at v2.6.29-rc2 5250 lines 129 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/ethtool.h> 94#include <linux/notifier.h> 95#include <linux/skbuff.h> 96#include <net/net_namespace.h> 97#include <net/sock.h> 98#include <linux/rtnetlink.h> 99#include <linux/proc_fs.h> 100#include <linux/seq_file.h> 101#include <linux/stat.h> 102#include <linux/if_bridge.h> 103#include <linux/if_macvlan.h> 104#include <net/dst.h> 105#include <net/pkt_sched.h> 106#include <net/checksum.h> 107#include <linux/highmem.h> 108#include <linux/init.h> 109#include <linux/kmod.h> 110#include <linux/module.h> 111#include <linux/netpoll.h> 112#include <linux/rcupdate.h> 113#include <linux/delay.h> 114#include <net/wext.h> 115#include <net/iw_handler.h> 116#include <asm/current.h> 117#include <linux/audit.h> 118#include <linux/dmaengine.h> 119#include <linux/err.h> 120#include <linux/ctype.h> 121#include <linux/if_arp.h> 122#include <linux/if_vlan.h> 123#include <linux/ip.h> 124#include <net/ip.h> 125#include <linux/ipv6.h> 126#include <linux/in.h> 127#include <linux/jhash.h> 128#include <linux/random.h> 129 130#include "net-sysfs.h" 131 132/* Instead of increasing this, you should create a hash table. */ 133#define MAX_GRO_SKBS 8 134 135/* This should be increased if a protocol with a bigger head is added. */ 136#define GRO_MAX_HEAD (MAX_HEADER + 128) 137 138/* 139 * The list of packet types we will receive (as opposed to discard) 140 * and the routines to invoke. 141 * 142 * Why 16. Because with 16 the only overlap we get on a hash of the 143 * low nibble of the protocol value is RARP/SNAP/X.25. 144 * 145 * NOTE: That is no longer true with the addition of VLAN tags. Not 146 * sure which should go first, but I bet it won't make much 147 * difference if we are running VLANs. The good news is that 148 * this protocol won't be in the list unless compiled in, so 149 * the average user (w/out VLANs) will not be adversely affected. 150 * --BLG 151 * 152 * 0800 IP 153 * 8100 802.1Q VLAN 154 * 0001 802.3 155 * 0002 AX.25 156 * 0004 802.2 157 * 8035 RARP 158 * 0005 SNAP 159 * 0805 X.25 160 * 0806 ARP 161 * 8137 IPX 162 * 0009 Localtalk 163 * 86DD IPv6 164 */ 165 166#define PTYPE_HASH_SIZE (16) 167#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 168 169static DEFINE_SPINLOCK(ptype_lock); 170static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 171static struct list_head ptype_all __read_mostly; /* Taps */ 172 173/* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading. 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192DEFINE_RWLOCK(dev_base_lock); 193 194EXPORT_SYMBOL(dev_base_lock); 195 196#define NETDEV_HASHBITS 8 197#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200{ 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203} 204 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206{ 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208} 209 210/* Device list insertion */ 211static int list_netdevice(struct net_device *dev) 212{ 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223} 224 225/* Device list removal */ 226static void unlist_netdevice(struct net_device *dev) 227{ 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236} 237 238/* 239 * Our notifier list 240 */ 241 242static RAW_NOTIFIER_HEAD(netdev_chain); 243 244/* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 251#ifdef CONFIG_LOCKDEP 252/* 253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 254 * according to dev->type 255 */ 256static const unsigned short netdev_lock_type[] = 257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE}; 272 273static const char *netdev_lock_name[] = 274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"}; 289 290static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292 293static inline unsigned short netdev_lock_pos(unsigned short dev_type) 294{ 295 int i; 296 297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 298 if (netdev_lock_type[i] == dev_type) 299 return i; 300 /* the last key is used by default */ 301 return ARRAY_SIZE(netdev_lock_type) - 1; 302} 303 304static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 305 unsigned short dev_type) 306{ 307 int i; 308 309 i = netdev_lock_pos(dev_type); 310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 311 netdev_lock_name[i]); 312} 313 314static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 315{ 316 int i; 317 318 i = netdev_lock_pos(dev->type); 319 lockdep_set_class_and_name(&dev->addr_list_lock, 320 &netdev_addr_lock_key[i], 321 netdev_lock_name[i]); 322} 323#else 324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326{ 327} 328static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329{ 330} 331#endif 332 333/******************************************************************************* 334 335 Protocol management and registration routines 336 337*******************************************************************************/ 338 339/* 340 * Add a protocol ID to the list. Now that the input handler is 341 * smarter we can dispense with all the messy stuff that used to be 342 * here. 343 * 344 * BEWARE!!! Protocol handlers, mangling input packets, 345 * MUST BE last in hash buckets and checking protocol handlers 346 * MUST start from promiscuous ptype_all chain in net_bh. 347 * It is true now, do not change it. 348 * Explanation follows: if protocol handler, mangling packet, will 349 * be the first on list, it is not able to sense, that packet 350 * is cloned and should be copied-on-write, so that it will 351 * change it and subsequent readers will get broken packet. 352 * --ANK (980803) 353 */ 354 355/** 356 * dev_add_pack - add packet handler 357 * @pt: packet type declaration 358 * 359 * Add a protocol handler to the networking stack. The passed &packet_type 360 * is linked into kernel lists and may not be freed until it has been 361 * removed from the kernel lists. 362 * 363 * This call does not sleep therefore it can not 364 * guarantee all CPU's that are in middle of receiving packets 365 * will see the new packet type (until the next received packet). 366 */ 367 368void dev_add_pack(struct packet_type *pt) 369{ 370 int hash; 371 372 spin_lock_bh(&ptype_lock); 373 if (pt->type == htons(ETH_P_ALL)) 374 list_add_rcu(&pt->list, &ptype_all); 375 else { 376 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 377 list_add_rcu(&pt->list, &ptype_base[hash]); 378 } 379 spin_unlock_bh(&ptype_lock); 380} 381 382/** 383 * __dev_remove_pack - remove packet handler 384 * @pt: packet type declaration 385 * 386 * Remove a protocol handler that was previously added to the kernel 387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 388 * from the kernel lists and can be freed or reused once this function 389 * returns. 390 * 391 * The packet type might still be in use by receivers 392 * and must not be freed until after all the CPU's have gone 393 * through a quiescent state. 394 */ 395void __dev_remove_pack(struct packet_type *pt) 396{ 397 struct list_head *head; 398 struct packet_type *pt1; 399 400 spin_lock_bh(&ptype_lock); 401 402 if (pt->type == htons(ETH_P_ALL)) 403 head = &ptype_all; 404 else 405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 415out: 416 spin_unlock_bh(&ptype_lock); 417} 418/** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430void dev_remove_pack(struct packet_type *pt) 431{ 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435} 436 437/****************************************************************************** 438 439 Device Boot-time Settings Routines 440 441*******************************************************************************/ 442 443/* Boot time configuration table */ 444static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 445 446/** 447 * netdev_boot_setup_add - add new setup entry 448 * @name: name of the device 449 * @map: configured settings for the device 450 * 451 * Adds new setup entry to the dev_boot_setup list. The function 452 * returns 0 on error and 1 on success. This is a generic routine to 453 * all netdevices. 454 */ 455static int netdev_boot_setup_add(char *name, struct ifmap *map) 456{ 457 struct netdev_boot_setup *s; 458 int i; 459 460 s = dev_boot_setup; 461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 463 memset(s[i].name, 0, sizeof(s[i].name)); 464 strlcpy(s[i].name, name, IFNAMSIZ); 465 memcpy(&s[i].map, map, sizeof(s[i].map)); 466 break; 467 } 468 } 469 470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 471} 472 473/** 474 * netdev_boot_setup_check - check boot time settings 475 * @dev: the netdevice 476 * 477 * Check boot time settings for the device. 478 * The found settings are set for the device to be used 479 * later in the device probing. 480 * Returns 0 if no settings found, 1 if they are. 481 */ 482int netdev_boot_setup_check(struct net_device *dev) 483{ 484 struct netdev_boot_setup *s = dev_boot_setup; 485 int i; 486 487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 489 !strcmp(dev->name, s[i].name)) { 490 dev->irq = s[i].map.irq; 491 dev->base_addr = s[i].map.base_addr; 492 dev->mem_start = s[i].map.mem_start; 493 dev->mem_end = s[i].map.mem_end; 494 return 1; 495 } 496 } 497 return 0; 498} 499 500 501/** 502 * netdev_boot_base - get address from boot time settings 503 * @prefix: prefix for network device 504 * @unit: id for network device 505 * 506 * Check boot time settings for the base address of device. 507 * The found settings are set for the device to be used 508 * later in the device probing. 509 * Returns 0 if no settings found. 510 */ 511unsigned long netdev_boot_base(const char *prefix, int unit) 512{ 513 const struct netdev_boot_setup *s = dev_boot_setup; 514 char name[IFNAMSIZ]; 515 int i; 516 517 sprintf(name, "%s%d", prefix, unit); 518 519 /* 520 * If device already registered then return base of 1 521 * to indicate not to probe for this interface 522 */ 523 if (__dev_get_by_name(&init_net, name)) 524 return 1; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 527 if (!strcmp(name, s[i].name)) 528 return s[i].map.base_addr; 529 return 0; 530} 531 532/* 533 * Saves at boot time configured settings for any netdevice. 534 */ 535int __init netdev_boot_setup(char *str) 536{ 537 int ints[5]; 538 struct ifmap map; 539 540 str = get_options(str, ARRAY_SIZE(ints), ints); 541 if (!str || !*str) 542 return 0; 543 544 /* Save settings */ 545 memset(&map, 0, sizeof(map)); 546 if (ints[0] > 0) 547 map.irq = ints[1]; 548 if (ints[0] > 1) 549 map.base_addr = ints[2]; 550 if (ints[0] > 2) 551 map.mem_start = ints[3]; 552 if (ints[0] > 3) 553 map.mem_end = ints[4]; 554 555 /* Add new entry to the list */ 556 return netdev_boot_setup_add(str, &map); 557} 558 559__setup("netdev=", netdev_boot_setup); 560 561/******************************************************************************* 562 563 Device Interface Subroutines 564 565*******************************************************************************/ 566 567/** 568 * __dev_get_by_name - find a device by its name 569 * @net: the applicable net namespace 570 * @name: name to find 571 * 572 * Find an interface by name. Must be called under RTNL semaphore 573 * or @dev_base_lock. If the name is found a pointer to the device 574 * is returned. If the name is not found then %NULL is returned. The 575 * reference counters are not incremented so the caller must be 576 * careful with locks. 577 */ 578 579struct net_device *__dev_get_by_name(struct net *net, const char *name) 580{ 581 struct hlist_node *p; 582 583 hlist_for_each(p, dev_name_hash(net, name)) { 584 struct net_device *dev 585 = hlist_entry(p, struct net_device, name_hlist); 586 if (!strncmp(dev->name, name, IFNAMSIZ)) 587 return dev; 588 } 589 return NULL; 590} 591 592/** 593 * dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. This can be called from any 598 * context and does its own locking. The returned handle has 599 * the usage count incremented and the caller must use dev_put() to 600 * release it when it is no longer needed. %NULL is returned if no 601 * matching device is found. 602 */ 603 604struct net_device *dev_get_by_name(struct net *net, const char *name) 605{ 606 struct net_device *dev; 607 608 read_lock(&dev_base_lock); 609 dev = __dev_get_by_name(net, name); 610 if (dev) 611 dev_hold(dev); 612 read_unlock(&dev_base_lock); 613 return dev; 614} 615 616/** 617 * __dev_get_by_index - find a device by its ifindex 618 * @net: the applicable net namespace 619 * @ifindex: index of device 620 * 621 * Search for an interface by index. Returns %NULL if the device 622 * is not found or a pointer to the device. The device has not 623 * had its reference counter increased so the caller must be careful 624 * about locking. The caller must hold either the RTNL semaphore 625 * or @dev_base_lock. 626 */ 627 628struct net_device *__dev_get_by_index(struct net *net, int ifindex) 629{ 630 struct hlist_node *p; 631 632 hlist_for_each(p, dev_index_hash(net, ifindex)) { 633 struct net_device *dev 634 = hlist_entry(p, struct net_device, index_hlist); 635 if (dev->ifindex == ifindex) 636 return dev; 637 } 638 return NULL; 639} 640 641 642/** 643 * dev_get_by_index - find a device by its ifindex 644 * @net: the applicable net namespace 645 * @ifindex: index of device 646 * 647 * Search for an interface by index. Returns NULL if the device 648 * is not found or a pointer to the device. The device returned has 649 * had a reference added and the pointer is safe until the user calls 650 * dev_put to indicate they have finished with it. 651 */ 652 653struct net_device *dev_get_by_index(struct net *net, int ifindex) 654{ 655 struct net_device *dev; 656 657 read_lock(&dev_base_lock); 658 dev = __dev_get_by_index(net, ifindex); 659 if (dev) 660 dev_hold(dev); 661 read_unlock(&dev_base_lock); 662 return dev; 663} 664 665/** 666 * dev_getbyhwaddr - find a device by its hardware address 667 * @net: the applicable net namespace 668 * @type: media type of device 669 * @ha: hardware address 670 * 671 * Search for an interface by MAC address. Returns NULL if the device 672 * is not found or a pointer to the device. The caller must hold the 673 * rtnl semaphore. The returned device has not had its ref count increased 674 * and the caller must therefore be careful about locking 675 * 676 * BUGS: 677 * If the API was consistent this would be __dev_get_by_hwaddr 678 */ 679 680struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 681{ 682 struct net_device *dev; 683 684 ASSERT_RTNL(); 685 686 for_each_netdev(net, dev) 687 if (dev->type == type && 688 !memcmp(dev->dev_addr, ha, dev->addr_len)) 689 return dev; 690 691 return NULL; 692} 693 694EXPORT_SYMBOL(dev_getbyhwaddr); 695 696struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 697{ 698 struct net_device *dev; 699 700 ASSERT_RTNL(); 701 for_each_netdev(net, dev) 702 if (dev->type == type) 703 return dev; 704 705 return NULL; 706} 707 708EXPORT_SYMBOL(__dev_getfirstbyhwtype); 709 710struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 711{ 712 struct net_device *dev; 713 714 rtnl_lock(); 715 dev = __dev_getfirstbyhwtype(net, type); 716 if (dev) 717 dev_hold(dev); 718 rtnl_unlock(); 719 return dev; 720} 721 722EXPORT_SYMBOL(dev_getfirstbyhwtype); 723 724/** 725 * dev_get_by_flags - find any device with given flags 726 * @net: the applicable net namespace 727 * @if_flags: IFF_* values 728 * @mask: bitmask of bits in if_flags to check 729 * 730 * Search for any interface with the given flags. Returns NULL if a device 731 * is not found or a pointer to the device. The device returned has 732 * had a reference added and the pointer is safe until the user calls 733 * dev_put to indicate they have finished with it. 734 */ 735 736struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 737{ 738 struct net_device *dev, *ret; 739 740 ret = NULL; 741 read_lock(&dev_base_lock); 742 for_each_netdev(net, dev) { 743 if (((dev->flags ^ if_flags) & mask) == 0) { 744 dev_hold(dev); 745 ret = dev; 746 break; 747 } 748 } 749 read_unlock(&dev_base_lock); 750 return ret; 751} 752 753/** 754 * dev_valid_name - check if name is okay for network device 755 * @name: name string 756 * 757 * Network device names need to be valid file names to 758 * to allow sysfs to work. We also disallow any kind of 759 * whitespace. 760 */ 761int dev_valid_name(const char *name) 762{ 763 if (*name == '\0') 764 return 0; 765 if (strlen(name) >= IFNAMSIZ) 766 return 0; 767 if (!strcmp(name, ".") || !strcmp(name, "..")) 768 return 0; 769 770 while (*name) { 771 if (*name == '/' || isspace(*name)) 772 return 0; 773 name++; 774 } 775 return 1; 776} 777 778/** 779 * __dev_alloc_name - allocate a name for a device 780 * @net: network namespace to allocate the device name in 781 * @name: name format string 782 * @buf: scratch buffer and result name string 783 * 784 * Passed a format string - eg "lt%d" it will try and find a suitable 785 * id. It scans list of devices to build up a free map, then chooses 786 * the first empty slot. The caller must hold the dev_base or rtnl lock 787 * while allocating the name and adding the device in order to avoid 788 * duplicates. 