at v2.6.29 469 lines 11 kB view raw
1/** 2 * @file cpu_buffer.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf <barry.kasindorf@amd.com> 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * Each CPU has a local buffer that stores PC value/event 12 * pairs. We also log context switches when we notice them. 13 * Eventually each CPU's buffer is processed into the global 14 * event buffer by sync_buffer(). 15 * 16 * We use a local buffer for two reasons: an NMI or similar 17 * interrupt cannot synchronise, and high sampling rates 18 * would lead to catastrophic global synchronisation if 19 * a global buffer was used. 20 */ 21 22#include <linux/sched.h> 23#include <linux/oprofile.h> 24#include <linux/vmalloc.h> 25#include <linux/errno.h> 26 27#include "event_buffer.h" 28#include "cpu_buffer.h" 29#include "buffer_sync.h" 30#include "oprof.h" 31 32#define OP_BUFFER_FLAGS 0 33 34/* 35 * Read and write access is using spin locking. Thus, writing to the 36 * buffer by NMI handler (x86) could occur also during critical 37 * sections when reading the buffer. To avoid this, there are 2 38 * buffers for independent read and write access. Read access is in 39 * process context only, write access only in the NMI handler. If the 40 * read buffer runs empty, both buffers are swapped atomically. There 41 * is potentially a small window during swapping where the buffers are 42 * disabled and samples could be lost. 43 * 44 * Using 2 buffers is a little bit overhead, but the solution is clear 45 * and does not require changes in the ring buffer implementation. It 46 * can be changed to a single buffer solution when the ring buffer 47 * access is implemented as non-locking atomic code. 48 */ 49static struct ring_buffer *op_ring_buffer_read; 50static struct ring_buffer *op_ring_buffer_write; 51DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer); 52 53static void wq_sync_buffer(struct work_struct *work); 54 55#define DEFAULT_TIMER_EXPIRE (HZ / 10) 56static int work_enabled; 57 58unsigned long oprofile_get_cpu_buffer_size(void) 59{ 60 return oprofile_cpu_buffer_size; 61} 62 63void oprofile_cpu_buffer_inc_smpl_lost(void) 64{ 65 struct oprofile_cpu_buffer *cpu_buf 66 = &__get_cpu_var(cpu_buffer); 67 68 cpu_buf->sample_lost_overflow++; 69} 70 71void free_cpu_buffers(void) 72{ 73 if (op_ring_buffer_read) 74 ring_buffer_free(op_ring_buffer_read); 75 op_ring_buffer_read = NULL; 76 if (op_ring_buffer_write) 77 ring_buffer_free(op_ring_buffer_write); 78 op_ring_buffer_write = NULL; 79} 80 81int alloc_cpu_buffers(void) 82{ 83 int i; 84 85 unsigned long buffer_size = oprofile_cpu_buffer_size; 86 87 op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS); 88 if (!op_ring_buffer_read) 89 goto fail; 90 op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS); 91 if (!op_ring_buffer_write) 92 goto fail; 93 94 for_each_possible_cpu(i) { 95 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 96 97 b->last_task = NULL; 98 b->last_is_kernel = -1; 99 b->tracing = 0; 100 b->buffer_size = buffer_size; 101 b->sample_received = 0; 102 b->sample_lost_overflow = 0; 103 b->backtrace_aborted = 0; 104 b->sample_invalid_eip = 0; 105 b->cpu = i; 106 INIT_DELAYED_WORK(&b->work, wq_sync_buffer); 107 } 108 return 0; 109 110fail: 111 free_cpu_buffers(); 112 return -ENOMEM; 113} 114 115void start_cpu_work(void) 116{ 117 int i; 118 119 work_enabled = 1; 120 121 for_each_online_cpu(i) { 122 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 123 124 /* 125 * Spread the work by 1 jiffy per cpu so they dont all 126 * fire at once. 127 */ 128 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i); 129 } 130} 131 132void end_cpu_work(void) 133{ 134 int i; 135 136 work_enabled = 0; 137 138 for_each_online_cpu(i) { 139 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i); 140 141 cancel_delayed_work(&b->work); 142 } 143 144 flush_scheduled_work(); 145} 146 147/* 148 * This function prepares the cpu buffer to write a sample. 