at v2.6.28 54 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/compiler.h> 19#include <linux/time.h> 20#include <linux/cache.h> 21 22#include <asm/atomic.h> 23#include <asm/types.h> 24#include <linux/spinlock.h> 25#include <linux/net.h> 26#include <linux/textsearch.h> 27#include <net/checksum.h> 28#include <linux/rcupdate.h> 29#include <linux/dmaengine.h> 30#include <linux/hrtimer.h> 31 32#define HAVE_ALLOC_SKB /* For the drivers to know */ 33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35/* Don't change this without changing skb_csum_unnecessary! */ 36#define CHECKSUM_NONE 0 37#define CHECKSUM_UNNECESSARY 1 38#define CHECKSUM_COMPLETE 2 39#define CHECKSUM_PARTIAL 3 40 41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43#define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45#define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50/* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96struct net_device; 97struct scatterlist; 98struct pipe_inode_info; 99 100#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101struct nf_conntrack { 102 atomic_t use; 103}; 104#endif 105 106#ifdef CONFIG_BRIDGE_NETFILTER 107struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 unsigned int mask; 112 unsigned long data[32 / sizeof(unsigned long)]; 113}; 114#endif 115 116struct sk_buff_head { 117 /* These two members must be first. */ 118 struct sk_buff *next; 119 struct sk_buff *prev; 120 121 __u32 qlen; 122 spinlock_t lock; 123}; 124 125struct sk_buff; 126 127/* To allow 64K frame to be packed as single skb without frag_list */ 128#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 129 130typedef struct skb_frag_struct skb_frag_t; 131 132struct skb_frag_struct { 133 struct page *page; 134 __u32 page_offset; 135 __u32 size; 136}; 137 138/* This data is invariant across clones and lives at 139 * the end of the header data, ie. at skb->end. 140 */ 141struct skb_shared_info { 142 atomic_t dataref; 143 unsigned short nr_frags; 144 unsigned short gso_size; 145 /* Warning: this field is not always filled in (UFO)! */ 146 unsigned short gso_segs; 147 unsigned short gso_type; 148 __be32 ip6_frag_id; 149#ifdef CONFIG_HAS_DMA 150 unsigned int num_dma_maps; 151#endif 152 struct sk_buff *frag_list; 153 skb_frag_t frags[MAX_SKB_FRAGS]; 154#ifdef CONFIG_HAS_DMA 155 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1]; 156#endif 157}; 158 159/* We divide dataref into two halves. The higher 16 bits hold references 160 * to the payload part of skb->data. The lower 16 bits hold references to 161 * the entire skb->data. A clone of a headerless skb holds the length of 162 * the header in skb->hdr_len. 163 * 164 * All users must obey the rule that the skb->data reference count must be 165 * greater than or equal to the payload reference count. 166 * 167 * Holding a reference to the payload part means that the user does not 168 * care about modifications to the header part of skb->data. 169 */ 170#define SKB_DATAREF_SHIFT 16 171#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 172 173 174enum { 175 SKB_FCLONE_UNAVAILABLE, 176 SKB_FCLONE_ORIG, 177 SKB_FCLONE_CLONE, 178}; 179 180enum { 181 SKB_GSO_TCPV4 = 1 << 0, 182 SKB_GSO_UDP = 1 << 1, 183 184 /* This indicates the skb is from an untrusted source. */ 185 SKB_GSO_DODGY = 1 << 2, 186 187 /* This indicates the tcp segment has CWR set. */ 188 SKB_GSO_TCP_ECN = 1 << 3, 189 190 SKB_GSO_TCPV6 = 1 << 4, 191}; 192 193#if BITS_PER_LONG > 32 194#define NET_SKBUFF_DATA_USES_OFFSET 1 195#endif 196 197#ifdef NET_SKBUFF_DATA_USES_OFFSET 198typedef unsigned int sk_buff_data_t; 199#else 200typedef unsigned char *sk_buff_data_t; 201#endif 202 203/** 204 * struct sk_buff - socket buffer 205 * @next: Next buffer in list 206 * @prev: Previous buffer in list 207 * @sk: Socket we are owned by 208 * @tstamp: Time we arrived 209 * @dev: Device we arrived on/are leaving by 210 * @transport_header: Transport layer header 211 * @network_header: Network layer header 212 * @mac_header: Link layer header 213 * @dst: destination entry 214 * @sp: the security path, used for xfrm 215 * @cb: Control buffer. Free for use by every layer. Put private vars here 216 * @len: Length of actual data 217 * @data_len: Data length 218 * @mac_len: Length of link layer header 219 * @hdr_len: writable header length of cloned skb 220 * @csum: Checksum (must include start/offset pair) 221 * @csum_start: Offset from skb->head where checksumming should start 222 * @csum_offset: Offset from csum_start where checksum should be stored 223 * @local_df: allow local fragmentation 224 * @cloned: Head may be cloned (check refcnt to be sure) 225 * @nohdr: Payload reference only, must not modify header 226 * @pkt_type: Packet class 227 * @fclone: skbuff clone status 228 * @ip_summed: Driver fed us an IP checksum 229 * @priority: Packet queueing priority 230 * @users: User count - see {datagram,tcp}.c 231 * @protocol: Packet protocol from driver 232 * @truesize: Buffer size 233 * @head: Head of buffer 234 * @data: Data head pointer 235 * @tail: Tail pointer 236 * @end: End pointer 237 * @destructor: Destruct function 238 * @mark: Generic packet mark 239 * @nfct: Associated connection, if any 240 * @ipvs_property: skbuff is owned by ipvs 241 * @peeked: this packet has been seen already, so stats have been 242 * done for it, don't do them again 243 * @nf_trace: netfilter packet trace flag 244 * @nfctinfo: Relationship of this skb to the connection 245 * @nfct_reasm: netfilter conntrack re-assembly pointer 246 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 247 * @iif: ifindex of device we arrived on 248 * @queue_mapping: Queue mapping for multiqueue devices 249 * @tc_index: Traffic control index 250 * @tc_verd: traffic control verdict 251 * @ndisc_nodetype: router type (from link layer) 252 * @do_not_encrypt: set to prevent encryption of this frame 253 * @dma_cookie: a cookie to one of several possible DMA operations 254 * done by skb DMA functions 255 * @secmark: security marking 256 * @vlan_tci: vlan tag control information 257 */ 258 259struct sk_buff { 260 /* These two members must be first. */ 261 struct sk_buff *next; 262 struct sk_buff *prev; 263 264 struct sock *sk; 265 ktime_t tstamp; 266 struct net_device *dev; 267 268 union { 269 struct dst_entry *dst; 270 struct rtable *rtable; 271 }; 272 struct sec_path *sp; 273 274 /* 275 * This is the control buffer. It is free to use for every 276 * layer. Please put your private variables there. If you 277 * want to keep them across layers you have to do a skb_clone() 278 * first. This is owned by whoever has the skb queued ATM. 279 */ 280 char cb[48]; 281 282 unsigned int len, 283 data_len; 284 __u16 mac_len, 285 hdr_len; 286 union { 287 __wsum csum; 288 struct { 289 __u16 csum_start; 290 __u16 csum_offset; 291 }; 292 }; 293 __u32 priority; 294 __u8 local_df:1, 295 cloned:1, 296 ip_summed:2, 297 nohdr:1, 298 nfctinfo:3; 299 __u8 pkt_type:3, 300 fclone:2, 301 ipvs_property:1, 302 peeked:1, 303 nf_trace:1; 304 __be16 protocol; 305 306 void (*destructor)(struct sk_buff *skb); 307#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 308 struct nf_conntrack *nfct; 309 struct sk_buff *nfct_reasm; 310#endif 311#ifdef CONFIG_BRIDGE_NETFILTER 312 struct nf_bridge_info *nf_bridge; 313#endif 314 315 int iif; 316 __u16 queue_mapping; 317#ifdef CONFIG_NET_SCHED 318 __u16 tc_index; /* traffic control index */ 319#ifdef CONFIG_NET_CLS_ACT 320 __u16 tc_verd; /* traffic control verdict */ 321#endif 322#endif 323#ifdef CONFIG_IPV6_NDISC_NODETYPE 324 __u8 ndisc_nodetype:2; 325#endif 326#if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE) 327 __u8 do_not_encrypt:1; 328#endif 329 /* 0/13/14 bit hole */ 330 331#ifdef CONFIG_NET_DMA 332 dma_cookie_t dma_cookie; 333#endif 334#ifdef CONFIG_NETWORK_SECMARK 335 __u32 secmark; 336#endif 337 338 __u32 mark; 339 340 __u16 vlan_tci; 341 342 sk_buff_data_t transport_header; 343 sk_buff_data_t network_header; 344 sk_buff_data_t mac_header; 345 /* These elements must be at the end, see alloc_skb() for details. */ 346 sk_buff_data_t tail; 347 sk_buff_data_t end; 348 unsigned char *head, 349 *data; 350 unsigned int truesize; 351 atomic_t users; 352}; 353 354#ifdef __KERNEL__ 355/* 356 * Handling routines are only of interest to the kernel 357 */ 358#include <linux/slab.h> 359 360#include <asm/system.h> 361 362#ifdef CONFIG_HAS_DMA 363#include <linux/dma-mapping.h> 364extern int skb_dma_map(struct device *dev, struct sk_buff *skb, 365 enum dma_data_direction dir); 366extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb, 367 enum dma_data_direction dir); 368#endif 369 370extern void kfree_skb(struct sk_buff *skb); 371extern void __kfree_skb(struct sk_buff *skb); 372extern struct sk_buff *__alloc_skb(unsigned int size, 373 gfp_t priority, int fclone, int node); 374static inline struct sk_buff *alloc_skb(unsigned int size, 375 gfp_t priority) 376{ 377 return __alloc_skb(size, priority, 0, -1); 378} 379 380static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 381 gfp_t priority) 382{ 383 return __alloc_skb(size, priority, 1, -1); 384} 385 386extern int skb_recycle_check(struct sk_buff *skb, int skb_size); 387 388extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 389extern struct sk_buff *skb_clone(struct sk_buff *skb, 390 gfp_t priority); 391extern struct sk_buff *skb_copy(const struct sk_buff *skb, 392 gfp_t priority); 393extern struct sk_buff *pskb_copy(struct sk_buff *skb, 394 gfp_t gfp_mask); 395extern int pskb_expand_head(struct sk_buff *skb, 396 int nhead, int ntail, 397 gfp_t gfp_mask); 398extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 399 unsigned int headroom); 400extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 401 int newheadroom, int newtailroom, 402 gfp_t priority); 403extern int skb_to_sgvec(struct sk_buff *skb, 404 struct scatterlist *sg, int offset, 405 int len); 406extern int skb_cow_data(struct sk_buff *skb, int tailbits, 407 struct sk_buff **trailer); 408extern int skb_pad(struct sk_buff *skb, int pad); 409#define dev_kfree_skb(a) kfree_skb(a) 410extern void skb_over_panic(struct sk_buff *skb, int len, 411 void *here); 412extern void skb_under_panic(struct sk_buff *skb, int len, 413 void *here); 414extern void skb_truesize_bug(struct sk_buff *skb); 415 416static inline void skb_truesize_check(struct sk_buff *skb) 417{ 418 int len = sizeof(struct sk_buff) + skb->len; 419 420 if (unlikely((int)skb->truesize < len)) 421 skb_truesize_bug(skb); 422} 423 424extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 425 int getfrag(void *from, char *to, int offset, 426 int len,int odd, struct sk_buff *skb), 427 void *from, int length); 428 429struct skb_seq_state 430{ 431 __u32 lower_offset; 432 __u32 upper_offset; 433 __u32 frag_idx; 434 __u32 stepped_offset; 435 struct sk_buff *root_skb; 436 struct sk_buff *cur_skb; 437 __u8 *frag_data; 438}; 439 440extern void skb_prepare_seq_read(struct sk_buff *skb, 441 unsigned int from, unsigned int to, 442 struct skb_seq_state *st); 443extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 444 struct skb_seq_state *st); 445extern void skb_abort_seq_read(struct skb_seq_state *st); 446 447extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 448 unsigned int to, struct ts_config *config, 449 struct ts_state *state); 450 451#ifdef NET_SKBUFF_DATA_USES_OFFSET 452static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 453{ 454 return skb->head + skb->end; 455} 456#else 457static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 458{ 459 return skb->end; 460} 461#endif 462 463/* Internal */ 464#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 465 466/** 467 * skb_queue_empty - check if a queue is empty 468 * @list: queue head 469 * 470 * Returns true if the queue is empty, false otherwise. 471 */ 472static inline int skb_queue_empty(const struct sk_buff_head *list) 473{ 474 return list->next == (struct sk_buff *)list; 475} 476 477/** 478 * skb_queue_is_last - check if skb is the last entry in the queue 479 * @list: queue head 480 * @skb: buffer 481 * 482 * Returns true if @skb is the last buffer on the list. 483 */ 484static inline bool skb_queue_is_last(const struct sk_buff_head *list, 485 const struct sk_buff *skb) 486{ 487 return (skb->next == (struct sk_buff *) list); 488} 489 490/** 491 * skb_queue_next - return the next packet in the queue 492 * @list: queue head 493 * @skb: current buffer 494 * 495 * Return the next packet in @list after @skb. It is only valid to 496 * call this if skb_queue_is_last() evaluates to false. 497 */ 498static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 499 const struct sk_buff *skb) 500{ 501 /* This BUG_ON may seem severe, but if we just return then we 502 * are going to dereference garbage. 503 */ 504 BUG_ON(skb_queue_is_last(list, skb)); 505 return skb->next; 506} 507 508/** 509 * skb_get - reference buffer 510 * @skb: buffer to reference 511 * 512 * Makes another reference to a socket buffer and returns a pointer 513 * to the buffer. 514 */ 515static inline struct sk_buff *skb_get(struct sk_buff *skb) 516{ 517 atomic_inc(&skb->users); 518 return skb; 519} 520 521/* 522 * If users == 1, we are the only owner and are can avoid redundant 523 * atomic change. 524 */ 525 526/** 527 * skb_cloned - is the buffer a clone 528 * @skb: buffer to check 529 * 530 * Returns true if the buffer was generated with skb_clone() and is 531 * one of multiple shared copies of the buffer. Cloned buffers are 532 * shared data so must not be written to under normal circumstances. 