1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19 20/* Boot-time LSM user choice */ 21static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23/* things that live in capability.c */ 24extern struct security_operations default_security_ops; 25extern void security_fixup_ops(struct security_operations *ops); 26 27struct security_operations *security_ops; /* Initialized to NULL */ 28 29/* amount of vm to protect from userspace access */ 30unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32static inline int verify(struct security_operations *ops) 33{ 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39} 40 41static void __init do_security_initcalls(void) 42{ 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49} 50 51/** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56int __init security_init(void) 57{ 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65} 66 67/* Save user chosen LSM */ 68static int __init choose_lsm(char *str) 69{ 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72} 73__setup("security=", choose_lsm); 74 75/** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didn't specify a specific LSM and we're the first to ask 86 * for registration permission, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90int __init security_module_enable(struct security_operations *ops) 91{ 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98} 99 100/** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112int register_security(struct security_operations *ops) 113{ 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126} 127 128/* Security operations */ 129 130int security_ptrace_may_access(struct task_struct *child, unsigned int mode) 131{ 132 return security_ops->ptrace_may_access(child, mode); 133} 134 135int security_ptrace_traceme(struct task_struct *parent) 136{ 137 return security_ops->ptrace_traceme(parent); 138} 139 140int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144{ 145 return security_ops->capget(target, effective, inheritable, permitted); 146} 147 148int security_capset(struct cred *new, const struct cred *old, 149 const kernel_cap_t *effective, 150 const kernel_cap_t *inheritable, 151 const kernel_cap_t *permitted) 152{ 153 return security_ops->capset(new, old, 154 effective, inheritable, permitted); 155} 156 157int security_capable(int cap) 158{ 159 return security_ops->capable(current, current_cred(), cap, 160 SECURITY_CAP_AUDIT); 161} 162 163int security_real_capable(struct task_struct *tsk, int cap) 164{ 165 const struct cred *cred; 166 int ret; 167 168 cred = get_task_cred(tsk); 169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 170 put_cred(cred); 171 return ret; 172} 173 174int security_real_capable_noaudit(struct task_struct *tsk, int cap) 175{ 176 const struct cred *cred; 177 int ret; 178 179 cred = get_task_cred(tsk); 180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 181 put_cred(cred); 182 return ret; 183} 184 185int security_acct(struct file *file) 186{ 187 return security_ops->acct(file); 188} 189 190int security_sysctl(struct ctl_table *table, int op) 191{ 192 return security_ops->sysctl(table, op); 193} 194 195int security_quotactl(int cmds, int type, int id, struct super_block *sb) 196{ 197 return security_ops->quotactl(cmds, type, id, sb); 198} 199 200int security_quota_on(struct dentry *dentry) 201{ 202 return security_ops->quota_on(dentry); 203} 204 205int security_syslog(int type) 206{ 207 return security_ops->syslog(type); 208} 209 210int security_settime(struct timespec *ts, struct timezone *tz) 211{ 212 return security_ops->settime(ts, tz); 213} 214 215int security_vm_enough_memory(long pages) 216{ 217 WARN_ON(current->mm == NULL); 218 return security_ops->vm_enough_memory(current->mm, pages); 219} 220 221int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 222{ 223 WARN_ON(mm == NULL); 224 return security_ops->vm_enough_memory(mm, pages); 225} 226 227int security_vm_enough_memory_kern(long pages) 228{ 229 /* If current->mm is a kernel thread then we will pass NULL, 230 for this specific case that is fine */ 231 return security_ops->vm_enough_memory(current->mm, pages); 232} 233 234int security_bprm_set_creds(struct linux_binprm *bprm) 235{ 236 return security_ops->bprm_set_creds(bprm); 237} 238 239int security_bprm_check(struct linux_binprm *bprm) 240{ 241 return security_ops->bprm_check_security(bprm); 242} 243 244void security_bprm_committing_creds(struct linux_binprm *bprm) 245{ 246 security_ops->bprm_committing_creds(bprm); 247} 248 249void