at v2.6.29-rc7 466 lines 15 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef DMAENGINE_H 22#define DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/kref.h> 27#include <linux/completion.h> 28#include <linux/rcupdate.h> 29#include <linux/dma-mapping.h> 30 31/** 32 * typedef dma_cookie_t - an opaque DMA cookie 33 * 34 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 35 */ 36typedef s32 dma_cookie_t; 37 38#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 39 40/** 41 * enum dma_status - DMA transaction status 42 * @DMA_SUCCESS: transaction completed successfully 43 * @DMA_IN_PROGRESS: transaction not yet processed 44 * @DMA_ERROR: transaction failed 45 */ 46enum dma_status { 47 DMA_SUCCESS, 48 DMA_IN_PROGRESS, 49 DMA_ERROR, 50}; 51 52/** 53 * enum dma_transaction_type - DMA transaction types/indexes 54 */ 55enum dma_transaction_type { 56 DMA_MEMCPY, 57 DMA_XOR, 58 DMA_PQ_XOR, 59 DMA_DUAL_XOR, 60 DMA_PQ_UPDATE, 61 DMA_ZERO_SUM, 62 DMA_PQ_ZERO_SUM, 63 DMA_MEMSET, 64 DMA_MEMCPY_CRC32C, 65 DMA_INTERRUPT, 66 DMA_PRIVATE, 67 DMA_SLAVE, 68}; 69 70/* last transaction type for creation of the capabilities mask */ 71#define DMA_TX_TYPE_END (DMA_SLAVE + 1) 72 73 74/** 75 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 76 * control completion, and communicate status. 77 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 78 * this transaction 79 * @DMA_CTRL_ACK - the descriptor cannot be reused until the client 80 * acknowledges receipt, i.e. has has a chance to establish any 81 * dependency chains 82 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 83 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 84 */ 85enum dma_ctrl_flags { 86 DMA_PREP_INTERRUPT = (1 << 0), 87 DMA_CTRL_ACK = (1 << 1), 88 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 89 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 90}; 91 92/** 93 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 94 * See linux/cpumask.h 95 */ 96typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 97 98/** 99 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 100 * @refcount: local_t used for open-coded "bigref" counting 101 * @memcpy_count: transaction counter 102 * @bytes_transferred: byte counter 103 */ 104 105struct dma_chan_percpu { 106 /* stats */ 107 unsigned long memcpy_count; 108 unsigned long bytes_transferred; 109}; 110 111/** 112 * struct dma_chan - devices supply DMA channels, clients use them 113 * @device: ptr to the dma device who supplies this channel, always !%NULL 114 * @cookie: last cookie value returned to client 115 * @chan_id: channel ID for sysfs 116 * @dev: class device for sysfs 117 * @refcount: kref, used in "bigref" slow-mode 118 * @slow_ref: indicates that the DMA channel is free 119 * @rcu: the DMA channel's RCU head 120 * @device_node: used to add this to the device chan list 121 * @local: per-cpu pointer to a struct dma_chan_percpu 122 * @client-count: how many clients are using this channel 123 * @table_count: number of appearances in the mem-to-mem allocation table 124 * @private: private data for certain client-channel associations 125 */ 126struct dma_chan { 127 struct dma_device *device; 128 dma_cookie_t cookie; 129 130 /* sysfs */ 131 int chan_id; 132 struct dma_chan_dev *dev; 133 134 struct list_head device_node; 135 struct dma_chan_percpu *local; 136 int client_count; 137 int table_count; 138 void *private; 139}; 140 141/** 142 * struct dma_chan_dev - relate sysfs device node to backing channel device 143 * @chan - driver channel device 144 * @device - sysfs device 145 * @dev_id - parent dma_device dev_id 146 * @idr_ref - reference count to gate release of dma_device dev_id 147 */ 148struct dma_chan_dev { 149 struct dma_chan *chan; 150 struct device device; 151 int dev_id; 152 atomic_t *idr_ref; 153}; 154 155static inline const char *dma_chan_name(struct dma_chan *chan) 156{ 157 return dev_name(&chan->dev->device); 158} 159 160void dma_chan_cleanup(struct kref *kref); 161 162/** 163 * typedef dma_filter_fn - callback filter for dma_request_channel 164 * @chan: channel to be reviewed 165 * @filter_param: opaque parameter passed through dma_request_channel 166 * 167 * When this optional parameter is specified in a call to dma_request_channel a 168 * suitable channel is passed to this routine for further dispositioning before 169 * being returned. Where 'suitable' indicates a non-busy channel that 170 * satisfies the given capability mask. It returns 'true' to indicate that the 171 * channel is suitable. 