789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 790 * Returns the number of the unit assigned or a negative errno code. 791 */ 792 793static int __dev_alloc_name(struct net *net, const char *name, char *buf) 794{ 795 int i = 0; 796 const char *p; 797 const int max_netdevices = 8*PAGE_SIZE; 798 unsigned long *inuse; 799 struct net_device *d; 800 801 p = strnchr(name, IFNAMSIZ-1, '%'); 802 if (p) { 803 /* 804 * Verify the string as this thing may have come from 805 * the user. There must be either one "%d" and no other "%" 806 * characters. 807 */ 808 if (p[1] != 'd' || strchr(p + 2, '%')) 809 return -EINVAL; 810 811 /* Use one page as a bit array of possible slots */ 812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 813 if (!inuse) 814 return -ENOMEM; 815 816 for_each_netdev(net, d) { 817 if (!sscanf(d->name, name, &i)) 818 continue; 819 if (i < 0 || i >= max_netdevices) 820 continue; 821 822 /* avoid cases where sscanf is not exact inverse of printf */ 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!strncmp(buf, d->name, IFNAMSIZ)) 825 set_bit(i, inuse); 826 } 827 828 i = find_first_zero_bit(inuse, max_netdevices); 829 free_page((unsigned long) inuse); 830 } 831 832 snprintf(buf, IFNAMSIZ, name, i); 833 if (!__dev_get_by_name(net, buf)) 834 return i; 835 836 /* It is possible to run out of possible slots 837 * when the name is long and there isn't enough space left 838 * for the digits, or if all bits are used. 839 */ 840 return -ENFILE; 841} 842 843/** 844 * dev_alloc_name - allocate a name for a device 845 * @dev: device 846 * @name: name format string 847 * 848 * Passed a format string - eg "lt%d" it will try and find a suitable 849 * id. It scans list of devices to build up a free map, then chooses 850 * the first empty slot. The caller must hold the dev_base or rtnl lock 851 * while allocating the name and adding the device in order to avoid 852 * duplicates. 853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 854 * Returns the number of the unit assigned or a negative errno code. 855 */ 856 857int dev_alloc_name(struct net_device *dev, const char *name) 858{ 859 char buf[IFNAMSIZ]; 860 struct net *net; 861 int ret; 862 863 BUG_ON(!dev_net(dev)); 864 net = dev_net(dev); 865 ret = __dev_alloc_name(net, name, buf); 866 if (ret >= 0) 867 strlcpy(dev->name, buf, IFNAMSIZ); 868 return ret; 869} 870 871 872/** 873 * dev_change_name - change name of a device 874 * @dev: device 875 * @newname: name (or format string) must be at least IFNAMSIZ 876 * 877 * Change name of a device, can pass format strings "eth%d". 878 * for wildcarding. 879 */ 880int dev_change_name(struct net_device *dev, const char *newname) 881{ 882 char oldname[IFNAMSIZ]; 883 int err = 0; 884 int ret; 885 struct net *net; 886 887 ASSERT_RTNL(); 888 BUG_ON(!dev_net(dev)); 889 890 net = dev_net(dev); 891 if (dev->flags & IFF_UP) 892 return -EBUSY; 893 894 if (!dev_valid_name(newname)) 895 return -EINVAL; 896 897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 898 return 0; 899 900 memcpy(oldname, dev->name, IFNAMSIZ); 901 902 if (strchr(newname, '%')) { 903 err = dev_alloc_name(dev, newname); 904 if (err < 0) 905 return err; 906 } 907 else if (__dev_get_by_name(net, newname)) 908 return -EEXIST; 909 else 910 strlcpy(dev->name, newname, IFNAMSIZ); 911 912rollback: 913 /* For now only devices in the initial network namespace 914 * are in sysfs. 915 */ 916 if (net == &init_net) { 917 ret = device_rename(&dev->dev, dev->name); 918 if (ret) { 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 return ret; 921 } 922 } 923 924 write_lock_bh(&dev_base_lock); 925 hlist_del(&dev->name_hlist); 926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 927 write_unlock_bh(&dev_base_lock); 928 929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 930 ret = notifier_to_errno(ret); 931 932 if (ret) { 933 if (err) { 934 printk(KERN_ERR 935 "%s: name change rollback failed: %d.\n", 936 dev->name, ret); 937 } else { 938 err = ret; 939 memcpy(dev->name, oldname, IFNAMSIZ); 940 goto rollback; 941 } 942 } 943 944 return err; 945} 946 947/** 948 * dev_set_alias - change ifalias of a device 949 * @dev: device 950 * @alias: name up to IFALIASZ 951 * @len: limit of bytes to copy from info 952 * 953 * Set ifalias for a device, 954 */ 955int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 956{ 957 ASSERT_RTNL(); 958 959 if (len >= IFALIASZ) 960 return -EINVAL; 961 962 if (!len) { 963 if (dev->ifalias) { 964 kfree(dev->ifalias); 965 dev->ifalias = NULL; 966 } 967 return 0; 968 } 969 970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 971 if (!dev->ifalias) 972 return -ENOMEM; 973 974 strlcpy(dev->ifalias, alias, len+1); 975 return len; 976} 977 978 979/** 980 * netdev_features_change - device changes features 981 * @dev: device to cause notification 982 * 983 * Called to indicate a device has changed features. 984 */ 985void netdev_features_change(struct net_device *dev) 986{ 987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 988} 989EXPORT_SYMBOL(netdev_features_change); 990 991/** 992 * netdev_state_change - device changes state 993 * @dev: device to cause notification 994 * 995 * Called to indicate a device has changed state. This function calls 996 * the notifier chains for netdev_chain and sends a NEWLINK message 997 * to the routing socket. 998 */ 999void netdev_state_change(struct net_device *dev) 1000{ 1001 if (dev->flags & IFF_UP) { 1002 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1004 } 1005} 1006 1007void netdev_bonding_change(struct net_device *dev) 1008{ 1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1010} 1011EXPORT_SYMBOL(netdev_bonding_change); 1012 1013/** 1014 * dev_load - load a network module 1015 * @net: the applicable net namespace 1016 * @name: name of interface 1017 * 1018 * If a network interface is not present and the process has suitable 1019 * privileges this function loads the module. If module loading is not 1020 * available in this kernel then it becomes a nop. 1021 */ 1022 1023void dev_load(struct net *net, const char *name) 1024{ 1025 struct net_device *dev; 1026 1027 read_lock(&dev_base_lock); 1028 dev = __dev_get_by_name(net, name); 1029 read_unlock(&dev_base_lock); 1030 1031 if (!dev && capable(CAP_SYS_MODULE)) 1032 request_module("%s", name); 1033} 1034 1035/** 1036 * dev_open - prepare an interface for use. 1037 * @dev: device to open 1038 * 1039 * Takes a device from down to up state. The device's private open 1040 * function is invoked and then the multicast lists are loaded. Finally 1041 * the device is moved into the up state and a %NETDEV_UP message is 1042 * sent to the netdev notifier chain. 1043 * 1044 * Calling this function on an active interface is a nop. On a failure 1045 * a negative errno code is returned. 1046 */ 1047int dev_open(struct net_device *dev) 1048{ 1049 const struct net_device_ops *ops = dev->netdev_ops; 1050 int ret = 0; 1051 1052 ASSERT_RTNL(); 1053 1054 /* 1055 * Is it already up? 1056 */ 1057 1058 if (dev->flags & IFF_UP) 1059 return 0; 1060 1061 /* 1062 * Is it even present? 1063 */ 1064 if (!netif_device_present(dev)) 1065 return -ENODEV; 1066 1067 /* 1068 * Call device private open method 1069 */ 1070 set_bit(__LINK_STATE_START, &dev->state); 1071 1072 if (ops->ndo_validate_addr) 1073 ret = ops->ndo_validate_addr(dev); 1074 1075 if (!ret && ops->ndo_open) 1076 ret = ops->ndo_open(dev); 1077 1078 /* 1079 * If it went open OK then: 1080 */ 1081 1082 if (ret) 1083 clear_bit(__LINK_STATE_START, &dev->state); 1084 else { 1085 /* 1086 * Set the flags. 1087 */ 1088 dev->flags |= IFF_UP; 1089 1090 /* 1091 * Enable NET_DMA 1092 */ 1093 dmaengine_get(); 1094 1095 /* 1096 * Initialize multicasting status 1097 */ 1098 dev_set_rx_mode(dev); 1099 1100 /* 1101 * Wakeup transmit queue engine 1102 */ 1103 dev_activate(dev); 1104 1105 /* 1106 * ... and announce new interface. 1107 */ 1108 call_netdevice_notifiers(NETDEV_UP, dev); 1109 } 1110 1111 return ret; 1112} 1113 1114/** 1115 * dev_close - shutdown an interface. 1116 * @dev: device to shutdown 1117 * 1118 * This function moves an active device into down state. A 1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1121 * chain. 1122 */ 1123int dev_close(struct net_device *dev) 1124{ 1125 const struct net_device_ops *ops = dev->netdev_ops; 1126 ASSERT_RTNL(); 1127 1128 might_sleep(); 1129 1130 if (!(dev->flags & IFF_UP)) 1131 return 0; 1132 1133 /* 1134 * Tell people we are going down, so that they can 1135 * prepare to death, when device is still operating. 1136 */ 1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1138 1139 clear_bit(__LINK_STATE_START, &dev->state); 1140 1141 /* Synchronize to scheduled poll. We cannot touch poll list, 1142 * it can be even on different cpu. So just clear netif_running(). 1143 * 1144 * dev->stop() will invoke napi_disable() on all of it's 1145 * napi_struct instances on this device. 1146 */ 1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1148 1149 dev_deactivate(dev); 1150 1151 /* 1152 * Call the device specific close. This cannot fail. 1153 * Only if device is UP 1154 * 1155 * We allow it to be called even after a DETACH hot-plug 1156 * event. 1157 */ 1158 if (ops->ndo_stop) 1159 ops->ndo_stop(dev); 1160 1161 /* 1162 * Device is now down. 1163 */ 1164 1165 dev->flags &= ~IFF_UP; 1166 1167 /* 1168 * Tell people we are down 1169 */ 1170 call_netdevice_notifiers(NETDEV_DOWN, dev); 1171 1172 /* 1173 * Shutdown NET_DMA 1174 */ 1175 dmaengine_put(); 1176 1177 return 0; 1178} 1179 1180 1181/** 1182 * dev_disable_lro - disable Large Receive Offload on a device 1183 * @dev: device 1184 * 1185 * Disable Large Receive Offload (LRO) on a net device. Must be 1186 * called under RTNL. This is needed if received packets may be 1187 * forwarded to another interface. 1188 */ 1189void dev_disable_lro(struct net_device *dev) 1190{ 1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1192 dev->ethtool_ops->set_flags) { 1193 u32 flags = dev->ethtool_ops->get_flags(dev); 1194 if (flags & ETH_FLAG_LRO) { 1195 flags &= ~ETH_FLAG_LRO; 1196 dev->ethtool_ops->set_flags(dev, flags); 1197 } 1198 } 1199 WARN_ON(dev->features & NETIF_F_LRO); 1200} 1201EXPORT_SYMBOL(dev_disable_lro); 1202 1203 1204static int dev_boot_phase = 1; 1205 1206/* 1207 * Device change register/unregister. These are not inline or static 1208 * as we export them to the world. 1209 */ 1210 1211/** 1212 * register_netdevice_notifier - register a network notifier block 1213 * @nb: notifier 1214 * 1215 * Register a notifier to be called when network device events occur. 1216 * The notifier passed is linked into the kernel structures and must 1217 * not be reused until it has been unregistered. A negative errno code 1218 * is returned on a failure. 1219 * 1220 * When registered all registration and up events are replayed 1221 * to the new notifier to allow device to have a race free 1222 * view of the network device list. 1223 */ 1224 1225int register_netdevice_notifier(struct notifier_block *nb) 1226{ 1227 struct net_device *dev; 1228 struct net_device *last; 1229 struct net *net; 1230 int err; 1231 1232 rtnl_lock(); 1233 err = raw_notifier_chain_register(&netdev_chain, nb); 1234 if (err) 1235 goto unlock; 1236 if (dev_boot_phase) 1237 goto unlock; 1238 for_each_net(net) { 1239 for_each_netdev(net, dev) { 1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1241 err = notifier_to_errno(err); 1242 if (err) 1243 goto rollback; 1244 1245 if (!(dev->flags & IFF_UP)) 1246 continue; 1247 1248 nb->notifier_call(nb, NETDEV_UP, dev); 1249 } 1250 } 1251 1252unlock: 1253 rtnl_unlock(); 1254 return err; 1255 1256rollback: 1257 last = dev; 1258 for_each_net(net) { 1259 for_each_netdev(net, dev) { 1260 if (dev == last) 1261 break; 1262 1263 if (dev->flags & IFF_UP) { 1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1265 nb->notifier_call(nb, NETDEV_DOWN, dev); 1266 } 1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1268 } 1269 } 1270 1271 raw_notifier_chain_unregister(&netdev_chain, nb); 1272 goto unlock; 1273} 1274 1275/** 1276 * unregister_netdevice_notifier - unregister a network notifier block 1277 * @nb: notifier 1278 * 1279 * Unregister a notifier previously registered by 1280 * register_netdevice_notifier(). The notifier is unlinked into the 1281 * kernel structures and may then be reused. A negative errno code 1282 * is returned on a failure. 1283 */ 1284 1285int unregister_netdevice_notifier(struct notifier_block *nb) 1286{ 1287 int err; 1288 1289 rtnl_lock(); 1290 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1291 rtnl_unlock(); 1292 return err; 1293} 1294 1295/** 1296 * call_netdevice_notifiers - call all network notifier blocks 1297 * @val: value passed unmodified to notifier function 1298 * @dev: net_device pointer passed unmodified to notifier function 1299 * 1300 * Call all network notifier blocks. Parameters and return value 1301 * are as for raw_notifier_call_chain(). 1302 */ 1303 1304int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1305{ 1306 return raw_notifier_call_chain(&netdev_chain, val, dev); 1307} 1308 1309/* When > 0 there are consumers of rx skb time stamps */ 1310static atomic_t netstamp_needed = ATOMIC_INIT(0); 1311 1312void net_enable_timestamp(void) 1313{ 1314 atomic_inc(&netstamp_needed); 1315} 1316 1317void net_disable_timestamp(void) 1318{ 1319 atomic_dec(&netstamp_needed); 1320} 1321 1322static inline void net_timestamp(struct sk_buff *skb) 1323{ 1324 if (atomic_read(&netstamp_needed)) 1325 __net_timestamp(skb); 1326 else 1327 skb->tstamp.tv64 = 0; 1328} 1329 1330/* 1331 * Support routine. Sends outgoing frames to any network 1332 * taps currently in use. 1333 */ 1334 1335static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1336{ 1337 struct packet_type *ptype; 1338 1339 net_timestamp(skb); 1340 1341 rcu_read_lock(); 1342 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1343 /* Never send packets back to the socket 1344 * they originated from - MvS (miquels@drinkel.ow.org) 1345 */ 1346 if ((ptype->dev == dev || !ptype->dev) && 1347 (ptype->af_packet_priv == NULL || 1348 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1350 if (!skb2) 1351 break; 1352 1353 /* skb->nh should be correctly 1354 set by sender, so that the second statement is 1355 just protection against buggy protocols. 1356 */ 1357 skb_reset_mac_header(skb2); 1358 1359 if (skb_network_header(skb2) < skb2->data || 1360 skb2->network_header > skb2->tail) { 1361 if (net_ratelimit()) 1362 printk(KERN_CRIT "protocol %04x is " 1363 "buggy, dev %s\n", 1364 skb2->protocol, dev->name); 1365 skb_reset_network_header(skb2); 1366 } 1367 1368 skb2->transport_header = skb2->network_header; 1369 skb2->pkt_type = PACKET_OUTGOING; 1370 ptype->func(skb2, skb->dev, ptype, skb->dev); 1371 } 1372 } 1373 rcu_read_unlock(); 1374} 1375 1376 1377static inline void __netif_reschedule(struct Qdisc *q) 1378{ 1379 struct softnet_data *sd; 1380 unsigned long flags; 1381 1382 local_irq_save(flags); 1383 sd = &__get_cpu_var(softnet_data); 1384 q->next_sched = sd->output_queue; 1385 sd->output_queue = q; 1386 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1387 local_irq_restore(flags); 1388} 1389 1390void __netif_schedule(struct Qdisc *q) 1391{ 1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1393 __netif_reschedule(q); 1394} 1395EXPORT_SYMBOL(__netif_schedule); 1396 1397void dev_kfree_skb_irq(struct sk_buff *skb) 1398{ 1399 if (atomic_dec_and_test(&skb->users)) { 1400 struct softnet_data *sd; 1401 unsigned long flags; 1402 1403 local_irq_save(flags); 1404 sd = &__get_cpu_var(softnet_data); 1405 skb->next = sd->completion_queue; 1406 sd->completion_queue = skb; 1407 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1408 local_irq_restore(flags); 1409 } 1410} 1411EXPORT_SYMBOL(dev_kfree_skb_irq); 1412 1413void dev_kfree_skb_any(struct sk_buff *skb) 1414{ 1415 if (in_irq() || irqs_disabled()) 1416 dev_kfree_skb_irq(skb); 1417 else 1418 dev_kfree_skb(skb); 1419} 1420EXPORT_SYMBOL(dev_kfree_skb_any); 1421 1422 1423/** 1424 * netif_device_detach - mark device as removed 1425 * @dev: network device 1426 * 1427 * Mark device as removed from system and therefore no longer available. 1428 */ 1429void netif_device_detach(struct net_device *dev) 1430{ 1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1432 netif_running(dev)) { 1433 netif_stop_queue(dev); 1434 } 1435} 1436EXPORT_SYMBOL(netif_device_detach); 1437 1438/** 1439 * netif_device_attach - mark device as attached 1440 * @dev: network device 1441 * 1442 * Mark device as attached from system and restart if needed. 