at v2.6.29-rc2 443 lines 15 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef DMAENGINE_H 22#define DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/kref.h> 27#include <linux/completion.h> 28#include <linux/rcupdate.h> 29#include <linux/dma-mapping.h> 30 31/** 32 * typedef dma_cookie_t - an opaque DMA cookie 33 * 34 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 35 */ 36typedef s32 dma_cookie_t; 37 38#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 39 40/** 41 * enum dma_status - DMA transaction status 42 * @DMA_SUCCESS: transaction completed successfully 43 * @DMA_IN_PROGRESS: transaction not yet processed 44 * @DMA_ERROR: transaction failed 45 */ 46enum dma_status { 47 DMA_SUCCESS, 48 DMA_IN_PROGRESS, 49 DMA_ERROR, 50}; 51 52/** 53 * enum dma_transaction_type - DMA transaction types/indexes 54 */ 55enum dma_transaction_type { 56 DMA_MEMCPY, 57 DMA_XOR, 58 DMA_PQ_XOR, 59 DMA_DUAL_XOR, 60 DMA_PQ_UPDATE, 61 DMA_ZERO_SUM, 62 DMA_PQ_ZERO_SUM, 63 DMA_MEMSET, 64 DMA_MEMCPY_CRC32C, 65 DMA_INTERRUPT, 66 DMA_PRIVATE, 67 DMA_SLAVE, 68}; 69 70/* last transaction type for creation of the capabilities mask */ 71#define DMA_TX_TYPE_END (DMA_SLAVE + 1) 72 73 74/** 75 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 76 * control completion, and communicate status. 77 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 78 * this transaction 79 * @DMA_CTRL_ACK - the descriptor cannot be reused until the client 80 * acknowledges receipt, i.e. has has a chance to establish any 81 * dependency chains 82 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 83 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 84 */ 85enum dma_ctrl_flags { 86 DMA_PREP_INTERRUPT = (1 << 0), 87 DMA_CTRL_ACK = (1 << 1), 88 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 89 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 90}; 91 92/** 93 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 94 * See linux/cpumask.h 95 */ 96typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 97 98/** 99 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 100 * @refcount: local_t used for open-coded "bigref" counting 101 * @memcpy_count: transaction counter 102 * @bytes_transferred: byte counter 103 */ 104 105struct dma_chan_percpu { 106 /* stats */ 107 unsigned long memcpy_count; 108 unsigned long bytes_transferred; 109}; 110 111/** 112 * struct dma_chan - devices supply DMA channels, clients use them 113 * @device: ptr to the dma device who supplies this channel, always !%NULL 114 * @cookie: last cookie value returned to client 115 * @chan_id: channel ID for sysfs 116 * @dev: class device for sysfs 117 * @refcount: kref, used in "bigref" slow-mode 118 * @slow_ref: indicates that the DMA channel is free 119 * @rcu: the DMA channel's RCU head 120 * @device_node: used to add this to the device chan list 121 * @local: per-cpu pointer to a struct dma_chan_percpu 122 * @client-count: how many clients are using this channel 123 * @table_count: number of appearances in the mem-to-mem allocation table 124 */ 125struct dma_chan { 126 struct dma_device *device; 127 dma_cookie_t cookie; 128 129 /* sysfs */ 130 int chan_id; 131 struct dma_chan_dev *dev; 132 133 struct list_head device_node; 134 struct dma_chan_percpu *local; 135 int client_count; 136 int table_count; 137}; 138 139/** 140 * struct dma_chan_dev - relate sysfs device node to backing channel device 141 * @chan - driver channel device 142 * @device - sysfs device 143 * @dev_id - parent dma_device dev_id 144 * @idr_ref - reference count to gate release of dma_device dev_id 145 */ 146struct dma_chan_dev { 147 struct dma_chan *chan; 148 struct device device; 149 int dev_id; 150 atomic_t *idr_ref; 151}; 152 153static inline const char *dma_chan_name(struct dma_chan *chan) 154{ 155 return dev_name(&chan->dev->device); 156} 157 158void dma_chan_cleanup(struct kref *kref); 159 160/** 161 * typedef dma_filter_fn - callback filter for dma_request_channel 162 * @chan: channel to be reviewed 163 * @filter_param: opaque parameter passed through dma_request_channel 164 * 165 * When this optional parameter is specified in a call to dma_request_channel a 166 * suitable channel is passed to this routine for further dispositioning before 167 * being returned. Where 'suitable' indicates a non-busy channel that 168 * satisfies the given capability mask. It returns 'true' to indicate that the 169 * channel is suitable. 