at v2.6.28 65 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26struct wusb_dev; 27 28/*-------------------------------------------------------------------------*/ 29 30/* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * 40 * And there might be other descriptors mixed in with those. 41 * 42 * Devices may also have class-specific or vendor-specific descriptors. 43 */ 44 45struct ep_device; 46 47/** 48 * struct usb_host_endpoint - host-side endpoint descriptor and queue 49 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 50 * @urb_list: urbs queued to this endpoint; maintained by usbcore 51 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 52 * with one or more transfer descriptors (TDs) per urb 53 * @ep_dev: ep_device for sysfs info 54 * @extra: descriptors following this endpoint in the configuration 55 * @extralen: how many bytes of "extra" are valid 56 * @enabled: URBs may be submitted to this endpoint 57 * 58 * USB requests are always queued to a given endpoint, identified by a 59 * descriptor within an active interface in a given USB configuration. 60 */ 61struct usb_host_endpoint { 62 struct usb_endpoint_descriptor desc; 63 struct list_head urb_list; 64 void *hcpriv; 65 struct ep_device *ep_dev; /* For sysfs info */ 66 67 unsigned char *extra; /* Extra descriptors */ 68 int extralen; 69 int enabled; 70}; 71 72/* host-side wrapper for one interface setting's parsed descriptors */ 73struct usb_host_interface { 74 struct usb_interface_descriptor desc; 75 76 /* array of desc.bNumEndpoint endpoints associated with this 77 * interface setting. these will be in no particular order. 78 */ 79 struct usb_host_endpoint *endpoint; 80 81 char *string; /* iInterface string, if present */ 82 unsigned char *extra; /* Extra descriptors */ 83 int extralen; 84}; 85 86enum usb_interface_condition { 87 USB_INTERFACE_UNBOUND = 0, 88 USB_INTERFACE_BINDING, 89 USB_INTERFACE_BOUND, 90 USB_INTERFACE_UNBINDING, 91}; 92 93/** 94 * struct usb_interface - what usb device drivers talk to 95 * @altsetting: array of interface structures, one for each alternate 96 * setting that may be selected. Each one includes a set of 97 * endpoint configurations. They will be in no particular order. 98 * @cur_altsetting: the current altsetting. 99 * @num_altsetting: number of altsettings defined. 100 * @intf_assoc: interface association descriptor 101 * @minor: the minor number assigned to this interface, if this 102 * interface is bound to a driver that uses the USB major number. 103 * If this interface does not use the USB major, this field should 104 * be unused. The driver should set this value in the probe() 105 * function of the driver, after it has been assigned a minor 106 * number from the USB core by calling usb_register_dev(). 107 * @condition: binding state of the interface: not bound, binding 108 * (in probe()), bound to a driver, or unbinding (in disconnect()) 109 * @is_active: flag set when the interface is bound and not suspended. 110 * @sysfs_files_created: sysfs attributes exist 111 * @unregistering: flag set when the interface is being unregistered 112 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 113 * capability during autosuspend. 114 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 115 * has been deferred. 116 * @needs_binding: flag set when the driver should be re-probed or unbound 117 * following a reset or suspend operation it doesn't support. 118 * @dev: driver model's view of this device 119 * @usb_dev: if an interface is bound to the USB major, this will point 120 * to the sysfs representation for that device. 121 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 122 * allowed unless the counter is 0. 123 * 124 * USB device drivers attach to interfaces on a physical device. Each 125 * interface encapsulates a single high level function, such as feeding 126 * an audio stream to a speaker or reporting a change in a volume control. 127 * Many USB devices only have one interface. The protocol used to talk to 128 * an interface's endpoints can be defined in a usb "class" specification, 129 * or by a product's vendor. The (default) control endpoint is part of 130 * every interface, but is never listed among the interface's descriptors. 131 * 132 * The driver that is bound to the interface can use standard driver model 133 * calls such as dev_get_drvdata() on the dev member of this structure. 134 * 135 * Each interface may have alternate settings. The initial configuration 136 * of a device sets altsetting 0, but the device driver can change 137 * that setting using usb_set_interface(). Alternate settings are often 138 * used to control the use of periodic endpoints, such as by having 139 * different endpoints use different amounts of reserved USB bandwidth. 140 * All standards-conformant USB devices that use isochronous endpoints 141 * will use them in non-default settings. 142 * 143 * The USB specification says that alternate setting numbers must run from 144 * 0 to one less than the total number of alternate settings. But some 145 * devices manage to mess this up, and the structures aren't necessarily 146 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 147 * look up an alternate setting in the altsetting array based on its number. 148 */ 149struct usb_interface { 150 /* array of alternate settings for this interface, 151 * stored in no particular order */ 152 struct usb_host_interface *altsetting; 153 154 struct usb_host_interface *cur_altsetting; /* the currently 155 * active alternate setting */ 156 unsigned num_altsetting; /* number of alternate settings */ 157 158 /* If there is an interface association descriptor then it will list 159 * the associated interfaces */ 160 struct usb_interface_assoc_descriptor *intf_assoc; 161 162 int minor; /* minor number this interface is 163 * bound to */ 164 enum usb_interface_condition condition; /* state of binding */ 165 unsigned is_active:1; /* the interface is not suspended */ 166 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 167 unsigned unregistering:1; /* unregistration is in progress */ 168 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 169 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 170 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 171 172 struct device dev; /* interface specific device info */ 173 struct device *usb_dev; 174 int pm_usage_cnt; /* usage counter for autosuspend */ 175}; 176#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 177#define interface_to_usbdev(intf) \ 178 container_of(intf->dev.parent, struct usb_device, dev) 179 180static inline void *usb_get_intfdata(struct usb_interface *intf) 181{ 182 return dev_get_drvdata(&intf->dev); 183} 184 185static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 186{ 187 dev_set_drvdata(&intf->dev, data); 188} 189 190struct usb_interface *usb_get_intf(struct usb_interface *intf); 191void usb_put_intf(struct usb_interface *intf); 192 193/* this maximum is arbitrary */ 194#define USB_MAXINTERFACES 32 195#define USB_MAXIADS USB_MAXINTERFACES/2 196 197/** 198 * struct usb_interface_cache - long-term representation of a device interface 199 * @num_altsetting: number of altsettings defined. 200 * @ref: reference counter. 201 * @altsetting: variable-length array of interface structures, one for 202 * each alternate setting that may be selected. Each one includes a 203 * set of endpoint configurations. They will be in no particular order. 204 * 205 * These structures persist for the lifetime of a usb_device, unlike 206 * struct usb_interface (which persists only as long as its configuration 207 * is installed). The altsetting arrays can be accessed through these 208 * structures at any time, permitting comparison of configurations and 209 * providing support for the /proc/bus/usb/devices pseudo-file. 210 */ 211struct usb_interface_cache { 212 unsigned num_altsetting; /* number of alternate settings */ 213 struct kref ref; /* reference counter */ 214 215 /* variable-length array of alternate settings for this interface, 216 * stored in no particular order */ 217 struct usb_host_interface altsetting[0]; 218}; 219#define ref_to_usb_interface_cache(r) \ 220 container_of(r, struct usb_interface_cache, ref) 221#define altsetting_to_usb_interface_cache(a) \ 222 container_of(a, struct usb_interface_cache, altsetting[0]) 223 224/** 225 * struct usb_host_config - representation of a device's configuration 226 * @desc: the device's configuration descriptor. 