page's address_space. Usually, this is the address of a circular list of 387 * the page's disk buffers. PG_private must be set to tell the VM to call 388 * into the filesystem to release these pages. 389 * 390 * A page may belong to an inode's memory mapping. In this case, page->mapping 391 * is the pointer to the inode, and page->index is the file offset of the page, 392 * in units of PAGE_CACHE_SIZE. 393 * 394 * If pagecache pages are not associated with an inode, they are said to be 395 * anonymous pages. These may become associated with the swapcache, and in that 396 * case PG_swapcache is set, and page->private is an offset into the swapcache. 397 * 398 * In either case (swapcache or inode backed), the pagecache itself holds one 399 * reference to the page. Setting PG_private should also increment the 400 * refcount. The each user mapping also has a reference to the page. 401 * 402 * The pagecache pages are stored in a per-mapping radix tree, which is 403 * rooted at mapping->page_tree, and indexed by offset. 404 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 405 * lists, we instead now tag pages as dirty/writeback in the radix tree. 406 * 407 * All pagecache pages may be subject to I/O: 408 * - inode pages may need to be read from disk, 409 * - inode pages which have been modified and are MAP_SHARED may need 410 * to be written back to the inode on disk, 411 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 412 * modified may need to be swapped out to swap space and (later) to be read 413 * back into memory. 414 */ 415 416/* 417 * The zone field is never updated after free_area_init_core() 418 * sets it, so none of the operations on it need to be atomic. 419 */ 420 421 422/* 423 * page->flags layout: 424 * 425 * There are three possibilities for how page->flags get 426 * laid out. The first is for the normal case, without 427 * sparsemem. The second is for sparsemem when there is 428 * plenty of space for node and section. The last is when 429 * we have run out of space and have to fall back to an 430 * alternate (slower) way of determining the node. 431 * 432 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 433 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 434 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 435 */ 436#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 437#define SECTIONS_WIDTH SECTIONS_SHIFT 438#else 439#define SECTIONS_WIDTH 0 440#endif 441 442#define ZONES_WIDTH ZONES_SHIFT 443 444#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 445#define NODES_WIDTH NODES_SHIFT 446#else 447#ifdef CONFIG_SPARSEMEM_VMEMMAP 448#error "Vmemmap: No space for nodes field in page flags" 449#endif 450#define NODES_WIDTH 0 451#endif 452 453/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 454#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 455#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 456#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 457 458/* 459 * We are going to use the flags for the page to node mapping if its in 460 * there. This includes the case where there is no node, so it is implicit. 461 */ 462#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 463#define NODE_NOT_IN_PAGE_FLAGS 464#endif 465 466#ifndef PFN_SECTION_SHIFT 467#define PFN_SECTION_SHIFT 0 468#endif 469 470/* 471 * Define the bit shifts to access each section. For non-existant 472 * sections we define the shift as 0; that plus a 0 mask ensures 473 * the compiler will optimise away reference to them. 474 */ 475#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 476#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 477#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 478 479/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 480#ifdef NODE_NOT_IN_PAGEFLAGS 481#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 482#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 483 SECTIONS_PGOFF : ZONES_PGOFF) 484#else 485#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 486#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 487 NODES_PGOFF : ZONES_PGOFF) 488#endif 489 490#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 491 492#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 493#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 494#endif 495 496#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 497#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 498#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 499#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 500 501static inline enum zone_type page_zonenum(struct page *page) 502{ 503 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 504} 505 506/* 507 * The identification function is only used by the buddy allocator for 508 * determining if two pages could be buddies. We are not really 509 * identifying a zone since we could be using a the section number 510 * id if we have not node id available in page flags. 