533 */ 534static inline int skb_cloned(const struct sk_buff *skb) 535{ 536 return skb->cloned && 537 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 538} 539 540/** 541 * skb_header_cloned - is the header a clone 542 * @skb: buffer to check 543 * 544 * Returns true if modifying the header part of the buffer requires 545 * the data to be copied. 546 */ 547static inline int skb_header_cloned(const struct sk_buff *skb) 548{ 549 int dataref; 550 551 if (!skb->cloned) 552 return 0; 553 554 dataref = atomic_read(&skb_shinfo(skb)->dataref); 555 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 556 return dataref != 1; 557} 558 559/** 560 * skb_header_release - release reference to header 561 * @skb: buffer to operate on 562 * 563 * Drop a reference to the header part of the buffer. This is done 564 * by acquiring a payload reference. You must not read from the header 565 * part of skb->data after this. 566 */ 567static inline void skb_header_release(struct sk_buff *skb) 568{ 569 BUG_ON(skb->nohdr); 570 skb->nohdr = 1; 571 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 572} 573 574/** 575 * skb_shared - is the buffer shared 576 * @skb: buffer to check 577 * 578 * Returns true if more than one person has a reference to this 579 * buffer. 580 */ 581static inline int skb_shared(const struct sk_buff *skb) 582{ 583 return atomic_read(&skb->users) != 1; 584} 585 586/** 587 * skb_share_check - check if buffer is shared and if so clone it 588 * @skb: buffer to check 589 * @pri: priority for memory allocation 590 * 591 * If the buffer is shared the buffer is cloned and the old copy 592 * drops a reference. A new clone with a single reference is returned. 593 * If the buffer is not shared the original buffer is returned. When 594 * being called from interrupt status or with spinlocks held pri must 595 * be GFP_ATOMIC. 596 * 597 * NULL is returned on a memory allocation failure. 598 */ 599static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 600 gfp_t pri) 601{ 602 might_sleep_if(pri & __GFP_WAIT); 603 if (skb_shared(skb)) { 604 struct sk_buff *nskb = skb_clone(skb, pri); 605 kfree_skb(skb); 606 skb = nskb; 607 } 608 return skb; 609} 610 611/* 612 * Copy shared buffers into a new sk_buff. We effectively do COW on 613 * packets to handle cases where we have a local reader and forward 614 * and a couple of other messy ones. The normal one is tcpdumping 615 * a packet thats being forwarded. 616 */ 617 618/** 619 * skb_unshare - make a copy of a shared buffer 620 * @skb: buffer to check 621 * @pri: priority for memory allocation 622 * 623 * If the socket buffer is a clone then this function creates a new 624 * copy of the data, drops a reference count on the old copy and returns 625 * the new copy with the reference count at 1. If the buffer is not a clone 626 * the original buffer is returned. When called with a spinlock held or 627 * from interrupt state @pri must be %GFP_ATOMIC 628 * 629 * %NULL is returned on a memory allocation failure. 630 */ 631static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 632 gfp_t pri) 633{ 634 might_sleep_if(pri & __GFP_WAIT); 635 if (skb_cloned(skb)) { 636 struct sk_buff *nskb = skb_copy(skb, pri); 637 kfree_skb(skb); /* Free our shared copy */ 638 skb = nskb; 639 } 640 return skb; 641} 642 643/** 644 * skb_peek 645 * @list_: list to peek at 646 * 647 * Peek an &sk_buff. Unlike most other operations you _MUST_ 648 * be careful with this one. A peek leaves the buffer on the 649 * list and someone else may run off with it. You must hold 650 * the appropriate locks or have a private queue to do this. 651 * 652 * Returns %NULL for an empty list or a pointer to the head element. 653 * The reference count is not incremented and the reference is therefore 654 * volatile. Use with caution. 655 */ 656static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 657{ 658 struct sk_buff *list = ((struct sk_buff *)list_)->next; 659 if (list == (struct sk_buff *)list_) 660 list = NULL; 661 return list; 662} 663 664/** 665 * skb_peek_tail 666 * @list_: list to peek at 667 * 668 * Peek an &sk_buff. Unlike most other operations you _MUST_ 669 * be careful with this one. A peek leaves the buffer on the 670 * list and someone else may run off with it. You must hold 671 * the appropriate locks or have a private queue to do this. 672 * 673 * Returns %NULL for an empty list or a pointer to the tail element. 674 * The reference count is not incremented and the reference is therefore 675 * volatile. Use with caution. 676 */ 677static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 678{ 679 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 680 if (list == (struct sk_buff *)list_) 681 list = NULL; 682 return list; 683} 684 685/** 686 * skb_queue_len - get queue length 687 * @list_: list to measure 688 * 689 * Return the length of an &sk_buff queue. 690 */ 691static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 692{ 693 return list_->qlen; 694} 695 696/** 697 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 698 * @list: queue to initialize 699 * 700 * This initializes only the list and queue length aspects of 701 * an sk_buff_head object. This allows to initialize the list 702 * aspects of an sk_buff_head without reinitializing things like 703 * the spinlock. It can also be used for on-stack sk_buff_head 704 * objects where the spinlock is known to not be used. 705 */ 706static inline void __skb_queue_head_init(struct sk_buff_head *list) 707{ 708 list->prev = list->next = (struct sk_buff *)list; 709 list->qlen = 0; 710} 711 712/* 713 * This function creates a split out lock class for each invocation; 714 * this is needed for now since a whole lot of users of the skb-queue 715 * infrastructure in drivers have different locking usage (in hardirq) 716 * than the networking core (in softirq only). In the long run either the 717 * network layer or drivers should need annotation to consolidate the 718 * main types of usage into 3 classes. 719 */ 720static inline void skb_queue_head_init(struct sk_buff_head *list) 721{ 722 spin_lock_init(&list->lock); 723 __skb_queue_head_init(list); 724} 725 726static inline void skb_queue_head_init_class(struct sk_buff_head *list, 727 struct lock_class_key *class) 728{ 729 skb_queue_head_init(list); 730 lockdep_set_class(&list->lock, class); 731} 732 733/* 734 * Insert an sk_buff on a list. 735 * 736 * The "__skb_xxxx()" functions are the non-atomic ones that 737 * can only be called with interrupts disabled. 