227 * @string: pointer to the cached version of the iConfiguration string, if 228 * present for this configuration. 229 * @intf_assoc: list of any interface association descriptors in this config 230 * @interface: array of pointers to usb_interface structures, one for each 231 * interface in the configuration. The number of interfaces is stored 232 * in desc.bNumInterfaces. These pointers are valid only while the 233 * the configuration is active. 234 * @intf_cache: array of pointers to usb_interface_cache structures, one 235 * for each interface in the configuration. These structures exist 236 * for the entire life of the device. 237 * @extra: pointer to buffer containing all extra descriptors associated 238 * with this configuration (those preceding the first interface 239 * descriptor). 240 * @extralen: length of the extra descriptors buffer. 241 * 242 * USB devices may have multiple configurations, but only one can be active 243 * at any time. Each encapsulates a different operational environment; 244 * for example, a dual-speed device would have separate configurations for 245 * full-speed and high-speed operation. The number of configurations 246 * available is stored in the device descriptor as bNumConfigurations. 247 * 248 * A configuration can contain multiple interfaces. Each corresponds to 249 * a different function of the USB device, and all are available whenever 250 * the configuration is active. The USB standard says that interfaces 251 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 252 * of devices get this wrong. In addition, the interface array is not 253 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 254 * look up an interface entry based on its number. 255 * 256 * Device drivers should not attempt to activate configurations. The choice 257 * of which configuration to install is a policy decision based on such 258 * considerations as available power, functionality provided, and the user's 259 * desires (expressed through userspace tools). However, drivers can call 260 * usb_reset_configuration() to reinitialize the current configuration and 261 * all its interfaces. 262 */ 263struct usb_host_config { 264 struct usb_config_descriptor desc; 265 266 char *string; /* iConfiguration string, if present */ 267 268 /* List of any Interface Association Descriptors in this 269 * configuration. */ 270 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 271 272 /* the interfaces associated with this configuration, 273 * stored in no particular order */ 274 struct usb_interface *interface[USB_MAXINTERFACES]; 275 276 /* Interface information available even when this is not the 277 * active configuration */ 278 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 279 280 unsigned char *extra; /* Extra descriptors */ 281 int extralen; 282}; 283 284int __usb_get_extra_descriptor(char *buffer, unsigned size, 285 unsigned char type, void **ptr); 286#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 287 __usb_get_extra_descriptor((ifpoint)->extra, \ 288 (ifpoint)->extralen, \ 289 type, (void **)ptr) 290 291/* ----------------------------------------------------------------------- */ 292 293/* USB device number allocation bitmap */ 294struct usb_devmap { 295 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 296}; 297 298/* 299 * Allocated per bus (tree of devices) we have: 300 */ 301struct usb_bus { 302 struct device *controller; /* host/master side hardware */ 303 int busnum; /* Bus number (in order of reg) */ 304 const char *bus_name; /* stable id (PCI slot_name etc) */ 305 u8 uses_dma; /* Does the host controller use DMA? */ 306 u8 otg_port; /* 0, or number of OTG/HNP port */ 307 unsigned is_b_host:1; /* true during some HNP roleswitches */ 308 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 309 310 int devnum_next; /* Next open device number in 311 * round-robin allocation */ 312 313 struct usb_devmap devmap; /* device address allocation map */ 314 struct usb_device *root_hub; /* Root hub */ 315 struct list_head bus_list; /* list of busses */ 316 317 int bandwidth_allocated; /* on this bus: how much of the time 318 * reserved for periodic (intr/iso) 319 * requests is used, on average? 320 * Units: microseconds/frame. 321 * Limits: Full/low speed reserve 90%, 322 * while high speed reserves 80%. 323 */ 324 int bandwidth_int_reqs; /* number of Interrupt requests */ 325 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 326 327#ifdef CONFIG_USB_DEVICEFS 328 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 329#endif 330 struct device *dev; /* device for this bus */ 331 332#if defined(CONFIG_USB_MON) 333 struct mon_bus *mon_bus; /* non-null when associated */ 334 int monitored; /* non-zero when monitored */ 335#endif 336}; 337 338/* ----------------------------------------------------------------------- */ 339 340/* This is arbitrary. 341 * From USB 2.0 spec Table 11-13, offset 7, a hub can 342 * have up to 255 ports. The most yet reported is 10. 343 * 344 * Current Wireless USB host hardware (Intel i1480 for example) allows 345 * up to 22 devices to connect. Upcoming hardware might raise that 346 * limit. Because the arrays need to add a bit for hub status data, we 347 * do 31, so plus one evens out to four bytes. 348 */ 349#define USB_MAXCHILDREN (31) 350 351struct usb_tt; 352 353/** 354 * struct usb_device - kernel's representation of a USB device 355 * @devnum: device number; address on a USB bus 356 * @devpath: device ID string for use in messages (e.g., /port/...) 357 * @state: device state: configured, not attached, etc. 358 * @speed: device speed: high/full/low (or error) 359 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 360 * @ttport: device port on that tt hub 361 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 362 * @parent: our hub, unless we're the root 363 * @bus: bus we're part of 364 * @ep0: endpoint 0 data (default control pipe) 365 * @dev: generic device interface 366 * @descriptor: USB device descriptor 367 * @config: all of the device's configs 368 * @actconfig: the active configuration 369 * @ep_in: array of IN endpoints 370 * @ep_out: array of OUT endpoints 371 * @rawdescriptors: raw descriptors for each config 372 * @bus_mA: Current available from the bus 373 * @portnum: parent port number (origin 1) 374 * @level: number of USB hub ancestors 375 * @can_submit: URBs may be submitted 376 * @discon_suspended: disconnected while suspended 377 * @persist_enabled: USB_PERSIST enabled for this device 378 * @have_langid: whether string_langid is valid 379 * @authorized: policy has said we can use it; 380 * (user space) policy determines if we authorize this device to be 381 * used or not. By default, wired USB devices are authorized. 382 * WUSB devices are not, until we authorize them from user space. 383 * FIXME -- complete doc 384 * @authenticated: Crypto authentication passed 385 * @wusb: device is Wireless USB 386 * @string_langid: language ID for strings 387 * @product: iProduct string, if present (static) 388 * @manufacturer: iManufacturer string, if present (static) 389 * @serial: iSerialNumber string, if present (static) 390 * @filelist: usbfs files that are open to this device 391 * @usb_classdev: USB class device that was created for usbfs device 392 * access from userspace 393 * @usbfs_dentry: usbfs dentry entry for the device 394 * @maxchild: number of ports if hub 395 * @children: child devices - USB devices that are attached to this hub 396 * @pm_usage_cnt: usage counter for autosuspend 397 * @quirks: quirks of the whole device 398 * @urbnum: number of URBs submitted for the whole device 399 * @active_duration: total time device is not suspended 400 * @autosuspend: for delayed autosuspends 401 * @pm_mutex: protects PM operations 402 * @last_busy: time of last use 403 * @autosuspend_delay: in jiffies 404 * @connect_time: time device was first connected 405 * @auto_pm: autosuspend/resume in progress 406 * @do_remote_wakeup: remote wakeup should be enabled 407 * @reset_resume: needs reset instead of resume 408 * @autosuspend_disabled: autosuspend disabled by the user 409 * @autoresume_disabled: autoresume disabled by the user 410 * @skip_sys_resume: skip the next system resume 411 * 412 * Notes: 413 * Usbcore drivers should not set usbdev->state directly. Instead use 414 * usb_set_device_state(). 