at v2.6.28 2305 lines 69 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41 42#ifdef __KERNEL__ 43 44struct sched_param { 45 int sched_priority; 46}; 47 48#include <asm/param.h> /* for HZ */ 49 50#include <linux/capability.h> 51#include <linux/threads.h> 52#include <linux/kernel.h> 53#include <linux/types.h> 54#include <linux/timex.h> 55#include <linux/jiffies.h> 56#include <linux/rbtree.h> 57#include <linux/thread_info.h> 58#include <linux/cpumask.h> 59#include <linux/errno.h> 60#include <linux/nodemask.h> 61#include <linux/mm_types.h> 62 63#include <asm/system.h> 64#include <asm/page.h> 65#include <asm/ptrace.h> 66#include <asm/cputime.h> 67 68#include <linux/smp.h> 69#include <linux/sem.h> 70#include <linux/signal.h> 71#include <linux/fs_struct.h> 72#include <linux/compiler.h> 73#include <linux/completion.h> 74#include <linux/pid.h> 75#include <linux/percpu.h> 76#include <linux/topology.h> 77#include <linux/proportions.h> 78#include <linux/seccomp.h> 79#include <linux/rcupdate.h> 80#include <linux/rtmutex.h> 81 82#include <linux/time.h> 83#include <linux/param.h> 84#include <linux/resource.h> 85#include <linux/timer.h> 86#include <linux/hrtimer.h> 87#include <linux/task_io_accounting.h> 88#include <linux/kobject.h> 89#include <linux/latencytop.h> 90#include <linux/cred.h> 91 92#include <asm/processor.h> 93 94struct mem_cgroup; 95struct exec_domain; 96struct futex_pi_state; 97struct robust_list_head; 98struct bio; 99 100/* 101 * List of flags we want to share for kernel threads, 102 * if only because they are not used by them anyway. 103 */ 104#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 105 106/* 107 * These are the constant used to fake the fixed-point load-average 108 * counting. Some notes: 109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 110 * a load-average precision of 10 bits integer + 11 bits fractional 111 * - if you want to count load-averages more often, you need more 112 * precision, or rounding will get you. With 2-second counting freq, 113 * the EXP_n values would be 1981, 2034 and 2043 if still using only 114 * 11 bit fractions. 115 */ 116extern unsigned long avenrun[]; /* Load averages */ 117 118#define FSHIFT 11 /* nr of bits of precision */ 119#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 120#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 121#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 122#define EXP_5 2014 /* 1/exp(5sec/5min) */ 123#define EXP_15 2037 /* 1/exp(5sec/15min) */ 124 125#define CALC_LOAD(load,exp,n) \ 126 load *= exp; \ 127 load += n*(FIXED_1-exp); \ 128 load >>= FSHIFT; 129 130extern unsigned long total_forks; 131extern int nr_threads; 132DECLARE_PER_CPU(unsigned long, process_counts); 133extern int nr_processes(void); 134extern unsigned long nr_running(void); 135extern unsigned long nr_uninterruptible(void); 136extern unsigned long nr_active(void); 137extern unsigned long nr_iowait(void); 138 139struct seq_file; 140struct cfs_rq; 141struct task_group; 142#ifdef CONFIG_SCHED_DEBUG 143extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 144extern void proc_sched_set_task(struct task_struct *p); 145extern void 146print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 147#else 148static inline void 149proc_sched_show_task(struct task_struct *p, struct seq_file *m) 150{ 151} 152static inline void proc_sched_set_task(struct task_struct *p) 153{ 154} 155static inline void 156print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 157{ 158} 159#endif 160 161extern unsigned long long time_sync_thresh; 162 163/* 164 * Task state bitmask. NOTE! These bits are also 165 * encoded in fs/proc/array.c: get_task_state(). 166 * 167 * We have two separate sets of flags: task->state 168 * is about runnability, while task->exit_state are 169 * about the task exiting. Confusing, but this way 170 * modifying one set can't modify the other one by 171 * mistake. 172 */ 173#define TASK_RUNNING 0 174#define TASK_INTERRUPTIBLE 1 175#define TASK_UNINTERRUPTIBLE 2 176#define __TASK_STOPPED 4 177#define __TASK_TRACED 8 178/* in tsk->exit_state */ 179#define EXIT_ZOMBIE 16 180#define EXIT_DEAD 32 181/* in tsk->state again */ 182#define TASK_DEAD 64 183#define TASK_WAKEKILL 128 184 185/* Convenience macros for the sake of set_task_state */ 186#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 187#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 188#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 189 190/* Convenience macros for the sake of wake_up */ 191#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 192#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 193 194/* get_task_state() */ 195#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 197 __TASK_TRACED) 198 199#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 200#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 201#define task_is_stopped_or_traced(task) \ 202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 203#define task_contributes_to_load(task) \ 204 