1443 */ 1444void netif_device_attach(struct net_device *dev) 1445{ 1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1447 netif_running(dev)) { 1448 netif_wake_queue(dev); 1449 __netdev_watchdog_up(dev); 1450 } 1451} 1452EXPORT_SYMBOL(netif_device_attach); 1453 1454static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1455{ 1456 return ((features & NETIF_F_GEN_CSUM) || 1457 ((features & NETIF_F_IP_CSUM) && 1458 protocol == htons(ETH_P_IP)) || 1459 ((features & NETIF_F_IPV6_CSUM) && 1460 protocol == htons(ETH_P_IPV6))); 1461} 1462 1463static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1464{ 1465 if (can_checksum_protocol(dev->features, skb->protocol)) 1466 return true; 1467 1468 if (skb->protocol == htons(ETH_P_8021Q)) { 1469 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1470 if (can_checksum_protocol(dev->features & dev->vlan_features, 1471 veh->h_vlan_encapsulated_proto)) 1472 return true; 1473 } 1474 1475 return false; 1476} 1477 1478/* 1479 * Invalidate hardware checksum when packet is to be mangled, and 1480 * complete checksum manually on outgoing path. 1481 */ 1482int skb_checksum_help(struct sk_buff *skb) 1483{ 1484 __wsum csum; 1485 int ret = 0, offset; 1486 1487 if (skb->ip_summed == CHECKSUM_COMPLETE) 1488 goto out_set_summed; 1489 1490 if (unlikely(skb_shinfo(skb)->gso_size)) { 1491 /* Let GSO fix up the checksum. */ 1492 goto out_set_summed; 1493 } 1494 1495 offset = skb->csum_start - skb_headroom(skb); 1496 BUG_ON(offset >= skb_headlen(skb)); 1497 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1498 1499 offset += skb->csum_offset; 1500 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1501 1502 if (skb_cloned(skb) && 1503 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1504 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1505 if (ret) 1506 goto out; 1507 } 1508 1509 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1510out_set_summed: 1511 skb->ip_summed = CHECKSUM_NONE; 1512out: 1513 return ret; 1514} 1515 1516/** 1517 * skb_gso_segment - Perform segmentation on skb. 1518 * @skb: buffer to segment 1519 * @features: features for the output path (see dev->features) 1520 * 1521 * This function segments the given skb and returns a list of segments. 1522 * 1523 * It may return NULL if the skb requires no segmentation. This is 1524 * only possible when GSO is used for verifying header integrity. 1525 */ 1526struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1527{ 1528 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1529 struct packet_type *ptype; 1530 __be16 type = skb->protocol; 1531 int err; 1532 1533 skb_reset_mac_header(skb); 1534 skb->mac_len = skb->network_header - skb->mac_header; 1535 __skb_pull(skb, skb->mac_len); 1536 1537 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1538 if (skb_header_cloned(skb) && 1539 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1540 return ERR_PTR(err); 1541 } 1542 1543 rcu_read_lock(); 1544 list_for_each_entry_rcu(ptype, 1545 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1546 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1547 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1548 err = ptype->gso_send_check(skb); 1549 segs = ERR_PTR(err); 1550 if (err || skb_gso_ok(skb, features)) 1551 break; 1552 __skb_push(skb, (skb->data - 1553 skb_network_header(skb))); 1554 } 1555 segs = ptype->gso_segment(skb, features); 1556 break; 1557 } 1558 } 1559 rcu_read_unlock(); 1560 1561 __skb_push(skb, skb->data - skb_mac_header(skb)); 1562 1563 return segs; 1564} 1565 1566EXPORT_SYMBOL(skb_gso_segment); 1567 1568/* Take action when hardware reception checksum errors are detected. */ 1569#ifdef CONFIG_BUG 1570void netdev_rx_csum_fault(struct net_device *dev) 1571{ 1572 if (net_ratelimit()) { 1573 printk(KERN_ERR "%s: hw csum failure.\n", 1574 dev ? dev->name : "<unknown>"); 1575 dump_stack(); 1576 } 1577} 1578EXPORT_SYMBOL(netdev_rx_csum_fault); 1579#endif 1580 1581/* Actually, we should eliminate this check as soon as we know, that: 1582 * 1. IOMMU is present and allows to map all the memory. 1583 * 2. No high memory really exists on this machine. 1584 */ 1585 1586static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1587{ 1588#ifdef CONFIG_HIGHMEM 1589 int i; 1590 1591 if (dev->features & NETIF_F_HIGHDMA) 1592 return 0; 1593 1594 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1595 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1596 return 1; 1597 1598#endif 1599 return 0; 1600} 1601 1602struct dev_gso_cb { 1603 void (*destructor)(struct sk_buff *skb); 1604}; 1605 1606#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1607 1608static void dev_gso_skb_destructor(struct sk_buff *skb) 1609{ 1610 struct dev_gso_cb *cb; 1611 1612 do { 1613 struct sk_buff *nskb = skb->next; 1614 1615 skb->next = nskb->next; 1616 nskb->next = NULL; 1617 kfree_skb(nskb); 1618 } while (skb->next); 1619 1620 cb = DEV_GSO_CB(skb); 1621 if (cb->destructor) 1622 cb->destructor(skb); 1623} 1624 1625/** 1626 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1627 * @skb: buffer to segment 1628 * 1629 * This function segments the given skb and stores the list of segments 1630 * in skb->next. 1631 */ 1632static int dev_gso_segment(struct sk_buff *skb) 1633{ 1634 struct net_device *dev = skb->dev; 1635 struct sk_buff *segs; 1636 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1637 NETIF_F_SG : 0); 1638 1639 segs = skb_gso_segment(skb, features); 1640 1641 /* Verifying header integrity only. */ 1642 if (!segs) 1643 return 0; 1644 1645 if (IS_ERR(segs)) 1646 return PTR_ERR(segs); 1647 1648 skb->next = segs; 1649 DEV_GSO_CB(skb)->destructor = skb->destructor; 1650 skb->destructor = dev_gso_skb_destructor; 1651 1652 return 0; 1653} 1654 1655int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1656 struct netdev_queue *txq) 1657{ 1658 const struct net_device_ops *ops = dev->netdev_ops; 1659 1660 prefetch(&dev->netdev_ops->ndo_start_xmit); 1661 if (likely(!skb->next)) { 1662 if (!list_empty(&ptype_all)) 1663 dev_queue_xmit_nit(skb, dev); 1664 1665 if (netif_needs_gso(dev, skb)) { 1666 if (unlikely(dev_gso_segment(skb))) 1667 goto out_kfree_skb; 1668 if (skb->next) 1669 goto gso; 1670 } 1671 1672 return ops->ndo_start_xmit(skb, dev); 1673 } 1674 1675gso: 1676 do { 1677 struct sk_buff *nskb = skb->next; 1678 int rc; 1679 1680 skb->next = nskb->next; 1681 nskb->next = NULL; 1682 rc = ops->ndo_start_xmit(nskb, dev); 1683 if (unlikely(rc)) { 1684 nskb->next = skb->next; 1685 skb->next = nskb; 1686 return rc; 1687 } 1688 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1689 return NETDEV_TX_BUSY; 1690 } while (skb->next); 1691 1692 skb->destructor = DEV_GSO_CB(skb)->destructor; 1693 1694out_kfree_skb: 1695 kfree_skb(skb); 1696 return 0; 1697} 1698 1699static u32 simple_tx_hashrnd; 1700static int simple_tx_hashrnd_initialized = 0; 1701 1702static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1703{ 1704 u32 addr1, addr2, ports; 1705 u32 hash, ihl; 1706 u8 ip_proto = 0; 1707 1708 if (unlikely(!simple_tx_hashrnd_initialized)) { 1709 get_random_bytes(&simple_tx_hashrnd, 4); 1710 simple_tx_hashrnd_initialized = 1; 1711 } 1712 1713 switch (skb->protocol) { 1714 case htons(ETH_P_IP): 1715 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET))) 1716 ip_proto = ip_hdr(skb)->protocol; 1717 addr1 = ip_hdr(skb)->saddr; 1718 addr2 = ip_hdr(skb)->daddr; 1719 ihl = ip_hdr(skb)->ihl; 1720 break; 1721 case htons(ETH_P_IPV6): 1722 ip_proto = ipv6_hdr(skb)->nexthdr; 1723 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1724 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1725 ihl = (40 >> 2); 1726 break; 1727 default: 1728 return 0; 1729 } 1730 1731 1732 switch (ip_proto) { 1733 case IPPROTO_TCP: 1734 case IPPROTO_UDP: 1735 case IPPROTO_DCCP: 1736 case IPPROTO_ESP: 1737 case IPPROTO_AH: 1738 case IPPROTO_SCTP: 1739 case IPPROTO_UDPLITE: 1740 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1741 break; 1742 1743 default: 1744 ports = 0; 1745 break; 1746 } 1747 1748 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1749 1750 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1751} 1752 1753static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1754 struct sk_buff *skb) 1755{ 1756 const struct net_device_ops *ops = dev->netdev_ops; 1757 u16 queue_index = 0; 1758 1759 if (ops->ndo_select_queue) 1760 queue_index = ops->ndo_select_queue(dev, skb); 1761 else if (dev->real_num_tx_queues > 1) 1762 queue_index = simple_tx_hash(dev, skb); 1763 1764 skb_set_queue_mapping(skb, queue_index); 1765 return netdev_get_tx_queue(dev, queue_index); 1766} 1767 1768/** 1769 * dev_queue_xmit - transmit a buffer 1770 * @skb: buffer to transmit 1771 * 1772 * Queue a buffer for transmission to a network device. The caller must 1773 * have set the device and priority and built the buffer before calling 1774 * this function. The function can be called from an interrupt. 1775 * 1776 * A negative errno code is returned on a failure. A success does not 1777 * guarantee the frame will be transmitted as it may be dropped due 1778 * to congestion or traffic shaping. 1779 * 1780 * ----------------------------------------------------------------------------------- 1781 * I notice this method can also return errors from the queue disciplines, 1782 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1783 * be positive. 1784 * 1785 * Regardless of the return value, the skb is consumed, so it is currently 1786 * difficult to retry a send to this method. (You can bump the ref count 1787 * before sending to hold a reference for retry if you are careful.) 1788 * 1789 * When calling this method, interrupts MUST be enabled. This is because 1790 * the BH enable code must have IRQs enabled so that it will not deadlock. 1791 * --BLG 1792 */ 1793int dev_queue_xmit(struct sk_buff *skb) 1794{ 1795 struct net_device *dev = skb->dev; 1796 struct netdev_queue *txq; 1797 struct Qdisc *q; 1798 int rc = -ENOMEM; 1799 1800 /* GSO will handle the following emulations directly. */ 1801 if (netif_needs_gso(dev, skb)) 1802 goto gso; 1803 1804 if (skb_shinfo(skb)->frag_list && 1805 !(dev->features & NETIF_F_FRAGLIST) && 1806 __skb_linearize(skb)) 1807 goto out_kfree_skb; 1808 1809 /* Fragmented skb is linearized if device does not support SG, 1810 * or if at least one of fragments is in highmem and device 1811 * does not support DMA from it. 1812 */ 1813 if (skb_shinfo(skb)->nr_frags && 1814 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1815 __skb_linearize(skb)) 1816 goto out_kfree_skb; 1817 1818 /* If packet is not checksummed and device does not support 1819 * checksumming for this protocol, complete checksumming here. 1820 */ 1821 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1822 skb_set_transport_header(skb, skb->csum_start - 1823 skb_headroom(skb)); 1824 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1825 goto out_kfree_skb; 1826 } 1827 1828gso: 1829 /* Disable soft irqs for various locks below. Also 1830 * stops preemption for RCU. 1831 */ 1832 rcu_read_lock_bh(); 1833 1834 txq = dev_pick_tx(dev, skb); 1835 q = rcu_dereference(txq->qdisc); 1836 1837#ifdef CONFIG_NET_CLS_ACT 1838 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1839#endif 1840 if (q->enqueue) { 1841 spinlock_t *root_lock = qdisc_lock(q); 1842 1843 spin_lock(root_lock); 1844 1845 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1846 kfree_skb(skb); 1847 rc = NET_XMIT_DROP; 1848 } else { 1849 rc = qdisc_enqueue_root(skb, q); 1850 qdisc_run(q); 1851 } 1852 spin_unlock(root_lock); 1853 1854 goto out; 1855 } 1856 1857 /* The device has no queue. Common case for software devices: 1858 loopback, all the sorts of tunnels... 1859 1860 Really, it is unlikely that netif_tx_lock protection is necessary 1861 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1862 counters.) 1863 However, it is possible, that they rely on protection 1864 made by us here. 1865 1866 Check this and shot the lock. It is not prone from deadlocks. 1867 Either shot noqueue qdisc, it is even simpler 8) 1868 */ 1869 if (dev->flags & IFF_UP) { 1870 int cpu = smp_processor_id(); /* ok because BHs are off */ 1871 1872 if (txq->xmit_lock_owner != cpu) { 1873 1874 HARD_TX_LOCK(dev, txq, cpu); 1875 1876 if (!netif_tx_queue_stopped(txq)) { 1877 rc = 0; 1878 if (!dev_hard_start_xmit(skb, dev, txq)) { 1879 HARD_TX_UNLOCK(dev, txq); 1880 goto out; 1881 } 1882 } 1883 HARD_TX_UNLOCK(dev, txq); 1884 if (net_ratelimit()) 1885 printk(KERN_CRIT "Virtual device %s asks to " 1886 "queue packet!\n", dev->name); 1887 } else { 1888 /* Recursion is detected! It is possible, 1889 * unfortunately */ 1890 if (net_ratelimit()) 1891 printk(KERN_CRIT "Dead loop on virtual device " 1892 "%s, fix it urgently!\n", dev->name); 1893 } 1894 } 1895 1896 rc = -ENETDOWN; 1897 rcu_read_unlock_bh(); 1898 1899out_kfree_skb: 1900 kfree_skb(skb); 1901 return rc; 1902out: 1903 rcu_read_unlock_bh(); 1904 return rc; 1905} 1906 1907 1908/*======================================================================= 1909 Receiver routines 1910 =======================================================================*/ 1911 1912int netdev_max_backlog __read_mostly = 1000; 1913int netdev_budget __read_mostly = 300; 1914int weight_p __read_mostly = 64; /* old backlog weight */ 1915 1916DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1917 1918 1919/** 1920 * netif_rx - post buffer to the network code 1921 * @skb: buffer to post 1922 * 1923 * This function receives a packet from a device driver and queues it for 1924 * the upper (protocol) levels to process. It always succeeds. The buffer 1925 * may be dropped during processing for congestion control or by the 1926 * protocol layers. 1927 * 1928 * return values: 1929 * NET_RX_SUCCESS (no congestion) 1930 * NET_RX_DROP (packet was dropped) 1931 * 1932 */ 1933 1934int netif_rx(struct sk_buff *skb) 1935{ 1936 struct softnet_data *queue; 1937 unsigned long flags; 1938 1939 /* if netpoll wants it, pretend we never saw it */ 1940 if (netpoll_rx(skb)) 1941 return NET_RX_DROP; 1942 1943 if (!skb->tstamp.tv64) 1944 net_timestamp(skb); 1945 1946 /* 1947 * The code is rearranged so that the path is the most 1948 * short when CPU is congested, but is still operating. 1949 */ 1950 local_irq_save(flags); 1951 queue = &__get_cpu_var(softnet_data); 1952 1953 __get_cpu_var(netdev_rx_stat).total++; 1954 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1955 if (queue->input_pkt_queue.qlen) { 1956enqueue: 1957 __skb_queue_tail(&queue->input_pkt_queue, skb); 1958 local_irq_restore(flags); 1959 return NET_RX_SUCCESS; 1960 } 1961 1962 napi_schedule(&queue->backlog); 1963 goto enqueue; 1964 } 1965 1966 __get_cpu_var(netdev_rx_stat).dropped++; 1967 local_irq_restore(flags); 1968 1969 kfree_skb(skb); 1970 return NET_RX_DROP; 1971} 1972 1973int netif_rx_ni(struct sk_buff *skb) 1974{ 1975 int err; 1976 1977 preempt_disable(); 1978 err = netif_rx(skb); 1979 if (local_softirq_pending()) 1980 do_softirq(); 1981 preempt_enable(); 1982 1983 return err; 1984} 1985 1986EXPORT_SYMBOL(netif_rx_ni); 1987 1988static void net_tx_action(struct softirq_action *h) 1989{ 1990 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1991 1992 if (sd->completion_queue) { 1993 struct sk_buff *clist; 1994 1995 local_irq_disable(); 1996 clist = sd->completion_queue; 1997 sd->completion_queue = NULL; 1998 local_irq_enable(); 1999 2000 while (clist) { 2001 struct sk_buff *skb = clist; 2002 clist = clist->next; 2003 2004 WARN_ON(atomic_read(&skb->users)); 2005 __kfree_skb(skb); 2006 } 2007 } 2008 2009 if (sd->output_queue) { 2010 struct Qdisc *head; 2011 2012 local_irq_disable(); 2013 head = sd->output_queue; 2014 sd->output_queue = NULL; 2015 local_irq_enable(); 2016 2017 while (head) { 2018 struct Qdisc *q = head; 2019 spinlock_t *root_lock; 2020 2021 head = head->next_sched; 2022 2023 root_lock = qdisc_lock(q); 2024 if (spin_trylock(root_lock)) { 2025 smp_mb__before_clear_bit(); 2026 clear_bit(__QDISC_STATE_SCHED, 2027 &q->state); 2028 qdisc_run(q); 2029 spin_unlock(root_lock); 2030 } else { 2031 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2032 &q->state)) { 2033 __netif_reschedule(q); 2034 } else { 2035 smp_mb__before_clear_bit(); 2036 clear_bit(__QDISC_STATE_SCHED, 2037 &q->state); 2038 } 2039 } 2040 } 2041 } 2042} 2043 2044static inline int deliver_skb(struct sk_buff *skb, 2045 struct packet_type *pt_prev, 2046 struct net_device *orig_dev) 2047{ 2048 atomic_inc(&skb->users); 2049 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2050} 2051 2052#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2053/* These hooks defined here for ATM */ 2054struct net_bridge; 2055struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2056 unsigned char *addr); 2057void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2058 2059/* 2060 * If bridge module is loaded call bridging hook. 2061 * returns NULL if packet was consumed. 