415 */ 416struct usb_device { 417 int devnum; 418 char devpath [16]; 419 enum usb_device_state state; 420 enum usb_device_speed speed; 421 422 struct usb_tt *tt; 423 int ttport; 424 425 unsigned int toggle[2]; 426 427 struct usb_device *parent; 428 struct usb_bus *bus; 429 struct usb_host_endpoint ep0; 430 431 struct device dev; 432 433 struct usb_device_descriptor descriptor; 434 struct usb_host_config *config; 435 436 struct usb_host_config *actconfig; 437 struct usb_host_endpoint *ep_in[16]; 438 struct usb_host_endpoint *ep_out[16]; 439 440 char **rawdescriptors; 441 442 unsigned short bus_mA; 443 u8 portnum; 444 u8 level; 445 446 unsigned can_submit:1; 447 unsigned discon_suspended:1; 448 unsigned persist_enabled:1; 449 unsigned have_langid:1; 450 unsigned authorized:1; 451 unsigned authenticated:1; 452 unsigned wusb:1; 453 int string_langid; 454 455 /* static strings from the device */ 456 char *product; 457 char *manufacturer; 458 char *serial; 459 460 struct list_head filelist; 461#ifdef CONFIG_USB_DEVICE_CLASS 462 struct device *usb_classdev; 463#endif 464#ifdef CONFIG_USB_DEVICEFS 465 struct dentry *usbfs_dentry; 466#endif 467 468 int maxchild; 469 struct usb_device *children[USB_MAXCHILDREN]; 470 471 int pm_usage_cnt; 472 u32 quirks; 473 atomic_t urbnum; 474 475 unsigned long active_duration; 476 477#ifdef CONFIG_PM 478 struct delayed_work autosuspend; 479 struct mutex pm_mutex; 480 481 unsigned long last_busy; 482 int autosuspend_delay; 483 unsigned long connect_time; 484 485 unsigned auto_pm:1; 486 unsigned do_remote_wakeup:1; 487 unsigned reset_resume:1; 488 unsigned autosuspend_disabled:1; 489 unsigned autoresume_disabled:1; 490 unsigned skip_sys_resume:1; 491#endif 492 struct wusb_dev *wusb_dev; 493}; 494#define to_usb_device(d) container_of(d, struct usb_device, dev) 495 496extern struct usb_device *usb_get_dev(struct usb_device *dev); 497extern void usb_put_dev(struct usb_device *dev); 498 499/* USB device locking */ 500#define usb_lock_device(udev) down(&(udev)->dev.sem) 501#define usb_unlock_device(udev) up(&(udev)->dev.sem) 502#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 503extern int usb_lock_device_for_reset(struct usb_device *udev, 504 const struct usb_interface *iface); 505 506/* USB port reset for device reinitialization */ 507extern int usb_reset_device(struct usb_device *dev); 508 509extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 510 511/* USB autosuspend and autoresume */ 512#ifdef CONFIG_USB_SUSPEND 513extern int usb_autopm_set_interface(struct usb_interface *intf); 514extern int usb_autopm_get_interface(struct usb_interface *intf); 515extern void usb_autopm_put_interface(struct usb_interface *intf); 516 517static inline void usb_autopm_enable(struct usb_interface *intf) 518{ 519 intf->pm_usage_cnt = 0; 520 usb_autopm_set_interface(intf); 521} 522 523static inline void usb_autopm_disable(struct usb_interface *intf) 524{ 525 intf->pm_usage_cnt = 1; 526 usb_autopm_set_interface(intf); 527} 528 529static inline void usb_mark_last_busy(struct usb_device *udev) 530{ 531 udev->last_busy = jiffies; 532} 533 534#else 535 536static inline int usb_autopm_set_interface(struct usb_interface *intf) 537{ return 0; } 538 539static inline int usb_autopm_get_interface(struct usb_interface *intf) 540{ return 0; } 541 542static inline void usb_autopm_put_interface(struct usb_interface *intf) 543{ } 544static inline void usb_autopm_enable(struct usb_interface *intf) 545{ } 546static inline void usb_autopm_disable(struct usb_interface *intf) 547{ } 548static inline void usb_mark_last_busy(struct usb_device *udev) 549{ } 550#endif 551 552/*-------------------------------------------------------------------------*/ 553 554/* for drivers using iso endpoints */ 555extern int usb_get_current_frame_number(struct usb_device *usb_dev); 556 557/* used these for multi-interface device registration */ 558extern int usb_driver_claim_interface(struct usb_driver *driver, 559 struct usb_interface *iface, void *priv); 560 561/** 562 * usb_interface_claimed - returns true iff an interface is claimed 563 * @iface: the interface being checked 564 * 565 * Returns true (nonzero) iff the interface is claimed, else false (zero). 566 * Callers must own the driver model's usb bus readlock. So driver 567 * probe() entries don't need extra locking, but other call contexts 568 * may need to explicitly claim that lock. 569 * 570 */ 571static inline int usb_interface_claimed(struct usb_interface *iface) 572{ 573 return (iface->dev.driver != NULL); 574} 575 576extern void usb_driver_release_interface(struct usb_driver *driver, 577 struct usb_interface *iface); 578const struct usb_device_id *usb_match_id(struct usb_interface *interface, 579 const struct usb_device_id *id); 580extern int usb_match_one_id(struct usb_interface *interface, 581 const struct usb_device_id *id); 582 583extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 584 int minor); 585extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 586 unsigned ifnum); 587extern struct usb_host_interface *usb_altnum_to_altsetting( 588 const struct usb_interface *intf, unsigned int altnum); 589 590 591/** 592 * usb_make_path - returns stable device path in the usb tree 593 * @dev: the device whose path is being constructed 594 * @buf: where to put the string 595 * @size: how big is "buf"? 596 * 597 * Returns length of the string (> 0) or negative if size was too small. 598 * 599 * This identifier is intended to be "stable", reflecting physical paths in 600 * hardware such as physical bus addresses for host controllers or ports on 601 * USB hubs. That makes it stay the same until systems are physically 602 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 603 * controllers. Adding and removing devices, including virtual root hubs 604 * in host controller driver modules, does not change these path identifers; 605 * neither does rebooting or re-enumerating. These are more useful identifiers 606 * than changeable ("unstable") ones like bus numbers or device addresses. 607 * 608 * With a partial exception for devices connected to USB 2.0 root hubs, these 609 * identifiers are also predictable. So long as the device tree isn't changed, 610 * plugging any USB device into a given hub port always gives it the same path. 611 * Because of the use of "companion" controllers, devices connected to ports on 612 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 613 * high speed, and a different one if they are full or low speed. 614 */ 615static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 616{ 617 int actual; 618 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 619 dev->devpath); 620 return (actual >= (int)size) ? -1 : actual; 621} 622 623/*-------------------------------------------------------------------------*/ 624 625/** 626 * usb_endpoint_num - get the endpoint's number 627 * @epd: endpoint to be checked 628 * 629 * Returns @epd's number: 0 to 15. 630 */ 631static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) 632{ 633 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 634} 635 636/** 637 * usb_endpoint_type - get the endpoint's transfer type 638 * @epd: endpoint to be checked 639 * 640 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according 641 * to @epd's transfer type. 642 */ 643static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) 644{ 645 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 646} 647 648/** 649 * usb_endpoint_dir_in - check if the endpoint has IN direction 650 * @epd: endpoint to be checked 651 * 652 * Returns true if the endpoint is of type IN, otherwise it returns false. 653 */ 654static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 655{ 656 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 657} 658 659/** 660 * usb_endpoint_dir_out - check if the endpoint has OUT direction 661 * @epd: endpoint to be checked 662 * 663 * Returns true if the endpoint is of type OUT, otherwise it returns false. 664 */ 665static inline int usb_endpoint_dir_out( 666 const struct usb_endpoint_descriptor *epd) 667{ 668 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 669} 670 671/** 672 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 673 * @epd: endpoint to be checked 674 * 675 * Returns true if the endpoint is of type bulk, otherwise it returns false. 