at v2.6.29 416 lines 14 kB view raw
1/* 2 * include/asm-xtensa/pgtable.h 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * Copyright (C) 2001 - 2007 Tensilica Inc. 9 */ 10 11#ifndef _XTENSA_PGTABLE_H 12#define _XTENSA_PGTABLE_H 13 14#include <asm-generic/pgtable-nopmd.h> 15#include <asm/page.h> 16 17/* 18 * We only use two ring levels, user and kernel space. 19 */ 20 21#define USER_RING 1 /* user ring level */ 22#define KERNEL_RING 0 /* kernel ring level */ 23 24/* 25 * The Xtensa architecture port of Linux has a two-level page table system, 26 * i.e. the logical three-level Linux page table layout is folded. 27 * Each task has the following memory page tables: 28 * 29 * PGD table (page directory), ie. 3rd-level page table: 30 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables 31 * (Architectures that don't have the PMD folded point to the PMD tables) 32 * 33 * The pointer to the PGD table for a given task can be retrieved from 34 * the task structure (struct task_struct*) t, e.g. current(): 35 * (t->mm ? t->mm : t->active_mm)->pgd 36 * 37 * PMD tables (page middle-directory), ie. 2nd-level page tables: 38 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). 39 * 40 * PTE tables (page table entry), ie. 1st-level page tables: 41 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE 42 * invalid_pte_table for absent mappings. 43 * 44 * The individual pages are 4 kB big with special pages for the empty_zero_page. 45 */ 46 47#define PGDIR_SHIFT 22 48#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 49#define PGDIR_MASK (~(PGDIR_SIZE-1)) 50 51/* 52 * Entries per page directory level: we use two-level, so 53 * we don't really have any PMD directory physically. 54 */ 55#define PTRS_PER_PTE 1024 56#define PTRS_PER_PTE_SHIFT 10 57#define PTRS_PER_PGD 1024 58#define PGD_ORDER 0 59#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 60#define FIRST_USER_ADDRESS 0 61#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) 62 63/* 64 * Virtual memory area. We keep a distance to other memory regions to be 65 * on the safe side. We also use this area for cache aliasing. 66 */ 67 68#define VMALLOC_START 0xC0000000 69#define VMALLOC_END 0xC7FEFFFF 70#define TLBTEMP_BASE_1 0xC7FF0000 71#define TLBTEMP_BASE_2 0xC7FF8000 72 73/* 74 * Xtensa Linux config PTE layout (when present): 75 * 31-12: PPN 76 * 11-6: Software 77 * 5-4: RING 78 * 3-0: CA 79 * 80 * Similar to the Alpha and MIPS ports, we need to keep track of the ref 81 * and mod bits in software. We have a software "you can read 82 * from this page" bit, and a hardware one which actually lets the 83 * process read from the page. On the same token we have a software 84 * writable bit and the real hardware one which actually lets the 85 * process write to the page. 86 * 87 * See further below for PTE layout for swapped-out pages. 88 */ 89 90#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */ 91#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */ 92 93#define _PAGE_FILE (1<<1) /* non-linear mapping, if !present */ 94#define _PAGE_PROTNONE (3<<0) /* special case for VM_PROT_NONE */ 95 96/* None of these cache modes include MP coherency: */ 97#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */ 98#define _PAGE_CA_WB (1<<2) /* write-back */ 99#define _PAGE_CA_WT (2<<2) /* write-through */ 100#define _PAGE_CA_MASK (3<<2) 101#define _PAGE_INVALID (3<<2) 102 103#define _PAGE_USER (1<<4) /* user access (ring=1) */ 104 105/* Software */ 106#define _PAGE_WRITABLE_BIT 6 107#define _PAGE_WRITABLE (1<<6) /* software: page writable */ 108#define _PAGE_DIRTY (1<<7) /* software: page dirty */ 109#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ 110 111/* On older HW revisions, we always have to set bit 0 */ 112#if XCHAL_HW_VERSION_MAJOR < 2000 113# define _PAGE_VALID (1<<0) 114#else 115# define _PAGE_VALID 0 116#endif 117 118#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 119#define _PAGE_PRESENT (_PAGE_VALID | _PAGE_CA_WB | _PAGE_ACCESSED) 120 121#ifdef CONFIG_MMU 122 123#define PAGE_NONE __pgprot(_PAGE_INVALID | _PAGE_USER | _PAGE_PROTNONE) 124#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) 125#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 126#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) 127#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) 128#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE) 129#define PAGE_SHARED_EXEC \ 130 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC) 131#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE) 132#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC) 133 134#if (DCACHE_WAY_SIZE > PAGE_SIZE) 135# define _PAGE_DIRECTORY (_PAGE_VALID | _PAGE_ACCESSED) 136#else 137# define _PAGE_DIRECTORY (_PAGE_VALID | _PAGE_ACCESSED | _PAGE_CA_WB) 138#endif 139 140#else /* no mmu */ 141 142# define PAGE_NONE __pgprot(0) 143# define PAGE_SHARED __pgprot(0) 144# define PAGE_COPY __pgprot(0) 145# define PAGE_READONLY __pgprot(0) 146# define PAGE_KERNEL __pgprot(0) 147 148#endif 149 150/* 151 * On certain configurations of Xtensa MMUs (eg. the initial Linux config), 152 * the MMU can't do page protection for execute, and considers that the same as 153 * read. Also, write permissions may imply read permissions. 