security_bprm_committed_creds(struct linux_binprm *bprm) 250{ 251 security_ops->bprm_committed_creds(bprm); 252} 253 254int security_bprm_secureexec(struct linux_binprm *bprm) 255{ 256 return security_ops->bprm_secureexec(bprm); 257} 258 259int security_sb_alloc(struct super_block *sb) 260{ 261 return security_ops->sb_alloc_security(sb); 262} 263 264void security_sb_free(struct super_block *sb) 265{ 266 security_ops->sb_free_security(sb); 267} 268 269int security_sb_copy_data(char *orig, char *copy) 270{ 271 return security_ops->sb_copy_data(orig, copy); 272} 273EXPORT_SYMBOL(security_sb_copy_data); 274 275int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 276{ 277 return security_ops->sb_kern_mount(sb, flags, data); 278} 279 280int security_sb_show_options(struct seq_file *m, struct super_block *sb) 281{ 282 return security_ops->sb_show_options(m, sb); 283} 284 285int security_sb_statfs(struct dentry *dentry) 286{ 287 return security_ops->sb_statfs(dentry); 288} 289 290int security_sb_mount(char *dev_name, struct path *path, 291 char *type, unsigned long flags, void *data) 292{ 293 return security_ops->sb_mount(dev_name, path, type, flags, data); 294} 295 296int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 297{ 298 return security_ops->sb_check_sb(mnt, path); 299} 300 301int security_sb_umount(struct vfsmount *mnt, int flags) 302{ 303 return security_ops->sb_umount(mnt, flags); 304} 305 306void security_sb_umount_close(struct vfsmount *mnt) 307{ 308 security_ops->sb_umount_close(mnt); 309} 310 311void security_sb_umount_busy(struct vfsmount *mnt) 312{ 313 security_ops->sb_umount_busy(mnt); 314} 315 316void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 317{ 318 security_ops->sb_post_remount(mnt, flags, data); 319} 320 321void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 322{ 323 security_ops->sb_post_addmount(mnt, mountpoint); 324} 325 326int security_sb_pivotroot(struct path *old_path, struct path *new_path) 327{ 328 return security_ops->sb_pivotroot(old_path, new_path); 329} 330 331void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 332{ 333 security_ops->sb_post_pivotroot(old_path, new_path); 334} 335 336int security_sb_set_mnt_opts(struct super_block *sb, 337 struct security_mnt_opts *opts) 338{ 339 return security_ops->sb_set_mnt_opts(sb, opts); 340} 341EXPORT_SYMBOL(security_sb_set_mnt_opts); 342 343void security_sb_clone_mnt_opts(const struct super_block *oldsb, 344 struct super_block *newsb) 345{ 346 security_ops->sb_clone_mnt_opts(oldsb, newsb); 347} 348EXPORT_SYMBOL(security_sb_clone_mnt_opts); 349 350int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 351{ 352 return security_ops->sb_parse_opts_str(options, opts); 353} 354EXPORT_SYMBOL(security_sb_parse_opts_str); 355 356int security_inode_alloc(struct inode *inode) 357{ 358 inode->i_security = NULL; 359 return security_ops->inode_alloc_security(inode); 360} 361 362void security_inode_free(struct inode *inode) 363{ 364 security_ops->inode_free_security(inode); 365} 366 367int security_inode_init_security(struct inode *inode, struct inode *dir, 368 char **name, void **value, size_t *len) 369{ 370 if (unlikely(IS_PRIVATE(inode))) 371 return -EOPNOTSUPP; 372 return security_ops->inode_init_security(inode, dir, name, value, len); 373} 374EXPORT_SYMBOL(security_inode_init_security); 375 376#ifdef CONFIG_SECURITY_PATH 377int security_path_mknod(struct path *path, struct dentry *dentry, int mode, 378 unsigned int dev) 379{ 380 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 381 return 0; 382 return security_ops->path_mknod(path, dentry, mode, dev); 383} 384EXPORT_SYMBOL(security_path_mknod); 385 386int security_path_mkdir(struct path *path, struct dentry *dentry, int mode) 387{ 388 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 389 return 0; 390 return security_ops->path_mkdir(path, dentry, mode); 391} 392 393int security_path_rmdir(struct path *path, struct dentry *dentry) 394{ 395 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 396 return 0; 397 return security_ops->path_rmdir(path, dentry); 398} 399 400int security_path_unlink(struct path *path, struct dentry *dentry) 401{ 402 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 403 return 0; 404 return security_ops->path_unlink(path, dentry); 405} 406 407int security_path_symlink(struct path *path, struct dentry *dentry, 408 const char *old_name) 409{ 410 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 411 return 0; 412 return security_ops->path_symlink(path, dentry, old_name); 413} 