676 */ 677static inline int usb_endpoint_xfer_bulk( 678 const struct usb_endpoint_descriptor *epd) 679{ 680 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 681 USB_ENDPOINT_XFER_BULK); 682} 683 684/** 685 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 686 * @epd: endpoint to be checked 687 * 688 * Returns true if the endpoint is of type control, otherwise it returns false. 689 */ 690static inline int usb_endpoint_xfer_control( 691 const struct usb_endpoint_descriptor *epd) 692{ 693 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 694 USB_ENDPOINT_XFER_CONTROL); 695} 696 697/** 698 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 699 * @epd: endpoint to be checked 700 * 701 * Returns true if the endpoint is of type interrupt, otherwise it returns 702 * false. 703 */ 704static inline int usb_endpoint_xfer_int( 705 const struct usb_endpoint_descriptor *epd) 706{ 707 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 708 USB_ENDPOINT_XFER_INT); 709} 710 711/** 712 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 713 * @epd: endpoint to be checked 714 * 715 * Returns true if the endpoint is of type isochronous, otherwise it returns 716 * false. 717 */ 718static inline int usb_endpoint_xfer_isoc( 719 const struct usb_endpoint_descriptor *epd) 720{ 721 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 722 USB_ENDPOINT_XFER_ISOC); 723} 724 725/** 726 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 727 * @epd: endpoint to be checked 728 * 729 * Returns true if the endpoint has bulk transfer type and IN direction, 730 * otherwise it returns false. 731 */ 732static inline int usb_endpoint_is_bulk_in( 733 const struct usb_endpoint_descriptor *epd) 734{ 735 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 736} 737 738/** 739 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 740 * @epd: endpoint to be checked 741 * 742 * Returns true if the endpoint has bulk transfer type and OUT direction, 743 * otherwise it returns false. 744 */ 745static inline int usb_endpoint_is_bulk_out( 746 const struct usb_endpoint_descriptor *epd) 747{ 748 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 749} 750 751/** 752 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 753 * @epd: endpoint to be checked 754 * 755 * Returns true if the endpoint has interrupt transfer type and IN direction, 756 * otherwise it returns false. 757 */ 758static inline int usb_endpoint_is_int_in( 759 const struct usb_endpoint_descriptor *epd) 760{ 761 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 762} 763 764/** 765 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 766 * @epd: endpoint to be checked 767 * 768 * Returns true if the endpoint has interrupt transfer type and OUT direction, 769 * otherwise it returns false. 770 */ 771static inline int usb_endpoint_is_int_out( 772 const struct usb_endpoint_descriptor *epd) 773{ 774 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 775} 776 777/** 778 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 779 * @epd: endpoint to be checked 780 * 781 * Returns true if the endpoint has isochronous transfer type and IN direction, 782 * otherwise it returns false. 783 */ 784static inline int usb_endpoint_is_isoc_in( 785 const struct usb_endpoint_descriptor *epd) 786{ 787 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 788} 789 790/** 791 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 792 * @epd: endpoint to be checked 793 * 794 * Returns true if the endpoint has isochronous transfer type and OUT direction, 795 * otherwise it returns false. 796 */ 797static inline int usb_endpoint_is_isoc_out( 798 const struct usb_endpoint_descriptor *epd) 799{ 800 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 801} 802 803/*-------------------------------------------------------------------------*/ 804 805#define USB_DEVICE_ID_MATCH_DEVICE \ 806 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 807#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 808 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 809#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 810 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 811#define USB_DEVICE_ID_MATCH_DEV_INFO \ 812 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 813 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 814 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 815#define USB_DEVICE_ID_MATCH_INT_INFO \ 816 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 817 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 818 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 819 820/** 821 * USB_DEVICE - macro used to describe a specific usb device 822 * @vend: the 16 bit USB Vendor ID 823 * @prod: the 16 bit USB Product ID 824 * 825 * This macro is used to create a struct usb_device_id that matches a 826 * specific device. 827 */ 828#define USB_DEVICE(vend,prod) \ 829 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 830 .idVendor = (vend), \ 831 .idProduct = (prod) 832/** 833 * USB_DEVICE_VER - describe a specific usb device with a version range 834 * @vend: the 16 bit USB Vendor ID 835 * @prod: the 16 bit USB Product ID 836 * @lo: the bcdDevice_lo value 837 * @hi: the bcdDevice_hi value 838 * 839 * This macro is used to create a struct usb_device_id that matches a 840 * specific device, with a version range. 841 */ 842#define USB_DEVICE_VER(vend, prod, lo, hi) \ 843 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 844 .idVendor = (vend), \ 845 .idProduct = (prod), \ 846 .bcdDevice_lo = (lo), \ 847 .bcdDevice_hi = (hi) 848 849/** 850 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 851 * @vend: the 16 bit USB Vendor ID 852 * @prod: the 16 bit USB Product ID 853 * @pr: bInterfaceProtocol value 854 * 855 * This macro is used to create a struct usb_device_id that matches a 856 * specific interface protocol of devices. 857 */ 858#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 859 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 860 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 861 .idVendor = (vend), \ 862 .idProduct = (prod), \ 863 .bInterfaceProtocol = (pr) 864 865/** 866 * USB_DEVICE_INFO - macro used to describe a class of usb devices 867 * @cl: bDeviceClass value 868 * @sc: bDeviceSubClass value 869 * @pr: bDeviceProtocol value 870 * 871 * This macro is used to create a struct usb_device_id that matches a 872 * specific class of devices. 873 */ 874#define USB_DEVICE_INFO(cl, sc, pr) \ 875 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 876 .bDeviceClass = (cl), \ 877 .bDeviceSubClass = (sc), \ 878 .bDeviceProtocol = (pr) 879 880/** 881 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 882 * @cl: bInterfaceClass value 883 * @sc: bInterfaceSubClass value 884 * @pr: bInterfaceProtocol value 885 * 886 * This macro is used to create a struct usb_device_id that matches a 887 * specific class of interfaces. 888 */ 889#define USB_INTERFACE_INFO(cl, sc, pr) \ 890 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 891 .bInterfaceClass = (cl), \ 892 .bInterfaceSubClass = (sc), \ 893 .bInterfaceProtocol = (pr) 894 895/** 896 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 897 * @vend: the 16 bit USB Vendor ID 898 * @prod: the 16 bit USB Product ID 899 * @cl: bInterfaceClass value 900 * @sc: bInterfaceSubClass value 901 * @pr: bInterfaceProtocol value 902 * 903 * This macro is used to create a struct usb_device_id that matches a 904 * specific device with a specific class of interfaces. 905 * 906 * This is especially useful when explicitly matching devices that have 907 * vendor specific bDeviceClass values, but standards-compliant interfaces. 908 */ 909#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 910 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 911 | USB_DEVICE_ID_MATCH_DEVICE, \ 912 .idVendor = (vend), \ 913 .idProduct = (prod), \ 914 .bInterfaceClass = (cl), \ 915 .bInterfaceSubClass = (sc), \ 916 .bInterfaceProtocol = (pr) 917 918/* ----------------------------------------------------------------------- */ 919 920/* Stuff for dynamic usb ids */ 921struct usb_dynids { 922 spinlock_t lock; 923 struct list_head list; 924}; 925 926struct usb_dynid { 927 struct list_head node; 928 struct usb_device_id id; 929}; 930 931extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 932 struct device_driver *driver, 933 const char *buf, size_t count); 934 935/** 936 * struct usbdrv_wrap - wrapper for driver-model structure 937 * @driver: The driver-model core driver structure. 