511 * We guarantee only that it will return the same value for two 512 * combinable pages in a zone. 513 */ 514static inline int page_zone_id(struct page *page) 515{ 516 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 517} 518 519static inline int zone_to_nid(struct zone *zone) 520{ 521#ifdef CONFIG_NUMA 522 return zone->node; 523#else 524 return 0; 525#endif 526} 527 528#ifdef NODE_NOT_IN_PAGE_FLAGS 529extern int page_to_nid(struct page *page); 530#else 531static inline int page_to_nid(struct page *page) 532{ 533 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 534} 535#endif 536 537static inline struct zone *page_zone(struct page *page) 538{ 539 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 540} 541 542#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 543static inline unsigned long page_to_section(struct page *page) 544{ 545 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 546} 547#endif 548 549static inline void set_page_zone(struct page *page, enum zone_type zone) 550{ 551 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 552 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 553} 554 555static inline void set_page_node(struct page *page, unsigned long node) 556{ 557 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 558 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 559} 560 561static inline void set_page_section(struct page *page, unsigned long section) 562{ 563 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 564 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 565} 566 567static inline void set_page_links(struct page *page, enum zone_type zone, 568 unsigned long node, unsigned long pfn) 569{ 570 set_page_zone(page, zone); 571 set_page_node(page, node); 572 set_page_section(page, pfn_to_section_nr(pfn)); 573} 574 575/* 576 * If a hint addr is less than mmap_min_addr change hint to be as 577 * low as possible but still greater than mmap_min_addr 578 */ 579static inline unsigned long round_hint_to_min(unsigned long hint) 580{ 581#ifdef CONFIG_SECURITY 582 hint &= PAGE_MASK; 583 if (((void *)hint != NULL) && 584 (hint < mmap_min_addr)) 585 return PAGE_ALIGN(mmap_min_addr); 586#endif 587 return hint; 588} 589 590/* 591 * Some inline functions in vmstat.h depend on page_zone() 592 */ 593#include <linux/vmstat.h> 594 595static __always_inline void *lowmem_page_address(struct page *page) 596{ 597 return __va(page_to_pfn(page) << PAGE_SHIFT); 598} 599 600#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 601#define HASHED_PAGE_VIRTUAL 602#endif 603 604#if defined(WANT_PAGE_VIRTUAL) 605#define page_address(page) ((page)->virtual) 606#define set_page_address(page, address) \ 607 do { \ 608 (page)->virtual = (address); \ 609 } while(0) 610#define page_address_init() do { } while(0) 611#endif 612 613#if defined(HASHED_PAGE_VIRTUAL) 614void *page_address(struct page *page); 615void set_page_address(struct page *page, void *virtual); 616void page_address_init(void); 617#endif 618 619#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 620#define page_address(page) lowmem_page_address(page) 621#define set_page_address(page, address) do { } while(0) 622#define page_address_init() do { } while(0) 623#endif 624 625/* 626 * On an anonymous page mapped into a user virtual memory area, 627 * page->mapping points to its anon_vma, not to a struct address_space; 628 * with the PAGE_MAPPING_ANON bit set to distinguish it. 629 * 630 * Please note that, confusingly, "page_mapping" refers to the inode 631 * address_space which maps the page from disk; whereas "page_mapped" 632 * refers to user virtual address space into which the page is mapped. 633 */ 634#define PAGE_MAPPING_ANON 1 635 636extern struct address_space swapper_space; 637static inline struct address_space *page_mapping(struct page *page) 638{ 639 struct address_space *mapping = page->mapping; 640 641 VM_BUG_ON(PageSlab(page)); 642#ifdef CONFIG_SWAP 643 if (unlikely(PageSwapCache(page))) 644 mapping = &swapper_space; 645 else 646#endif 647 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 648 mapping = NULL; 649 return mapping; 650} 651 652static inline int PageAnon(struct page *page) 653{ 654 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 655} 656 657/* 658 * Return the pagecache index of the passed page. Regular pagecache pages 659 * use ->index whereas swapcache pages use ->private 660 */ 661static inline pgoff_t page_index(struct page *page) 662{ 663 if (unlikely(PageSwapCache(page))) 664 return page_private(page); 665 return page->index; 666} 667 668/* 669 * The atomic page->_mapcount, like _count, starts from -1: 670 * so that transitions both from it and to it can be tracked, 671 * using atomic_inc_and_test and atomic_add_negative(-1). 