738 */ 739extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 740static inline void __skb_insert(struct sk_buff *newsk, 741 struct sk_buff *prev, struct sk_buff *next, 742 struct sk_buff_head *list) 743{ 744 newsk->next = next; 745 newsk->prev = prev; 746 next->prev = prev->next = newsk; 747 list->qlen++; 748} 749 750static inline void __skb_queue_splice(const struct sk_buff_head *list, 751 struct sk_buff *prev, 752 struct sk_buff *next) 753{ 754 struct sk_buff *first = list->next; 755 struct sk_buff *last = list->prev; 756 757 first->prev = prev; 758 prev->next = first; 759 760 last->next = next; 761 next->prev = last; 762} 763 764/** 765 * skb_queue_splice - join two skb lists, this is designed for stacks 766 * @list: the new list to add 767 * @head: the place to add it in the first list 768 */ 769static inline void skb_queue_splice(const struct sk_buff_head *list, 770 struct sk_buff_head *head) 771{ 772 if (!skb_queue_empty(list)) { 773 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 774 head->qlen += list->qlen; 775 } 776} 777 778/** 779 * skb_queue_splice - join two skb lists and reinitialise the emptied list 780 * @list: the new list to add 781 * @head: the place to add it in the first list 782 * 783 * The list at @list is reinitialised 784 */ 785static inline void skb_queue_splice_init(struct sk_buff_head *list, 786 struct sk_buff_head *head) 787{ 788 if (!skb_queue_empty(list)) { 789 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 790 head->qlen += list->qlen; 791 __skb_queue_head_init(list); 792 } 793} 794 795/** 796 * skb_queue_splice_tail - join two skb lists, each list being a queue 797 * @list: the new list to add 798 * @head: the place to add it in the first list 799 */ 800static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 801 struct sk_buff_head *head) 802{ 803 if (!skb_queue_empty(list)) { 804 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 805 head->qlen += list->qlen; 806 } 807} 808 809/** 810 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list 811 * @list: the new list to add 812 * @head: the place to add it in the first list 813 * 814 * Each of the lists is a queue. 815 * The list at @list is reinitialised 816 */ 817static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 818 struct sk_buff_head *head) 819{ 820 if (!skb_queue_empty(list)) { 821 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 822 head->qlen += list->qlen; 823 __skb_queue_head_init(list); 824 } 825} 826 827/** 828 * __skb_queue_after - queue a buffer at the list head 829 * @list: list to use 830 * @prev: place after this buffer 831 * @newsk: buffer to queue 832 * 833 * Queue a buffer int the middle of a list. This function takes no locks 834 * and you must therefore hold required locks before calling it. 835 * 836 * A buffer cannot be placed on two lists at the same time. 837 */ 838static inline void __skb_queue_after(struct sk_buff_head *list, 839 struct sk_buff *prev, 840 struct sk_buff *newsk) 841{ 842 __skb_insert(newsk, prev, prev->next, list); 843} 844 845extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 846 struct sk_buff_head *list); 847 848static inline void __skb_queue_before(struct sk_buff_head *list, 849 struct sk_buff *next, 850 struct sk_buff *newsk) 851{ 852 __skb_insert(newsk, next->prev, next, list); 853} 854 855/** 856 * __skb_queue_head - queue a buffer at the list head 857 * @list: list to use 858 * @newsk: buffer to queue 859 * 860 * Queue a buffer at the start of a list. This function takes no locks 861 * and you must therefore hold required locks before calling it. 862 * 863 * A buffer cannot be placed on two lists at the same time. 864 */ 865extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 866static inline void __skb_queue_head(struct sk_buff_head *list, 867 struct sk_buff *newsk) 868{ 869 __skb_queue_after(list, (struct sk_buff *)list, newsk); 870} 871 872/** 873 * __skb_queue_tail - queue a buffer at the list tail 874 * @list: list to use 875 * @newsk: buffer to queue 876 * 877 * Queue a buffer at the end of a list. This function takes no locks 878 * and you must therefore hold required locks before calling it. 879 * 880 * A buffer cannot be placed on two lists at the same time. 881 */ 882extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 883static inline void __skb_queue_tail(struct sk_buff_head *list, 884 struct sk_buff *newsk) 885{ 886 __skb_queue_before(list, (struct sk_buff *)list, newsk); 887} 888 889/* 890 * remove sk_buff from list. _Must_ be called atomically, and with 891 * the list known.. 892 */ 893extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 894static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 895{ 896 struct sk_buff *next, *prev; 897 898 list->qlen--; 899 next = skb->next; 900 prev = skb->prev; 901 skb->next = skb->prev = NULL; 902 next->prev = prev; 903 prev->next = next; 904} 905 906/** 907 * __skb_dequeue - remove from the head of the queue 908 * @list: list to dequeue from 909 * 910 * Remove the head of the list. This function does not take any locks 911 * so must be used with appropriate locks held only. The head item is 912 * returned or %NULL if the list is empty. 913 */ 914extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 915static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 916{ 917 struct sk_buff *skb = skb_peek(list); 918 if (skb) 919 __skb_unlink(skb, list); 920 return skb; 921} 922 923/** 924 * __skb_dequeue_tail - remove from the tail of the queue 925 * @list: list to dequeue from 926 * 927 * Remove the tail of the list. This function does not take any locks 928 * so must be used with appropriate locks held only. The tail item is 929 * returned or %NULL if the list is empty. 930 */ 931extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 932static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 933{ 934 struct sk_buff *skb = skb_peek_tail(list); 935 if (skb) 936 __skb_unlink(skb, list); 937 return skb; 938} 939 940 941static inline int skb_is_nonlinear(const struct sk_buff *skb) 942{ 943 return skb->data_len; 944} 945 946static inline unsigned int skb_headlen(const struct sk_buff *skb) 947{ 948 return skb->len - skb->data_len; 949} 950 951static inline int skb_pagelen(const struct sk_buff *skb) 952{ 953 int i, len = 0; 954 955 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 956 len += skb_shinfo(skb)->frags[i].size; 957 return len + skb_headlen(skb); 958} 959 960static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 961 struct page *page, int off, int size) 962{ 963 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 964 965 frag->page = page; 966 frag->page_offset = off; 967 frag->size = size; 968 skb_shinfo(skb)->nr_frags = i + 1; 969} 970 971extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 972 int off, int size); 973 974#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 975#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 976#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 977 978#ifdef NET_SKBUFF_DATA_USES_OFFSET 979static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 980{ 981 return skb->head + skb->tail; 982} 983 984static inline void skb_reset_tail_pointer(struct