154 * What follows is the closest we can get by reasonable means.. 155 * See linux/mm/mmap.c for protection_map[] array that uses these definitions. 156 */ 157#define __P000 PAGE_NONE /* private --- */ 158#define __P001 PAGE_READONLY /* private --r */ 159#define __P010 PAGE_COPY /* private -w- */ 160#define __P011 PAGE_COPY /* private -wr */ 161#define __P100 PAGE_READONLY_EXEC /* private x-- */ 162#define __P101 PAGE_READONLY_EXEC /* private x-r */ 163#define __P110 PAGE_COPY_EXEC /* private xw- */ 164#define __P111 PAGE_COPY_EXEC /* private xwr */ 165 166#define __S000 PAGE_NONE /* shared --- */ 167#define __S001 PAGE_READONLY /* shared --r */ 168#define __S010 PAGE_SHARED /* shared -w- */ 169#define __S011 PAGE_SHARED /* shared -wr */ 170#define __S100 PAGE_READONLY_EXEC /* shared x-- */ 171#define __S101 PAGE_READONLY_EXEC /* shared x-r */ 172#define __S110 PAGE_SHARED_EXEC /* shared xw- */ 173#define __S111 PAGE_SHARED_EXEC /* shared xwr */ 174 175#ifndef __ASSEMBLY__ 176 177#define pte_ERROR(e) \ 178 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 179#define pgd_ERROR(e) \ 180 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 181 182extern unsigned long empty_zero_page[1024]; 183 184#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 185 186extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; 187 188/* 189 * The pmd contains the kernel virtual address of the pte page. 190 */ 191#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) 192#define pmd_page(pmd) virt_to_page(pmd_val(pmd)) 193 194/* 195 * pte status. 196 */ 197#define pte_none(pte) (pte_val(pte) == _PAGE_INVALID) 198#define pte_present(pte) \ 199 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_INVALID) \ 200 || ((pte_val(pte) & _PAGE_PROTNONE) == _PAGE_PROTNONE)) 201#define pte_clear(mm,addr,ptep) \ 202 do { update_pte(ptep, __pte(_PAGE_INVALID)); } while(0) 203 204#define pmd_none(pmd) (!pmd_val(pmd)) 205#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) 206#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 207#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) 208 209static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; } 210static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 211static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 212static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 213static inline int pte_special(pte_t pte) { return 0; } 214 215static inline pte_t pte_wrprotect(pte_t pte) 216 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; } 217static inline pte_t pte_mkclean(pte_t pte) 218 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; } 219static inline pte_t pte_mkold(pte_t pte) 220 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 221static inline pte_t pte_mkdirty(pte_t pte) 222 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 223static inline pte_t pte_mkyoung(pte_t pte) 224 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 225static inline pte_t pte_mkwrite(pte_t pte) 226 { pte_val(pte) |= _PAGE_WRITABLE; return pte; } 227static inline pte_t pte_mkspecial(pte_t pte) 228 { return pte; } 229 230/* 231 * Conversion functions: convert a page and protection to a page entry, 232 * and a page entry and page directory to the page they refer to. 233 */ 234 235#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 236#define pte_same(a,b) (pte_val(a) == pte_val(b)) 237#define pte_page(x) pfn_to_page(pte_pfn(x)) 238#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 239#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 240 241static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 242{ 243 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 244} 245 246/* 247 * Certain architectures need to do special things when pte's 248 * within a page table are directly modified. Thus, the following 249 * hook is made available. 