2062 */ 2063struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2064 struct sk_buff *skb) __read_mostly; 2065static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2066 struct packet_type **pt_prev, int *ret, 2067 struct net_device *orig_dev) 2068{ 2069 struct net_bridge_port *port; 2070 2071 if (skb->pkt_type == PACKET_LOOPBACK || 2072 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2073 return skb; 2074 2075 if (*pt_prev) { 2076 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2077 *pt_prev = NULL; 2078 } 2079 2080 return br_handle_frame_hook(port, skb); 2081} 2082#else 2083#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2084#endif 2085 2086#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2087struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2088EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2089 2090static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2091 struct packet_type **pt_prev, 2092 int *ret, 2093 struct net_device *orig_dev) 2094{ 2095 if (skb->dev->macvlan_port == NULL) 2096 return skb; 2097 2098 if (*pt_prev) { 2099 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2100 *pt_prev = NULL; 2101 } 2102 return macvlan_handle_frame_hook(skb); 2103} 2104#else 2105#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2106#endif 2107 2108#ifdef CONFIG_NET_CLS_ACT 2109/* TODO: Maybe we should just force sch_ingress to be compiled in 2110 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2111 * a compare and 2 stores extra right now if we dont have it on 2112 * but have CONFIG_NET_CLS_ACT 2113 * NOTE: This doesnt stop any functionality; if you dont have 2114 * the ingress scheduler, you just cant add policies on ingress. 2115 * 2116 */ 2117static int ing_filter(struct sk_buff *skb) 2118{ 2119 struct net_device *dev = skb->dev; 2120 u32 ttl = G_TC_RTTL(skb->tc_verd); 2121 struct netdev_queue *rxq; 2122 int result = TC_ACT_OK; 2123 struct Qdisc *q; 2124 2125 if (MAX_RED_LOOP < ttl++) { 2126 printk(KERN_WARNING 2127 "Redir loop detected Dropping packet (%d->%d)\n", 2128 skb->iif, dev->ifindex); 2129 return TC_ACT_SHOT; 2130 } 2131 2132 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2133 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2134 2135 rxq = &dev->rx_queue; 2136 2137 q = rxq->qdisc; 2138 if (q != &noop_qdisc) { 2139 spin_lock(qdisc_lock(q)); 2140 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2141 result = qdisc_enqueue_root(skb, q); 2142 spin_unlock(qdisc_lock(q)); 2143 } 2144 2145 return result; 2146} 2147 2148static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2149 struct packet_type **pt_prev, 2150 int *ret, struct net_device *orig_dev) 2151{ 2152 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2153 goto out; 2154 2155 if (*pt_prev) { 2156 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2157 *pt_prev = NULL; 2158 } else { 2159 /* Huh? Why does turning on AF_PACKET affect this? */ 2160 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2161 } 2162 2163 switch (ing_filter(skb)) { 2164 case TC_ACT_SHOT: 2165 case TC_ACT_STOLEN: 2166 kfree_skb(skb); 2167 return NULL; 2168 } 2169 2170out: 2171 skb->tc_verd = 0; 2172 return skb; 2173} 2174#endif 2175 2176/* 2177 * netif_nit_deliver - deliver received packets to network taps 2178 * @skb: buffer 2179 * 2180 * This function is used to deliver incoming packets to network 2181 * taps. It should be used when the normal netif_receive_skb path 2182 * is bypassed, for example because of VLAN acceleration. 2183 */ 2184void netif_nit_deliver(struct sk_buff *skb) 2185{ 2186 struct packet_type *ptype; 2187 2188 if (list_empty(&ptype_all)) 2189 return; 2190 2191 skb_reset_network_header(skb); 2192 skb_reset_transport_header(skb); 2193 skb->mac_len = skb->network_header - skb->mac_header; 2194 2195 rcu_read_lock(); 2196 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2197 if (!ptype->dev || ptype->dev == skb->dev) 2198 deliver_skb(skb, ptype, skb->dev); 2199 } 2200 rcu_read_unlock(); 2201} 2202 2203/** 2204 * netif_receive_skb - process receive buffer from network 2205 * @skb: buffer to process 2206 * 2207 * netif_receive_skb() is the main receive data processing function. 2208 * It always succeeds. The buffer may be dropped during processing 2209 * for congestion control or by the protocol layers. 2210 * 2211 * This function may only be called from softirq context and interrupts 2212 * should be enabled. 2213 * 2214 * Return values (usually ignored): 2215 * NET_RX_SUCCESS: no congestion 2216 * NET_RX_DROP: packet was dropped 2217 */ 2218int netif_receive_skb(struct sk_buff *skb) 2219{ 2220 struct packet_type *ptype, *pt_prev; 2221 struct net_device *orig_dev; 2222 struct net_device *null_or_orig; 2223 int ret = NET_RX_DROP; 2224 __be16 type; 2225 2226 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2227 return NET_RX_SUCCESS; 2228 2229 /* if we've gotten here through NAPI, check netpoll */ 2230 if (netpoll_receive_skb(skb)) 2231 return NET_RX_DROP; 2232 2233 if (!skb->tstamp.tv64) 2234 net_timestamp(skb); 2235 2236 if (!skb->iif) 2237 skb->iif = skb->dev->ifindex; 2238 2239 null_or_orig = NULL; 2240 orig_dev = skb->dev; 2241 if (orig_dev->master) { 2242 if (skb_bond_should_drop(skb)) 2243 null_or_orig = orig_dev; /* deliver only exact match */ 2244 else 2245 skb->dev = orig_dev->master; 2246 } 2247 2248 __get_cpu_var(netdev_rx_stat).total++; 2249 2250 skb_reset_network_header(skb); 2251 skb_reset_transport_header(skb); 2252 skb->mac_len = skb->network_header - skb->mac_header; 2253 2254 pt_prev = NULL; 2255 2256 rcu_read_lock(); 2257 2258 /* Don't receive packets in an exiting network namespace */ 2259 if (!net_alive(dev_net(skb->dev))) { 2260 kfree_skb(skb); 2261 goto out; 2262 } 2263 2264#ifdef CONFIG_NET_CLS_ACT 2265 if (skb->tc_verd & TC_NCLS) { 2266 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2267 goto ncls; 2268 } 2269#endif 2270 2271 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2272 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2273 ptype->dev == orig_dev) { 2274 if (pt_prev) 2275 ret = deliver_skb(skb, pt_prev, orig_dev); 2276 pt_prev = ptype; 2277 } 2278 } 2279 2280#ifdef CONFIG_NET_CLS_ACT 2281 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2282 if (!skb) 2283 goto out; 2284ncls: 2285#endif 2286 2287 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2288 if (!skb) 2289 goto out; 2290 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2291 if (!skb) 2292 goto out; 2293 2294 type = skb->protocol; 2295 list_for_each_entry_rcu(ptype, 2296 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2297 if (ptype->type == type && 2298 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2299 ptype->dev == orig_dev)) { 2300 if (pt_prev) 2301 ret = deliver_skb(skb, pt_prev, orig_dev); 2302 pt_prev = ptype; 2303 } 2304 } 2305 2306 if (pt_prev) { 2307 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2308 } else { 2309 kfree_skb(skb); 2310 /* Jamal, now you will not able to escape explaining 2311 * me how you were going to use this. :-) 2312 */ 2313 ret = NET_RX_DROP; 2314 } 2315 2316out: 2317 rcu_read_unlock(); 2318 return ret; 2319} 2320 2321/* Network device is going away, flush any packets still pending */ 2322static void flush_backlog(void *arg) 2323{ 2324 struct net_device *dev = arg; 2325 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2326 struct sk_buff *skb, *tmp; 2327 2328 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2329 if (skb->dev == dev) { 2330 __skb_unlink(skb, &queue->input_pkt_queue); 2331 kfree_skb(skb); 2332 } 2333} 2334 2335static int napi_gro_complete(struct sk_buff *skb) 2336{ 2337 struct packet_type *ptype; 2338 __be16 type = skb->protocol; 2339 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2340 int err = -ENOENT; 2341 2342 if (NAPI_GRO_CB(skb)->count == 1) 2343 goto out; 2344 2345 rcu_read_lock(); 2346 list_for_each_entry_rcu(ptype, head, list) { 2347 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2348 continue; 2349 2350 err = ptype->gro_complete(skb); 2351 break; 2352 } 2353 rcu_read_unlock(); 2354 2355 if (err) { 2356 WARN_ON(&ptype->list == head); 2357 kfree_skb(skb); 2358 return NET_RX_SUCCESS; 2359 } 2360 2361out: 2362 skb_shinfo(skb)->gso_size = 0; 2363 __skb_push(skb, -skb_network_offset(skb)); 2364 return netif_receive_skb(skb); 2365} 2366 2367void napi_gro_flush(struct napi_struct *napi) 2368{ 2369 struct sk_buff *skb, *next; 2370 2371 for (skb = napi->gro_list; skb; skb = next) { 2372 next = skb->next; 2373 skb->next = NULL; 2374 napi_gro_complete(skb); 2375 } 2376 2377 napi->gro_list = NULL; 2378} 2379EXPORT_SYMBOL(napi_gro_flush); 2380 2381int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2382{ 2383 struct sk_buff **pp = NULL; 2384 struct packet_type *ptype; 2385 __be16 type = skb->protocol; 2386 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2387 int count = 0; 2388 int same_flow; 2389 int mac_len; 2390 int free; 2391 2392 if (!(skb->dev->features & NETIF_F_GRO)) 2393 goto normal; 2394 2395 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list) 2396 goto normal; 2397 2398 rcu_read_lock(); 2399 list_for_each_entry_rcu(ptype, head, list) { 2400 struct sk_buff *p; 2401 2402 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2403 continue; 2404 2405 skb_reset_network_header(skb); 2406 mac_len = skb->network_header - skb->mac_header; 2407 skb->mac_len = mac_len; 2408 NAPI_GRO_CB(skb)->same_flow = 0; 2409 NAPI_GRO_CB(skb)->flush = 0; 2410 NAPI_GRO_CB(skb)->free = 0; 2411 2412 for (p = napi->gro_list; p; p = p->next) { 2413 count++; 2414 2415 if (!NAPI_GRO_CB(p)->same_flow) 2416 continue; 2417 2418 if (p->mac_len != mac_len || 2419 memcmp(skb_mac_header(p), skb_mac_header(skb), 2420 mac_len)) 2421 NAPI_GRO_CB(p)->same_flow = 0; 2422 } 2423 2424 pp = ptype->gro_receive(&napi->gro_list, skb); 2425 break; 2426 } 2427 rcu_read_unlock(); 2428 2429 if (&ptype->list == head) 2430 goto normal; 2431 2432 same_flow = NAPI_GRO_CB(skb)->same_flow; 2433 free = NAPI_GRO_CB(skb)->free; 2434 2435 if (pp) { 2436 struct sk_buff *nskb = *pp; 2437 2438 *pp = nskb->next; 2439 nskb->next = NULL; 2440 napi_gro_complete(nskb); 2441 count--; 2442 } 2443 2444 if (same_flow) 2445 goto ok; 2446 2447 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) { 2448 __skb_push(skb, -skb_network_offset(skb)); 2449 goto normal; 2450 } 2451 2452 NAPI_GRO_CB(skb)->count = 1; 2453 skb_shinfo(skb)->gso_size = skb->len; 2454 skb->next = napi->gro_list; 2455 napi->gro_list = skb; 2456 2457ok: 2458 return free; 2459 2460normal: 2461 return -1; 2462} 2463EXPORT_SYMBOL(dev_gro_receive); 2464 2465static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2466{ 2467 struct sk_buff *p; 2468 2469 for (p = napi->gro_list; p; p = p->next) { 2470 NAPI_GRO_CB(p)->same_flow = 1; 2471 NAPI_GRO_CB(p)->flush = 0; 2472 } 2473 2474 return dev_gro_receive(napi, skb); 2475} 2476 2477int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2478{ 2479 switch (__napi_gro_receive(napi, skb)) { 2480 case -1: 2481 return netif_receive_skb(skb); 2482 2483 case 1: 2484 kfree_skb(skb); 2485 break; 2486 } 2487 2488 return NET_RX_SUCCESS; 2489} 2490EXPORT_SYMBOL(napi_gro_receive); 2491 2492void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2493{ 2494 __skb_pull(skb, skb_headlen(skb)); 2495 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2496 2497 napi->skb = skb; 2498} 2499EXPORT_SYMBOL(napi_reuse_skb); 2500 2501struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi, 2502 struct napi_gro_fraginfo *info) 2503{ 2504 struct net_device *dev = napi->dev; 2505 struct sk_buff *skb = napi->skb; 2506 2507 napi->skb = NULL; 2508 2509 if (!skb) { 2510 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2511 if (!skb) 2512 goto out; 2513 2514 skb_reserve(skb, NET_IP_ALIGN); 2515 } 2516 2517 BUG_ON(info->nr_frags > MAX_SKB_FRAGS); 2518 skb_shinfo(skb)->nr_frags = info->nr_frags; 2519 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags)); 2520 2521 skb->data_len = info->len; 2522 skb->len += info->len; 2523 skb->truesize += info->len; 2524 2525 if (!pskb_may_pull(skb, ETH_HLEN)) { 2526 napi_reuse_skb(napi, skb); 2527 goto out; 2528 } 2529 2530 skb->protocol = eth_type_trans(skb, dev); 2531 2532 skb->ip_summed = info->ip_summed; 2533 skb->csum = info->csum; 2534 2535out: 2536 return skb; 2537} 2538EXPORT_SYMBOL(napi_fraginfo_skb); 2539 2540int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info) 2541{ 2542 struct sk_buff *skb = napi_fraginfo_skb(napi, info); 2543 int err = NET_RX_DROP; 2544 2545 if (!skb) 2546 goto out; 2547 2548 err = NET_RX_SUCCESS; 2549 2550 switch (__napi_gro_receive(napi, skb)) { 2551 case -1: 2552 return netif_receive_skb(skb); 2553 2554 case 0: 2555 goto out; 2556 } 2557 2558 napi_reuse_skb(napi, skb); 2559 2560out: 2561 return err; 2562} 2563EXPORT_SYMBOL(napi_gro_frags); 2564 2565static int process_backlog(struct napi_struct *napi, int quota) 2566{ 2567 int work = 0; 2568 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2569 unsigned long start_time = jiffies; 2570 2571 napi->weight = weight_p; 2572 do { 2573 struct sk_buff *skb; 2574 2575 local_irq_disable(); 2576 skb = __skb_dequeue(&queue->input_pkt_queue); 2577 if (!skb) { 2578 __napi_complete(napi); 2579 local_irq_enable(); 2580 break; 2581 } 2582 local_irq_enable(); 2583 2584 napi_gro_receive(napi, skb); 2585 } while (++work < quota && jiffies == start_time); 2586 2587 napi_gro_flush(napi); 2588 2589 return work; 2590} 2591 2592/** 2593 * __napi_schedule - schedule for receive 2594 * @n: entry to schedule 2595 * 2596 * The entry's receive function will be scheduled to run 2597 */ 2598void __napi_schedule(struct napi_struct *n) 2599{ 2600 unsigned long flags; 2601 2602 local_irq_save(flags); 2603 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2604 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2605 local_irq_restore(flags); 2606} 2607EXPORT_SYMBOL(__napi_schedule); 2608 2609void __napi_complete(struct napi_struct *n) 2610{ 2611 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2612 BUG_ON(n->gro_list); 2613 2614 list_del(&n->poll_list); 2615 smp_mb__before_clear_bit(); 2616 clear_bit(NAPI_STATE_SCHED, &n->state); 2617} 2618EXPORT_SYMBOL(__napi_complete); 2619 2620void napi_complete(struct napi_struct *n) 2621{ 2622 unsigned long flags; 2623 2624 /* 2625 * don't let napi dequeue from the cpu poll list 2626 * just in case its running on a different cpu 2627 */ 2628 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2629 return; 2630 2631 napi_gro_flush(n); 2632 local_irq_save(flags); 2633 __napi_complete(n); 2634 local_irq_restore(flags); 2635} 2636EXPORT_SYMBOL(napi_complete); 2637 2638void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2639 int (*poll)(struct napi_struct *, int), int weight) 2640{ 2641 INIT_LIST_HEAD(&napi->poll_list); 2642 napi->gro_list = NULL; 2643 napi->skb = NULL; 2644 napi->poll = poll; 2645 napi->weight = weight; 2646 list_add(&napi->dev_list, &dev->napi_list); 2647 napi->dev = dev; 2648#ifdef CONFIG_NETPOLL 2649 spin_lock_init(&napi->poll_lock); 2650 napi->poll_owner = -1; 2651#endif 2652 set_bit(NAPI_STATE_SCHED, &napi->state); 2653} 2654EXPORT_SYMBOL(netif_napi_add); 2655 2656void netif_napi_del(struct napi_struct *napi) 2657{ 2658 struct sk_buff *skb, *next; 2659 2660 list_del_init(&napi->dev_list); 2661 kfree(napi->skb); 2662 2663 for (skb = napi->gro_list; skb; skb = next) { 2664 next = skb->next; 2665 skb->next = NULL; 2666 kfree_skb(skb); 2667 } 2668 2669 napi->gro_list = NULL; 2670} 2671EXPORT_SYMBOL(netif_napi_del); 2672 2673 2674static void net_rx_action(struct softirq_action *h) 2675{ 2676 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2677 unsigned long time_limit = jiffies + 2; 2678 int budget = netdev_budget; 2679 void *have; 2680 2681 local_irq_disable(); 2682 2683 while (!list_empty(list)) { 2684 struct napi_struct *n; 2685 int work, weight; 2686 2687 /* If softirq window is exhuasted then punt. 2688 * Allow this to run for 2 jiffies since which will allow 2689 * an average latency of 1.5/HZ. 2690 */ 2691 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2692 goto softnet_break; 2693 2694 local_irq_enable(); 2695 2696 /* Even though interrupts have been re-enabled, this 2697 * access is safe because interrupts can only add new 2698 * entries to the tail of this list, and only ->poll() 2699 * calls can remove this head entry from the list. 2700 */ 2701 n = list_entry(list->next, struct napi_struct, poll_list); 2702 2703 have = netpoll_poll_lock(n); 2704 2705 weight = n->weight; 2706 2707 /* This NAPI_STATE_SCHED test is for avoiding a race 2708 * with netpoll's poll_napi(). Only the entity which 2709 * obtains the lock and sees NAPI_STATE_SCHED set will 2710 * actually make the ->poll() call. Therefore we avoid 2711 * accidently calling ->poll() when NAPI is not scheduled. 2712 */ 2713 work = 0; 2714 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2715 work = n->poll(n, weight); 2716 2717 WARN_ON_ONCE(work > weight); 2718 2719 budget -= work; 2720 2721 local_irq_disable(); 2722 2723 /* Drivers must not modify the NAPI state if they 2724 * consume the entire weight. In such cases this code 2725 * still "owns" the NAPI instance and therefore can 2726 * move the instance around on the list at-will. 2727 */ 2728 if (unlikely(work == weight)) { 2729 if (unlikely(napi_disable_pending(n))) 2730 __napi_complete(n); 2731 else 2732 list_move_tail(&n->poll_list, list); 2733 } 2734 2735 netpoll_poll_unlock(have); 2736 } 2737out: 2738 local_irq_enable(); 2739 2740#ifdef CONFIG_NET_DMA 2741 /* 2742 * There may not be any more sk_buffs coming right now, so push 2743 * any pending DMA copies to hardware 2744 */ 2745 dma_issue_pending_all(); 2746#endif 2747 2748 return; 2749 2750softnet_break: 2751 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2752 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2753 goto out; 2754} 2755 2756static gifconf_func_t * gifconf_list [NPROTO]; 2757 2758/** 2759 * register_gifconf - register a SIOCGIF handler 2760 * @family: Address family 2761 * @gifconf: Function handler 2762 * 2763 * Register protocol dependent address dumping routines. The handler 2764 * that is passed must not be freed or reused until it has been replaced 2765 * by another handler. 