672 */ 673static inline void reset_page_mapcount(struct page *page) 674{ 675 atomic_set(&(page)->_mapcount, -1); 676} 677 678static inline int page_mapcount(struct page *page) 679{ 680 return atomic_read(&(page)->_mapcount) + 1; 681} 682 683/* 684 * Return true if this page is mapped into pagetables. 685 */ 686static inline int page_mapped(struct page *page) 687{ 688 return atomic_read(&(page)->_mapcount) >= 0; 689} 690 691/* 692 * Different kinds of faults, as returned by handle_mm_fault(). 693 * Used to decide whether a process gets delivered SIGBUS or 694 * just gets major/minor fault counters bumped up. 695 */ 696 697#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 698 699#define VM_FAULT_OOM 0x0001 700#define VM_FAULT_SIGBUS 0x0002 701#define VM_FAULT_MAJOR 0x0004 702#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 703 704#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 705#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 706 707#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 708 709/* 710 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 711 */ 712extern void pagefault_out_of_memory(void); 713 714#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 715 716extern void show_free_areas(void); 717 718#ifdef CONFIG_SHMEM 719extern int shmem_lock(struct file *file, int lock, struct user_struct *user); 720#else 721static inline int shmem_lock(struct file *file, int lock, 722 struct user_struct *user) 723{ 724 return 0; 725} 726#endif 727struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 728 729int shmem_zero_setup(struct vm_area_struct *); 730 731#ifndef CONFIG_MMU 732extern unsigned long shmem_get_unmapped_area(struct file *file, 733 unsigned long addr, 734 unsigned long len, 735 unsigned long pgoff, 736 unsigned long flags); 737#endif 738 739extern int can_do_mlock(void); 740extern int user_shm_lock(size_t, struct user_struct *); 741extern void user_shm_unlock(size_t, struct user_struct *); 742 743/* 744 * Parameter block passed down to zap_pte_range in exceptional cases. 745 */ 746struct zap_details { 747 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 748 struct address_space *check_mapping; /* Check page->mapping if set */ 749 pgoff_t first_index; /* Lowest page->index to unmap */ 750 pgoff_t last_index; /* Highest page->index to unmap */ 751 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 752 unsigned long truncate_count; /* Compare vm_truncate_count */ 753}; 754 755struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 756 pte_t pte); 757 758int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 759 unsigned long size); 760unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 761 unsigned long size, struct zap_details *); 762unsigned long unmap_vmas(struct mmu_gather **tlb, 763 struct vm_area_struct *start_vma, unsigned long start_addr, 764 unsigned long end_addr, unsigned long *nr_accounted, 765 struct zap_details *); 766 767/** 768 * mm_walk - callbacks for walk_page_range 769 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 770 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 771 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 772 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 773 * @pte_hole: if set, called for each hole at all levels 774 * 775 * (see walk_page_range for more details) 776 */ 777struct mm_walk { 778 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 779 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 780 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 781 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 782 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 783 struct mm_struct *mm; 784 void *private; 785}; 786 787int walk_page_range(unsigned long addr, unsigned long end, 788 struct mm_walk *walk); 789void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 790 unsigned long end, unsigned long floor, unsigned long ceiling); 791int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 792 struct vm_area_struct *vma); 793void unmap_mapping_range(struct address_space *mapping, 794 loff_t const holebegin, loff_t const holelen, int even_cows); 795int follow_phys(struct vm_area_struct *vma, unsigned long address, 796 unsigned int flags, unsigned long *prot, resource_size_t *phys); 797int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 798 void *buf, int len, int write); 799 800static inline void unmap_shared_mapping_range(struct address_space *mapping, 801 loff_t const holebegin, loff_t const holelen) 802{ 803 unmap_mapping_range(mapping, holebegin, holelen, 0); 804} 805 806extern int vmtruncate(struct inode * inode, loff_t offset); 807extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 808 809#ifdef CONFIG_MMU 810extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 811 unsigned long address, int write_access); 812#else 813static inline int handle_mm_fault(struct