sk_buff *skb) 985{ 986 skb->tail = skb->data - skb->head; 987} 988 989static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 990{ 991 skb_reset_tail_pointer(skb); 992 skb->tail += offset; 993} 994#else /* NET_SKBUFF_DATA_USES_OFFSET */ 995static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 996{ 997 return skb->tail; 998} 999 1000static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1001{ 1002 skb->tail = skb->data; 1003} 1004 1005static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1006{ 1007 skb->tail = skb->data + offset; 1008} 1009 1010#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1011 1012/* 1013 * Add data to an sk_buff 1014 */ 1015extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1016static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1017{ 1018 unsigned char *tmp = skb_tail_pointer(skb); 1019 SKB_LINEAR_ASSERT(skb); 1020 skb->tail += len; 1021 skb->len += len; 1022 return tmp; 1023} 1024 1025extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1026static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1027{ 1028 skb->data -= len; 1029 skb->len += len; 1030 return skb->data; 1031} 1032 1033extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1034static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1035{ 1036 skb->len -= len; 1037 BUG_ON(skb->len < skb->data_len); 1038 return skb->data += len; 1039} 1040 1041extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1042 1043static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1044{ 1045 if (len > skb_headlen(skb) && 1046 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1047 return NULL; 1048 skb->len -= len; 1049 return skb->data += len; 1050} 1051 1052static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1053{ 1054 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1055} 1056 1057static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1058{ 1059 if (likely(len <= skb_headlen(skb))) 1060 return 1; 1061 if (unlikely(len > skb->len)) 1062 return 0; 1063 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1064} 1065 1066/** 1067 * skb_headroom - bytes at buffer head 1068 * @skb: buffer to check 1069 * 1070 * Return the number of bytes of free space at the head of an &sk_buff. 1071 */ 1072static inline unsigned int skb_headroom(const struct sk_buff *skb) 1073{ 1074 return skb->data - skb->head; 1075} 1076 1077/** 1078 * skb_tailroom - bytes at buffer end 1079 * @skb: buffer to check 1080 * 1081 * Return the number of bytes of free space at the tail of an sk_buff 1082 */ 1083static inline int skb_tailroom(const struct sk_buff *skb) 1084{ 1085 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1086} 1087 1088/** 1089 * skb_reserve - adjust headroom 1090 * @skb: buffer to alter 1091 * @len: bytes to move 1092 * 1093 * Increase the headroom of an empty &sk_buff by reducing the tail 1094 * room. This is only allowed for an empty buffer. 1095 */ 1096static inline void skb_reserve(struct sk_buff *skb, int len) 1097{ 1098 skb->data += len; 1099 skb->tail += len; 1100} 1101 1102#ifdef NET_SKBUFF_DATA_USES_OFFSET 1103static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1104{ 1105 return skb->head + skb->transport_header; 1106} 1107 1108static inline void skb_reset_transport_header(struct sk_buff *skb) 1109{ 1110 skb->transport_header = skb->data - skb->head; 1111} 1112 1113static inline void skb_set_transport_header(struct sk_buff *skb, 1114 const int offset) 1115{ 1116 skb_reset_transport_header(skb); 1117 skb->transport_header += offset; 1118} 1119 1120static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1121{ 1122 return skb->head + skb->network_header; 1123} 1124 1125static inline void skb_reset_network_header(struct sk_buff *skb) 1126{ 1127 skb->network_header = skb->data - skb->head; 1128} 1129 1130static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1131{ 1132 skb_reset_network_header(skb); 1133 skb->network_header += offset; 1134} 1135 1136static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1137{ 1138 return skb->head + skb->mac_header; 1139} 1140 1141static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1142{ 1143 return skb->mac_header != ~0U; 1144} 1145 1146static inline void skb_reset_mac_header(struct sk_buff *skb) 1147{ 1148 skb->mac_header = skb->data - skb->head; 1149} 1150 1151static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1152{ 1153 skb_reset_mac_header(skb); 1154 skb->mac_header += offset; 1155} 1156 1157#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1158 1159static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1160{ 1161 return skb->transport_header; 1162} 1163 1164static inline void skb_reset_transport_header(struct sk_buff *skb) 1165{ 1166 skb->transport_header = skb->data; 1167} 1168 1169static inline void skb_set_transport_header(struct sk_buff *skb, 1170 const int offset) 1171{ 1172 skb->transport_header = skb->data + offset; 1173} 1174 1175static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1176{ 1177 return skb->network_header; 1178} 1179 1180static inline void skb_reset_network_header(struct sk_buff *skb) 1181{ 1182 skb->network_header = skb->data; 1183} 1184 1185static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1186{ 1187 skb->network_header = skb->data + offset; 1188} 1189 1190static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1191{ 1192 return skb->mac_header; 1193} 1194 1195static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1196{ 1197 return skb->mac_header != NULL; 1198} 1199 1200static inline void skb_reset_mac_header(struct sk_buff *skb) 1201{ 1202 skb->mac_header = skb->data; 1203} 1204 1205static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1206{ 1207 skb->mac_header = skb->data + offset; 1208} 1209#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1210 1211static inline int skb_transport_offset(const struct sk_buff *skb) 1212{ 1213 return skb_transport_header(skb) - skb->data; 1214} 1215 1216static inline u32 skb_network_header_len(const struct sk_buff *skb) 1217{ 1218 return skb->transport_header - skb->network_header; 1219} 1220 1221static inline int skb_network_offset(const struct sk_buff *skb) 1222{ 1223 return skb_network_header(skb) - skb->data; 1224} 1225 1226/* 1227 * CPUs often take a performance hit when accessing unaligned memory 1228 * locations. The actual performance hit varies, it can be small if the 1229 * hardware handles it or large if we have to take an exception and fix it 1230 * in software. 1231 * 1232 * Since an ethernet header is 14 bytes network drivers often end up with 1233 * the IP header at an unaligned offset. The IP header can be aligned by 1234 * shifting the start of the packet by 2 bytes. Drivers should do this 1235 * with: 1236 * 1237 * skb_reserve(NET_IP_ALIGN); 1238 * 1239 * The downside to this alignment of the IP header is that the DMA is now 1240 * unaligned. On some architectures the cost of an unaligned DMA is high 1241 * and this cost outweighs the gains made by aligning the IP header. 