414 415int security_path_link(struct dentry *old_dentry, struct path *new_dir, 416 struct dentry *new_dentry) 417{ 418 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 419 return 0; 420 return security_ops->path_link(old_dentry, new_dir, new_dentry); 421} 422 423int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 424 struct path *new_dir, struct dentry *new_dentry) 425{ 426 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 427 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 428 return 0; 429 return security_ops->path_rename(old_dir, old_dentry, new_dir, 430 new_dentry); 431} 432 433int security_path_truncate(struct path *path, loff_t length, 434 unsigned int time_attrs) 435{ 436 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 437 return 0; 438 return security_ops->path_truncate(path, length, time_attrs); 439} 440#endif 441 442int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 443{ 444 if (unlikely(IS_PRIVATE(dir))) 445 return 0; 446 return security_ops->inode_create(dir, dentry, mode); 447} 448 449int security_inode_link(struct dentry *old_dentry, struct inode *dir, 450 struct dentry *new_dentry) 451{ 452 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 453 return 0; 454 return security_ops->inode_link(old_dentry, dir, new_dentry); 455} 456 457int security_inode_unlink(struct inode *dir, struct dentry *dentry) 458{ 459 if (unlikely(IS_PRIVATE(dentry->d_inode))) 460 return 0; 461 return security_ops->inode_unlink(dir, dentry); 462} 463 464int security_inode_symlink(struct inode *dir, struct dentry *dentry, 465 const char *old_name) 466{ 467 if (unlikely(IS_PRIVATE(dir))) 468 return 0; 469 return security_ops->inode_symlink(dir, dentry, old_name); 470} 471 472int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 473{ 474 if (unlikely(IS_PRIVATE(dir))) 475 return 0; 476 return security_ops->inode_mkdir(dir, dentry, mode); 477} 478 479int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 480{ 481 if (unlikely(IS_PRIVATE(dentry->d_inode))) 482 return 0; 483 return security_ops->inode_rmdir(dir, dentry); 484} 485 486int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 487{ 488 if (unlikely(IS_PRIVATE(dir))) 489 return 0; 490 return security_ops->inode_mknod(dir, dentry, mode, dev); 491} 492 493int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 494 struct inode *new_dir, struct dentry *new_dentry) 495{ 496 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 497 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 498 return 0; 499 return security_ops->inode_rename(old_dir, old_dentry, 500 new_dir, new_dentry); 501} 502 503int security_inode_readlink(struct dentry *dentry) 504{ 505 if (unlikely(IS_PRIVATE(dentry->d_inode))) 506 return 0; 507 return security_ops->inode_readlink(dentry); 508} 509 510int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 511{ 512 if (unlikely(IS_PRIVATE(dentry->d_inode))) 513 return 0; 514 return security_ops->inode_follow_link(dentry, nd); 515} 516 517int security_inode_permission(struct inode *inode, int mask) 518{ 519 if (unlikely(IS_PRIVATE(inode))) 520 return 0; 521 return security_ops->inode_permission(inode, mask); 522} 523 524int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 525{ 526 if (unlikely(IS_PRIVATE(dentry->d_inode))) 527 return 0; 528 return security_ops->inode_setattr(dentry, attr); 529} 530EXPORT_SYMBOL_GPL(security_inode_setattr); 531 532int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 533{ 534 if (unlikely(IS_PRIVATE(dentry->d_inode))) 535 return 0; 536 return security_ops->inode_getattr(mnt, dentry); 537} 538 539void security_inode_delete(struct inode *inode) 540{ 541 if (unlikely(IS_PRIVATE(inode))) 542 return; 543 security_ops->inode_delete(inode); 544} 545 546int security_inode_setxattr(struct dentry *dentry, const char *name, 547 const void *value, size_t size, int flags) 548{ 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_setxattr(dentry, name, value, size, flags); 552} 553 554void security_inode_post_setxattr(struct dentry *dentry, const char *name, 555 const void *value, size_t size, int flags) 556{ 557 if (unlikely(IS_PRIVATE(dentry->d_inode))) 558 return; 559 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 560} 561 562int security_inode_getxattr(struct dentry *dentry, const char *name) 563{ 564 if (unlikely(IS_PRIVATE(dentry->d_inode))) 565 return 0; 566 return security_ops->inode_getxattr(dentry, name); 567} 568 569int security_inode_listxattr(struct dentry *dentry) 570{ 571 if (unlikely(IS_PRIVATE(dentry->d_inode))) 