mm_struct *mm, 814 struct vm_area_struct *vma, unsigned long address, 815 int write_access) 816{ 817 /* should never happen if there's no MMU */ 818 BUG(); 819 return VM_FAULT_SIGBUS; 820} 821#endif 822 823extern int make_pages_present(unsigned long addr, unsigned long end); 824extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 825 826int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 827 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 828 829extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 830extern void do_invalidatepage(struct page *page, unsigned long offset); 831 832int __set_page_dirty_nobuffers(struct page *page); 833int __set_page_dirty_no_writeback(struct page *page); 834int redirty_page_for_writepage(struct writeback_control *wbc, 835 struct page *page); 836int set_page_dirty(struct page *page); 837int set_page_dirty_lock(struct page *page); 838int clear_page_dirty_for_io(struct page *page); 839 840extern unsigned long move_page_tables(struct vm_area_struct *vma, 841 unsigned long old_addr, struct vm_area_struct *new_vma, 842 unsigned long new_addr, unsigned long len); 843extern unsigned long do_mremap(unsigned long addr, 844 unsigned long old_len, unsigned long new_len, 845 unsigned long flags, unsigned long new_addr); 846extern int mprotect_fixup(struct vm_area_struct *vma, 847 struct vm_area_struct **pprev, unsigned long start, 848 unsigned long end, unsigned long newflags); 849 850/* 851 * get_user_pages_fast provides equivalent functionality to get_user_pages, 852 * operating on current and current->mm (force=0 and doesn't return any vmas). 853 * 854 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions 855 * can be made about locking. get_user_pages_fast is to be implemented in a 856 * way that is advantageous (vs get_user_pages()) when the user memory area is 857 * already faulted in and present in ptes. However if the pages have to be 858 * faulted in, it may turn out to be slightly slower). 859 */ 860int get_user_pages_fast(unsigned long start, int nr_pages, int write, 861 struct page **pages); 862 863/* 864 * A callback you can register to apply pressure to ageable caches. 865 * 866 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 867 * look through the least-recently-used 'nr_to_scan' entries and 868 * attempt to free them up. It should return the number of objects 869 * which remain in the cache. If it returns -1, it means it cannot do 870 * any scanning at this time (eg. there is a risk of deadlock). 871 * 872 * The 'gfpmask' refers to the allocation we are currently trying to 873 * fulfil. 874 * 875 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 876 * querying the cache size, so a fastpath for that case is appropriate. 877 */ 878struct shrinker { 879 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 880 int seeks; /* seeks to recreate an obj */ 881 882 /* These are for internal use */ 883 struct list_head list; 884 long nr; /* objs pending delete */ 885}; 886#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 887extern void register_shrinker(struct shrinker *); 888extern void unregister_shrinker(struct shrinker *); 889 890int vma_wants_writenotify(struct vm_area_struct *vma); 891 892extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 893 894#ifdef __PAGETABLE_PUD_FOLDED 895static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 896 unsigned long address) 897{ 898 return 0; 899} 900#else 901int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 902#endif 903 904#ifdef __PAGETABLE_PMD_FOLDED 905static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 906 unsigned long address) 907{ 908 return 0; 909} 910#else 911int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 912#endif 913 914int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 915int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 916 917/* 918 * The following ifdef needed to get the 4level-fixup.h header to work. 919 * Remove it when 4level-fixup.h has been removed. 920 */ 921#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 922static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 923{ 924 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 925 NULL: pud_offset(pgd, address); 926} 927 928static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 929{ 930 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 931 NULL: pmd_offset(pud, address); 932} 933#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 934 935#if USE_SPLIT_PTLOCKS 936/* 937 * We tuck a spinlock to guard each pagetable page into its struct page, 938 * at page->private, with BUILD_BUG_ON to make sure that this will not 939 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 940 * When freeing, reset page->mapping so free_pages_check won't complain. 