1242 * 1243 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1244 * to be overridden. 1245 */ 1246#ifndef NET_IP_ALIGN 1247#define NET_IP_ALIGN 2 1248#endif 1249 1250/* 1251 * The networking layer reserves some headroom in skb data (via 1252 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1253 * the header has to grow. In the default case, if the header has to grow 1254 * 16 bytes or less we avoid the reallocation. 1255 * 1256 * Unfortunately this headroom changes the DMA alignment of the resulting 1257 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1258 * on some architectures. An architecture can override this value, 1259 * perhaps setting it to a cacheline in size (since that will maintain 1260 * cacheline alignment of the DMA). It must be a power of 2. 1261 * 1262 * Various parts of the networking layer expect at least 16 bytes of 1263 * headroom, you should not reduce this. 1264 */ 1265#ifndef NET_SKB_PAD 1266#define NET_SKB_PAD 16 1267#endif 1268 1269extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1270 1271static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1272{ 1273 if (unlikely(skb->data_len)) { 1274 WARN_ON(1); 1275 return; 1276 } 1277 skb->len = len; 1278 skb_set_tail_pointer(skb, len); 1279} 1280 1281extern void skb_trim(struct sk_buff *skb, unsigned int len); 1282 1283static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1284{ 1285 if (skb->data_len) 1286 return ___pskb_trim(skb, len); 1287 __skb_trim(skb, len); 1288 return 0; 1289} 1290 1291static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1292{ 1293 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1294} 1295 1296/** 1297 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1298 * @skb: buffer to alter 1299 * @len: new length 1300 * 1301 * This is identical to pskb_trim except that the caller knows that 1302 * the skb is not cloned so we should never get an error due to out- 1303 * of-memory. 1304 */ 1305static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1306{ 1307 int err = pskb_trim(skb, len); 1308 BUG_ON(err); 1309} 1310 1311/** 1312 * skb_orphan - orphan a buffer 1313 * @skb: buffer to orphan 1314 * 1315 * If a buffer currently has an owner then we call the owner's 1316 * destructor function and make the @skb unowned. The buffer continues 1317 * to exist but is no longer charged to its former owner. 1318 */ 1319static inline void skb_orphan(struct sk_buff *skb) 1320{ 1321 if (skb->destructor) 1322 skb->destructor(skb); 1323 skb->destructor = NULL; 1324 skb->sk = NULL; 1325} 1326 1327/** 1328 * __skb_queue_purge - empty a list 1329 * @list: list to empty 1330 * 1331 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1332 * the list and one reference dropped. This function does not take the 1333 * list lock and the caller must hold the relevant locks to use it. 1334 */ 1335extern void skb_queue_purge(struct sk_buff_head *list); 1336static inline void __skb_queue_purge(struct sk_buff_head *list) 1337{ 1338 struct sk_buff *skb; 1339 while ((skb = __skb_dequeue(list)) != NULL) 1340 kfree_skb(skb); 1341} 1342 1343/** 1344 * __dev_alloc_skb - allocate an skbuff for receiving 1345 * @length: length to allocate 1346 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1347 * 1348 * Allocate a new &sk_buff and assign it a usage count of one. The 1349 * buffer has unspecified headroom built in. Users should allocate 1350 * the headroom they think they need without accounting for the 1351 * built in space. The built in space is used for optimisations. 1352 * 1353 * %NULL is returned if there is no free memory. 1354 */ 1355static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1356 gfp_t gfp_mask) 1357{ 1358 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1359 if (likely(skb)) 1360 skb_reserve(skb, NET_SKB_PAD); 1361 return skb; 1362} 1363 1364extern struct sk_buff *dev_alloc_skb(unsigned int length); 1365 1366extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1367 unsigned int length, gfp_t gfp_mask); 1368 1369/** 1370 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1371 * @dev: network device to receive on 1372 * @length: length to allocate 1373 * 1374 * Allocate a new &sk_buff and assign it a usage count of one. The 1375 * buffer has unspecified headroom built in. Users should allocate 1376 * the headroom they think they need without accounting for the 1377 * built in space. The built in space is used for optimisations. 1378 * 1379 * %NULL is returned if there is no free memory. Although this function 1380 * allocates memory it can be called from an interrupt. 1381 */ 1382static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1383 unsigned int length) 1384{ 1385 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1386} 1387 1388extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask); 1389 1390/** 1391 * netdev_alloc_page - allocate a page for ps-rx on a specific device 1392 * @dev: network device to receive on 1393 * 1394 * Allocate a new page node local to the specified device. 1395 * 1396 * %NULL is returned if there is no free memory. 1397 */ 1398static inline struct page *netdev_alloc_page(struct net_device *dev) 1399{ 1400 return __netdev_alloc_page(dev, GFP_ATOMIC); 1401} 1402 1403static inline void netdev_free_page(struct net_device *dev, struct page *page) 1404{ 1405 __free_page(page); 1406} 1407 1408/** 1409 * skb_clone_writable - is the header of a clone writable 1410 * @skb: buffer to check 1411 * @len: length up to which to write 1412 * 1413 * Returns true if modifying the header part of the cloned buffer 1414 * does not requires the data to be copied. 1415 */ 1416static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1417{ 1418 return !skb_header_cloned(skb) && 1419 skb_headroom(skb) + len <= skb->hdr_len; 1420} 1421 1422static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1423 int cloned) 1424{ 1425 int delta = 0; 1426 1427 if (headroom < NET_SKB_PAD) 1428 headroom = NET_SKB_PAD; 1429 if (headroom > skb_headroom(skb)) 1430 delta = headroom - skb_headroom(skb); 1431 1432 if (delta || cloned) 1433 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1434 GFP_ATOMIC); 1435 return 0; 1436} 1437 1438/** 1439 * skb_cow - copy header of skb when it is required 1440 * @skb: buffer to cow 1441 * @headroom: needed headroom 1442 * 1443 * If the skb passed lacks sufficient headroom or its data part 1444 * is shared, data is reallocated. If reallocation fails, an error 1445 * is returned and original skb is not changed. 