250 */ 251static inline void update_pte(pte_t *ptep, pte_t pteval) 252{ 253 *ptep = pteval; 254#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 255 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep)); 256#endif 257 258} 259 260struct mm_struct; 261 262static inline void 263set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) 264{ 265 update_pte(ptep, pteval); 266} 267 268 269static inline void 270set_pmd(pmd_t *pmdp, pmd_t pmdval) 271{ 272 *pmdp = pmdval; 273} 274 275struct vm_area_struct; 276 277static inline int 278ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, 279 pte_t *ptep) 280{ 281 pte_t pte = *ptep; 282 if (!pte_young(pte)) 283 return 0; 284 update_pte(ptep, pte_mkold(pte)); 285 return 1; 286} 287 288static inline pte_t 289ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 290{ 291 pte_t pte = *ptep; 292 pte_clear(mm, addr, ptep); 293 return pte; 294} 295 296static inline void 297ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 298{ 299 pte_t pte = *ptep; 300 update_pte(ptep, pte_wrprotect(pte)); 301} 302 303/* to find an entry in a kernel page-table-directory */ 304#define pgd_offset_k(address) pgd_offset(&init_mm, address) 305 306/* to find an entry in a page-table-directory */ 307#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address)) 308 309#define pgd_index(address) ((address) >> PGDIR_SHIFT) 310 311/* Find an entry in the second-level page table.. */ 312#define pmd_offset(dir,address) ((pmd_t*)(dir)) 313 314/* Find an entry in the third-level page table.. */ 315#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 316#define pte_offset_kernel(dir,addr) \ 317 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr)) 318#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) 319#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr)) 320 321#define pte_unmap(pte) do { } while (0) 322#define pte_unmap_nested(pte) do { } while (0) 323 324 325/* 326 * Encode and decode a swap entry. 327 * 328 * Format of swap pte: 329 * bit 0 MBZ 330 * bit 1 page-file (must be zero) 331 * bits 2 - 3 page hw access mode (must be 11: _PAGE_INVALID) 332 * bits 4 - 5 ring protection (must be 01: _PAGE_USER) 333 * bits 6 - 10 swap type (5 bits -> 32 types) 334 * bits 11 - 31 swap offset / PAGE_SIZE (21 bits -> 8GB) 335 336 * Format of file pte: 337 * bit 0 MBZ 338 * bit 1 page-file (must be one: _PAGE_FILE) 339 * bits 2 - 3 page hw access mode (must be 11: _PAGE_INVALID) 340 * bits 4 - 5 ring protection (must be 01: _PAGE_USER) 341 * bits 6 - 31 file offset / PAGE_SIZE 342 */ 343 344#define __swp_type(entry) (((entry).val >> 6) & 0x1f) 345#define __swp_offset(entry) ((entry).val >> 11) 346#define __swp_entry(type,offs) \ 347 ((swp_entry_t) {((type) << 6) | ((offs) << 11) | _PAGE_INVALID}) 348#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 349#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 350 351#define PTE_FILE_MAX_BITS 28 352#define pte_to_pgoff(pte) (pte_val(pte) >> 4) 353#define pgoff_to_pte(off) \ 354 ((pte_t) { ((off) << 4) | _PAGE_INVALID | _PAGE_FILE }) 355 356#endif /* !defined (__ASSEMBLY__) */ 357 358 359#ifdef __ASSEMBLY__ 360 361/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), 362 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), 363 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) 364 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) 365 * 366 * Note: We require an additional temporary register which can be the same as 367 * the register that holds the address. 368 * 369 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) 370 * 371 */ 372#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT 373#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT 374 375#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ 376 _PGD_INDEX(tmp, adr); \ 377 addx4 mm, tmp, mm 378 379#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ 380 srli pmd, pmd, PAGE_SHIFT; \ 381 slli pmd, pmd, PAGE_SHIFT; \ 382 addx4 pmd, tmp, pmd 383 384#else 385 386extern void paging_init(void); 387 388#define kern_addr_valid(addr) (1) 389 390extern void update_mmu_cache(struct vm_area_struct * vma, 391 unsigned long address, pte_t pte); 392 393/* 394 * remap a physical page `pfn' of size `size' with page protection `prot' 395 * into virtual address `from' 396 */ 397 398#define io_remap_pfn_range(vma,from,pfn,size,prot) \ 399 remap_pfn_range(vma, from, pfn, size, prot) 400 401 402extern void pgtable_cache_init(void); 403 404typedef pte_t *pte_addr_t; 405 406#endif /* !defined (__ASSEMBLY__) */ 407 408#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 409#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 410#define __HAVE_ARCH_PTEP_SET_WRPROTECT 411#define __HAVE_ARCH_PTEP_MKDIRTY 412#define __HAVE_ARCH_PTE_SAME 413 414#include <asm-generic/pgtable.h> 415 416#endif /* _XTENSA_PGTABLE_H */