572 return 0; 573 return security_ops->inode_listxattr(dentry); 574} 575 576int security_inode_removexattr(struct dentry *dentry, const char *name) 577{ 578 if (unlikely(IS_PRIVATE(dentry->d_inode))) 579 return 0; 580 return security_ops->inode_removexattr(dentry, name); 581} 582 583int security_inode_need_killpriv(struct dentry *dentry) 584{ 585 return security_ops->inode_need_killpriv(dentry); 586} 587 588int security_inode_killpriv(struct dentry *dentry) 589{ 590 return security_ops->inode_killpriv(dentry); 591} 592 593int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 594{ 595 if (unlikely(IS_PRIVATE(inode))) 596 return 0; 597 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 598} 599 600int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 601{ 602 if (unlikely(IS_PRIVATE(inode))) 603 return 0; 604 return security_ops->inode_setsecurity(inode, name, value, size, flags); 605} 606 607int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 608{ 609 if (unlikely(IS_PRIVATE(inode))) 610 return 0; 611 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 612} 613 614void security_inode_getsecid(const struct inode *inode, u32 *secid) 615{ 616 security_ops->inode_getsecid(inode, secid); 617} 618 619int security_file_permission(struct file *file, int mask) 620{ 621 return security_ops->file_permission(file, mask); 622} 623 624int security_file_alloc(struct file *file) 625{ 626 return security_ops->file_alloc_security(file); 627} 628 629void security_file_free(struct file *file) 630{ 631 security_ops->file_free_security(file); 632} 633 634int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 635{ 636 return security_ops->file_ioctl(file, cmd, arg); 637} 638 639int security_file_mmap(struct file *file, unsigned long reqprot, 640 unsigned long prot, unsigned long flags, 641 unsigned long addr, unsigned long addr_only) 642{ 643 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 644} 645 646int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 647 unsigned long prot) 648{ 649 return security_ops->file_mprotect(vma, reqprot, prot); 650} 651 652int security_file_lock(struct file *file, unsigned int cmd) 653{ 654 return security_ops->file_lock(file, cmd); 655} 656 657int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 658{ 659 return security_ops->file_fcntl(file, cmd, arg); 660} 661 662int security_file_set_fowner(struct file *file) 663{ 664 return security_ops->file_set_fowner(file); 665} 666 667int security_file_send_sigiotask(struct task_struct *tsk, 668 struct fown_struct *fown, int sig) 669{ 670 return security_ops->file_send_sigiotask(tsk, fown, sig); 671} 672 673int security_file_receive(struct file *file) 674{ 675 return security_ops->file_receive(file); 676} 677 678int security_dentry_open(struct file *file, const struct cred *cred) 679{ 680 return security_ops->dentry_open(file, cred); 681} 682 683int security_task_create(unsigned long clone_flags) 684{ 685 return security_ops->task_create(clone_flags); 686} 687 688void security_cred_free(struct cred *cred) 689{ 690 security_ops->cred_free(cred); 691} 692 693int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 694{ 695 return security_ops->cred_prepare(new, old, gfp); 696} 697 698void security_commit_creds(struct cred *new, const struct cred *old) 699{ 700 security_ops->cred_commit(new, old); 701} 702 703int security_kernel_act_as(struct cred *new, u32 secid) 704{ 705 return security_ops->kernel_act_as(new, secid); 706} 707 708int security_kernel_create_files_as(struct cred *new, struct inode *inode) 709{ 710 return security_ops->kernel_create_files_as(new, inode); 711} 712 713int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 714{ 715 return security_ops->task_setuid(id0, id1, id2, flags); 716} 717 718int security_task_fix_setuid(struct cred *new, const struct cred *old, 719 int flags) 720{ 721 return security_ops->task_fix_setuid(new, old, flags); 722} 723 724int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 725{ 726 return security_ops->task_setgid(id0, id1, id2, flags); 727} 728 729int security_task_setpgid(struct task_struct *p, pid_t pgid) 730{ 731 return security_ops->task_setpgid(p, pgid); 732} 733 734int security_task_getpgid(struct task_struct *p) 735{ 736 return security_ops->task_getpgid(p); 737} 738 739int security_task_getsid(struct task_struct *p) 740{ 741 return security_ops->task_getsid(p); 742} 743 744void security_task_getsecid(struct task_struct *p, u32 *secid) 745{ 746 security_ops->task_getsecid(p, secid); 747} 