172 */ 173typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 174 175typedef void (*dma_async_tx_callback)(void *dma_async_param); 176/** 177 * struct dma_async_tx_descriptor - async transaction descriptor 178 * ---dma generic offload fields--- 179 * @cookie: tracking cookie for this transaction, set to -EBUSY if 180 * this tx is sitting on a dependency list 181 * @flags: flags to augment operation preparation, control completion, and 182 * communicate status 183 * @phys: physical address of the descriptor 184 * @tx_list: driver common field for operations that require multiple 185 * descriptors 186 * @chan: target channel for this operation 187 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 188 * @callback: routine to call after this operation is complete 189 * @callback_param: general parameter to pass to the callback routine 190 * ---async_tx api specific fields--- 191 * @next: at completion submit this descriptor 192 * @parent: pointer to the next level up in the dependency chain 193 * @lock: protect the parent and next pointers 194 */ 195struct dma_async_tx_descriptor { 196 dma_cookie_t cookie; 197 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 198 dma_addr_t phys; 199 struct list_head tx_list; 200 struct dma_chan *chan; 201 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 202 dma_async_tx_callback callback; 203 void *callback_param; 204 struct dma_async_tx_descriptor *next; 205 struct dma_async_tx_descriptor *parent; 206 spinlock_t lock; 207}; 208 209/** 210 * struct dma_device - info on the entity supplying DMA services 211 * @chancnt: how many DMA channels are supported 212 * @channels: the list of struct dma_chan 213 * @global_node: list_head for global dma_device_list 214 * @cap_mask: one or more dma_capability flags 215 * @max_xor: maximum number of xor sources, 0 if no capability 216 * @refcount: reference count 217 * @done: IO completion struct 218 * @dev_id: unique device ID 219 * @dev: struct device reference for dma mapping api 220 * @device_alloc_chan_resources: allocate resources and return the 221 * number of allocated descriptors 222 * @device_free_chan_resources: release DMA channel's resources 223 * @device_prep_dma_memcpy: prepares a memcpy operation 224 * @device_prep_dma_xor: prepares a xor operation 225 * @device_prep_dma_zero_sum: prepares a zero_sum operation 226 * @device_prep_dma_memset: prepares a memset operation 227 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 228 * @device_prep_slave_sg: prepares a slave dma operation 229 * @device_terminate_all: terminate all pending operations 230 * @device_issue_pending: push pending transactions to hardware 231 */ 232struct dma_device { 233 234 unsigned int chancnt; 235 struct list_head channels; 236 struct list_head global_node; 237 dma_cap_mask_t cap_mask; 238 int max_xor; 239 240 int dev_id; 241 struct device *dev; 242 243 int (*device_alloc_chan_resources)(struct dma_chan *chan); 244 void (*device_free_chan_resources)(struct dma_chan *chan); 245 246 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 247 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 248 size_t len, unsigned long flags); 249 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 250 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 251 unsigned int src_cnt, size_t len, unsigned long flags); 252 struct dma_async_tx_descriptor *(*device_prep_dma_zero_sum)( 253 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 254 size_t len, u32 *result, unsigned long flags); 255 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 256 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 257 unsigned long flags); 258 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 259 struct dma_chan *chan, unsigned long flags); 260 261 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 262 struct dma_chan *chan, struct scatterlist *sgl, 263 unsigned int sg_len, enum dma_data_direction direction, 264 unsigned long flags); 265 void (*device_terminate_all)(struct dma_chan *chan); 266 267 enum dma_status (*device_is_tx_complete)(struct dma_chan *chan, 268 dma_cookie_t cookie, dma_cookie_t *last, 269 dma_cookie_t *used); 270 void (*device_issue_pending)(struct dma_chan *chan); 271}; 272 273/* --- public DMA engine API --- */ 274 275#ifdef CONFIG_DMA_ENGINE 276void dmaengine_get(void); 277void dmaengine_put(void); 278#else 279static inline void dmaengine_get(void) 280{ 281} 282static inline void dmaengine_put(void) 283{ 284} 285#endif 286 287#ifdef CONFIG_NET_DMA 288#define net_dmaengine_get() dmaengine_get() 289#define net_dmaengine_put() dmaengine_put() 290#else 291static inline void net_dmaengine_get(void) 292{ 293} 294static inline void net_dmaengine_put(void) 295{ 296} 297#endif 298 299dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 300 void *dest, void *src, size_t len); 301dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 302 struct page *page, unsigned int offset, void *kdata, size_t len); 303dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 304 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 305 unsigned int src_off, size_t len); 306void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 307 struct dma_chan *chan); 308 309static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 310{ 311 tx->flags |= DMA_CTRL_ACK; 312} 313 314static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 