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 205 206#define __set_task_state(tsk, state_value) \ 207 do { (tsk)->state = (state_value); } while (0) 208#define set_task_state(tsk, state_value) \ 209 set_mb((tsk)->state, (state_value)) 210 211/* 212 * set_current_state() includes a barrier so that the write of current->state 213 * is correctly serialised wrt the caller's subsequent test of whether to 214 * actually sleep: 215 * 216 * set_current_state(TASK_UNINTERRUPTIBLE); 217 * if (do_i_need_to_sleep()) 218 * schedule(); 219 * 220 * If the caller does not need such serialisation then use __set_current_state() 221 */ 222#define __set_current_state(state_value) \ 223 do { current->state = (state_value); } while (0) 224#define set_current_state(state_value) \ 225 set_mb(current->state, (state_value)) 226 227/* Task command name length */ 228#define TASK_COMM_LEN 16 229 230#include <linux/spinlock.h> 231 232/* 233 * This serializes "schedule()" and also protects 234 * the run-queue from deletions/modifications (but 235 * _adding_ to the beginning of the run-queue has 236 * a separate lock). 237 */ 238extern rwlock_t tasklist_lock; 239extern spinlock_t mmlist_lock; 240 241struct task_struct; 242 243extern void sched_init(void); 244extern void sched_init_smp(void); 245extern asmlinkage void schedule_tail(struct task_struct *prev); 246extern void init_idle(struct task_struct *idle, int cpu); 247extern void init_idle_bootup_task(struct task_struct *idle); 248 249extern int runqueue_is_locked(void); 250extern void task_rq_unlock_wait(struct task_struct *p); 251 252extern cpumask_t nohz_cpu_mask; 253#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 254extern int select_nohz_load_balancer(int cpu); 255#else 256static inline int select_nohz_load_balancer(int cpu) 257{ 258 return 0; 259} 260#endif 261 262extern unsigned long rt_needs_cpu(int cpu); 263 264/* 265 * Only dump TASK_* tasks. (0 for all tasks) 266 */ 267extern void show_state_filter(unsigned long state_filter); 268 269static inline void show_state(void) 270{ 271 show_state_filter(0); 272} 273 274extern void show_regs(struct pt_regs *); 275 276/* 277 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 278 * task), SP is the stack pointer of the first frame that should be shown in the back 279 * trace (or NULL if the entire call-chain of the task should be shown). 280 */ 281extern void show_stack(struct task_struct *task, unsigned long *sp); 282 283void io_schedule(void); 284long io_schedule_timeout(long timeout); 285 286extern void cpu_init (void); 287extern void trap_init(void); 288extern void account_process_tick(struct task_struct *task, int user); 289extern void update_process_times(int user); 290extern void scheduler_tick(void); 291 292extern void sched_show_task(struct task_struct *p); 293 294#ifdef CONFIG_DETECT_SOFTLOCKUP 295extern void softlockup_tick(void); 296extern void touch_softlockup_watchdog(void); 297extern void touch_all_softlockup_watchdogs(void); 298extern unsigned int softlockup_panic; 299extern unsigned long sysctl_hung_task_check_count; 300extern unsigned long sysctl_hung_task_timeout_secs; 301extern unsigned long sysctl_hung_task_warnings; 302extern int softlockup_thresh; 303#else 304static inline void softlockup_tick(void) 305{ 306} 307static inline void spawn_softlockup_task(void) 308{ 309} 310static inline void touch_softlockup_watchdog(void) 311{ 312} 313static inline void touch_all_softlockup_watchdogs(void) 314{ 315} 316#endif 317 318 319/* Attach to any functions which should be ignored in wchan output. */ 320#define __sched __attribute__((__section__(".sched.text"))) 321 322/* Linker adds these: start and end of __sched functions */ 323extern char __sched_text_start[], __sched_text_end[]; 324 325/* Is this address in the __sched functions? */ 326extern int in_sched_functions(unsigned long addr); 327 328#define MAX_SCHEDULE_TIMEOUT LONG_MAX 329extern signed long schedule_timeout(signed long timeout); 330extern signed long schedule_timeout_interruptible(signed long timeout); 331extern signed long schedule_timeout_killable(signed long timeout); 332extern signed long schedule_timeout_uninterruptible(signed long timeout); 333asmlinkage void schedule(void); 334 335struct nsproxy; 336struct user_namespace; 337 338/* Maximum number of active map areas.. This is a random (large) number */ 339#define DEFAULT_MAX_MAP_COUNT 65536 340 341extern int sysctl_max_map_count; 342 343#include <linux/aio.h> 344 345extern unsigned long 346arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 347 unsigned long, unsigned long); 348extern unsigned long 349arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 350 unsigned long len, unsigned long pgoff, 351 unsigned long flags); 352extern void arch_unmap_area(struct mm_struct *, unsigned long); 353extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 354 355#if USE_SPLIT_PTLOCKS 356/* 357 * The mm counters are not protected by its page_table_lock, 358 * so must be incremented atomically. 