170 */ 171typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 172 173typedef void (*dma_async_tx_callback)(void *dma_async_param); 174/** 175 * struct dma_async_tx_descriptor - async transaction descriptor 176 * ---dma generic offload fields--- 177 * @cookie: tracking cookie for this transaction, set to -EBUSY if 178 * this tx is sitting on a dependency list 179 * @flags: flags to augment operation preparation, control completion, and 180 * communicate status 181 * @phys: physical address of the descriptor 182 * @tx_list: driver common field for operations that require multiple 183 * descriptors 184 * @chan: target channel for this operation 185 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 186 * @callback: routine to call after this operation is complete 187 * @callback_param: general parameter to pass to the callback routine 188 * ---async_tx api specific fields--- 189 * @next: at completion submit this descriptor 190 * @parent: pointer to the next level up in the dependency chain 191 * @lock: protect the parent and next pointers 192 */ 193struct dma_async_tx_descriptor { 194 dma_cookie_t cookie; 195 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 196 dma_addr_t phys; 197 struct list_head tx_list; 198 struct dma_chan *chan; 199 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 200 dma_async_tx_callback callback; 201 void *callback_param; 202 struct dma_async_tx_descriptor *next; 203 struct dma_async_tx_descriptor *parent; 204 spinlock_t lock; 205}; 206 207/** 208 * struct dma_device - info on the entity supplying DMA services 209 * @chancnt: how many DMA channels are supported 210 * @channels: the list of struct dma_chan 211 * @global_node: list_head for global dma_device_list 212 * @cap_mask: one or more dma_capability flags 213 * @max_xor: maximum number of xor sources, 0 if no capability 214 * @refcount: reference count 215 * @done: IO completion struct 216 * @dev_id: unique device ID 217 * @dev: struct device reference for dma mapping api 218 * @device_alloc_chan_resources: allocate resources and return the 219 * number of allocated descriptors 220 * @device_free_chan_resources: release DMA channel's resources 221 * @device_prep_dma_memcpy: prepares a memcpy operation 222 * @device_prep_dma_xor: prepares a xor operation 223 * @device_prep_dma_zero_sum: prepares a zero_sum operation 224 * @device_prep_dma_memset: prepares a memset operation 225 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 226 * @device_prep_slave_sg: prepares a slave dma operation 227 * @device_terminate_all: terminate all pending operations 228 * @device_issue_pending: push pending transactions to hardware 229 */ 230struct dma_device { 231 232 unsigned int chancnt; 233 struct list_head channels; 234 struct list_head global_node; 235 dma_cap_mask_t cap_mask; 236 int max_xor; 237 238 int dev_id; 239 struct device *dev; 240 241 int (*device_alloc_chan_resources)(struct dma_chan *chan); 242 void (*device_free_chan_resources)(struct dma_chan *chan); 243 244 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 245 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 246 size_t len, unsigned long flags); 247 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 248 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 249 unsigned int src_cnt, size_t len, unsigned long flags); 250 struct dma_async_tx_descriptor *(*device_prep_dma_zero_sum)( 251 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 252 size_t len, u32 *result, unsigned long flags); 253 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 254 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 255 unsigned long flags); 256 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 257 struct dma_chan *chan, unsigned long flags); 258 259 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 260 struct dma_chan *chan, struct scatterlist *sgl, 261 unsigned int sg_len, enum dma_data_direction direction, 262 unsigned long flags); 263 void (*device_terminate_all)(struct dma_chan *chan); 264 265 enum dma_status (*device_is_tx_complete)(struct dma_chan *chan, 266 dma_cookie_t cookie, dma_cookie_t *last, 267 dma_cookie_t *used); 268 void (*device_issue_pending)(struct dma_chan *chan); 269}; 270 271/* --- public DMA engine API --- */ 272 273#ifdef CONFIG_DMA_ENGINE 274void dmaengine_get(void); 275void dmaengine_put(void); 276#else 277static inline void dmaengine_get(void) 278{ 279} 280static inline void dmaengine_put(void) 281{ 282} 283#endif 284 285dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 286 void *dest, void *src, size_t len); 287dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 288 struct page *page, unsigned int offset, void *kdata, size_t len); 289dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 290 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 291 unsigned int src_off, size_t len); 292void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 293 struct dma_chan *chan); 294 295static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 296{ 297 tx->flags |= DMA_CTRL_ACK; 298} 299 