315{ 316 tx->flags &= ~DMA_CTRL_ACK; 317} 318 319static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 320{ 321 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 322} 323 324#define first_dma_cap(mask) __first_dma_cap(&(mask)) 325static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 326{ 327 return min_t(int, DMA_TX_TYPE_END, 328 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 329} 330 331#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 332static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 333{ 334 return min_t(int, DMA_TX_TYPE_END, 335 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 336} 337 338#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 339static inline void 340__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 341{ 342 set_bit(tx_type, dstp->bits); 343} 344 345#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 346static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 347{ 348 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 349} 350 351#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 352static inline int 353__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 354{ 355 return test_bit(tx_type, srcp->bits); 356} 357 358#define for_each_dma_cap_mask(cap, mask) \ 359 for ((cap) = first_dma_cap(mask); \ 360 (cap) < DMA_TX_TYPE_END; \ 361 (cap) = next_dma_cap((cap), (mask))) 362 363/** 364 * dma_async_issue_pending - flush pending transactions to HW 365 * @chan: target DMA channel 366 * 367 * This allows drivers to push copies to HW in batches, 368 * reducing MMIO writes where possible. 369 */ 370static inline void dma_async_issue_pending(struct dma_chan *chan) 371{ 372 chan->device->device_issue_pending(chan); 373} 374 375#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 376 377/** 378 * dma_async_is_tx_complete - poll for transaction completion 379 * @chan: DMA channel 380 * @cookie: transaction identifier to check status of 381 * @last: returns last completed cookie, can be NULL 382 * @used: returns last issued cookie, can be NULL 383 * 384 * If @last and @used are passed in, upon return they reflect the driver 385 * internal state and can be used with dma_async_is_complete() to check 386 * the status of multiple cookies without re-checking hardware state. 387 */ 388static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 389 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 390{ 391 return chan->device->device_is_tx_complete(chan, cookie, last, used); 392} 393 394#define dma_async_memcpy_complete(chan, cookie, last, used)\ 395 dma_async_is_tx_complete(chan, cookie, last, used) 396 397/** 398 * dma_async_is_complete - test a cookie against chan state 399 * @cookie: transaction identifier to test status of 400 * @last_complete: last know completed transaction 401 * @last_used: last cookie value handed out 402 * 403 * dma_async_is_complete() is used in dma_async_memcpy_complete() 404 * the test logic is separated for lightweight testing of multiple cookies 405 */ 406static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 407 dma_cookie_t last_complete, dma_cookie_t last_used) 408{ 409 if (last_complete <= last_used) { 410 if ((cookie <= last_complete) || (cookie > last_used)) 411 return DMA_SUCCESS; 412 } else { 413 if ((cookie <= last_complete) && (cookie > last_used)) 414 return DMA_SUCCESS; 415 } 416 return DMA_IN_PROGRESS; 417} 418 419enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 420#ifdef CONFIG_DMA_ENGINE 421enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 422void dma_issue_pending_all(void); 423#else 424static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 425{ 426 return DMA_SUCCESS; 427} 428static inline void dma_issue_pending_all(void) 429{ 430 do { } while (0); 431} 432#endif 433 434/* --- DMA device --- */ 435 436int dma_async_device_register(struct dma_device *device); 437void dma_async_device_unregister(struct dma_device *device); 438void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 439struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 440#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 441struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 442void dma_release_channel(struct dma_chan *chan); 443 444/* --- Helper iov-locking functions --- */ 445 446struct dma_page_list { 447 char __user *base_address; 448 int nr_pages; 449 struct page **pages; 450}; 451 452struct dma_pinned_list { 453 int nr_iovecs; 454 struct dma_page_list page_list[0]; 455}; 456 457struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 458void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 459 460dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 461 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 462dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 463 struct dma_pinned_list *pinned_list, struct page *page, 464 unsigned int offset, size_t len); 465 466#endif /* DMAENGINE_H */