149 * 150 * Struct op_entry is used during operations on the ring buffer while 151 * struct op_sample contains the data that is stored in the ring 152 * buffer. Struct entry can be uninitialized. The function reserves a 153 * data array that is specified by size. Use 154 * op_cpu_buffer_write_commit() after preparing the sample. In case of 155 * errors a null pointer is returned, otherwise the pointer to the 156 * sample. 157 * 158 */ 159struct op_sample 160*op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size) 161{ 162 entry->event = ring_buffer_lock_reserve 163 (op_ring_buffer_write, sizeof(struct op_sample) + 164 size * sizeof(entry->sample->data[0]), &entry->irq_flags); 165 if (entry->event) 166 entry->sample = ring_buffer_event_data(entry->event); 167 else 168 entry->sample = NULL; 169 170 if (!entry->sample) 171 return NULL; 172 173 entry->size = size; 174 entry->data = entry->sample->data; 175 176 return entry->sample; 177} 178 179int op_cpu_buffer_write_commit(struct op_entry *entry) 180{ 181 return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event, 182 entry->irq_flags); 183} 184 185struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu) 186{ 187 struct ring_buffer_event *e; 188 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL); 189 if (e) 190 goto event; 191 if (ring_buffer_swap_cpu(op_ring_buffer_read, 192 op_ring_buffer_write, 193 cpu)) 194 return NULL; 195 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL); 196 if (e) 197 goto event; 198 return NULL; 199 200event: 201 entry->event = e; 202 entry->sample = ring_buffer_event_data(e); 203 entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample)) 204 / sizeof(entry->sample->data[0]); 205 entry->data = entry->sample->data; 206 return entry->sample; 207} 208 209unsigned long op_cpu_buffer_entries(int cpu) 210{ 211 return ring_buffer_entries_cpu(op_ring_buffer_read, cpu) 212 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu); 213} 214 215static int 216op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace, 217 int is_kernel, struct task_struct *task) 218{ 219 struct op_entry entry; 220 struct op_sample *sample; 221 unsigned long flags; 222 int size; 223 224 flags = 0; 225 226 if (backtrace) 227 flags |= TRACE_BEGIN; 228 229 /* notice a switch from user->kernel or vice versa */ 230 is_kernel = !!is_kernel; 231 if (cpu_buf->last_is_kernel != is_kernel) { 232 cpu_buf->last_is_kernel = is_kernel; 233 flags |= KERNEL_CTX_SWITCH; 234 if (is_kernel) 235 flags |= IS_KERNEL; 236 } 237 238 /* notice a task switch */ 239 if (cpu_buf->last_task != task) { 240 cpu_buf->last_task = task; 241 flags |= USER_CTX_SWITCH; 242 } 243 244 if (!flags) 245 /* nothing to do */ 246 return 0; 247 248 if (flags & USER_CTX_SWITCH) 249 size = 1; 250 else 251 size = 0; 252 253 sample = op_cpu_buffer_write_reserve(&entry, size); 254 if (!sample) 255 return -ENOMEM; 256 257 sample->eip = ESCAPE_CODE; 258 sample->event = flags; 259 260 if (size) 261 op_cpu_buffer_add_data(&entry, (unsigned long)task); 262 263 op_cpu_buffer_write_commit(&entry); 264 265 return 0; 266} 267 268static inline int 269op_add_sample(struct oprofile_cpu_buffer *cpu_buf, 270 unsigned long pc, unsigned long event) 271{ 272 struct op_entry entry; 273 struct op_sample *sample; 274 275 sample = op_cpu_buffer_write_reserve(&entry, 0); 276 if (!sample) 277 return -ENOMEM; 278 279 sample->eip = pc; 280 sample->event = event; 281 282 return op_cpu_buffer_write_commit(&entry); 283} 284 285/* 286 * This must be safe from any context. 287 * 288 * is_kernel is needed because on some architectures you cannot 289 * tell if you are in kernel or user space simply by looking at 290 * pc. We tag this in the buffer by generating kernel enter/exit 291 * events whenever is_kernel changes 292 */ 293static int 294log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc, 295 unsigned long backtrace, int is_kernel, unsigned long event) 296{ 297 cpu_buf->sample_received++; 298 299 if (pc == ESCAPE_CODE) { 300 cpu_buf->sample_invalid_eip++; 301 return 0; 302 } 303 304 if (op_add_code(cpu_buf, backtrace, is_kernel, current)) 305 goto fail; 306 307 if (op_add_sample(cpu_buf, pc, event)) 