2766 */ 2767int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2768{ 2769 if (family >= NPROTO) 2770 return -EINVAL; 2771 gifconf_list[family] = gifconf; 2772 return 0; 2773} 2774 2775 2776/* 2777 * Map an interface index to its name (SIOCGIFNAME) 2778 */ 2779 2780/* 2781 * We need this ioctl for efficient implementation of the 2782 * if_indextoname() function required by the IPv6 API. Without 2783 * it, we would have to search all the interfaces to find a 2784 * match. --pb 2785 */ 2786 2787static int dev_ifname(struct net *net, struct ifreq __user *arg) 2788{ 2789 struct net_device *dev; 2790 struct ifreq ifr; 2791 2792 /* 2793 * Fetch the caller's info block. 2794 */ 2795 2796 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2797 return -EFAULT; 2798 2799 read_lock(&dev_base_lock); 2800 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2801 if (!dev) { 2802 read_unlock(&dev_base_lock); 2803 return -ENODEV; 2804 } 2805 2806 strcpy(ifr.ifr_name, dev->name); 2807 read_unlock(&dev_base_lock); 2808 2809 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2810 return -EFAULT; 2811 return 0; 2812} 2813 2814/* 2815 * Perform a SIOCGIFCONF call. This structure will change 2816 * size eventually, and there is nothing I can do about it. 2817 * Thus we will need a 'compatibility mode'. 2818 */ 2819 2820static int dev_ifconf(struct net *net, char __user *arg) 2821{ 2822 struct ifconf ifc; 2823 struct net_device *dev; 2824 char __user *pos; 2825 int len; 2826 int total; 2827 int i; 2828 2829 /* 2830 * Fetch the caller's info block. 2831 */ 2832 2833 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2834 return -EFAULT; 2835 2836 pos = ifc.ifc_buf; 2837 len = ifc.ifc_len; 2838 2839 /* 2840 * Loop over the interfaces, and write an info block for each. 2841 */ 2842 2843 total = 0; 2844 for_each_netdev(net, dev) { 2845 for (i = 0; i < NPROTO; i++) { 2846 if (gifconf_list[i]) { 2847 int done; 2848 if (!pos) 2849 done = gifconf_list[i](dev, NULL, 0); 2850 else 2851 done = gifconf_list[i](dev, pos + total, 2852 len - total); 2853 if (done < 0) 2854 return -EFAULT; 2855 total += done; 2856 } 2857 } 2858 } 2859 2860 /* 2861 * All done. Write the updated control block back to the caller. 2862 */ 2863 ifc.ifc_len = total; 2864 2865 /* 2866 * Both BSD and Solaris return 0 here, so we do too. 2867 */ 2868 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2869} 2870 2871#ifdef CONFIG_PROC_FS 2872/* 2873 * This is invoked by the /proc filesystem handler to display a device 2874 * in detail. 2875 */ 2876void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2877 __acquires(dev_base_lock) 2878{ 2879 struct net *net = seq_file_net(seq); 2880 loff_t off; 2881 struct net_device *dev; 2882 2883 read_lock(&dev_base_lock); 2884 if (!*pos) 2885 return SEQ_START_TOKEN; 2886 2887 off = 1; 2888 for_each_netdev(net, dev) 2889 if (off++ == *pos) 2890 return dev; 2891 2892 return NULL; 2893} 2894 2895void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2896{ 2897 struct net *net = seq_file_net(seq); 2898 ++*pos; 2899 return v == SEQ_START_TOKEN ? 2900 first_net_device(net) : next_net_device((struct net_device *)v); 2901} 2902 2903void dev_seq_stop(struct seq_file *seq, void *v) 2904 __releases(dev_base_lock) 2905{ 2906 read_unlock(&dev_base_lock); 2907} 2908 2909static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2910{ 2911 const struct net_device_stats *stats = dev_get_stats(dev); 2912 2913 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2914 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2915 dev->name, stats->rx_bytes, stats->rx_packets, 2916 stats->rx_errors, 2917 stats->rx_dropped + stats->rx_missed_errors, 2918 stats->rx_fifo_errors, 2919 stats->rx_length_errors + stats->rx_over_errors + 2920 stats->rx_crc_errors + stats->rx_frame_errors, 2921 stats->rx_compressed, stats->multicast, 2922 stats->tx_bytes, stats->tx_packets, 2923 stats->tx_errors, stats->tx_dropped, 2924 stats->tx_fifo_errors, stats->collisions, 2925 stats->tx_carrier_errors + 2926 stats->tx_aborted_errors + 2927 stats->tx_window_errors + 2928 stats->tx_heartbeat_errors, 2929 stats->tx_compressed); 2930} 2931 2932/* 2933 * Called from the PROCfs module. This now uses the new arbitrary sized 2934 * /proc/net interface to create /proc/net/dev 2935 */ 2936static int dev_seq_show(struct seq_file *seq, void *v) 2937{ 2938 if (v == SEQ_START_TOKEN) 2939 seq_puts(seq, "Inter-| Receive " 2940 " | Transmit\n" 2941 " face |bytes packets errs drop fifo frame " 2942 "compressed multicast|bytes packets errs " 2943 "drop fifo colls carrier compressed\n"); 2944 else 2945 dev_seq_printf_stats(seq, v); 2946 return 0; 2947} 2948 2949static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2950{ 2951 struct netif_rx_stats *rc = NULL; 2952 2953 while (*pos < nr_cpu_ids) 2954 if (cpu_online(*pos)) { 2955 rc = &per_cpu(netdev_rx_stat, *pos); 2956 break; 2957 } else 2958 ++*pos; 2959 return rc; 2960} 2961 2962static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2963{ 2964 return softnet_get_online(pos); 2965} 2966 2967static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2968{ 2969 ++*pos; 2970 return softnet_get_online(pos); 2971} 2972 2973static void softnet_seq_stop(struct seq_file *seq, void *v) 2974{ 2975} 2976 2977static int softnet_seq_show(struct seq_file *seq, void *v) 2978{ 2979 struct netif_rx_stats *s = v; 2980 2981 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2982 s->total, s->dropped, s->time_squeeze, 0, 2983 0, 0, 0, 0, /* was fastroute */ 2984 s->cpu_collision ); 2985 return 0; 2986} 2987 2988static const struct seq_operations dev_seq_ops = { 2989 .start = dev_seq_start, 2990 .next = dev_seq_next, 2991 .stop = dev_seq_stop, 2992 .show = dev_seq_show, 2993}; 2994 2995static int dev_seq_open(struct inode *inode, struct file *file) 2996{ 2997 return seq_open_net(inode, file, &dev_seq_ops, 2998 sizeof(struct seq_net_private)); 2999} 3000 3001static const struct file_operations dev_seq_fops = { 3002 .owner = THIS_MODULE, 3003 .open = dev_seq_open, 3004 .read = seq_read, 3005 .llseek = seq_lseek, 3006 .release = seq_release_net, 3007}; 3008 3009static const struct seq_operations softnet_seq_ops = { 3010 .start = softnet_seq_start, 3011 .next = softnet_seq_next, 3012 .stop = softnet_seq_stop, 3013 .show = softnet_seq_show, 3014}; 3015 3016static int softnet_seq_open(struct inode *inode, struct file *file) 3017{ 3018 return seq_open(file, &softnet_seq_ops); 3019} 3020 3021static const struct file_operations softnet_seq_fops = { 3022 .owner = THIS_MODULE, 3023 .open = softnet_seq_open, 3024 .read = seq_read, 3025 .llseek = seq_lseek, 3026 .release = seq_release, 3027}; 3028 3029static void *ptype_get_idx(loff_t pos) 3030{ 3031 struct packet_type *pt = NULL; 3032 loff_t i = 0; 3033 int t; 3034 3035 list_for_each_entry_rcu(pt, &ptype_all, list) { 3036 if (i == pos) 3037 return pt; 3038 ++i; 3039 } 3040 3041 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3042 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3043 if (i == pos) 3044 return pt; 3045 ++i; 3046 } 3047 } 3048 return NULL; 3049} 3050 3051static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3052 __acquires(RCU) 3053{ 3054 rcu_read_lock(); 3055 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3056} 3057 3058static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3059{ 3060 struct packet_type *pt; 3061 struct list_head *nxt; 3062 int hash; 3063 3064 ++*pos; 3065 if (v == SEQ_START_TOKEN) 3066 return ptype_get_idx(0); 3067 3068 pt = v; 3069 nxt = pt->list.next; 3070 if (pt->type == htons(ETH_P_ALL)) { 3071 if (nxt != &ptype_all) 3072 goto found; 3073 hash = 0; 3074 nxt = ptype_base[0].next; 3075 } else 3076 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3077 3078 while (nxt == &ptype_base[hash]) { 3079 if (++hash >= PTYPE_HASH_SIZE) 3080 return NULL; 3081 nxt = ptype_base[hash].next; 3082 } 3083found: 3084 return list_entry(nxt, struct packet_type, list); 3085} 3086 3087static void ptype_seq_stop(struct seq_file *seq, void *v) 3088 __releases(RCU) 3089{ 3090 rcu_read_unlock(); 3091} 3092 3093static int ptype_seq_show(struct seq_file *seq, void *v) 3094{ 3095 struct packet_type *pt = v; 3096 3097 if (v == SEQ_START_TOKEN) 3098 seq_puts(seq, "Type Device Function\n"); 3099 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3100 if (pt->type == htons(ETH_P_ALL)) 3101 seq_puts(seq, "ALL "); 3102 else 3103 seq_printf(seq, "%04x", ntohs(pt->type)); 3104 3105 seq_printf(seq, " %-8s %pF\n", 3106 pt->dev ? pt->dev->name : "", pt->func); 3107 } 3108 3109 return 0; 3110} 3111 3112static const struct seq_operations ptype_seq_ops = { 3113 .start = ptype_seq_start, 3114 .next = ptype_seq_next, 3115 .stop = ptype_seq_stop, 3116 .show = ptype_seq_show, 3117}; 3118 3119static int ptype_seq_open(struct inode *inode, struct file *file) 3120{ 3121 return seq_open_net(inode, file, &ptype_seq_ops, 3122 sizeof(struct seq_net_private)); 3123} 3124 3125static const struct file_operations ptype_seq_fops = { 3126 .owner = THIS_MODULE, 3127 .open = ptype_seq_open, 3128 .read = seq_read, 3129 .llseek = seq_lseek, 3130 .release = seq_release_net, 3131}; 3132 3133 3134static int __net_init dev_proc_net_init(struct net *net) 3135{ 3136 int rc = -ENOMEM; 3137 3138 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3139 goto out; 3140 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3141 goto out_dev; 3142 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3143 goto out_softnet; 3144 3145 if (wext_proc_init(net)) 3146 goto out_ptype; 3147 rc = 0; 3148out: 3149 return rc; 3150out_ptype: 3151 proc_net_remove(net, "ptype"); 3152out_softnet: 3153 proc_net_remove(net, "softnet_stat"); 3154out_dev: 3155 proc_net_remove(net, "dev"); 3156 goto out; 3157} 3158 3159static void __net_exit dev_proc_net_exit(struct net *net) 3160{ 3161 wext_proc_exit(net); 3162 3163 proc_net_remove(net, "ptype"); 3164 proc_net_remove(net, "softnet_stat"); 3165 proc_net_remove(net, "dev"); 3166} 3167 3168static struct pernet_operations __net_initdata dev_proc_ops = { 3169 .init = dev_proc_net_init, 3170 .exit = dev_proc_net_exit, 3171}; 3172 3173static int __init dev_proc_init(void) 3174{ 3175 return register_pernet_subsys(&dev_proc_ops); 3176} 3177#else 3178#define dev_proc_init() 0 3179#endif /* CONFIG_PROC_FS */ 3180 3181 3182/** 3183 * netdev_set_master - set up master/slave pair 3184 * @slave: slave device 3185 * @master: new master device 3186 * 3187 * Changes the master device of the slave. Pass %NULL to break the 3188 * bonding. The caller must hold the RTNL semaphore. On a failure 3189 * a negative errno code is returned. On success the reference counts 3190 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3191 * function returns zero. 3192 */ 3193int netdev_set_master(struct net_device *slave, struct net_device *master) 3194{ 3195 struct net_device *old = slave->master; 3196 3197 ASSERT_RTNL(); 3198 3199 if (master) { 3200 if (old) 3201 return -EBUSY; 3202 dev_hold(master); 3203 } 3204 3205 slave->master = master; 3206 3207 synchronize_net(); 3208 3209 if (old) 3210 dev_put(old); 3211 3212 if (master) 3213 slave->flags |= IFF_SLAVE; 3214 else 3215 slave->flags &= ~IFF_SLAVE; 3216 3217 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3218 return 0; 3219} 3220 3221static void dev_change_rx_flags(struct net_device *dev, int flags) 3222{ 3223 const struct net_device_ops *ops = dev->netdev_ops; 3224 3225 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3226 ops->ndo_change_rx_flags(dev, flags); 3227} 3228 3229static int __dev_set_promiscuity(struct net_device *dev, int inc) 3230{ 3231 unsigned short old_flags = dev->flags; 3232 uid_t uid; 3233 gid_t gid; 3234 3235 ASSERT_RTNL(); 3236 3237 dev->flags |= IFF_PROMISC; 3238 dev->promiscuity += inc; 3239 if (dev->promiscuity == 0) { 3240 /* 3241 * Avoid overflow. 3242 * If inc causes overflow, untouch promisc and return error. 3243 */ 3244 if (inc < 0) 3245 dev->flags &= ~IFF_PROMISC; 3246 else { 3247 dev->promiscuity -= inc; 3248 printk(KERN_WARNING "%s: promiscuity touches roof, " 3249 "set promiscuity failed, promiscuity feature " 3250 "of device might be broken.\n", dev->name); 3251 return -EOVERFLOW; 3252 } 3253 } 3254 if (dev->flags != old_flags) { 3255 printk(KERN_INFO "device %s %s promiscuous mode\n", 3256 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3257 "left"); 3258 if (audit_enabled) { 3259 current_uid_gid(&uid, &gid); 3260 audit_log(current->audit_context, GFP_ATOMIC, 3261 AUDIT_ANOM_PROMISCUOUS, 3262 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3263 dev->name, (dev->flags & IFF_PROMISC), 3264 (old_flags & IFF_PROMISC), 3265 audit_get_loginuid(current), 3266 uid, gid, 3267 audit_get_sessionid(current)); 3268 } 3269 3270 dev_change_rx_flags(dev, IFF_PROMISC); 3271 } 3272 return 0; 3273} 3274 3275/** 3276 * dev_set_promiscuity - update promiscuity count on a device 3277 * @dev: device 3278 * @inc: modifier 3279 * 3280 * Add or remove promiscuity from a device. While the count in the device 3281 * remains above zero the interface remains promiscuous. Once it hits zero 3282 * the device reverts back to normal filtering operation. A negative inc 3283 * value is used to drop promiscuity on the device. 3284 * Return 0 if successful or a negative errno code on error. 3285 */ 3286int dev_set_promiscuity(struct net_device *dev, int inc) 3287{ 3288 unsigned short old_flags = dev->flags; 3289 int err; 3290 3291 err = __dev_set_promiscuity(dev, inc); 3292 if (err < 0) 3293 return err; 3294 if (dev->flags != old_flags) 3295 dev_set_rx_mode(dev); 3296 return err; 3297} 3298 3299/** 3300 * dev_set_allmulti - update allmulti count on a device 3301 * @dev: device 3302 * @inc: modifier 3303 * 3304 * Add or remove reception of all multicast frames to a device. While the 3305 * count in the device remains above zero the interface remains listening 3306 * to all interfaces. Once it hits zero the device reverts back to normal 3307 * filtering operation. A negative @inc value is used to drop the counter 3308 * when releasing a resource needing all multicasts. 3309 * Return 0 if successful or a negative errno code on error. 3310 */ 3311 3312int dev_set_allmulti(struct net_device *dev, int inc) 3313{ 3314 unsigned short old_flags = dev->flags; 3315 3316 ASSERT_RTNL(); 3317 3318 dev->flags |= IFF_ALLMULTI; 3319 dev->allmulti += inc; 3320 if (dev->allmulti == 0) { 3321 /* 3322 * Avoid overflow. 3323 * If inc causes overflow, untouch allmulti and return error. 3324 */ 3325 if (inc < 0) 3326 dev->flags &= ~IFF_ALLMULTI; 3327 else { 3328 dev->allmulti -= inc; 3329 printk(KERN_WARNING "%s: allmulti touches roof, " 3330 "set allmulti failed, allmulti feature of " 3331 "device might be broken.\n", dev->name); 3332 return -EOVERFLOW; 3333 } 3334 } 3335 if (dev->flags ^ old_flags) { 3336 dev_change_rx_flags(dev, IFF_ALLMULTI); 3337 dev_set_rx_mode(dev); 3338 } 3339 return 0; 3340} 3341 3342/* 3343 * Upload unicast and multicast address lists to device and 3344 * configure RX filtering. When the device doesn't support unicast 3345 * filtering it is put in promiscuous mode while unicast addresses 3346 * are present. 3347 */ 3348void __dev_set_rx_mode(struct net_device *dev) 3349{ 3350 const struct net_device_ops *ops = dev->netdev_ops; 3351 3352 /* dev_open will call this function so the list will stay sane. */ 3353 if (!