at v2.6.28 10 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 */ 8 9#ifndef _LINUX_SLAB_H 10#define _LINUX_SLAB_H 11 12#include <linux/gfp.h> 13#include <linux/types.h> 14 15/* 16 * Flags to pass to kmem_cache_create(). 17 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 18 */ 19#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 20#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 21#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 22#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 23#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 24#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 25#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 26/* 27 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 28 * 29 * This delays freeing the SLAB page by a grace period, it does _NOT_ 30 * delay object freeing. This means that if you do kmem_cache_free() 31 * that memory location is free to be reused at any time. Thus it may 32 * be possible to see another object there in the same RCU grace period. 33 * 34 * This feature only ensures the memory location backing the object 35 * stays valid, the trick to using this is relying on an independent 36 * object validation pass. Something like: 37 * 38 * rcu_read_lock() 39 * again: 40 * obj = lockless_lookup(key); 41 * if (obj) { 42 * if (!try_get_ref(obj)) // might fail for free objects 43 * goto again; 44 * 45 * if (obj->key != key) { // not the object we expected 46 * put_ref(obj); 47 * goto again; 48 * } 49 * } 50 * rcu_read_unlock(); 51 * 52 * See also the comment on struct slab_rcu in mm/slab.c. 53 */ 54#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 55#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 56#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 57 58/* Flag to prevent checks on free */ 59#ifdef CONFIG_DEBUG_OBJECTS 60# define SLAB_DEBUG_OBJECTS 0x00400000UL 61#else 62# define SLAB_DEBUG_OBJECTS 0x00000000UL 63#endif 64 65/* The following flags affect the page allocator grouping pages by mobility */ 66#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 67#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 68/* 69 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 70 * 71 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 72 * 73 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 74 * Both make kfree a no-op. 75 */ 76#define ZERO_SIZE_PTR ((void *)16) 77 78#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 79 (unsigned long)ZERO_SIZE_PTR) 80 81/* 82 * struct kmem_cache related prototypes 83 */ 84void __init kmem_cache_init(void); 85int slab_is_available(void); 86 87struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 88 unsigned long, 89 void (*)(void *)); 90void kmem_cache_destroy(struct kmem_cache *); 91int kmem_cache_shrink(struct kmem_cache *); 92void kmem_cache_free(struct kmem_cache *, void *); 93unsigned int kmem_cache_size(struct kmem_cache *); 94const char *kmem_cache_name(struct kmem_cache *); 95int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr); 96 97/* 98 * Please use this macro to create slab caches. Simply specify the 99 * name of the structure and maybe some flags that are listed above. 100 * 101 * The alignment of the struct determines object alignment. If you 102 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 103 * then the objects will be properly aligned in SMP configurations. 104 */ 105#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 106 sizeof(struct __struct), __alignof__(struct __struct),\ 107 (__flags), NULL) 108 109/* 110 * The largest kmalloc size supported by the slab allocators is 111 * 32 megabyte (2^25) or the maximum allocatable page order if that is 112 * less than 32 MB. 113 * 114 * WARNING: Its not easy to increase this value since the allocators have 115 * to do various tricks to work around compiler limitations in order to 116 * ensure proper constant folding. 117 */ 118#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 119 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 120 121#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH) 122#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT) 123 124/* 125 * Common kmalloc functions provided by all allocators 126 */ 127void * __must_check __krealloc(const void *, size_t, gfp_t); 128void * __must_check krealloc(const void *, size_t, gfp_t); 129void kfree(const void *); 130size_t ksize(const void *); 131 132/* 133 * Allocator specific definitions. These are mainly used to establish optimized 134 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by 135 * selecting the appropriate general cache at compile time. 136 * 137 * Allocators must define at least: 138 * 139 * kmem_cache_alloc() 140 * __kmalloc() 141 * kmalloc() 142 * 143 * Those wishing to support NUMA must also define: 144 * 145 * kmem_cache_alloc_node() 146 * kmalloc_node() 147 * 148 * See each allocator definition file for additional comments and 149 * implementation notes. 150 */ 151#ifdef CONFIG_SLUB 152#include <linux/slub_def.h> 153#elif defined(CONFIG_SLOB) 154#include <linux/slob_def.h> 155#else 156#include <linux/slab_def.h> 157#endif 158 159/** 160 * kcalloc - allocate memory for an array. The memory is set to zero. 161 * @n: number of elements. 162 * @size: element size. 163 * @flags: the type of memory to allocate. 