938 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 939 */ 940struct usbdrv_wrap { 941 struct device_driver driver; 942 int for_devices; 943}; 944 945/** 946 * struct usb_driver - identifies USB interface driver to usbcore 947 * @name: The driver name should be unique among USB drivers, 948 * and should normally be the same as the module name. 949 * @probe: Called to see if the driver is willing to manage a particular 950 * interface on a device. If it is, probe returns zero and uses 951 * usb_set_intfdata() to associate driver-specific data with the 952 * interface. It may also use usb_set_interface() to specify the 953 * appropriate altsetting. If unwilling to manage the interface, 954 * return -ENODEV, if genuine IO errors occured, an appropriate 955 * negative errno value. 956 * @disconnect: Called when the interface is no longer accessible, usually 957 * because its device has been (or is being) disconnected or the 958 * driver module is being unloaded. 959 * @ioctl: Used for drivers that want to talk to userspace through 960 * the "usbfs" filesystem. This lets devices provide ways to 961 * expose information to user space regardless of where they 962 * do (or don't) show up otherwise in the filesystem. 963 * @suspend: Called when the device is going to be suspended by the system. 964 * @resume: Called when the device is being resumed by the system. 965 * @reset_resume: Called when the suspended device has been reset instead 966 * of being resumed. 967 * @pre_reset: Called by usb_reset_device() when the device 968 * is about to be reset. 969 * @post_reset: Called by usb_reset_device() after the device 970 * has been reset 971 * @id_table: USB drivers use ID table to support hotplugging. 972 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 973 * or your driver's probe function will never get called. 974 * @dynids: used internally to hold the list of dynamically added device 975 * ids for this driver. 976 * @drvwrap: Driver-model core structure wrapper. 977 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 978 * added to this driver by preventing the sysfs file from being created. 979 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 980 * for interfaces bound to this driver. 981 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 982 * endpoints before calling the driver's disconnect method. 983 * 984 * USB interface drivers must provide a name, probe() and disconnect() 985 * methods, and an id_table. Other driver fields are optional. 986 * 987 * The id_table is used in hotplugging. It holds a set of descriptors, 988 * and specialized data may be associated with each entry. That table 989 * is used by both user and kernel mode hotplugging support. 990 * 991 * The probe() and disconnect() methods are called in a context where 992 * they can sleep, but they should avoid abusing the privilege. Most 993 * work to connect to a device should be done when the device is opened, 994 * and undone at the last close. The disconnect code needs to address 995 * concurrency issues with respect to open() and close() methods, as 996 * well as forcing all pending I/O requests to complete (by unlinking 997 * them as necessary, and blocking until the unlinks complete). 998 */ 999struct usb_driver { 1000 const char *name; 1001 1002 int (*probe) (struct usb_interface *intf, 1003 const struct usb_device_id *id); 1004 1005 void (*disconnect) (struct usb_interface *intf); 1006 1007 int (*ioctl) (struct usb_interface *intf, unsigned int code, 1008 void *buf); 1009 1010 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1011 int (*resume) (struct usb_interface *intf); 1012 int (*reset_resume)(struct usb_interface *intf); 1013 1014 int (*pre_reset)(struct usb_interface *intf); 1015 int (*post_reset)(struct usb_interface *intf); 1016 1017 const struct usb_device_id *id_table; 1018 1019 struct usb_dynids dynids; 1020 struct usbdrv_wrap drvwrap; 1021 unsigned int no_dynamic_id:1; 1022 unsigned int supports_autosuspend:1; 1023 unsigned int soft_unbind:1; 1024}; 1025#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1026 1027/** 1028 * struct usb_device_driver - identifies USB device driver to usbcore 1029 * @name: The driver name should be unique among USB drivers, 1030 * and should normally be the same as the module name. 1031 * @probe: Called to see if the driver is willing to manage a particular 1032 * device. If it is, probe returns zero and uses dev_set_drvdata() 1033 * to associate driver-specific data with the device. If unwilling 1034 * to manage the device, return a negative errno value. 1035 * @disconnect: Called when the device is no longer accessible, usually 1036 * because it has been (or is being) disconnected or the driver's 1037 * module is being unloaded. 1038 * @suspend: Called when the device is going to be suspended by the system. 1039 * @resume: Called when the device is being resumed by the system. 1040 * @drvwrap: Driver-model core structure wrapper. 1041 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1042 * for devices bound to this driver. 1043 * 1044 * USB drivers must provide all the fields listed above except drvwrap. 1045 */ 1046struct usb_device_driver { 1047 const char *name; 1048 1049 int (*probe) (struct usb_device *udev); 1050 void (*disconnect) (struct usb_device *udev); 1051 1052 int (*suspend) (struct usb_device *udev, pm_message_t message); 1053 int (*resume) (struct usb_device *udev); 1054 struct usbdrv_wrap drvwrap; 1055 unsigned int supports_autosuspend:1; 1056}; 1057#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1058 drvwrap.driver) 1059 1060extern struct bus_type usb_bus_type; 1061 1062/** 1063 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1064 * @name: the usb class device name for this driver. Will show up in sysfs. 1065 * @fops: pointer to the struct file_operations of this driver. 1066 * @minor_base: the start of the minor range for this driver. 1067 * 1068 * This structure is used for the usb_register_dev() and 1069 * usb_unregister_dev() functions, to consolidate a number of the 1070 * parameters used for them. 1071 */ 1072struct usb_class_driver { 1073 char *name; 1074 const struct file_operations *fops; 1075 int minor_base; 1076}; 1077 1078/* 1079 * use these in module_init()/module_exit() 1080 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1081 */ 1082extern int usb_register_driver(struct usb_driver *, struct module *, 1083 const char *); 1084static inline int usb_register(struct usb_driver *driver) 1085{ 1086 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 1087} 1088extern void usb_deregister(struct usb_driver *); 1089 1090extern int usb_register_device_driver(struct usb_device_driver *, 1091 struct module *); 1092extern void usb_deregister_device_driver(struct usb_device_driver *); 1093 1094extern int usb_register_dev(struct usb_interface *intf, 1095 struct usb_class_driver *class_driver); 1096extern void usb_deregister_dev(struct usb_interface *intf, 1097 struct usb_class_driver *class_driver); 1098 1099extern int usb_disabled(void); 1100 1101/* ----------------------------------------------------------------------- */ 1102 1103/* 1104 * URB support, for asynchronous request completions 1105 */ 1106 1107/* 1108 * urb->transfer_flags: 1109 * 1110 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1111 */ 1112#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1113#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1114 * ignored */ 1115#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1116#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1117#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1118#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1119#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1120 * needed */ 1121#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1122 1123#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1124#define URB_DIR_OUT 0 1125#define URB_DIR_MASK URB_DIR_IN 1126 1127struct usb_iso_packet_descriptor { 1128 unsigned int offset; 1129 unsigned int length; /* expected length */ 1130 unsigned int actual_length; 1131 int status; 1132}; 1133 1134struct urb; 1135 1136struct usb_anchor { 1137 struct list_head urb_list; 1138 wait_queue_head_t wait; 1139 spinlock_t lock; 1140 unsigned int poisoned:1; 1141}; 1142 1143static inline void init_usb_anchor(struct usb_anchor *anchor) 1144{ 1145 INIT_LIST_HEAD(&anchor->urb_list); 1146 init_waitqueue_head(&anchor->wait); 1147 spin_lock_init(&anchor->lock); 1148} 1149 1150typedef void (*usb_complete_t)(struct urb *); 1151 1152/** 1153 * struct urb - USB Request Block 1154 * @urb_list: For use by current owner of the URB. 1155 * @anchor_list: membership in the list of an anchor 1156 * @anchor: to anchor URBs to a common mooring 1157 * @ep: Points to the endpoint's data structure. Will eventually 1158 * replace @pipe. 1159 * @pipe: Holds endpoint number, direction, type, and more. 1160 * Create these values with the eight macros available; 1161 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1162 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1163 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1164 * numbers range from zero to fifteen. Note that "in" endpoint two 1165 * is a different endpoint (and pipe) from "out" endpoint two. 1166 * The current configuration controls the existence, type, and 1167 * maximum packet size of any given endpoint. 