941 */ 942#define __pte_lockptr(page) &((page)->ptl) 943#define pte_lock_init(_page) do { \ 944 spin_lock_init(__pte_lockptr(_page)); \ 945} while (0) 946#define pte_lock_deinit(page) ((page)->mapping = NULL) 947#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 948#else /* !USE_SPLIT_PTLOCKS */ 949/* 950 * We use mm->page_table_lock to guard all pagetable pages of the mm. 951 */ 952#define pte_lock_init(page) do {} while (0) 953#define pte_lock_deinit(page) do {} while (0) 954#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 955#endif /* USE_SPLIT_PTLOCKS */ 956 957static inline void pgtable_page_ctor(struct page *page) 958{ 959 pte_lock_init(page); 960 inc_zone_page_state(page, NR_PAGETABLE); 961} 962 963static inline void pgtable_page_dtor(struct page *page) 964{ 965 pte_lock_deinit(page); 966 dec_zone_page_state(page, NR_PAGETABLE); 967} 968 969#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 970({ \ 971 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 972 pte_t *__pte = pte_offset_map(pmd, address); \ 973 *(ptlp) = __ptl; \ 974 spin_lock(__ptl); \ 975 __pte; \ 976}) 977 978#define pte_unmap_unlock(pte, ptl) do { \ 979 spin_unlock(ptl); \ 980 pte_unmap(pte); \ 981} while (0) 982 983#define pte_alloc_map(mm, pmd, address) \ 984 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 985 NULL: pte_offset_map(pmd, address)) 986 987#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 988 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 989 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 990 991#define pte_alloc_kernel(pmd, address) \ 992 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 993 NULL: pte_offset_kernel(pmd, address)) 994 995extern void free_area_init(unsigned long * zones_size); 996extern void free_area_init_node(int nid, unsigned long * zones_size, 997 unsigned long zone_start_pfn, unsigned long *zholes_size); 998#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 999/* 1000 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1001 * zones, allocate the backing mem_map and account for memory holes in a more 1002 * architecture independent manner. This is a substitute for creating the 1003 * zone_sizes[] and zholes_size[] arrays and passing them to 1004 * free_area_init_node() 1005 * 1006 * An architecture is expected to register range of page frames backed by 1007 * physical memory with add_active_range() before calling 1008 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1009 * usage, an architecture is expected to do something like 1010 * 1011 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1012 * max_highmem_pfn}; 1013 * for_each_valid_physical_page_range() 1014 * add_active_range(node_id, start_pfn, end_pfn) 1015 * free_area_init_nodes(max_zone_pfns); 1016 * 1017 * If the architecture guarantees that there are no holes in the ranges 1018 * registered with add_active_range(), free_bootmem_active_regions() 1019 * will call free_bootmem_node() for each registered physical page range. 1020 * Similarly sparse_memory_present_with_active_regions() calls 1021 * memory_present() for each range when SPARSEMEM is enabled. 1022 * 1023 * See mm/page_alloc.c for more information on each function exposed by 1024 * CONFIG_ARCH_POPULATES_NODE_MAP 1025 */ 1026extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1027extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1028 unsigned long end_pfn); 1029extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1030 unsigned long end_pfn); 1031extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 1032 unsigned long end_pfn); 1033extern void remove_all_active_ranges(void); 1034extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1035 unsigned long end_pfn); 1036extern void get_pfn_range_for_nid(unsigned int nid, 1037 unsigned long *start_pfn, unsigned long *end_pfn); 1038extern unsigned long find_min_pfn_with_active_regions(void); 1039extern void free_bootmem_with_active_regions(int nid, 1040 unsigned long max_low_pfn); 1041typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1042extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1043extern void sparse_memory_present_with_active_regions(int nid); 1044#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1045 1046#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1047 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1048static inline int __early_pfn_to_nid(unsigned long pfn) 1049{ 1050 return 0; 1051} 1052#else 1053/* please see mm/page_alloc.c */ 1054extern int __meminit early_pfn_to_nid(unsigned long pfn); 1055#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1056/* there is a per-arch backend function. */ 1057extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1058#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1059#endif 1060 1061extern void set_dma_reserve(unsigned long new_dma_reserve); 1062extern void memmap_init_zone(unsigned long, int, unsigned long, 1063 unsigned long, enum