748EXPORT_SYMBOL(security_task_getsecid); 749 750int security_task_setgroups(struct group_info *group_info) 751{ 752 return security_ops->task_setgroups(group_info); 753} 754 755int security_task_setnice(struct task_struct *p, int nice) 756{ 757 return security_ops->task_setnice(p, nice); 758} 759 760int security_task_setioprio(struct task_struct *p, int ioprio) 761{ 762 return security_ops->task_setioprio(p, ioprio); 763} 764 765int security_task_getioprio(struct task_struct *p) 766{ 767 return security_ops->task_getioprio(p); 768} 769 770int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 771{ 772 return security_ops->task_setrlimit(resource, new_rlim); 773} 774 775int security_task_setscheduler(struct task_struct *p, 776 int policy, struct sched_param *lp) 777{ 778 return security_ops->task_setscheduler(p, policy, lp); 779} 780 781int security_task_getscheduler(struct task_struct *p) 782{ 783 return security_ops->task_getscheduler(p); 784} 785 786int security_task_movememory(struct task_struct *p) 787{ 788 return security_ops->task_movememory(p); 789} 790 791int security_task_kill(struct task_struct *p, struct siginfo *info, 792 int sig, u32 secid) 793{ 794 return security_ops->task_kill(p, info, sig, secid); 795} 796 797int security_task_wait(struct task_struct *p) 798{ 799 return security_ops->task_wait(p); 800} 801 802int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 803 unsigned long arg4, unsigned long arg5) 804{ 805 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 806} 807 808void security_task_to_inode(struct task_struct *p, struct inode *inode) 809{ 810 security_ops->task_to_inode(p, inode); 811} 812 813int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 814{ 815 return security_ops->ipc_permission(ipcp, flag); 816} 817 818void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 819{ 820 security_ops->ipc_getsecid(ipcp, secid); 821} 822 823int security_msg_msg_alloc(struct msg_msg *msg) 824{ 825 return security_ops->msg_msg_alloc_security(msg); 826} 827 828void security_msg_msg_free(struct msg_msg *msg) 829{ 830 security_ops->msg_msg_free_security(msg); 831} 832 833int security_msg_queue_alloc(struct msg_queue *msq) 834{ 835 return security_ops->msg_queue_alloc_security(msq); 836} 837 838void security_msg_queue_free(struct msg_queue *msq) 839{ 840 security_ops->msg_queue_free_security(msq); 841} 842 843int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 844{ 845 return security_ops->msg_queue_associate(msq, msqflg); 846} 847 848int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 849{ 850 return security_ops->msg_queue_msgctl(msq, cmd); 851} 852 853int security_msg_queue_msgsnd(struct msg_queue *msq, 854 struct msg_msg *msg, int msqflg) 855{ 856 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 857} 858 859int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 860 struct task_struct *target, long type, int mode) 861{ 862 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 863} 864 865int security_shm_alloc(struct shmid_kernel *shp) 866{ 867 return security_ops->shm_alloc_security(shp); 868} 869 870void security_shm_free(struct shmid_kernel *shp) 871{ 872 security_ops->shm_free_security(shp); 873} 874 875int security_shm_associate(struct shmid_kernel *shp, int shmflg) 876{ 877 return security_ops->shm_associate(shp, shmflg); 878} 879 880int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 881{ 882 return security_ops->shm_shmctl(shp, cmd); 883} 884 885int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 886{ 887 return security_ops->shm_shmat(shp, shmaddr, shmflg); 888} 889 890int security_sem_alloc(struct sem_array *sma) 891{ 892 return security_ops->sem_alloc_security(sma); 893} 894 895void security_sem_free(struct sem_array *sma) 896{ 897 security_ops->sem_free_security(sma); 898} 899 900int security_sem_associate(struct sem_array *sma, int semflg) 901{ 902 return security_ops->sem_associate(sma, semflg); 903} 904 905int security_sem_semctl(struct sem_array *sma, int cmd) 906{ 907 return security_ops->sem_semctl(sma, cmd); 908} 909 910int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 911 unsigned nsops, int alter) 912{ 913 return security_ops->sem_semop(sma, sops, nsops, alter); 914} 915 916void security_d_instantiate(struct dentry *dentry, struct inode *inode) 917{ 918 if (unlikely(inode && IS_PRIVATE(inode))) 919 return; 920 security_ops->d_instantiate(dentry, inode); 921} 922EXPORT_SYMBOL(security_d_instantiate); 923 924int security_getprocattr(struct task_struct *p, char *name, char **value) 