1446 * 1447 * The result is skb with writable area skb->head...skb->tail 1448 * and at least @headroom of space at head. 1449 */ 1450static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1451{ 1452 return __skb_cow(skb, headroom, skb_cloned(skb)); 1453} 1454 1455/** 1456 * skb_cow_head - skb_cow but only making the head writable 1457 * @skb: buffer to cow 1458 * @headroom: needed headroom 1459 * 1460 * This function is identical to skb_cow except that we replace the 1461 * skb_cloned check by skb_header_cloned. It should be used when 1462 * you only need to push on some header and do not need to modify 1463 * the data. 1464 */ 1465static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1466{ 1467 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1468} 1469 1470/** 1471 * skb_padto - pad an skbuff up to a minimal size 1472 * @skb: buffer to pad 1473 * @len: minimal length 1474 * 1475 * Pads up a buffer to ensure the trailing bytes exist and are 1476 * blanked. If the buffer already contains sufficient data it 1477 * is untouched. Otherwise it is extended. Returns zero on 1478 * success. The skb is freed on error. 1479 */ 1480 1481static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1482{ 1483 unsigned int size = skb->len; 1484 if (likely(size >= len)) 1485 return 0; 1486 return skb_pad(skb, len - size); 1487} 1488 1489static inline int skb_add_data(struct sk_buff *skb, 1490 char __user *from, int copy) 1491{ 1492 const int off = skb->len; 1493 1494 if (skb->ip_summed == CHECKSUM_NONE) { 1495 int err = 0; 1496 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1497 copy, 0, &err); 1498 if (!err) { 1499 skb->csum = csum_block_add(skb->csum, csum, off); 1500 return 0; 1501 } 1502 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1503 return 0; 1504 1505 __skb_trim(skb, off); 1506 return -EFAULT; 1507} 1508 1509static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1510 struct page *page, int off) 1511{ 1512 if (i) { 1513 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1514 1515 return page == frag->page && 1516 off == frag->page_offset + frag->size; 1517 } 1518 return 0; 1519} 1520 1521static inline int __skb_linearize(struct sk_buff *skb) 1522{ 1523 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1524} 1525 1526/** 1527 * skb_linearize - convert paged skb to linear one 1528 * @skb: buffer to linarize 1529 * 1530 * If there is no free memory -ENOMEM is returned, otherwise zero 1531 * is returned and the old skb data released. 1532 */ 1533static inline int skb_linearize(struct sk_buff *skb) 1534{ 1535 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1536} 1537 1538/** 1539 * skb_linearize_cow - make sure skb is linear and writable 1540 * @skb: buffer to process 1541 * 1542 * If there is no free memory -ENOMEM is returned, otherwise zero 1543 * is returned and the old skb data released. 1544 */ 1545static inline int skb_linearize_cow(struct sk_buff *skb) 1546{ 1547 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1548 __skb_linearize(skb) : 0; 1549} 1550 1551/** 1552 * skb_postpull_rcsum - update checksum for received skb after pull 1553 * @skb: buffer to update 1554 * @start: start of data before pull 1555 * @len: length of data pulled 1556 * 1557 * After doing a pull on a received packet, you need to call this to 1558 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1559 * CHECKSUM_NONE so that it can be recomputed from scratch. 1560 */ 1561 1562static inline void skb_postpull_rcsum(struct sk_buff *skb, 1563 const void *start, unsigned int len) 1564{ 1565 if (skb->ip_summed == CHECKSUM_COMPLETE) 1566 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1567} 1568 1569unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1570 1571/** 1572 * pskb_trim_rcsum - trim received skb and update checksum 1573 * @skb: buffer to trim 1574 * @len: new length 1575 * 1576 * This is exactly the same as pskb_trim except that it ensures the 1577 * checksum of received packets are still valid after the operation. 1578 */ 1579 1580static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1581{ 1582 if (likely(len >= skb->len)) 1583 return 0; 1584 if (skb->ip_summed == CHECKSUM_COMPLETE) 1585 skb->ip_summed = CHECKSUM_NONE; 1586 return __pskb_trim(skb, len); 1587} 1588 1589#define skb_queue_walk(queue, skb) \ 1590 for (skb = (queue)->next; \ 1591 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1592 skb = skb->next) 1593 1594#define skb_queue_walk_safe(queue, skb, tmp) \ 1595 for (skb = (queue)->next, tmp = skb->next; \ 1596 skb != (struct sk_buff *)(queue); \ 1597 skb = tmp, tmp = skb->next) 1598 1599#define skb_queue_walk_from(queue, skb) \ 1600 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1601 skb = skb->next) 1602 1603#define skb_queue_walk_from_safe(queue, skb, tmp) \ 1604 for (tmp = skb->next; \ 1605 skb != (struct sk_buff *)(queue); \ 1606 skb = tmp, tmp = skb->next) 1607 1608#define skb_queue_reverse_walk(queue, skb) \ 1609 for (skb = (queue)->prev; \ 1610 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1611 skb = skb->prev) 1612 1613 1614extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1615 int *peeked, int *err); 1616extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1617 int noblock, int *err); 1618extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1619 struct poll_table_struct *wait); 1620extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1621 int offset, struct iovec *to, 1622 int size); 1623extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1624 int hlen, 1625 struct iovec *iov); 1626extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 1627 int offset, 1628 struct iovec *from, 1629 int len); 1630extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1631extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1632 unsigned int flags); 1633extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1634 int len, __wsum csum); 1635extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1636 void *to, int len); 1637extern int skb_store_bits(struct sk_buff *skb, int offset, 1638 const void *from, int len); 1639extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1640 int offset, u8 *to, int len, 1641 __wsum csum); 1642extern int skb_splice_bits(struct sk_buff *skb, 1643 unsigned int offset, 1644 struct pipe_inode_info *pipe, 1645 unsigned int len, 1646 unsigned int flags); 1647extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1648extern void skb_split(struct sk_buff *skb, 1649 struct sk_buff *skb1, const u32 len); 1650 1651extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1652 1653static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1654 int len, void *buffer) 1655{ 1656 int hlen = skb_headlen(skb); 1657 1658 if (hlen - offset >= len) 1659 return skb->data + offset; 1660 1661 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1662 return NULL; 1663 1664 return buffer; 1665} 1666 1667static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1668 void *to, 1669 const unsigned int len) 1670{ 1671 memcpy(to, skb->data, len); 1672} 1673 1674static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1675 const int offset, void *to, 1676 const unsigned int len) 1677{ 1678 memcpy(to, skb->data + offset, len); 1679} 1680 1681static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1682 const void *from, 1683 const unsigned int len) 1684{ 1685 memcpy(skb->data, from, len); 1686} 1687 1688static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1689 const int offset, 1690 const void *from, 1691 const unsigned int len) 1692{ 1693 memcpy(skb->data + offset, from, len); 1694} 1695 1696extern void skb_init(void); 1697 1698/** 1699 * skb_get_timestamp - get timestamp from a skb 1700 * @skb: skb to get stamp from 1701 * @stamp: pointer to struct timeval to store stamp in 1702 * 1703 * Timestamps are stored in the skb as offsets to a base timestamp. 