memmap_context); 1064extern void setup_per_zone_pages_min(void); 1065extern void mem_init(void); 1066extern void __init mmap_init(void); 1067extern void show_mem(void); 1068extern void si_meminfo(struct sysinfo * val); 1069extern void si_meminfo_node(struct sysinfo *val, int nid); 1070extern int after_bootmem; 1071 1072#ifdef CONFIG_NUMA 1073extern void setup_per_cpu_pageset(void); 1074#else 1075static inline void setup_per_cpu_pageset(void) {} 1076#endif 1077 1078/* nommu.c */ 1079extern atomic_t mmap_pages_allocated; 1080 1081/* prio_tree.c */ 1082void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1083void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1084void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1085struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1086 struct prio_tree_iter *iter); 1087 1088#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1089 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1090 (vma = vma_prio_tree_next(vma, iter)); ) 1091 1092static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1093 struct list_head *list) 1094{ 1095 vma->shared.vm_set.parent = NULL; 1096 list_add_tail(&vma->shared.vm_set.list, list); 1097} 1098 1099/* mmap.c */ 1100extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1101extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1102 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1103extern struct vm_area_struct *vma_merge(struct mm_struct *, 1104 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1105 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1106 struct mempolicy *); 1107extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1108extern int split_vma(struct mm_struct *, 1109 struct vm_area_struct *, unsigned long addr, int new_below); 1110extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1111extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1112 struct rb_node **, struct rb_node *); 1113extern void unlink_file_vma(struct vm_area_struct *); 1114extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1115 unsigned long addr, unsigned long len, pgoff_t pgoff); 1116extern void exit_mmap(struct mm_struct *); 1117 1118extern int mm_take_all_locks(struct mm_struct *mm); 1119extern void mm_drop_all_locks(struct mm_struct *mm); 1120 1121#ifdef CONFIG_PROC_FS 1122/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1123extern void added_exe_file_vma(struct mm_struct *mm); 1124extern void removed_exe_file_vma(struct mm_struct *mm); 1125#else 1126static inline void added_exe_file_vma(struct mm_struct *mm) 1127{} 1128 1129static inline void removed_exe_file_vma(struct mm_struct *mm) 1130{} 1131#endif /* CONFIG_PROC_FS */ 1132 1133extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1134extern int install_special_mapping(struct mm_struct *mm, 1135 unsigned long addr, unsigned long len, 1136 unsigned long flags, struct page **pages); 1137 1138extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1139 1140extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1141 unsigned long len, unsigned long prot, 1142 unsigned long flag, unsigned long pgoff); 1143extern unsigned long mmap_region(struct file *file, unsigned long addr, 1144 unsigned long len, unsigned long flags, 1145 unsigned int vm_flags, unsigned long pgoff); 1146 1147static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1148 unsigned long len, unsigned long prot, 1149 unsigned long flag, unsigned long offset) 1150{ 1151 unsigned long ret = -EINVAL; 1152 if ((offset + PAGE_ALIGN(len)) < offset) 1153 goto out; 1154 if (!(offset & ~PAGE_MASK)) 1155 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1156out: 1157 return ret; 1158} 1159 1160extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1161 1162extern unsigned long do_brk(unsigned long, unsigned long); 1163 1164/* filemap.c */ 1165extern unsigned long page_unuse(struct page *); 1166extern void truncate_inode_pages(struct address_space *, loff_t); 1167extern void truncate_inode_pages_range(struct address_space *, 1168 loff_t lstart, loff_t lend); 1169 1170/* generic vm_area_ops exported for stackable file systems */ 1171extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1172 1173/* mm/page-writeback.c */ 1174int write_one_page(struct page *page, int wait); 1175void task_dirty_inc(struct task_struct *tsk); 1176 1177/* readahead.c */ 1178#define VM_MAX_READAHEAD 128 /* kbytes */ 1179#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1180 1181int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1182 pgoff_t offset, unsigned long nr_to_read); 1183int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1184 pgoff_t offset, unsigned long nr_to_read); 1185 1186void page_cache_sync_readahead(struct address_space *mapping, 1187 struct file_ra_state *ra, 1188 struct file *filp, 1189 pgoff_t offset, 1190 unsigned long size); 1191 1192void