925{ 926 return security_ops->getprocattr(p, name, value); 927} 928 929int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 930{ 931 return security_ops->setprocattr(p, name, value, size); 932} 933 934int security_netlink_send(struct sock *sk, struct sk_buff *skb) 935{ 936 return security_ops->netlink_send(sk, skb); 937} 938 939int security_netlink_recv(struct sk_buff *skb, int cap) 940{ 941 return security_ops->netlink_recv(skb, cap); 942} 943EXPORT_SYMBOL(security_netlink_recv); 944 945int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 946{ 947 return security_ops->secid_to_secctx(secid, secdata, seclen); 948} 949EXPORT_SYMBOL(security_secid_to_secctx); 950 951int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 952{ 953 return security_ops->secctx_to_secid(secdata, seclen, secid); 954} 955EXPORT_SYMBOL(security_secctx_to_secid); 956 957void security_release_secctx(char *secdata, u32 seclen) 958{ 959 security_ops->release_secctx(secdata, seclen); 960} 961EXPORT_SYMBOL(security_release_secctx); 962 963#ifdef CONFIG_SECURITY_NETWORK 964 965int security_unix_stream_connect(struct socket *sock, struct socket *other, 966 struct sock *newsk) 967{ 968 return security_ops->unix_stream_connect(sock, other, newsk); 969} 970EXPORT_SYMBOL(security_unix_stream_connect); 971 972int security_unix_may_send(struct socket *sock, struct socket *other) 973{ 974 return security_ops->unix_may_send(sock, other); 975} 976EXPORT_SYMBOL(security_unix_may_send); 977 978int security_socket_create(int family, int type, int protocol, int kern) 979{ 980 return security_ops->socket_create(family, type, protocol, kern); 981} 982 983int security_socket_post_create(struct socket *sock, int family, 984 int type, int protocol, int kern) 985{ 986 return security_ops->socket_post_create(sock, family, type, 987 protocol, kern); 988} 989 990int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 991{ 992 return security_ops->socket_bind(sock, address, addrlen); 993} 994 995int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 996{ 997 return security_ops->socket_connect(sock, address, addrlen); 998} 999 1000int security_socket_listen(struct socket *sock, int backlog) 1001{ 1002 return security_ops->socket_listen(sock, backlog); 1003} 1004 1005int security_socket_accept(struct socket *sock, struct socket *newsock) 1006{ 1007 return security_ops->socket_accept(sock, newsock); 1008} 1009 1010void security_socket_post_accept(struct socket *sock, struct socket *newsock) 1011{ 1012 security_ops->socket_post_accept(sock, newsock); 1013} 1014 1015int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1016{ 1017 return security_ops->socket_sendmsg(sock, msg, size); 1018} 1019 1020int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1021 int size, int flags) 1022{ 1023 return security_ops->socket_recvmsg(sock, msg, size, flags); 1024} 1025 1026int security_socket_getsockname(struct socket *sock) 1027{ 1028 return security_ops->socket_getsockname(sock); 1029} 1030 1031int security_socket_getpeername(struct socket *sock) 1032{ 1033 return security_ops->socket_getpeername(sock); 1034} 1035 1036int security_socket_getsockopt(struct socket *sock, int level, int optname) 1037{ 1038 return security_ops->socket_getsockopt(sock, level, optname); 1039} 1040 1041int security_socket_setsockopt(struct socket *sock, int level, int optname) 1042{ 1043 return security_ops->socket_setsockopt(sock, level, optname); 1044} 1045 1046int security_socket_shutdown(struct socket *sock, int how) 1047{ 1048 return security_ops->socket_shutdown(sock, how); 1049} 1050 1051int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1052{ 1053 return security_ops->socket_sock_rcv_skb(sk, skb); 1054} 1055EXPORT_SYMBOL(security_sock_rcv_skb); 1056 1057int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1058 int __user *optlen, unsigned len) 1059{ 1060 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1061} 1062 1063int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1064{ 1065 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1066} 1067EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1068 1069int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1070{ 1071 return security_ops->sk_alloc_security(sk, family, priority); 1072} 1073 1074void security_sk_free(struct sock *sk) 1075{ 1076 security_ops->sk_free_security(sk); 1077} 1078 1079void security_sk_clone(const struct sock *sk, struct sock *newsk) 1080{ 1081 security_ops->sk_clone_security(sk, newsk); 1082} 1083 1084void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1085{ 