1704 * This function converts the offset back to a struct timeval and stores 1705 * it in stamp. 1706 */ 1707static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1708{ 1709 *stamp = ktime_to_timeval(skb->tstamp); 1710} 1711 1712static inline void __net_timestamp(struct sk_buff *skb) 1713{ 1714 skb->tstamp = ktime_get_real(); 1715} 1716 1717static inline ktime_t net_timedelta(ktime_t t) 1718{ 1719 return ktime_sub(ktime_get_real(), t); 1720} 1721 1722static inline ktime_t net_invalid_timestamp(void) 1723{ 1724 return ktime_set(0, 0); 1725} 1726 1727extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1728extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1729 1730static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1731{ 1732 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1733} 1734 1735/** 1736 * skb_checksum_complete - Calculate checksum of an entire packet 1737 * @skb: packet to process 1738 * 1739 * This function calculates the checksum over the entire packet plus 1740 * the value of skb->csum. The latter can be used to supply the 1741 * checksum of a pseudo header as used by TCP/UDP. It returns the 1742 * checksum. 1743 * 1744 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1745 * this function can be used to verify that checksum on received 1746 * packets. In that case the function should return zero if the 1747 * checksum is correct. In particular, this function will return zero 1748 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1749 * hardware has already verified the correctness of the checksum. 1750 */ 1751static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1752{ 1753 return skb_csum_unnecessary(skb) ? 1754 0 : __skb_checksum_complete(skb); 1755} 1756 1757#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1758extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1759static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1760{ 1761 if (nfct && atomic_dec_and_test(&nfct->use)) 1762 nf_conntrack_destroy(nfct); 1763} 1764static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1765{ 1766 if (nfct) 1767 atomic_inc(&nfct->use); 1768} 1769static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1770{ 1771 if (skb) 1772 atomic_inc(&skb->users); 1773} 1774static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1775{ 1776 if (skb) 1777 kfree_skb(skb); 1778} 1779#endif 1780#ifdef CONFIG_BRIDGE_NETFILTER 1781static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1782{ 1783 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1784 kfree(nf_bridge); 1785} 1786static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1787{ 1788 if (nf_bridge) 1789 atomic_inc(&nf_bridge->use); 1790} 1791#endif /* CONFIG_BRIDGE_NETFILTER */ 1792static inline void nf_reset(struct sk_buff *skb) 1793{ 1794#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1795 nf_conntrack_put(skb->nfct); 1796 skb->nfct = NULL; 1797 nf_conntrack_put_reasm(skb->nfct_reasm); 1798 skb->nfct_reasm = NULL; 1799#endif 1800#ifdef CONFIG_BRIDGE_NETFILTER 1801 nf_bridge_put(skb->nf_bridge); 1802 skb->nf_bridge = NULL; 1803#endif 1804} 1805 1806/* Note: This doesn't put any conntrack and bridge info in dst. */ 1807static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1808{ 1809#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1810 dst->nfct = src->nfct; 1811 nf_conntrack_get(src->nfct); 1812 dst->nfctinfo = src->nfctinfo; 1813 dst->nfct_reasm = src->nfct_reasm; 1814 nf_conntrack_get_reasm(src->nfct_reasm); 1815#endif 1816#ifdef CONFIG_BRIDGE_NETFILTER 1817 dst->nf_bridge = src->nf_bridge; 1818 nf_bridge_get(src->nf_bridge); 1819#endif 1820} 1821 1822static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1823{ 1824#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1825 nf_conntrack_put(dst->nfct); 1826 nf_conntrack_put_reasm(dst->nfct_reasm); 1827#endif 1828#ifdef CONFIG_BRIDGE_NETFILTER 1829 nf_bridge_put(dst->nf_bridge); 1830#endif 1831 __nf_copy(dst, src); 1832} 1833 1834#ifdef CONFIG_NETWORK_SECMARK 1835static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1836{ 1837 to->secmark = from->secmark; 1838} 1839 1840static inline void skb_init_secmark(struct sk_buff *skb) 1841{ 1842 skb->secmark = 0; 1843} 1844#else 1845static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1846{ } 1847 1848static inline void skb_init_secmark(struct sk_buff *skb) 1849{ } 1850#endif 1851 1852static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1853{ 1854 skb->queue_mapping = queue_mapping; 1855} 1856 1857static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1858{ 1859 return skb->queue_mapping; 1860} 1861 1862static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1863{ 1864 to->queue_mapping = from->queue_mapping; 1865} 1866 1867static inline int skb_is_gso(const struct sk_buff *skb) 1868{ 1869 return skb_shinfo(skb)->gso_size; 1870} 1871 1872static inline int skb_is_gso_v6(const struct sk_buff *skb) 1873{ 1874 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1875} 1876 1877extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 1878 1879static inline bool skb_warn_if_lro(const struct sk_buff *skb) 1880{ 1881 /* LRO sets gso_size but not gso_type, whereas if GSO is really 1882 * wanted then gso_type will be set. */ 1883 struct skb_shared_info *shinfo = skb_shinfo(skb); 1884 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { 1885 __skb_warn_lro_forwarding(skb); 1886 return true; 1887 } 1888 return false; 1889} 1890 1891static inline void skb_forward_csum(struct sk_buff *skb) 1892{ 1893 /* Unfortunately we don't support this one. Any brave souls? */ 1894 if (skb->ip_summed == CHECKSUM_COMPLETE) 1895 skb->ip_summed = CHECKSUM_NONE; 1896} 1897 1898bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 1899#endif /* __KERNEL__ */ 1900#endif /* _LINUX_SKBUFF_H */