(dev->flags&IFF_UP)) 3354 return; 3355 3356 if (!netif_device_present(dev)) 3357 return; 3358 3359 if (ops->ndo_set_rx_mode) 3360 ops->ndo_set_rx_mode(dev); 3361 else { 3362 /* Unicast addresses changes may only happen under the rtnl, 3363 * therefore calling __dev_set_promiscuity here is safe. 3364 */ 3365 if (dev->uc_count > 0 && !dev->uc_promisc) { 3366 __dev_set_promiscuity(dev, 1); 3367 dev->uc_promisc = 1; 3368 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3369 __dev_set_promiscuity(dev, -1); 3370 dev->uc_promisc = 0; 3371 } 3372 3373 if (ops->ndo_set_multicast_list) 3374 ops->ndo_set_multicast_list(dev); 3375 } 3376} 3377 3378void dev_set_rx_mode(struct net_device *dev) 3379{ 3380 netif_addr_lock_bh(dev); 3381 __dev_set_rx_mode(dev); 3382 netif_addr_unlock_bh(dev); 3383} 3384 3385int __dev_addr_delete(struct dev_addr_list **list, int *count, 3386 void *addr, int alen, int glbl) 3387{ 3388 struct dev_addr_list *da; 3389 3390 for (; (da = *list) != NULL; list = &da->next) { 3391 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3392 alen == da->da_addrlen) { 3393 if (glbl) { 3394 int old_glbl = da->da_gusers; 3395 da->da_gusers = 0; 3396 if (old_glbl == 0) 3397 break; 3398 } 3399 if (--da->da_users) 3400 return 0; 3401 3402 *list = da->next; 3403 kfree(da); 3404 (*count)--; 3405 return 0; 3406 } 3407 } 3408 return -ENOENT; 3409} 3410 3411int __dev_addr_add(struct dev_addr_list **list, int *count, 3412 void *addr, int alen, int glbl) 3413{ 3414 struct dev_addr_list *da; 3415 3416 for (da = *list; da != NULL; da = da->next) { 3417 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3418 da->da_addrlen == alen) { 3419 if (glbl) { 3420 int old_glbl = da->da_gusers; 3421 da->da_gusers = 1; 3422 if (old_glbl) 3423 return 0; 3424 } 3425 da->da_users++; 3426 return 0; 3427 } 3428 } 3429 3430 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3431 if (da == NULL) 3432 return -ENOMEM; 3433 memcpy(da->da_addr, addr, alen); 3434 da->da_addrlen = alen; 3435 da->da_users = 1; 3436 da->da_gusers = glbl ? 1 : 0; 3437 da->next = *list; 3438 *list = da; 3439 (*count)++; 3440 return 0; 3441} 3442 3443/** 3444 * dev_unicast_delete - Release secondary unicast address. 3445 * @dev: device 3446 * @addr: address to delete 3447 * @alen: length of @addr 3448 * 3449 * Release reference to a secondary unicast address and remove it 3450 * from the device if the reference count drops to zero. 3451 * 3452 * The caller must hold the rtnl_mutex. 3453 */ 3454int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3455{ 3456 int err; 3457 3458 ASSERT_RTNL(); 3459 3460 netif_addr_lock_bh(dev); 3461 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3462 if (!err) 3463 __dev_set_rx_mode(dev); 3464 netif_addr_unlock_bh(dev); 3465 return err; 3466} 3467EXPORT_SYMBOL(dev_unicast_delete); 3468 3469/** 3470 * dev_unicast_add - add a secondary unicast address 3471 * @dev: device 3472 * @addr: address to add 3473 * @alen: length of @addr 3474 * 3475 * Add a secondary unicast address to the device or increase 3476 * the reference count if it already exists. 3477 * 3478 * The caller must hold the rtnl_mutex. 3479 */ 3480int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3481{ 3482 int err; 3483 3484 ASSERT_RTNL(); 3485 3486 netif_addr_lock_bh(dev); 3487 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3488 if (!err) 3489 __dev_set_rx_mode(dev); 3490 netif_addr_unlock_bh(dev); 3491 return err; 3492} 3493EXPORT_SYMBOL(dev_unicast_add); 3494 3495int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3496 struct dev_addr_list **from, int *from_count) 3497{ 3498 struct dev_addr_list *da, *next; 3499 int err = 0; 3500 3501 da = *from; 3502 while (da != NULL) { 3503 next = da->next; 3504 if (!da->da_synced) { 3505 err = __dev_addr_add(to, to_count, 3506 da->da_addr, da->da_addrlen, 0); 3507 if (err < 0) 3508 break; 3509 da->da_synced = 1; 3510 da->da_users++; 3511 } else if (da->da_users == 1) { 3512 __dev_addr_delete(to, to_count, 3513 da->da_addr, da->da_addrlen, 0); 3514 __dev_addr_delete(from, from_count, 3515 da->da_addr, da->da_addrlen, 0); 3516 } 3517 da = next; 3518 } 3519 return err; 3520} 3521 3522void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3523 struct dev_addr_list **from, int *from_count) 3524{ 3525 struct dev_addr_list *da, *next; 3526 3527 da = *from; 3528 while (da != NULL) { 3529 next = da->next; 3530 if (da->da_synced) { 3531 __dev_addr_delete(to, to_count, 3532 da->da_addr, da->da_addrlen, 0); 3533 da->da_synced = 0; 3534 __dev_addr_delete(from, from_count, 3535 da->da_addr, da->da_addrlen, 0); 3536 } 3537 da = next; 3538 } 3539} 3540 3541/** 3542 * dev_unicast_sync - Synchronize device's unicast list to another device 3543 * @to: destination device 3544 * @from: source device 3545 * 3546 * Add newly added addresses to the destination device and release 3547 * addresses that have no users left. The source device must be 3548 * locked by netif_tx_lock_bh. 3549 * 3550 * This function is intended to be called from the dev->set_rx_mode 3551 * function of layered software devices. 3552 */ 3553int dev_unicast_sync(struct net_device *to, struct net_device *from) 3554{ 3555 int err = 0; 3556 3557 netif_addr_lock_bh(to); 3558 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3559 &from->uc_list, &from->uc_count); 3560 if (!err) 3561 __dev_set_rx_mode(to); 3562 netif_addr_unlock_bh(to); 3563 return err; 3564} 3565EXPORT_SYMBOL(dev_unicast_sync); 3566 3567/** 3568 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3569 * @to: destination device 3570 * @from: source device 3571 * 3572 * Remove all addresses that were added to the destination device by 3573 * dev_unicast_sync(). This function is intended to be called from the 3574 * dev->stop function of layered software devices. 3575 */ 3576void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3577{ 3578 netif_addr_lock_bh(from); 3579 netif_addr_lock(to); 3580 3581 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3582 &from->uc_list, &from->uc_count); 3583 __dev_set_rx_mode(to); 3584 3585 netif_addr_unlock(to); 3586 netif_addr_unlock_bh(from); 3587} 3588EXPORT_SYMBOL(dev_unicast_unsync); 3589 3590static void __dev_addr_discard(struct dev_addr_list **list) 3591{ 3592 struct dev_addr_list *tmp; 3593 3594 while (*list != NULL) { 3595 tmp = *list; 3596 *list = tmp->next; 3597 if (tmp->da_users > tmp->da_gusers) 3598 printk("__dev_addr_discard: address leakage! " 3599 "da_users=%d\n", tmp->da_users); 3600 kfree(tmp); 3601 } 3602} 3603 3604static void dev_addr_discard(struct net_device *dev) 3605{ 3606 netif_addr_lock_bh(dev); 3607 3608 __dev_addr_discard(&dev->uc_list); 3609 dev->uc_count = 0; 3610 3611 __dev_addr_discard(&dev->mc_list); 3612 dev->mc_count = 0; 3613 3614 netif_addr_unlock_bh(dev); 3615} 3616 3617/** 3618 * dev_get_flags - get flags reported to userspace 3619 * @dev: device 3620 * 3621 * Get the combination of flag bits exported through APIs to userspace. 3622 */ 3623unsigned dev_get_flags(const struct net_device *dev) 3624{ 3625 unsigned flags; 3626 3627 flags = (dev->flags & ~(IFF_PROMISC | 3628 IFF_ALLMULTI | 3629 IFF_RUNNING | 3630 IFF_LOWER_UP | 3631 IFF_DORMANT)) | 3632 (dev->gflags & (IFF_PROMISC | 3633 IFF_ALLMULTI)); 3634 3635 if (netif_running(dev)) { 3636 if (netif_oper_up(dev)) 3637 flags |= IFF_RUNNING; 3638 if (netif_carrier_ok(dev)) 3639 flags |= IFF_LOWER_UP; 3640 if (netif_dormant(dev)) 3641 flags |= IFF_DORMANT; 3642 } 3643 3644 return flags; 3645} 3646 3647/** 3648 * dev_change_flags - change device settings 3649 * @dev: device 3650 * @flags: device state flags 3651 * 3652 * Change settings on device based state flags. The flags are 3653 * in the userspace exported format. 3654 */ 3655int dev_change_flags(struct net_device *dev, unsigned flags) 3656{ 3657 int ret, changes; 3658 int old_flags = dev->flags; 3659 3660 ASSERT_RTNL(); 3661 3662 /* 3663 * Set the flags on our device. 3664 */ 3665 3666 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3667 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3668 IFF_AUTOMEDIA)) | 3669 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3670 IFF_ALLMULTI)); 3671 3672 /* 3673 * Load in the correct multicast list now the flags have changed. 3674 */ 3675 3676 if ((old_flags ^ flags) & IFF_MULTICAST) 3677 dev_change_rx_flags(dev, IFF_MULTICAST); 3678 3679 dev_set_rx_mode(dev); 3680 3681 /* 3682 * Have we downed the interface. We handle IFF_UP ourselves 3683 * according to user attempts to set it, rather than blindly 3684 * setting it. 3685 */ 3686 3687 ret = 0; 3688 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3689 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3690 3691 if (!ret) 3692 dev_set_rx_mode(dev); 3693 } 3694 3695 if (dev->flags & IFF_UP && 3696 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3697 IFF_VOLATILE))) 3698 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3699 3700 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3701 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3702 dev->gflags ^= IFF_PROMISC; 3703 dev_set_promiscuity(dev, inc); 3704 } 3705 3706 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3707 is important. Some (broken) drivers set IFF_PROMISC, when 3708 IFF_ALLMULTI is requested not asking us and not reporting. 3709 */ 3710 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3711 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3712 dev->gflags ^= IFF_ALLMULTI; 3713 dev_set_allmulti(dev, inc); 3714 } 3715 3716 /* Exclude state transition flags, already notified */ 3717 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3718 if (changes) 3719 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3720 3721 return ret; 3722} 3723 3724/** 3725 * dev_set_mtu - Change maximum transfer unit 3726 * @dev: device 3727 * @new_mtu: new transfer unit 3728 * 3729 * Change the maximum transfer size of the network device. 3730 */ 3731int dev_set_mtu(struct net_device *dev, int new_mtu) 3732{ 3733 const struct net_device_ops *ops = dev->netdev_ops; 3734 int err; 3735 3736 if (new_mtu == dev->mtu) 3737 return 0; 3738 3739 /* MTU must be positive. */ 3740 if (new_mtu < 0) 3741 return -EINVAL; 3742 3743 if (!netif_device_present(dev)) 3744 return -ENODEV; 3745 3746 err = 0; 3747 if (ops->ndo_change_mtu) 3748 err = ops->ndo_change_mtu(dev, new_mtu); 3749 else 3750 dev->mtu = new_mtu; 3751 3752 if (!err && dev->flags & IFF_UP) 3753 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3754 return err; 3755} 3756 3757/** 3758 * dev_set_mac_address - Change Media Access Control Address 3759 * @dev: device 3760 * @sa: new address 3761 * 3762 * Change the hardware (MAC) address of the device 3763 */ 3764int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3765{ 3766 const struct net_device_ops *ops = dev->netdev_ops; 3767 int err; 3768 3769 if (!ops->ndo_set_mac_address) 3770 return -EOPNOTSUPP; 3771 if (sa->sa_family != dev->type) 3772 return -EINVAL; 3773 if (!netif_device_present(dev)) 3774 return -ENODEV; 3775 err = ops->ndo_set_mac_address(dev, sa); 3776 if (!err) 3777 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3778 return err; 3779} 3780 3781/* 3782 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3783 */ 3784static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3785{ 3786 int err; 3787 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3788 3789 if (!dev) 3790 return -ENODEV; 3791 3792 switch (cmd) { 3793 case SIOCGIFFLAGS: /* Get interface flags */ 3794 ifr->ifr_flags = dev_get_flags(dev); 3795 return 0; 3796 3797 case SIOCGIFMETRIC: /* Get the metric on the interface 3798 (currently unused) */ 3799 ifr->ifr_metric = 0; 3800 return 0; 3801 3802 case SIOCGIFMTU: /* Get the MTU of a device */ 3803 ifr->ifr_mtu = dev->mtu; 3804 return 0; 3805 3806 case SIOCGIFHWADDR: 3807 if (!dev->addr_len) 3808 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3809 else 3810 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3811 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3812 ifr->ifr_hwaddr.sa_family = dev->type; 3813 return 0; 3814 3815 case SIOCGIFSLAVE: 3816 err = -EINVAL; 3817 break; 3818 3819 case SIOCGIFMAP: 3820 ifr->ifr_map.mem_start = dev->mem_start; 3821 ifr->ifr_map.mem_end = dev->mem_end; 3822 ifr->ifr_map.base_addr = dev->base_addr; 3823 ifr->ifr_map.irq = dev->irq; 3824 ifr->ifr_map.dma = dev->dma; 3825 ifr->ifr_map.port = dev->if_port; 3826 return 0; 3827 3828 case SIOCGIFINDEX: 3829 ifr->ifr_ifindex = dev->ifindex; 3830 return 0; 3831 3832 case SIOCGIFTXQLEN: 3833 ifr->ifr_qlen = dev->tx_queue_len; 3834 return 0; 3835 3836 default: 3837 /* dev_ioctl() should ensure this case 3838 * is never reached 3839 */ 3840 WARN_ON(1); 3841 err = -EINVAL; 3842 break; 3843 3844 } 3845 return err; 3846} 3847 3848/* 3849 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3850 */ 3851static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3852{ 3853 int err; 3854 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3855 const struct net_device_ops *ops; 3856 3857 if (!dev) 3858 return -ENODEV; 3859 3860 ops = dev->netdev_ops; 3861 3862 switch (cmd) { 3863 case SIOCSIFFLAGS: /* Set interface flags */ 3864 return dev_change_flags(dev, ifr->ifr_flags); 3865 3866 case SIOCSIFMETRIC: /* Set the metric on the interface 3867 (currently unused) */ 3868 return -EOPNOTSUPP; 3869 3870 case SIOCSIFMTU: /* Set the MTU of a device */ 3871 return dev_set_mtu(dev, ifr->ifr_mtu); 3872 3873 case SIOCSIFHWADDR: 3874 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3875 3876 case SIOCSIFHWBROADCAST: 3877 if (ifr->ifr_hwaddr.sa_family != dev->type) 3878 return -EINVAL; 3879 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3880 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3881 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3882 return 0; 3883 3884 case SIOCSIFMAP: 3885 if (ops->ndo_set_config) { 3886 if (!netif_device_present(dev)) 3887 return -ENODEV; 3888 return ops->ndo_set_config(dev, &ifr->ifr_map); 3889 } 3890 return -EOPNOTSUPP; 3891 3892 case SIOCADDMULTI: 3893 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3894 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3895 return -EINVAL; 3896 if (!netif_device_present(dev)) 3897 return -ENODEV; 3898 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3899 dev->addr_len, 1); 3900 3901 case SIOCDELMULTI: 3902 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3903 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3904 return -EINVAL; 3905 if (!netif_device_present(dev)) 3906 return -ENODEV; 3907 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3908 dev->addr_len, 1); 3909 3910 case SIOCSIFTXQLEN: 3911 if (ifr->ifr_qlen < 0) 3912 return -EINVAL; 3913 dev->tx_queue_len = ifr->ifr_qlen; 3914 return 0; 3915 3916 case SIOCSIFNAME: 3917 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3918 return dev_change_name(dev, ifr->ifr_newname); 3919 3920 /* 3921 * Unknown or private ioctl 3922 */ 3923 3924 default: 3925 if ((cmd >= SIOCDEVPRIVATE && 3926 cmd <= SIOCDEVPRIVATE + 15) || 3927 cmd == SIOCBONDENSLAVE || 3928 cmd == SIOCBONDRELEASE || 3929 cmd == SIOCBONDSETHWADDR || 3930 cmd == SIOCBONDSLAVEINFOQUERY || 3931 cmd == SIOCBONDINFOQUERY || 3932 cmd == SIOCBONDCHANGEACTIVE || 3933 cmd == SIOCGMIIPHY || 3934 cmd == SIOCGMIIREG || 3935 cmd == SIOCSMIIREG || 3936 cmd == SIOCBRADDIF || 3937 cmd == SIOCBRDELIF || 3938 cmd == SIOCWANDEV) { 3939 err = -EOPNOTSUPP; 3940 if (ops->ndo_do_ioctl) { 3941 if (netif_device_present(dev)) 3942 err = ops->ndo_do_ioctl(dev, ifr, cmd); 3943 else 3944 err = -ENODEV; 3945 } 3946 } else 3947 err = -EINVAL; 3948 3949 } 3950 return err; 3951} 3952 3953/* 3954 * This function handles all "interface"-type I/O control requests. The actual 3955 * 'doing' part of this is dev_ifsioc above. 3956 */ 3957 3958/** 3959 * dev_ioctl - network device ioctl 3960 * @net: the applicable net namespace 3961 * @cmd: command to issue 3962 * @arg: pointer to a struct ifreq in user space 3963 * 3964 * Issue ioctl functions to devices. This is normally called by the 3965 * user space syscall interfaces but can sometimes be useful for 3966 * other purposes. The return value is the return from the syscall if 3967 * positive or a negative errno code on error. 3968 */ 3969 3970int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3971{ 3972 struct ifreq ifr; 3973 int ret; 3974 char *colon; 3975 3976 /* One special case: SIOCGIFCONF takes ifconf argument 3977 and requires shared lock, because it sleeps writing 3978 to user space. 3979 */ 3980 3981 if (cmd == SIOCGIFCONF) { 3982 rtnl_lock(); 3983 ret = dev_ifconf(net, (char __user *) arg); 3984 rtnl_unlock(); 3985 return ret; 3986 } 3987 if (cmd == SIOCGIFNAME) 3988 return dev_ifname(net, (struct ifreq __user *)arg); 3989 3990 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3991 return -EFAULT; 3992 3993 ifr.ifr_name[IFNAMSIZ-1] = 0; 3994 3995 colon = strchr(ifr.ifr_name, ':'); 3996 if (colon) 3997 *colon = 0; 3998 3999 /* 4000 * See which interface the caller is talking about. 4001 */ 4002 4003 switch (cmd) { 4004 /* 4005 * These ioctl calls: 4006 * - can be done by all. 4007 * - atomic and do not require locking. 4008 * - return a value 4009 */ 4010 case SIOCGIFFLAGS: 4011 case SIOCGIFMETRIC: 4012 case SIOCGIFMTU: 4013 case SIOCGIFHWADDR: 4014 case SIOCGIFSLAVE: 4015 case SIOCGIFMAP: 4016 case SIOCGIFINDEX: 4017 case SIOCGIFTXQLEN: 4018 dev_load(net, ifr.ifr_name); 4019 read_lock(&dev_base_lock); 4020 ret = dev_ifsioc_locked(net, &ifr, cmd); 4021 read_unlock(&dev_base_lock); 4022 if (!ret) { 4023 if (colon) 4024 *colon = ':'; 4025 if (copy_to_user(arg, &ifr, 4026 sizeof(struct ifreq))) 4027 ret = -EFAULT; 4028 } 4029 return ret; 4030 4031 case SIOCETHTOOL: 4032 dev_load(net, ifr.ifr_name); 4033 rtnl_lock(); 4034 ret = dev_ethtool(net, &ifr); 4035 rtnl_unlock(); 4036 if (!ret) { 4037 if (colon) 4038 *colon = ':'; 4039 if (copy_to_user(arg, &ifr, 4040 sizeof(struct ifreq))) 4041 ret = -EFAULT; 4042 } 4043 return ret; 4044 4045 /* 4046 * These ioctl calls: 4047 * - require superuser power. 