300static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 301{ 302 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 303} 304 305#define first_dma_cap(mask) __first_dma_cap(&(mask)) 306static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 307{ 308 return min_t(int, DMA_TX_TYPE_END, 309 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 310} 311 312#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 313static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 314{ 315 return min_t(int, DMA_TX_TYPE_END, 316 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 317} 318 319#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 320static inline void 321__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 322{ 323 set_bit(tx_type, dstp->bits); 324} 325 326#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 327static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 328{ 329 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 330} 331 332#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 333static inline int 334__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 335{ 336 return test_bit(tx_type, srcp->bits); 337} 338 339#define for_each_dma_cap_mask(cap, mask) \ 340 for ((cap) = first_dma_cap(mask); \ 341 (cap) < DMA_TX_TYPE_END; \ 342 (cap) = next_dma_cap((cap), (mask))) 343 344/** 345 * dma_async_issue_pending - flush pending transactions to HW 346 * @chan: target DMA channel 347 * 348 * This allows drivers to push copies to HW in batches, 349 * reducing MMIO writes where possible. 350 */ 351static inline void dma_async_issue_pending(struct dma_chan *chan) 352{ 353 chan->device->device_issue_pending(chan); 354} 355 356#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 357 358/** 359 * dma_async_is_tx_complete - poll for transaction completion 360 * @chan: DMA channel 361 * @cookie: transaction identifier to check status of 362 * @last: returns last completed cookie, can be NULL 363 * @used: returns last issued cookie, can be NULL 364 * 365 * If @last and @used are passed in, upon return they reflect the driver 366 * internal state and can be used with dma_async_is_complete() to check 367 * the status of multiple cookies without re-checking hardware state. 368 */ 369static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 370 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 371{ 372 return chan->device->device_is_tx_complete(chan, cookie, last, used); 373} 374 375#define dma_async_memcpy_complete(chan, cookie, last, used)\ 376 dma_async_is_tx_complete(chan, cookie, last, used) 377 378/** 379 * dma_async_is_complete - test a cookie against chan state 380 * @cookie: transaction identifier to test status of 381 * @last_complete: last know completed transaction 382 * @last_used: last cookie value handed out 383 * 384 * dma_async_is_complete() is used in dma_async_memcpy_complete() 385 * the test logic is separated for lightweight testing of multiple cookies 386 */ 387static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 388 dma_cookie_t last_complete, dma_cookie_t last_used) 389{ 390 if (last_complete <= last_used) { 391 if ((cookie <= last_complete) || (cookie > last_used)) 392 return DMA_SUCCESS; 393 } else { 394 if ((cookie <= last_complete) && (cookie > last_used)) 395 return DMA_SUCCESS; 396 } 397 return DMA_IN_PROGRESS; 398} 399 400enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 401#ifdef CONFIG_DMA_ENGINE 402enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 403#else 404static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 405{ 406 return DMA_SUCCESS; 407} 408#endif 409 410/* --- DMA device --- */ 411 412int dma_async_device_register(struct dma_device *device); 413void dma_async_device_unregister(struct dma_device *device); 414void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 415struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 416void dma_issue_pending_all(void); 417#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 418struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 419void dma_release_channel(struct dma_chan *chan); 420 421/* --- Helper iov-locking functions --- */ 422 423struct dma_page_list { 424 char __user *base_address; 425 int nr_pages; 426 struct page **pages; 427}; 428 429struct dma_pinned_list { 430 int nr_iovecs; 431 struct dma_page_list page_list[0]; 432}; 433 434struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 435void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 436 437dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 438 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 439dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 440 struct dma_pinned_list *pinned_list, struct page *page, 441 unsigned int offset, size_t len); 442 443#endif /* DMAENGINE_H */