164 * 165 * The @flags argument may be one of: 166 * 167 * %GFP_USER - Allocate memory on behalf of user. May sleep. 168 * 169 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 170 * 171 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 172 * For example, use this inside interrupt handlers. 173 * 174 * %GFP_HIGHUSER - Allocate pages from high memory. 175 * 176 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 177 * 178 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 179 * 180 * %GFP_NOWAIT - Allocation will not sleep. 181 * 182 * %GFP_THISNODE - Allocate node-local memory only. 183 * 184 * %GFP_DMA - Allocation suitable for DMA. 185 * Should only be used for kmalloc() caches. Otherwise, use a 186 * slab created with SLAB_DMA. 187 * 188 * Also it is possible to set different flags by OR'ing 189 * in one or more of the following additional @flags: 190 * 191 * %__GFP_COLD - Request cache-cold pages instead of 192 * trying to return cache-warm pages. 193 * 194 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 195 * 196 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 197 * (think twice before using). 198 * 199 * %__GFP_NORETRY - If memory is not immediately available, 200 * then give up at once. 201 * 202 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 203 * 204 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 205 * 206 * There are other flags available as well, but these are not intended 207 * for general use, and so are not documented here. For a full list of 208 * potential flags, always refer to linux/gfp.h. 209 */ 210static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 211{ 212 if (size != 0 && n > ULONG_MAX / size) 213 return NULL; 214 return __kmalloc(n * size, flags | __GFP_ZERO); 215} 216 217#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB) 218/** 219 * kmalloc_node - allocate memory from a specific node 220 * @size: how many bytes of memory are required. 221 * @flags: the type of memory to allocate (see kcalloc). 222 * @node: node to allocate from. 223 * 224 * kmalloc() for non-local nodes, used to allocate from a specific node 225 * if available. Equivalent to kmalloc() in the non-NUMA single-node 226 * case. 227 */ 228static inline void *kmalloc_node(size_t size, gfp_t flags, int node) 229{ 230 return kmalloc(size, flags); 231} 232 233static inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 234{ 235 return __kmalloc(size, flags); 236} 237 238void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 239 240static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep, 241 gfp_t flags, int node) 242{ 243 return kmem_cache_alloc(cachep, flags); 244} 245#endif /* !CONFIG_NUMA && !CONFIG_SLOB */ 246 247/* 248 * kmalloc_track_caller is a special version of kmalloc that records the 249 * calling function of the routine calling it for slab leak tracking instead 250 * of just the calling function (confusing, eh?). 251 * It's useful when the call to kmalloc comes from a widely-used standard 252 * allocator where we care about the real place the memory allocation 253 * request comes from. 254 */ 255#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) 256extern void *__kmalloc_track_caller(size_t, gfp_t, void*); 257#define kmalloc_track_caller(size, flags) \ 258 __kmalloc_track_caller(size, flags, __builtin_return_address(0)) 259#else 260#define kmalloc_track_caller(size, flags) \ 261 __kmalloc(size, flags) 262#endif /* DEBUG_SLAB */ 263 264#ifdef CONFIG_NUMA 265/* 266 * kmalloc_node_track_caller is a special version of kmalloc_node that 267 * records the calling function of the routine calling it for slab leak 268 * tracking instead of just the calling function (confusing, eh?). 269 * It's useful when the call to kmalloc_node comes from a widely-used 270 * standard allocator where we care about the real place the memory 271 * allocation request comes from. 272 */ 273#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) 274extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *); 275#define kmalloc_node_track_caller(size, flags, node) \ 276 __kmalloc_node_track_caller(size, flags, node, \ 277 __builtin_return_address(0)) 278#else 279#define kmalloc_node_track_caller(size, flags, node) \ 280 __kmalloc_node(size, flags, node) 281#endif 282 283#else /* CONFIG_NUMA */ 284 285#define kmalloc_node_track_caller(size, flags, node) \ 286 kmalloc_track_caller(size, flags) 287 288#endif /* DEBUG_SLAB */ 289 290/* 291 * Shortcuts 292 */ 293static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 294{ 295 return kmem_cache_alloc(k, flags | __GFP_ZERO); 296} 297 298/** 299 * kzalloc - allocate memory. The memory is set to zero. 300 * @size: how many bytes of memory are required. 301 * @flags: the type of memory to allocate (see kmalloc). 302 */ 303static inline void *kzalloc(size_t size, gfp_t flags) 304{ 305 return kmalloc(size, flags | __GFP_ZERO); 306} 307 308/** 309 * kzalloc_node - allocate zeroed memory from a particular memory node. 310 * @size: how many bytes of memory are required. 311 * @flags: the type of memory to allocate (see kmalloc). 312 * @node: memory node from which to allocate 313 */ 314static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 315{ 316 return kmalloc_node(size, flags | __GFP_ZERO, node); 317} 318 319#endif /* _LINUX_SLAB_H */