4048 * - require strict serialization. 4049 * - return a value 4050 */ 4051 case SIOCGMIIPHY: 4052 case SIOCGMIIREG: 4053 case SIOCSIFNAME: 4054 if (!capable(CAP_NET_ADMIN)) 4055 return -EPERM; 4056 dev_load(net, ifr.ifr_name); 4057 rtnl_lock(); 4058 ret = dev_ifsioc(net, &ifr, cmd); 4059 rtnl_unlock(); 4060 if (!ret) { 4061 if (colon) 4062 *colon = ':'; 4063 if (copy_to_user(arg, &ifr, 4064 sizeof(struct ifreq))) 4065 ret = -EFAULT; 4066 } 4067 return ret; 4068 4069 /* 4070 * These ioctl calls: 4071 * - require superuser power. 4072 * - require strict serialization. 4073 * - do not return a value 4074 */ 4075 case SIOCSIFFLAGS: 4076 case SIOCSIFMETRIC: 4077 case SIOCSIFMTU: 4078 case SIOCSIFMAP: 4079 case SIOCSIFHWADDR: 4080 case SIOCSIFSLAVE: 4081 case SIOCADDMULTI: 4082 case SIOCDELMULTI: 4083 case SIOCSIFHWBROADCAST: 4084 case SIOCSIFTXQLEN: 4085 case SIOCSMIIREG: 4086 case SIOCBONDENSLAVE: 4087 case SIOCBONDRELEASE: 4088 case SIOCBONDSETHWADDR: 4089 case SIOCBONDCHANGEACTIVE: 4090 case SIOCBRADDIF: 4091 case SIOCBRDELIF: 4092 if (!capable(CAP_NET_ADMIN)) 4093 return -EPERM; 4094 /* fall through */ 4095 case SIOCBONDSLAVEINFOQUERY: 4096 case SIOCBONDINFOQUERY: 4097 dev_load(net, ifr.ifr_name); 4098 rtnl_lock(); 4099 ret = dev_ifsioc(net, &ifr, cmd); 4100 rtnl_unlock(); 4101 return ret; 4102 4103 case SIOCGIFMEM: 4104 /* Get the per device memory space. We can add this but 4105 * currently do not support it */ 4106 case SIOCSIFMEM: 4107 /* Set the per device memory buffer space. 4108 * Not applicable in our case */ 4109 case SIOCSIFLINK: 4110 return -EINVAL; 4111 4112 /* 4113 * Unknown or private ioctl. 4114 */ 4115 default: 4116 if (cmd == SIOCWANDEV || 4117 (cmd >= SIOCDEVPRIVATE && 4118 cmd <= SIOCDEVPRIVATE + 15)) { 4119 dev_load(net, ifr.ifr_name); 4120 rtnl_lock(); 4121 ret = dev_ifsioc(net, &ifr, cmd); 4122 rtnl_unlock(); 4123 if (!ret && copy_to_user(arg, &ifr, 4124 sizeof(struct ifreq))) 4125 ret = -EFAULT; 4126 return ret; 4127 } 4128 /* Take care of Wireless Extensions */ 4129 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4130 return wext_handle_ioctl(net, &ifr, cmd, arg); 4131 return -EINVAL; 4132 } 4133} 4134 4135 4136/** 4137 * dev_new_index - allocate an ifindex 4138 * @net: the applicable net namespace 4139 * 4140 * Returns a suitable unique value for a new device interface 4141 * number. The caller must hold the rtnl semaphore or the 4142 * dev_base_lock to be sure it remains unique. 4143 */ 4144static int dev_new_index(struct net *net) 4145{ 4146 static int ifindex; 4147 for (;;) { 4148 if (++ifindex <= 0) 4149 ifindex = 1; 4150 if (!__dev_get_by_index(net, ifindex)) 4151 return ifindex; 4152 } 4153} 4154 4155/* Delayed registration/unregisteration */ 4156static LIST_HEAD(net_todo_list); 4157 4158static void net_set_todo(struct net_device *dev) 4159{ 4160 list_add_tail(&dev->todo_list, &net_todo_list); 4161} 4162 4163static void rollback_registered(struct net_device *dev) 4164{ 4165 BUG_ON(dev_boot_phase); 4166 ASSERT_RTNL(); 4167 4168 /* Some devices call without registering for initialization unwind. */ 4169 if (dev->reg_state == NETREG_UNINITIALIZED) { 4170 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4171 "was registered\n", dev->name, dev); 4172 4173 WARN_ON(1); 4174 return; 4175 } 4176 4177 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4178 4179 /* If device is running, close it first. */ 4180 dev_close(dev); 4181 4182 /* And unlink it from device chain. */ 4183 unlist_netdevice(dev); 4184 4185 dev->reg_state = NETREG_UNREGISTERING; 4186 4187 synchronize_net(); 4188 4189 /* Shutdown queueing discipline. */ 4190 dev_shutdown(dev); 4191 4192 4193 /* Notify protocols, that we are about to destroy 4194 this device. They should clean all the things. 4195 */ 4196 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4197 4198 /* 4199 * Flush the unicast and multicast chains 4200 */ 4201 dev_addr_discard(dev); 4202 4203 if (dev->netdev_ops->ndo_uninit) 4204 dev->netdev_ops->ndo_uninit(dev); 4205 4206 /* Notifier chain MUST detach us from master device. */ 4207 WARN_ON(dev->master); 4208 4209 /* Remove entries from kobject tree */ 4210 netdev_unregister_kobject(dev); 4211 4212 synchronize_net(); 4213 4214 dev_put(dev); 4215} 4216 4217static void __netdev_init_queue_locks_one(struct net_device *dev, 4218 struct netdev_queue *dev_queue, 4219 void *_unused) 4220{ 4221 spin_lock_init(&dev_queue->_xmit_lock); 4222 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4223 dev_queue->xmit_lock_owner = -1; 4224} 4225 4226static void netdev_init_queue_locks(struct net_device *dev) 4227{ 4228 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4229 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4230} 4231 4232unsigned long netdev_fix_features(unsigned long features, const char *name) 4233{ 4234 /* Fix illegal SG+CSUM combinations. */ 4235 if ((features & NETIF_F_SG) && 4236 !(features & NETIF_F_ALL_CSUM)) { 4237 if (name) 4238 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4239 "checksum feature.\n", name); 4240 features &= ~NETIF_F_SG; 4241 } 4242 4243 /* TSO requires that SG is present as well. */ 4244 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4245 if (name) 4246 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4247 "SG feature.\n", name); 4248 features &= ~NETIF_F_TSO; 4249 } 4250 4251 if (features & NETIF_F_UFO) { 4252 if (!(features & NETIF_F_GEN_CSUM)) { 4253 if (name) 4254 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4255 "since no NETIF_F_HW_CSUM feature.\n", 4256 name); 4257 features &= ~NETIF_F_UFO; 4258 } 4259 4260 if (!(features & NETIF_F_SG)) { 4261 if (name) 4262 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4263 "since no NETIF_F_SG feature.\n", name); 4264 features &= ~NETIF_F_UFO; 4265 } 4266 } 4267 4268 return features; 4269} 4270EXPORT_SYMBOL(netdev_fix_features); 4271 4272/** 4273 * register_netdevice - register a network device 4274 * @dev: device to register 4275 * 4276 * Take a completed network device structure and add it to the kernel 4277 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4278 * chain. 0 is returned on success. A negative errno code is returned 4279 * on a failure to set up the device, or if the name is a duplicate. 4280 * 4281 * Callers must hold the rtnl semaphore. You may want 4282 * register_netdev() instead of this. 4283 * 4284 * BUGS: 4285 * The locking appears insufficient to guarantee two parallel registers 4286 * will not get the same name. 4287 */ 4288 4289int register_netdevice(struct net_device *dev) 4290{ 4291 struct hlist_head *head; 4292 struct hlist_node *p; 4293 int ret; 4294 struct net *net = dev_net(dev); 4295 4296 BUG_ON(dev_boot_phase); 4297 ASSERT_RTNL(); 4298 4299 might_sleep(); 4300 4301 /* When net_device's are persistent, this will be fatal. */ 4302 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4303 BUG_ON(!net); 4304 4305 spin_lock_init(&dev->addr_list_lock); 4306 netdev_set_addr_lockdep_class(dev); 4307 netdev_init_queue_locks(dev); 4308 4309 dev->iflink = -1; 4310 4311#ifdef CONFIG_COMPAT_NET_DEV_OPS 4312 /* Netdevice_ops API compatiability support. 4313 * This is temporary until all network devices are converted. 4314 */ 4315 if (dev->netdev_ops) { 4316 const struct net_device_ops *ops = dev->netdev_ops; 4317 4318 dev->init = ops->ndo_init; 4319 dev->uninit = ops->ndo_uninit; 4320 dev->open = ops->ndo_open; 4321 dev->change_rx_flags = ops->ndo_change_rx_flags; 4322 dev->set_rx_mode = ops->ndo_set_rx_mode; 4323 dev->set_multicast_list = ops->ndo_set_multicast_list; 4324 dev->set_mac_address = ops->ndo_set_mac_address; 4325 dev->validate_addr = ops->ndo_validate_addr; 4326 dev->do_ioctl = ops->ndo_do_ioctl; 4327 dev->set_config = ops->ndo_set_config; 4328 dev->change_mtu = ops->ndo_change_mtu; 4329 dev->tx_timeout = ops->ndo_tx_timeout; 4330 dev->get_stats = ops->ndo_get_stats; 4331 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4332 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4333 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4334#ifdef CONFIG_NET_POLL_CONTROLLER 4335 dev->poll_controller = ops->ndo_poll_controller; 4336#endif 4337 } else { 4338 char drivername[64]; 4339 pr_info("%s (%s): not using net_device_ops yet\n", 4340 dev->name, netdev_drivername(dev, drivername, 64)); 4341 4342 /* This works only because net_device_ops and the 4343 compatiablity structure are the same. */ 4344 dev->netdev_ops = (void *) &(dev->init); 4345 } 4346#endif 4347 4348 /* Init, if this function is available */ 4349 if (dev->netdev_ops->ndo_init) { 4350 ret = dev->netdev_ops->ndo_init(dev); 4351 if (ret) { 4352 if (ret > 0) 4353 ret = -EIO; 4354 goto out; 4355 } 4356 } 4357 4358 if (!dev_valid_name(dev->name)) { 4359 ret = -EINVAL; 4360 goto err_uninit; 4361 } 4362 4363 dev->ifindex = dev_new_index(net); 4364 if (dev->iflink == -1) 4365 dev->iflink = dev->ifindex; 4366 4367 /* Check for existence of name */ 4368 head = dev_name_hash(net, dev->name); 4369 hlist_for_each(p, head) { 4370 struct net_device *d 4371 = hlist_entry(p, struct net_device, name_hlist); 4372 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4373 ret = -EEXIST; 4374 goto err_uninit; 4375 } 4376 } 4377 4378 /* Fix illegal checksum combinations */ 4379 if ((dev->features & NETIF_F_HW_CSUM) && 4380 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4381 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4382 dev->name); 4383 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4384 } 4385 4386 if ((dev->features & NETIF_F_NO_CSUM) && 4387 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4388 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4389 dev->name); 4390 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4391 } 4392 4393 dev->features = netdev_fix_features(dev->features, dev->name); 4394 4395 /* Enable software GSO if SG is supported. */ 4396 if (dev->features & NETIF_F_SG) 4397 dev->features |= NETIF_F_GSO; 4398 4399 netdev_initialize_kobject(dev); 4400 ret = netdev_register_kobject(dev); 4401 if (ret) 4402 goto err_uninit; 4403 dev->reg_state = NETREG_REGISTERED; 4404 4405 /* 4406 * Default initial state at registry is that the 4407 * device is present. 4408 */ 4409 4410 set_bit(__LINK_STATE_PRESENT, &dev->state); 4411 4412 dev_init_scheduler(dev); 4413 dev_hold(dev); 4414 list_netdevice(dev); 4415 4416 /* Notify protocols, that a new device appeared. */ 4417 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4418 ret = notifier_to_errno(ret); 4419 if (ret) { 4420 rollback_registered(dev); 4421 dev->reg_state = NETREG_UNREGISTERED; 4422 } 4423 4424out: 4425 return ret; 4426 4427err_uninit: 4428 if (dev->netdev_ops->ndo_uninit) 4429 dev->netdev_ops->ndo_uninit(dev); 4430 goto out; 4431} 4432 4433/** 4434 * init_dummy_netdev - init a dummy network device for NAPI 4435 * @dev: device to init 4436 * 4437 * This takes a network device structure and initialize the minimum 4438 * amount of fields so it can be used to schedule NAPI polls without 4439 * registering a full blown interface. This is to be used by drivers 4440 * that need to tie several hardware interfaces to a single NAPI 4441 * poll scheduler due to HW limitations. 4442 */ 4443int init_dummy_netdev(struct net_device *dev) 4444{ 4445 /* Clear everything. Note we don't initialize spinlocks 4446 * are they aren't supposed to be taken by any of the 4447 * NAPI code and this dummy netdev is supposed to be 4448 * only ever used for NAPI polls 4449 */ 4450 memset(dev, 0, sizeof(struct net_device)); 4451 4452 /* make sure we BUG if trying to hit standard 4453 * register/unregister code path 4454 */ 4455 dev->reg_state = NETREG_DUMMY; 4456 4457 /* initialize the ref count */ 4458 atomic_set(&dev->refcnt, 1); 4459 4460 /* NAPI wants this */ 4461 INIT_LIST_HEAD(&dev->napi_list); 4462 4463 /* a dummy interface is started by default */ 4464 set_bit(__LINK_STATE_PRESENT, &dev->state); 4465 set_bit(__LINK_STATE_START, &dev->state); 4466 4467 return 0; 4468} 4469EXPORT_SYMBOL_GPL(init_dummy_netdev); 4470 4471 4472/** 4473 * register_netdev - register a network device 4474 * @dev: device to register 4475 * 4476 * Take a completed network device structure and add it to the kernel 4477 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4478 * chain. 0 is returned on success. A negative errno code is returned 4479 * on a failure to set up the device, or if the name is a duplicate. 4480 * 4481 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4482 * and expands the device name if you passed a format string to 4483 * alloc_netdev. 4484 */ 4485int register_netdev(struct net_device *dev) 4486{ 4487 int err; 4488 4489 rtnl_lock(); 4490 4491 /* 4492 * If the name is a format string the caller wants us to do a 4493 * name allocation. 4494 */ 4495 if (strchr(dev->name, '%')) { 4496 err = dev_alloc_name(dev, dev->name); 4497 if (err < 0) 4498 goto out; 4499 } 4500 4501 err = register_netdevice(dev); 4502out: 4503 rtnl_unlock(); 4504 return err; 4505} 4506EXPORT_SYMBOL(register_netdev); 4507 4508/* 4509 * netdev_wait_allrefs - wait until all references are gone. 4510 * 4511 * This is called when unregistering network devices. 4512 * 4513 * Any protocol or device that holds a reference should register 4514 * for netdevice notification, and cleanup and put back the 4515 * reference if they receive an UNREGISTER event. 4516 * We can get stuck here if buggy protocols don't correctly 4517 * call dev_put. 4518 */ 4519static void netdev_wait_allrefs(struct net_device *dev) 4520{ 4521 unsigned long rebroadcast_time, warning_time; 4522 4523 rebroadcast_time = warning_time = jiffies; 4524 while (atomic_read(&dev->refcnt) != 0) { 4525 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4526 rtnl_lock(); 4527 4528 /* Rebroadcast unregister notification */ 4529 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4530 4531 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4532 &dev->state)) { 4533 /* We must not have linkwatch events 4534 * pending on unregister. If this 4535 * happens, we simply run the queue 4536 * unscheduled, resulting in a noop 4537 * for this device. 4538 */ 4539 linkwatch_run_queue(); 4540 } 4541 4542 __rtnl_unlock(); 4543 4544 rebroadcast_time = jiffies; 4545 } 4546 4547 msleep(250); 4548 4549 if (time_after(jiffies, warning_time + 10 * HZ)) { 4550 printk(KERN_EMERG "unregister_netdevice: " 4551 "waiting for %s to become free. Usage " 4552 "count = %d\n", 4553 dev->name, atomic_read(&dev->refcnt)); 4554 warning_time = jiffies; 4555 } 4556 } 4557} 4558 4559/* The sequence is: 4560 * 4561 * rtnl_lock(); 4562 * ... 4563 * register_netdevice(x1); 4564 * register_netdevice(x2); 4565 * ... 4566 * unregister_netdevice(y1); 4567 * unregister_netdevice(y2); 4568 * ... 4569 * rtnl_unlock(); 4570 * free_netdev(y1); 4571 * free_netdev(y2); 4572 * 4573 * We are invoked by rtnl_unlock(). 4574 * This allows us to deal with problems: 4575 * 1) We can delete sysfs objects which invoke hotplug 4576 * without deadlocking with linkwatch via keventd. 4577 * 2) Since we run with the RTNL semaphore not held, we can sleep 4578 * safely in order to wait for the netdev refcnt to drop to zero. 4579 * 4580 * We must not return until all unregister events added during 4581 * the interval the lock was held have been completed. 4582 */ 4583void netdev_run_todo(void) 4584{ 4585 struct list_head list; 4586 4587 /* Snapshot list, allow later requests */ 4588 list_replace_init(&net_todo_list, &list); 4589 4590 __rtnl_unlock(); 4591 4592 while (!list_empty(&list)) { 4593 struct net_device *dev 4594 = list_entry(list.next, struct net_device, todo_list); 4595 list_del(&dev->todo_list); 4596 4597 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4598 printk(KERN_ERR "network todo '%s' but state %d\n", 4599 dev->name, dev->reg_state); 4600 dump_stack(); 4601 continue; 4602 } 4603 4604 dev->reg_state = NETREG_UNREGISTERED; 4605 4606 on_each_cpu(flush_backlog, dev, 1); 4607 4608 netdev_wait_allrefs(dev); 4609 4610 /* paranoia */ 4611 BUG_ON(atomic_read(&dev->refcnt)); 4612 WARN_ON(dev->ip_ptr); 4613 WARN_ON(dev->ip6_ptr); 4614 WARN_ON(dev->dn_ptr); 4615 4616 if (dev->destructor) 4617 dev->destructor(dev); 4618 4619 /* Free network device */ 4620 kobject_put(&dev->dev.kobj); 4621 } 4622} 4623 4624/** 4625 * dev_get_stats - get network device statistics 4626 * @dev: device to get statistics from 4627 * 4628 * Get network statistics from device. The device driver may provide 4629 * its own method by setting dev->netdev_ops->get_stats; otherwise 4630 * the internal statistics structure is used. 4631 */ 4632const struct net_device_stats *dev_get_stats(struct net_device *dev) 4633 { 4634 const struct net_device_ops *ops = dev->netdev_ops; 4635 4636 if (ops->ndo_get_stats) 4637 return ops->ndo_get_stats(dev); 4638 else 4639 return &dev->stats; 4640} 4641EXPORT_SYMBOL(dev_get_stats); 4642 4643static void netdev_init_one_queue(struct net_device *dev, 4644 struct netdev_queue *queue, 4645 void *_unused) 4646{ 4647 queue->dev = dev; 4648} 4649 4650static void netdev_init_queues(struct net_device *dev) 4651{ 4652 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4653 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4654 spin_lock_init(&dev->tx_global_lock); 4655} 4656 4657/** 4658 * alloc_netdev_mq - allocate network device 4659 * @sizeof_priv: size of private data to allocate space for 4660 * @name: device name format string 4661 * @setup: callback to initialize device 4662 * @queue_count: the number of subqueues to allocate 4663 * 4664 * Allocates a struct net_device with private data area for driver use 4665 * and performs basic initialization. Also allocates subquue structs 4666 * for each queue on the device at the end of the netdevice. 