1086 security_ops->sk_getsecid(sk, &fl->secid); 1087} 1088EXPORT_SYMBOL(security_sk_classify_flow); 1089 1090void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1091{ 1092 security_ops->req_classify_flow(req, fl); 1093} 1094EXPORT_SYMBOL(security_req_classify_flow); 1095 1096void security_sock_graft(struct sock *sk, struct socket *parent) 1097{ 1098 security_ops->sock_graft(sk, parent); 1099} 1100EXPORT_SYMBOL(security_sock_graft); 1101 1102int security_inet_conn_request(struct sock *sk, 1103 struct sk_buff *skb, struct request_sock *req) 1104{ 1105 return security_ops->inet_conn_request(sk, skb, req); 1106} 1107EXPORT_SYMBOL(security_inet_conn_request); 1108 1109void security_inet_csk_clone(struct sock *newsk, 1110 const struct request_sock *req) 1111{ 1112 security_ops->inet_csk_clone(newsk, req); 1113} 1114 1115void security_inet_conn_established(struct sock *sk, 1116 struct sk_buff *skb) 1117{ 1118 security_ops->inet_conn_established(sk, skb); 1119} 1120 1121#endif /* CONFIG_SECURITY_NETWORK */ 1122 1123#ifdef CONFIG_SECURITY_NETWORK_XFRM 1124 1125int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1126{ 1127 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1128} 1129EXPORT_SYMBOL(security_xfrm_policy_alloc); 1130 1131int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1132 struct xfrm_sec_ctx **new_ctxp) 1133{ 1134 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1135} 1136 1137void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1138{ 1139 security_ops->xfrm_policy_free_security(ctx); 1140} 1141EXPORT_SYMBOL(security_xfrm_policy_free); 1142 1143int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1144{ 1145 return security_ops->xfrm_policy_delete_security(ctx); 1146} 1147 1148int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1149{ 1150 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1151} 1152EXPORT_SYMBOL(security_xfrm_state_alloc); 1153 1154int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1155 struct xfrm_sec_ctx *polsec, u32 secid) 1156{ 1157 if (!polsec) 1158 return 0; 1159 /* 1160 * We want the context to be taken from secid which is usually 1161 * from the sock. 1162 */ 1163 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1164} 1165 1166int security_xfrm_state_delete(struct xfrm_state *x) 1167{ 1168 return security_ops->xfrm_state_delete_security(x); 1169} 1170EXPORT_SYMBOL(security_xfrm_state_delete); 1171 1172void security_xfrm_state_free(struct xfrm_state *x) 1173{ 1174 security_ops->xfrm_state_free_security(x); 1175} 1176 1177int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1178{ 1179 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1180} 1181 1182int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1183 struct xfrm_policy *xp, struct flowi *fl) 1184{ 1185 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1186} 1187 1188int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1189{ 1190 return security_ops->xfrm_decode_session(skb, secid, 1); 1191} 1192 1193void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1194{ 1195 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1196 1197 BUG_ON(rc); 1198} 1199EXPORT_SYMBOL(security_skb_classify_flow); 1200 1201#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1202 1203#ifdef CONFIG_KEYS 1204 1205int security_key_alloc(struct key *key, const struct cred *cred, 1206 unsigned long flags) 1207{ 1208 return security_ops->key_alloc(key, cred, flags); 1209} 1210 1211void security_key_free(struct key *key) 1212{ 1213 security_ops->key_free(key); 1214} 1215 1216int security_key_permission(key_ref_t key_ref, 1217 const struct cred *cred, key_perm_t perm) 1218{ 1219 return security_ops->key_permission(key_ref, cred, perm); 1220} 1221 1222int security_key_getsecurity(struct key *key, char **_buffer) 1223{ 1224 return security_ops->key_getsecurity(key, _buffer); 1225} 1226 1227#endif /* CONFIG_KEYS */ 1228 1229#ifdef CONFIG_AUDIT 1230 1231int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1232{ 1233 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1234} 1235 1236int security_audit_rule_known(struct audit_krule *krule) 1237{ 1238 return security_ops->audit_rule_known(krule); 1239} 1240 1241void security_audit_rule_free(void *lsmrule) 1242{ 1243 security_ops->audit_rule_free(lsmrule); 1244} 1245 1246int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1247 struct audit_context *actx) 1248{ 1249 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1250} 1251 1252#endif /* CONFIG_AUDIT */