308 goto fail; 309 310 return 1; 311 312fail: 313 cpu_buf->sample_lost_overflow++; 314 return 0; 315} 316 317static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf) 318{ 319 cpu_buf->tracing = 1; 320} 321 322static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf) 323{ 324 cpu_buf->tracing = 0; 325} 326 327static inline void 328__oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs, 329 unsigned long event, int is_kernel) 330{ 331 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 332 unsigned long backtrace = oprofile_backtrace_depth; 333 334 /* 335 * if log_sample() fail we can't backtrace since we lost the 336 * source of this event 337 */ 338 if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event)) 339 /* failed */ 340 return; 341 342 if (!backtrace) 343 return; 344 345 oprofile_begin_trace(cpu_buf); 346 oprofile_ops.backtrace(regs, backtrace); 347 oprofile_end_trace(cpu_buf); 348} 349 350void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs, 351 unsigned long event, int is_kernel) 352{ 353 __oprofile_add_ext_sample(pc, regs, event, is_kernel); 354} 355 356void oprofile_add_sample(struct pt_regs * const regs, unsigned long event) 357{ 358 int is_kernel = !user_mode(regs); 359 unsigned long pc = profile_pc(regs); 360 361 __oprofile_add_ext_sample(pc, regs, event, is_kernel); 362} 363 364/* 365 * Add samples with data to the ring buffer. 366 * 367 * Use oprofile_add_data(&entry, val) to add data and 368 * oprofile_write_commit(&entry) to commit the sample. 369 */ 370void 371oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs, 372 unsigned long pc, int code, int size) 373{ 374 struct op_sample *sample; 375 int is_kernel = !user_mode(regs); 376 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 377 378 cpu_buf->sample_received++; 379 380 /* no backtraces for samples with data */ 381 if (op_add_code(cpu_buf, 0, is_kernel, current)) 382 goto fail; 383 384 sample = op_cpu_buffer_write_reserve(entry, size + 2); 385 if (!sample) 386 goto fail; 387 sample->eip = ESCAPE_CODE; 388 sample->event = 0; /* no flags */ 389 390 op_cpu_buffer_add_data(entry, code); 391 op_cpu_buffer_add_data(entry, pc); 392 393 return; 394 395fail: 396 entry->event = NULL; 397 cpu_buf->sample_lost_overflow++; 398} 399 400int oprofile_add_data(struct op_entry *entry, unsigned long val) 401{ 402 if (!entry->event) 403 return 0; 404 return op_cpu_buffer_add_data(entry, val); 405} 406 407int oprofile_write_commit(struct op_entry *entry) 408{ 409 if (!entry->event) 410 return -EINVAL; 411 return op_cpu_buffer_write_commit(entry); 412} 413 414void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event) 415{ 416 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 417 log_sample(cpu_buf, pc, 0, is_kernel, event); 418} 419 420void oprofile_add_trace(unsigned long pc) 421{ 422 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer); 423 424 if (!cpu_buf->tracing) 425 return; 426 427 /* 428 * broken frame can give an eip with the same value as an 429 * escape code, abort the trace if we get it 430 */ 431 if (pc == ESCAPE_CODE) 432 goto fail; 433 434 if (op_add_sample(cpu_buf, pc, 0)) 435 goto fail; 436 437 return; 438fail: 439 cpu_buf->tracing = 0; 440 cpu_buf->backtrace_aborted++; 441 return; 442} 443 444/* 445 * This serves to avoid cpu buffer overflow, and makes sure 446 * the task mortuary progresses 447 * 448 * By using schedule_delayed_work_on and then schedule_delayed_work 449 * we guarantee this will stay on the correct cpu 450 */ 451static void wq_sync_buffer(struct work_struct *work) 452{ 453 struct oprofile_cpu_buffer *b = 454 container_of(work, struct oprofile_cpu_buffer, work.work); 455 if (b->cpu != smp_processor_id()) { 456 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n", 457 smp_processor_id(), b->cpu); 458 459 if (!cpu_online(b->cpu)) { 460 cancel_delayed_work(&b->work); 461 return; 462 } 463 } 464 sync_buffer(b->cpu); 465 466 /* don't re-add the work if we're shutting down */ 467 if (work_enabled) 468 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE); 469}