1168 * @dev: Identifies the USB device to perform the request. 1169 * @status: This is read in non-iso completion functions to get the 1170 * status of the particular request. ISO requests only use it 1171 * to tell whether the URB was unlinked; detailed status for 1172 * each frame is in the fields of the iso_frame-desc. 1173 * @transfer_flags: A variety of flags may be used to affect how URB 1174 * submission, unlinking, or operation are handled. Different 1175 * kinds of URB can use different flags. 1176 * @transfer_buffer: This identifies the buffer to (or from) which 1177 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1178 * is set). This buffer must be suitable for DMA; allocate it with 1179 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1180 * of this buffer will be modified. This buffer is used for the data 1181 * stage of control transfers. 1182 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1183 * the device driver is saying that it provided this DMA address, 1184 * which the host controller driver should use in preference to the 1185 * transfer_buffer. 1186 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1187 * be broken up into chunks according to the current maximum packet 1188 * size for the endpoint, which is a function of the configuration 1189 * and is encoded in the pipe. When the length is zero, neither 1190 * transfer_buffer nor transfer_dma is used. 1191 * @actual_length: This is read in non-iso completion functions, and 1192 * it tells how many bytes (out of transfer_buffer_length) were 1193 * transferred. It will normally be the same as requested, unless 1194 * either an error was reported or a short read was performed. 1195 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1196 * short reads be reported as errors. 1197 * @setup_packet: Only used for control transfers, this points to eight bytes 1198 * of setup data. Control transfers always start by sending this data 1199 * to the device. Then transfer_buffer is read or written, if needed. 1200 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1201 * device driver has provided this DMA address for the setup packet. 1202 * The host controller driver should use this in preference to 1203 * setup_packet. 1204 * @start_frame: Returns the initial frame for isochronous transfers. 1205 * @number_of_packets: Lists the number of ISO transfer buffers. 1206 * @interval: Specifies the polling interval for interrupt or isochronous 1207 * transfers. The units are frames (milliseconds) for for full and low 1208 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1209 * @error_count: Returns the number of ISO transfers that reported errors. 1210 * @context: For use in completion functions. This normally points to 1211 * request-specific driver context. 1212 * @complete: Completion handler. This URB is passed as the parameter to the 1213 * completion function. The completion function may then do what 1214 * it likes with the URB, including resubmitting or freeing it. 1215 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1216 * collect the transfer status for each buffer. 1217 * 1218 * This structure identifies USB transfer requests. URBs must be allocated by 1219 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1220 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1221 * are submitted using usb_submit_urb(), and pending requests may be canceled 1222 * using usb_unlink_urb() or usb_kill_urb(). 1223 * 1224 * Data Transfer Buffers: 1225 * 1226 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1227 * taken from the general page pool. That is provided by transfer_buffer 1228 * (control requests also use setup_packet), and host controller drivers 1229 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1230 * mapping operations can be expensive on some platforms (perhaps using a dma 1231 * bounce buffer or talking to an IOMMU), 1232 * although they're cheap on commodity x86 and ppc hardware. 1233 * 1234 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1235 * which tell the host controller driver that no such mapping is needed since 1236 * the device driver is DMA-aware. For example, a device driver might 1237 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1238 * When these transfer flags are provided, host controller drivers will 1239 * attempt to use the dma addresses found in the transfer_dma and/or 1240 * setup_dma fields rather than determining a dma address themselves. (Note 1241 * that transfer_buffer and setup_packet must still be set because not all 1242 * host controllers use DMA, nor do virtual root hubs). 1243 * 1244 * Initialization: 1245 * 1246 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1247 * zero), and complete fields. All URBs must also initialize 1248 * transfer_buffer and transfer_buffer_length. They may provide the 1249 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1250 * to be treated as errors; that flag is invalid for write requests. 1251 * 1252 * Bulk URBs may 1253 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1254 * should always terminate with a short packet, even if it means adding an 1255 * extra zero length packet. 1256 * 1257 * Control URBs must provide a setup_packet. The setup_packet and 1258 * transfer_buffer may each be mapped for DMA or not, independently of 1259 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1260 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1261 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1262 * 1263 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1264 * or, for highspeed devices, 125 microsecond units) 1265 * to poll for transfers. After the URB has been submitted, the interval 1266 * field reflects how the transfer was actually scheduled. 1267 * The polling interval may be more frequent than requested. 1268 * For example, some controllers have a maximum interval of 32 milliseconds, 1269 * while others support intervals of up to 1024 milliseconds. 1270 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1271 * endpoints, as well as high speed interrupt endpoints, the encoding of 1272 * the transfer interval in the endpoint descriptor is logarithmic. 1273 * Device drivers must convert that value to linear units themselves.) 1274 * 1275 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1276 * the host controller to schedule the transfer as soon as bandwidth 1277 * utilization allows, and then set start_frame to reflect the actual frame 1278 * selected during submission. Otherwise drivers must specify the start_frame 1279 * and handle the case where the transfer can't begin then. However, drivers 1280 * won't know how bandwidth is currently allocated, and while they can 1281 * find the current frame using usb_get_current_frame_number () they can't 1282 * know the range for that frame number. (Ranges for frame counter values 1283 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1284 * 1285 * Isochronous URBs have a different data transfer model, in part because 1286 * the quality of service is only "best effort". Callers provide specially 1287 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1288 * at the end. Each such packet is an individual ISO transfer. Isochronous 1289 * URBs are normally queued, submitted by drivers to arrange that 1290 * transfers are at least double buffered, and then explicitly resubmitted 1291 * in completion handlers, so 1292 * that data (such as audio or video) streams at as constant a rate as the 1293 * host controller scheduler can support. 