page_cache_async_readahead(struct address_space *mapping, 1193 struct file_ra_state *ra, 1194 struct file *filp, 1195 struct page *pg, 1196 pgoff_t offset, 1197 unsigned long size); 1198 1199unsigned long max_sane_readahead(unsigned long nr); 1200 1201/* Do stack extension */ 1202extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1203#ifdef CONFIG_IA64 1204extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1205#endif 1206extern int expand_stack_downwards(struct vm_area_struct *vma, 1207 unsigned long address); 1208 1209/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1210extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1211extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1212 struct vm_area_struct **pprev); 1213 1214/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1215 NULL if none. Assume start_addr < end_addr. */ 1216static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1217{ 1218 struct vm_area_struct * vma = find_vma(mm,start_addr); 1219 1220 if (vma && end_addr <= vma->vm_start) 1221 vma = NULL; 1222 return vma; 1223} 1224 1225static inline unsigned long vma_pages(struct vm_area_struct *vma) 1226{ 1227 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1228} 1229 1230pgprot_t vm_get_page_prot(unsigned long vm_flags); 1231struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1232int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1233 unsigned long pfn, unsigned long size, pgprot_t); 1234int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1235int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1236 unsigned long pfn); 1237int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1238 unsigned long pfn); 1239 1240struct page *follow_page(struct vm_area_struct *, unsigned long address, 1241 unsigned int foll_flags); 1242#define FOLL_WRITE 0x01 /* check pte is writable */ 1243#define FOLL_TOUCH 0x02 /* mark page accessed */ 1244#define FOLL_GET 0x04 /* do get_page on page */ 1245#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1246 1247typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1248 void *data); 1249extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1250 unsigned long size, pte_fn_t fn, void *data); 1251 1252#ifdef CONFIG_PROC_FS 1253void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1254#else 1255static inline void vm_stat_account(struct mm_struct *mm, 1256 unsigned long flags, struct file *file, long pages) 1257{ 1258} 1259#endif /* CONFIG_PROC_FS */ 1260 1261#ifdef CONFIG_DEBUG_PAGEALLOC 1262extern int debug_pagealloc_enabled; 1263 1264extern void kernel_map_pages(struct page *page, int numpages, int enable); 1265 1266static inline void enable_debug_pagealloc(void) 1267{ 1268 debug_pagealloc_enabled = 1; 1269} 1270#ifdef CONFIG_HIBERNATION 1271extern bool kernel_page_present(struct page *page); 1272#endif /* CONFIG_HIBERNATION */ 1273#else 1274static inline void 1275kernel_map_pages(struct page *page, int numpages, int enable) {} 1276static inline void enable_debug_pagealloc(void) 1277{ 1278} 1279#ifdef CONFIG_HIBERNATION 1280static inline bool kernel_page_present(struct page *page) { return true; } 1281#endif /* CONFIG_HIBERNATION */ 1282#endif 1283 1284extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1285#ifdef __HAVE_ARCH_GATE_AREA 1286int in_gate_area_no_task(unsigned long addr); 1287int in_gate_area(struct task_struct *task, unsigned long addr); 1288#else 1289int in_gate_area_no_task(unsigned long addr); 1290#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1291#endif /* __HAVE_ARCH_GATE_AREA */ 1292 1293int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1294 void __user *, size_t *, loff_t *); 1295unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1296 unsigned long lru_pages); 1297 1298#ifndef CONFIG_MMU 1299#define randomize_va_space 0 1300#else 1301extern int randomize_va_space; 1302#endif 1303 1304const char * arch_vma_name(struct vm_area_struct *vma); 1305void print_vma_addr(char *prefix, unsigned long rip); 1306 1307struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1308pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1309pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1310pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1311pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1312void *vmemmap_alloc_block(unsigned long size, int node); 1313void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1314int vmemmap_populate_basepages(struct page *start_page, 1315 unsigned long pages, int node); 1316int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1317void vmemmap_populate_print_last(void); 1318 1319extern void *alloc_locked_buffer(size_t size); 1320extern void free_locked_buffer(void *buffer, size_t size); 1321extern void release_locked_buffer(void *buffer, size_t size); 1322#endif /* __KERNEL__ */ 1323#endif /* _LINUX_MM_H */