4667 */ 4668struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4669 void (*setup)(struct net_device *), unsigned int queue_count) 4670{ 4671 struct netdev_queue *tx; 4672 struct net_device *dev; 4673 size_t alloc_size; 4674 void *p; 4675 4676 BUG_ON(strlen(name) >= sizeof(dev->name)); 4677 4678 alloc_size = sizeof(struct net_device); 4679 if (sizeof_priv) { 4680 /* ensure 32-byte alignment of private area */ 4681 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4682 alloc_size += sizeof_priv; 4683 } 4684 /* ensure 32-byte alignment of whole construct */ 4685 alloc_size += NETDEV_ALIGN_CONST; 4686 4687 p = kzalloc(alloc_size, GFP_KERNEL); 4688 if (!p) { 4689 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4690 return NULL; 4691 } 4692 4693 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4694 if (!tx) { 4695 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4696 "tx qdiscs.\n"); 4697 kfree(p); 4698 return NULL; 4699 } 4700 4701 dev = (struct net_device *) 4702 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4703 dev->padded = (char *)dev - (char *)p; 4704 dev_net_set(dev, &init_net); 4705 4706 dev->_tx = tx; 4707 dev->num_tx_queues = queue_count; 4708 dev->real_num_tx_queues = queue_count; 4709 4710 dev->gso_max_size = GSO_MAX_SIZE; 4711 4712 netdev_init_queues(dev); 4713 4714 INIT_LIST_HEAD(&dev->napi_list); 4715 setup(dev); 4716 strcpy(dev->name, name); 4717 return dev; 4718} 4719EXPORT_SYMBOL(alloc_netdev_mq); 4720 4721/** 4722 * free_netdev - free network device 4723 * @dev: device 4724 * 4725 * This function does the last stage of destroying an allocated device 4726 * interface. The reference to the device object is released. 4727 * If this is the last reference then it will be freed. 4728 */ 4729void free_netdev(struct net_device *dev) 4730{ 4731 struct napi_struct *p, *n; 4732 4733 release_net(dev_net(dev)); 4734 4735 kfree(dev->_tx); 4736 4737 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 4738 netif_napi_del(p); 4739 4740 /* Compatibility with error handling in drivers */ 4741 if (dev->reg_state == NETREG_UNINITIALIZED) { 4742 kfree((char *)dev - dev->padded); 4743 return; 4744 } 4745 4746 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4747 dev->reg_state = NETREG_RELEASED; 4748 4749 /* will free via device release */ 4750 put_device(&dev->dev); 4751} 4752 4753/** 4754 * synchronize_net - Synchronize with packet receive processing 4755 * 4756 * Wait for packets currently being received to be done. 4757 * Does not block later packets from starting. 4758 */ 4759void synchronize_net(void) 4760{ 4761 might_sleep(); 4762 synchronize_rcu(); 4763} 4764 4765/** 4766 * unregister_netdevice - remove device from the kernel 4767 * @dev: device 4768 * 4769 * This function shuts down a device interface and removes it 4770 * from the kernel tables. 4771 * 4772 * Callers must hold the rtnl semaphore. You may want 4773 * unregister_netdev() instead of this. 4774 */ 4775 4776void unregister_netdevice(struct net_device *dev) 4777{ 4778 ASSERT_RTNL(); 4779 4780 rollback_registered(dev); 4781 /* Finish processing unregister after unlock */ 4782 net_set_todo(dev); 4783} 4784 4785/** 4786 * unregister_netdev - remove device from the kernel 4787 * @dev: device 4788 * 4789 * This function shuts down a device interface and removes it 4790 * from the kernel tables. 4791 * 4792 * This is just a wrapper for unregister_netdevice that takes 4793 * the rtnl semaphore. In general you want to use this and not 4794 * unregister_netdevice. 4795 */ 4796void unregister_netdev(struct net_device *dev) 4797{ 4798 rtnl_lock(); 4799 unregister_netdevice(dev); 4800 rtnl_unlock(); 4801} 4802 4803EXPORT_SYMBOL(unregister_netdev); 4804 4805/** 4806 * dev_change_net_namespace - move device to different nethost namespace 4807 * @dev: device 4808 * @net: network namespace 4809 * @pat: If not NULL name pattern to try if the current device name 4810 * is already taken in the destination network namespace. 4811 * 4812 * This function shuts down a device interface and moves it 4813 * to a new network namespace. On success 0 is returned, on 4814 * a failure a netagive errno code is returned. 4815 * 4816 * Callers must hold the rtnl semaphore. 4817 */ 4818 4819int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4820{ 4821 char buf[IFNAMSIZ]; 4822 const char *destname; 4823 int err; 4824 4825 ASSERT_RTNL(); 4826 4827 /* Don't allow namespace local devices to be moved. */ 4828 err = -EINVAL; 4829 if (dev->features & NETIF_F_NETNS_LOCAL) 4830 goto out; 4831 4832#ifdef CONFIG_SYSFS 4833 /* Don't allow real devices to be moved when sysfs 4834 * is enabled. 4835 */ 4836 err = -EINVAL; 4837 if (dev->dev.parent) 4838 goto out; 4839#endif 4840 4841 /* Ensure the device has been registrered */ 4842 err = -EINVAL; 4843 if (dev->reg_state != NETREG_REGISTERED) 4844 goto out; 4845 4846 /* Get out if there is nothing todo */ 4847 err = 0; 4848 if (net_eq(dev_net(dev), net)) 4849 goto out; 4850 4851 /* Pick the destination device name, and ensure 4852 * we can use it in the destination network namespace. 4853 */ 4854 err = -EEXIST; 4855 destname = dev->name; 4856 if (__dev_get_by_name(net, destname)) { 4857 /* We get here if we can't use the current device name */ 4858 if (!pat) 4859 goto out; 4860 if (!dev_valid_name(pat)) 4861 goto out; 4862 if (strchr(pat, '%')) { 4863 if (__dev_alloc_name(net, pat, buf) < 0) 4864 goto out; 4865 destname = buf; 4866 } else 4867 destname = pat; 4868 if (__dev_get_by_name(net, destname)) 4869 goto out; 4870 } 4871 4872 /* 4873 * And now a mini version of register_netdevice unregister_netdevice. 4874 */ 4875 4876 /* If device is running close it first. */ 4877 dev_close(dev); 4878 4879 /* And unlink it from device chain */ 4880 err = -ENODEV; 4881 unlist_netdevice(dev); 4882 4883 synchronize_net(); 4884 4885 /* Shutdown queueing discipline. */ 4886 dev_shutdown(dev); 4887 4888 /* Notify protocols, that we are about to destroy 4889 this device. They should clean all the things. 4890 */ 4891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4892 4893 /* 4894 * Flush the unicast and multicast chains 4895 */ 4896 dev_addr_discard(dev); 4897 4898 netdev_unregister_kobject(dev); 4899 4900 /* Actually switch the network namespace */ 4901 dev_net_set(dev, net); 4902 4903 /* Assign the new device name */ 4904 if (destname != dev->name) 4905 strcpy(dev->name, destname); 4906 4907 /* If there is an ifindex conflict assign a new one */ 4908 if (__dev_get_by_index(net, dev->ifindex)) { 4909 int iflink = (dev->iflink == dev->ifindex); 4910 dev->ifindex = dev_new_index(net); 4911 if (iflink) 4912 dev->iflink = dev->ifindex; 4913 } 4914 4915 /* Fixup kobjects */ 4916 err = netdev_register_kobject(dev); 4917 WARN_ON(err); 4918 4919 /* Add the device back in the hashes */ 4920 list_netdevice(dev); 4921 4922 /* Notify protocols, that a new device appeared. */ 4923 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4924 4925 synchronize_net(); 4926 err = 0; 4927out: 4928 return err; 4929} 4930 4931static int dev_cpu_callback(struct notifier_block *nfb, 4932 unsigned long action, 4933 void *ocpu) 4934{ 4935 struct sk_buff **list_skb; 4936 struct Qdisc **list_net; 4937 struct sk_buff *skb; 4938 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4939 struct softnet_data *sd, *oldsd; 4940 4941 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4942 return NOTIFY_OK; 4943 4944 local_irq_disable(); 4945 cpu = smp_processor_id(); 4946 sd = &per_cpu(softnet_data, cpu); 4947 oldsd = &per_cpu(softnet_data, oldcpu); 4948 4949 /* Find end of our completion_queue. */ 4950 list_skb = &sd->completion_queue; 4951 while (*list_skb) 4952 list_skb = &(*list_skb)->next; 4953 /* Append completion queue from offline CPU. */ 4954 *list_skb = oldsd->completion_queue; 4955 oldsd->completion_queue = NULL; 4956 4957 /* Find end of our output_queue. */ 4958 list_net = &sd->output_queue; 4959 while (*list_net) 4960 list_net = &(*list_net)->next_sched; 4961 /* Append output queue from offline CPU. */ 4962 *list_net = oldsd->output_queue; 4963 oldsd->output_queue = NULL; 4964 4965 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4966 local_irq_enable(); 4967 4968 /* Process offline CPU's input_pkt_queue */ 4969 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4970 netif_rx(skb); 4971 4972 return NOTIFY_OK; 4973} 4974 4975 4976/** 4977 * netdev_increment_features - increment feature set by one 4978 * @all: current feature set 4979 * @one: new feature set 4980 * @mask: mask feature set 4981 * 4982 * Computes a new feature set after adding a device with feature set 4983 * @one to the master device with current feature set @all. Will not 4984 * enable anything that is off in @mask. Returns the new feature set. 4985 */ 4986unsigned long netdev_increment_features(unsigned long all, unsigned long one, 4987 unsigned long mask) 4988{ 4989 /* If device needs checksumming, downgrade to it. */ 4990 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4991 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 4992 else if (mask & NETIF_F_ALL_CSUM) { 4993 /* If one device supports v4/v6 checksumming, set for all. */ 4994 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 4995 !(all & NETIF_F_GEN_CSUM)) { 4996 all &= ~NETIF_F_ALL_CSUM; 4997 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 4998 } 4999 5000 /* If one device supports hw checksumming, set for all. */ 5001 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5002 all &= ~NETIF_F_ALL_CSUM; 5003 all |= NETIF_F_HW_CSUM; 5004 } 5005 } 5006 5007 one |= NETIF_F_ALL_CSUM; 5008 5009 one |= all & NETIF_F_ONE_FOR_ALL; 5010 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5011 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5012 5013 return all; 5014} 5015EXPORT_SYMBOL(netdev_increment_features); 5016 5017static struct hlist_head *netdev_create_hash(void) 5018{ 5019 int i; 5020 struct hlist_head *hash; 5021 5022 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5023 if (hash != NULL) 5024 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5025 INIT_HLIST_HEAD(&hash[i]); 5026 5027 return hash; 5028} 5029 5030/* Initialize per network namespace state */ 5031static int __net_init netdev_init(struct net *net) 5032{ 5033 INIT_LIST_HEAD(&net->dev_base_head); 5034 5035 net->dev_name_head = netdev_create_hash(); 5036 if (net->dev_name_head == NULL) 5037 goto err_name; 5038 5039 net->dev_index_head = netdev_create_hash(); 5040 if (net->dev_index_head == NULL) 5041 goto err_idx; 5042 5043 return 0; 5044 5045err_idx: 5046 kfree(net->dev_name_head); 5047err_name: 5048 return -ENOMEM; 5049} 5050 5051/** 5052 * netdev_drivername - network driver for the device 5053 * @dev: network device 5054 * @buffer: buffer for resulting name 5055 * @len: size of buffer 5056 * 5057 * Determine network driver for device. 5058 */ 5059char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5060{ 5061 const struct device_driver *driver; 5062 const struct device *parent; 5063 5064 if (len <= 0 || !buffer) 5065 return buffer; 5066 buffer[0] = 0; 5067 5068 parent = dev->dev.parent; 5069 5070 if (!parent) 5071 return buffer; 5072 5073 driver = parent->driver; 5074 if (driver && driver->name) 5075 strlcpy(buffer, driver->name, len); 5076 return buffer; 5077} 5078 5079static void __net_exit netdev_exit(struct net *net) 5080{ 5081 kfree(net->dev_name_head); 5082 kfree(net->dev_index_head); 5083} 5084 5085static struct pernet_operations __net_initdata netdev_net_ops = { 5086 .init = netdev_init, 5087 .exit = netdev_exit, 5088}; 5089 5090static void __net_exit default_device_exit(struct net *net) 5091{ 5092 struct net_device *dev; 5093 /* 5094 * Push all migratable of the network devices back to the 5095 * initial network namespace 5096 */ 5097 rtnl_lock(); 5098restart: 5099 for_each_netdev(net, dev) { 5100 int err; 5101 char fb_name[IFNAMSIZ]; 5102 5103 /* Ignore unmoveable devices (i.e. loopback) */ 5104 if (dev->features & NETIF_F_NETNS_LOCAL) 5105 continue; 5106 5107 /* Delete virtual devices */ 5108 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5109 dev->rtnl_link_ops->dellink(dev); 5110 goto restart; 5111 } 5112 5113 /* Push remaing network devices to init_net */ 5114 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5115 err = dev_change_net_namespace(dev, &init_net, fb_name); 5116 if (err) { 5117 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5118 __func__, dev->name, err); 5119 BUG(); 5120 } 5121 goto restart; 5122 } 5123 rtnl_unlock(); 5124} 5125 5126static struct pernet_operations __net_initdata default_device_ops = { 5127 .exit = default_device_exit, 5128}; 5129 5130/* 5131 * Initialize the DEV module. At boot time this walks the device list and 5132 * unhooks any devices that fail to initialise (normally hardware not 5133 * present) and leaves us with a valid list of present and active devices. 5134 * 5135 */ 5136 5137/* 5138 * This is called single threaded during boot, so no need 5139 * to take the rtnl semaphore. 5140 */ 5141static int __init net_dev_init(void) 5142{ 5143 int i, rc = -ENOMEM; 5144 5145 BUG_ON(!dev_boot_phase); 5146 5147 if (dev_proc_init()) 5148 goto out; 5149 5150 if (netdev_kobject_init()) 5151 goto out; 5152 5153 INIT_LIST_HEAD(&ptype_all); 5154 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5155 INIT_LIST_HEAD(&ptype_base[i]); 5156 5157 if (register_pernet_subsys(&netdev_net_ops)) 5158 goto out; 5159 5160 /* 5161 * Initialise the packet receive queues. 5162 */ 5163 5164 for_each_possible_cpu(i) { 5165 struct softnet_data *queue; 5166 5167 queue = &per_cpu(softnet_data, i); 5168 skb_queue_head_init(&queue->input_pkt_queue); 5169 queue->completion_queue = NULL; 5170 INIT_LIST_HEAD(&queue->poll_list); 5171 5172 queue->backlog.poll = process_backlog; 5173 queue->backlog.weight = weight_p; 5174 queue->backlog.gro_list = NULL; 5175 } 5176 5177 dev_boot_phase = 0; 5178 5179 /* The loopback device is special if any other network devices 5180 * is present in a network namespace the loopback device must 5181 * be present. Since we now dynamically allocate and free the 5182 * loopback device ensure this invariant is maintained by 5183 * keeping the loopback device as the first device on the 5184 * list of network devices. Ensuring the loopback devices 5185 * is the first device that appears and the last network device 5186 * that disappears. 5187 */ 5188 if (register_pernet_device(&loopback_net_ops)) 5189 goto out; 5190 5191 if (register_pernet_device(&default_device_ops)) 5192 goto out; 5193 5194 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5195 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5196 5197 hotcpu_notifier(dev_cpu_callback, 0); 5198 dst_init(); 5199 dev_mcast_init(); 5200 rc = 0; 5201out: 5202 return rc; 5203} 5204 5205subsys_initcall(net_dev_init); 5206 5207EXPORT_SYMBOL(__dev_get_by_index); 5208EXPORT_SYMBOL(__dev_get_by_name); 5209EXPORT_SYMBOL(__dev_remove_pack); 5210EXPORT_SYMBOL(dev_valid_name); 5211EXPORT_SYMBOL(dev_add_pack); 5212EXPORT_SYMBOL(dev_alloc_name); 5213EXPORT_SYMBOL(dev_close); 5214EXPORT_SYMBOL(dev_get_by_flags); 5215EXPORT_SYMBOL(dev_get_by_index); 5216EXPORT_SYMBOL(dev_get_by_name); 5217EXPORT_SYMBOL(dev_open); 5218EXPORT_SYMBOL(dev_queue_xmit); 5219EXPORT_SYMBOL(dev_remove_pack); 5220EXPORT_SYMBOL(dev_set_allmulti); 5221EXPORT_SYMBOL(dev_set_promiscuity); 5222EXPORT_SYMBOL(dev_change_flags); 5223EXPORT_SYMBOL(dev_set_mtu); 5224EXPORT_SYMBOL(dev_set_mac_address); 5225EXPORT_SYMBOL(free_netdev); 5226EXPORT_SYMBOL(netdev_boot_setup_check); 5227EXPORT_SYMBOL(netdev_set_master); 5228EXPORT_SYMBOL(netdev_state_change); 5229EXPORT_SYMBOL(netif_receive_skb); 5230EXPORT_SYMBOL(netif_rx); 5231EXPORT_SYMBOL(register_gifconf); 5232EXPORT_SYMBOL(register_netdevice); 5233EXPORT_SYMBOL(register_netdevice_notifier); 5234EXPORT_SYMBOL(skb_checksum_help); 5235EXPORT_SYMBOL(synchronize_net); 5236EXPORT_SYMBOL(unregister_netdevice); 5237EXPORT_SYMBOL(unregister_netdevice_notifier); 5238EXPORT_SYMBOL(net_enable_timestamp); 5239EXPORT_SYMBOL(net_disable_timestamp); 5240EXPORT_SYMBOL(dev_get_flags); 5241 5242#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5243EXPORT_SYMBOL(br_handle_frame_hook); 5244EXPORT_SYMBOL(br_fdb_get_hook); 5245EXPORT_SYMBOL(br_fdb_put_hook); 5246#endif 5247 5248EXPORT_SYMBOL(dev_load); 5249 5250EXPORT_PER_CPU_SYMBOL(softnet_data);