1294 * 1295 * Completion Callbacks: 1296 * 1297 * The completion callback is made in_interrupt(), and one of the first 1298 * things that a completion handler should do is check the status field. 1299 * The status field is provided for all URBs. It is used to report 1300 * unlinked URBs, and status for all non-ISO transfers. It should not 1301 * be examined before the URB is returned to the completion handler. 1302 * 1303 * The context field is normally used to link URBs back to the relevant 1304 * driver or request state. 1305 * 1306 * When the completion callback is invoked for non-isochronous URBs, the 1307 * actual_length field tells how many bytes were transferred. This field 1308 * is updated even when the URB terminated with an error or was unlinked. 1309 * 1310 * ISO transfer status is reported in the status and actual_length fields 1311 * of the iso_frame_desc array, and the number of errors is reported in 1312 * error_count. Completion callbacks for ISO transfers will normally 1313 * (re)submit URBs to ensure a constant transfer rate. 1314 * 1315 * Note that even fields marked "public" should not be touched by the driver 1316 * when the urb is owned by the hcd, that is, since the call to 1317 * usb_submit_urb() till the entry into the completion routine. 1318 */ 1319struct urb { 1320 /* private: usb core and host controller only fields in the urb */ 1321 struct kref kref; /* reference count of the URB */ 1322 void *hcpriv; /* private data for host controller */ 1323 atomic_t use_count; /* concurrent submissions counter */ 1324 u8 reject; /* submissions will fail */ 1325 int unlinked; /* unlink error code */ 1326 1327 /* public: documented fields in the urb that can be used by drivers */ 1328 struct list_head urb_list; /* list head for use by the urb's 1329 * current owner */ 1330 struct list_head anchor_list; /* the URB may be anchored */ 1331 struct usb_anchor *anchor; 1332 struct usb_device *dev; /* (in) pointer to associated device */ 1333 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1334 unsigned int pipe; /* (in) pipe information */ 1335 int status; /* (return) non-ISO status */ 1336 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1337 void *transfer_buffer; /* (in) associated data buffer */ 1338 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1339 int transfer_buffer_length; /* (in) data buffer length */ 1340 int actual_length; /* (return) actual transfer length */ 1341 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1342 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1343 int start_frame; /* (modify) start frame (ISO) */ 1344 int number_of_packets; /* (in) number of ISO packets */ 1345 int interval; /* (modify) transfer interval 1346 * (INT/ISO) */ 1347 int error_count; /* (return) number of ISO errors */ 1348 void *context; /* (in) context for completion */ 1349 usb_complete_t complete; /* (in) completion routine */ 1350 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1351 /* (in) ISO ONLY */ 1352}; 1353 1354/* ----------------------------------------------------------------------- */ 1355 1356/** 1357 * usb_fill_control_urb - initializes a control urb 1358 * @urb: pointer to the urb to initialize. 1359 * @dev: pointer to the struct usb_device for this urb. 1360 * @pipe: the endpoint pipe 1361 * @setup_packet: pointer to the setup_packet buffer 1362 * @transfer_buffer: pointer to the transfer buffer 1363 * @buffer_length: length of the transfer buffer 1364 * @complete_fn: pointer to the usb_complete_t function 1365 * @context: what to set the urb context to. 1366 * 1367 * Initializes a control urb with the proper information needed to submit 1368 * it to a device. 1369 */ 1370static inline void usb_fill_control_urb(struct urb *urb, 1371 struct usb_device *dev, 1372 unsigned int pipe, 1373 unsigned char *setup_packet, 1374 void *transfer_buffer, 1375 int buffer_length, 1376 usb_complete_t complete_fn, 1377 void *context) 1378{ 1379 urb->dev = dev; 1380 urb->pipe = pipe; 1381 urb->setup_packet = setup_packet; 1382 urb->transfer_buffer = transfer_buffer; 1383 urb->transfer_buffer_length = buffer_length; 1384 urb->complete = complete_fn; 1385 urb->context = context; 1386} 1387 1388/** 1389 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1390 * @urb: pointer to the urb to initialize. 1391 * @dev: pointer to the struct usb_device for this urb. 1392 * @pipe: the endpoint pipe 1393 * @transfer_buffer: pointer to the transfer buffer 1394 * @buffer_length: length of the transfer buffer 1395 * @complete_fn: pointer to the usb_complete_t function 1396 * @context: what to set the urb context to. 1397 * 1398 * Initializes a bulk urb with the proper information needed to submit it 1399 * to a device. 1400 */ 1401static inline void usb_fill_bulk_urb(struct urb *urb, 1402 struct usb_device *dev, 1403 unsigned int pipe, 1404 void *transfer_buffer, 1405 int buffer_length, 1406 usb_complete_t complete_fn, 1407 void *context) 1408{ 1409 urb->dev = dev; 1410 urb->pipe = pipe; 1411 urb->transfer_buffer = transfer_buffer; 1412 urb->transfer_buffer_length = buffer_length; 1413 urb->complete = complete_fn; 1414 urb->context = context; 1415} 1416 1417/** 1418 * usb_fill_int_urb - macro to help initialize a interrupt urb 1419 * @urb: pointer to the urb to initialize. 1420 * @dev: pointer to the struct usb_device for this urb. 1421 * @pipe: the endpoint pipe 1422 * @transfer_buffer: pointer to the transfer buffer 1423 * @buffer_length: length of the transfer buffer 1424 * @complete_fn: pointer to the usb_complete_t function 1425 * @context: what to set the urb context to. 1426 * @interval: what to set the urb interval to, encoded like 1427 * the endpoint descriptor's bInterval value. 1428 * 1429 * Initializes a interrupt urb with the proper information needed to submit 1430 * it to a device. 1431 * Note that high speed interrupt endpoints use a logarithmic encoding of 1432 * the endpoint interval, and express polling intervals in microframes 1433 * (eight per millisecond) rather than in frames (one per millisecond). 1434 */ 1435static inline void usb_fill_int_urb(struct urb *urb, 1436 struct usb_device *dev, 1437 unsigned int pipe, 1438 void *transfer_buffer, 1439 int buffer_length, 1440 usb_complete_t complete_fn, 1441 void *context, 1442 int interval) 1443{ 1444 urb->dev = dev; 1445 urb->pipe = pipe; 1446 urb->transfer_buffer = transfer_buffer; 1447 urb->transfer_buffer_length = buffer_length; 1448 urb->complete = complete_fn; 1449 urb->context = context; 1450 if (dev->speed == USB_SPEED_HIGH) 1451 urb->interval = 1 << (interval - 1); 1452 else 1453 urb->interval = interval; 1454 urb->start_frame = -1; 1455} 1456 1457extern void usb_init_urb(struct urb *urb); 1458extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1459extern void usb_free_urb(struct urb *urb); 1460#define usb_put_urb usb_free_urb 1461extern struct urb *usb_get_urb(struct urb *urb); 1462extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1463extern int usb_unlink_urb(struct urb *urb); 1464extern void usb_kill_urb(struct urb *urb); 1465extern void usb_poison_urb(struct urb *urb); 1466extern void usb_unpoison_urb(struct urb *urb); 1467extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1468extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1469extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1470extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1471extern void usb_unanchor_urb(struct urb *urb); 1472extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1473 unsigned int timeout); 1474extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1475extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1476extern int usb_anchor_empty(struct usb_anchor *anchor); 1477 1478/** 1479 * usb_urb_dir_in - check if an URB describes an IN transfer 1480 * @urb: URB to be checked 1481 * 1482 * Returns 1 if @urb describes an IN transfer (device-to-host), 1483 * otherwise 0. 1484 */ 1485static inline int usb_urb_dir_in(struct urb *urb) 1486{ 1487 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1488} 1489 1490/** 1491 * usb_urb_dir_out - check if an URB describes an OUT transfer 1492 * @urb: URB to be checked 1493 * 1494 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1495 * otherwise 0. 1496 */ 1497static inline int usb_urb_dir_out(struct urb *urb) 1498{ 1499 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1500} 1501 1502void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1503 gfp_t mem_flags, dma_addr_t *dma); 1504void usb_buffer_free(struct usb_device *dev, size_t size, 1505 void *addr, dma_addr_t dma); 1506 1507#if 0 1508struct urb *usb_buffer_map(struct urb *urb); 1509void usb_buffer_dmasync(struct urb *urb); 1510void usb_buffer_unmap(struct urb *urb); 1511#endif 1512 1513struct scatterlist; 1514int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1515 struct scatterlist *sg, int nents); 1516#if 0 1517void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1518 struct scatterlist *sg, int n_hw_ents); 1519#endif 1520void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1521 struct scatterlist *sg, int n_hw_ents); 1522 1523/*-------------------------------------------------------------------* 1524 * SYNCHRONOUS CALL SUPPORT * 1525 *-------------------------------------------------------------------*/ 1526 1527extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1528 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1529 void *data, __u16 size, int timeout); 1530extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1531 void *data, int len, int *actual_length, int timeout); 1532extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1533 void *data, int len, int *actual_length, 1534 int timeout); 1535 1536/* wrappers around usb_control_msg() for the most common standard requests */ 1537extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1538 unsigned char descindex, void *buf, int size); 1539extern int usb_get_status(struct usb_device *dev, 1540 int type, int target, void *data); 1541extern int usb_string(struct usb_device *dev, int index, 1542 char *buf, size_t size); 1543 1544/* wrappers that also update important state inside usbcore */ 1545extern int usb_clear_halt(struct usb_device *dev, int pipe); 1546extern int usb_reset_configuration(struct usb_device *dev); 1547extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1548 1549/* this request isn't really synchronous, but it belongs with the others */ 1550extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1551 1552/* 1553 * timeouts, in milliseconds, used for sending/receiving control messages 1554 * they typically complete within a few frames (msec) after they're issued 1555 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1556 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1557 */ 1558#define USB_CTRL_GET_TIMEOUT 5000 1559#define USB_CTRL_SET_TIMEOUT 5000 1560 1561 1562/** 1563 * struct usb_sg_request - support for scatter/gather I/O 1564 * @status: zero indicates success, else negative errno 1565 * @bytes: counts bytes transferred. 1566 * 1567 * These requests are initialized using usb_sg_init(), and then are used 1568 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1569 * members of the request object aren't for driver access. 1570 * 1571 * The status and bytecount values are valid only after usb_sg_wait() 1572 * returns. If the status is zero, then the bytecount matches the total 1573 * from the request. 1574 * 1575 * After an error completion, drivers may need to clear a halt condition 1576 * on the endpoint. 1577 */ 1578struct usb_sg_request { 1579 int status; 1580 size_t bytes; 1581 1582 /* 1583 * members below are private: to usbcore, 1584 * and are not provided for driver access! 1585 */ 1586 spinlock_t lock; 1587 1588 struct usb_device *dev; 1589 int pipe; 1590 struct scatterlist *sg; 1591 int nents; 1592 1593 int entries; 1594 struct urb **urbs; 1595 1596 int count; 1597 struct completion complete; 1598}; 1599 1600int usb_sg_init( 1601 struct usb_sg_request *io, 1602 struct usb_device *dev, 1603 unsigned pipe, 1604 unsigned period, 1605 struct scatterlist *sg, 1606 int nents, 1607 size_t length, 1608 gfp_t mem_flags 1609); 1610void usb_sg_cancel(struct usb_sg_request *io); 1611void usb_sg_wait(struct usb_sg_request *io); 1612 1613 1614/* ----------------------------------------------------------------------- */ 1615 1616/* 1617 * For various legacy reasons, Linux has a small cookie that's paired with 1618 * a struct usb_device to identify an endpoint queue. Queue characteristics 1619 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1620 * an unsigned int encoded as: 1621 * 1622 * - direction: bit 7 (0 = Host-to-Device [Out], 1623 * 1 = Device-to-Host [In] ... 1624 * like endpoint bEndpointAddress) 1625 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1626 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1627 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1628 * 10 = control, 11 = bulk) 1629 * 1630 * Given the device address and endpoint descriptor, pipes are redundant. 1631 */ 1632 1633/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1634/* (yet ... they're the values used by usbfs) */ 1635#define PIPE_ISOCHRONOUS 0 1636#define PIPE_INTERRUPT 1 1637#define PIPE_CONTROL 2 1638#define PIPE_BULK 3 1639 1640#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1641#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1642 1643#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1644#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1645 1646#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1647#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1648#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1649#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1650#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1651 1652/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1653#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1654#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1655#define usb_settoggle(dev, ep, out, bit) \ 1656 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1657 ((bit) << (ep))) 1658 1659 1660static inline unsigned int __create_pipe(struct usb_device *dev, 1661 unsigned int endpoint) 1662{ 1663 return (dev->devnum << 8) | (endpoint << 15); 1664} 1665 1666/* Create various pipes... */ 1667#define usb_sndctrlpipe(dev,endpoint) \ 1668 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1669#define usb_rcvctrlpipe(dev,endpoint) \ 1670 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1671#define usb_sndisocpipe(dev,endpoint) \ 1672 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1673#define usb_rcvisocpipe(dev,endpoint) \ 1674 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1675#define usb_sndbulkpipe(dev,endpoint) \ 1676 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1677#define usb_rcvbulkpipe(dev,endpoint) \ 1678 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1679#define usb_sndintpipe(dev,endpoint) \ 1680 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1681#define usb_rcvintpipe(dev,endpoint) \ 1682 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1683 1684/*-------------------------------------------------------------------------*/ 1685 1686static inline __u16 1687usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1688{ 1689 struct usb_host_endpoint *ep; 1690 unsigned epnum = usb_pipeendpoint(pipe); 1691 1692 if (is_out) { 1693 WARN_ON(usb_pipein(pipe)); 1694 ep = udev->ep_out[epnum]; 1695 } else { 1696 WARN_ON(usb_pipeout(pipe)); 1697 ep = udev->ep_in[epnum]; 1698 } 1699 if (!ep) 1700 return 0; 1701 1702 /* NOTE: only 0x07ff bits are for packet size... */ 1703 return le16_to_cpu(ep->desc.wMaxPacketSize); 1704} 1705 1706/* ----------------------------------------------------------------------- */ 1707 1708/* Events from the usb core */ 1709#define USB_DEVICE_ADD 0x0001 1710#define USB_DEVICE_REMOVE 0x0002 1711#define USB_BUS_ADD 0x0003 1712#define USB_BUS_REMOVE 0x0004 1713extern void usb_register_notify(struct notifier_block *nb); 1714extern void usb_unregister_notify(struct notifier_block *nb); 1715 1716#ifdef DEBUG 1717#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1718 __FILE__ , ## arg) 1719#else 1720#define dbg(format, arg...) do {} while (0) 1721#endif 1722 1723#define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \ 1724 format "\n" , ## arg) 1725#define info(format, arg...) printk(KERN_INFO KBUILD_MODNAME ": " \ 1726 format "\n" , ## arg) 1727#define warn(format, arg...) printk(KERN_WARNING KBUILD_MODNAME ": " \ 1728 format "\n" , ## arg) 1729 1730#endif /* __KERNEL__ */ 1731 1732#endif