359 */ 360#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 361#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 362#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 363#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 364#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 365 366#else /* !USE_SPLIT_PTLOCKS */ 367/* 368 * The mm counters are protected by its page_table_lock, 369 * so can be incremented directly. 370 */ 371#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 372#define get_mm_counter(mm, member) ((mm)->_##member) 373#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 374#define inc_mm_counter(mm, member) (mm)->_##member++ 375#define dec_mm_counter(mm, member) (mm)->_##member-- 376 377#endif /* !USE_SPLIT_PTLOCKS */ 378 379#define get_mm_rss(mm) \ 380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 381#define update_hiwater_rss(mm) do { \ 382 unsigned long _rss = get_mm_rss(mm); \ 383 if ((mm)->hiwater_rss < _rss) \ 384 (mm)->hiwater_rss = _rss; \ 385} while (0) 386#define update_hiwater_vm(mm) do { \ 387 if ((mm)->hiwater_vm < (mm)->total_vm) \ 388 (mm)->hiwater_vm = (mm)->total_vm; \ 389} while (0) 390 391extern void set_dumpable(struct mm_struct *mm, int value); 392extern int get_dumpable(struct mm_struct *mm); 393 394/* mm flags */ 395/* dumpable bits */ 396#define MMF_DUMPABLE 0 /* core dump is permitted */ 397#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 398#define MMF_DUMPABLE_BITS 2 399 400/* coredump filter bits */ 401#define MMF_DUMP_ANON_PRIVATE 2 402#define MMF_DUMP_ANON_SHARED 3 403#define MMF_DUMP_MAPPED_PRIVATE 4 404#define MMF_DUMP_MAPPED_SHARED 5 405#define MMF_DUMP_ELF_HEADERS 6 406#define MMF_DUMP_HUGETLB_PRIVATE 7 407#define MMF_DUMP_HUGETLB_SHARED 8 408#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 409#define MMF_DUMP_FILTER_BITS 7 410#define MMF_DUMP_FILTER_MASK \ 411 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 412#define MMF_DUMP_FILTER_DEFAULT \ 413 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 414 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 415 416#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 417# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 418#else 419# define MMF_DUMP_MASK_DEFAULT_ELF 0 420#endif 421 422struct sighand_struct { 423 atomic_t count; 424 struct k_sigaction action[_NSIG]; 425 spinlock_t siglock; 426 wait_queue_head_t signalfd_wqh; 427}; 428 429struct pacct_struct { 430 int ac_flag; 431 long ac_exitcode; 432 unsigned long ac_mem; 433 cputime_t ac_utime, ac_stime; 434 unsigned long ac_minflt, ac_majflt; 435}; 436 437/** 438 * struct task_cputime - collected CPU time counts 439 * @utime: time spent in user mode, in &cputime_t units 440 * @stime: time spent in kernel mode, in &cputime_t units 441 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 442 * 443 * This structure groups together three kinds of CPU time that are 444 * tracked for threads and thread groups. Most things considering 445 * CPU time want to group these counts together and treat all three 446 * of them in parallel. 447 */ 448struct task_cputime { 449 cputime_t utime; 450 cputime_t stime; 451 unsigned long long sum_exec_runtime; 452}; 453/* Alternate field names when used to cache expirations. */ 454#define prof_exp stime 455#define virt_exp utime 456#define sched_exp sum_exec_runtime 457 458/** 459 * struct thread_group_cputime - thread group interval timer counts 460 * @totals: thread group interval timers; substructure for 461 * uniprocessor kernel, per-cpu for SMP kernel. 462 * 463 * This structure contains the version of task_cputime, above, that is 464 * used for thread group CPU clock calculations. 465 */ 466struct thread_group_cputime { 467 struct task_cputime *totals; 468}; 469 470/* 471 * NOTE! "signal_struct" does not have it's own 472 * locking, because a shared signal_struct always 473 * implies a shared sighand_struct, so locking 474 * sighand_struct is always a proper superset of 475 * the locking of signal_struct. 476 */ 477struct signal_struct { 478 atomic_t count; 479 atomic_t live; 480 481 wait_queue_head_t wait_chldexit; /* for wait4() */ 482 483 /* current thread group signal load-balancing target: */ 484 struct task_struct *curr_target; 485 486 /* shared signal handling: */ 487 struct sigpending shared_pending; 488 489 /* thread group exit support */ 490 int group_exit_code; 491 /* overloaded: 492 * - notify group_exit_task when ->count is equal to notify_count 493 * - everyone except group_exit_task is stopped during signal delivery 494 * of fatal signals, group_exit_task processes the signal. 495 */ 496 int notify_count; 497 struct task_struct *group_exit_task; 498 499 /* thread group stop support, overloads group_exit_code too */ 500 int group_stop_count; 501 unsigned int flags; /* see SIGNAL_* flags below */ 502 503 /* POSIX.1b Interval Timers */ 504 struct list_head posix_timers; 505 506 /* ITIMER_REAL timer for the process */ 507 struct hrtimer real_timer; 508 struct pid *leader_pid; 509 ktime_t it_real_incr; 510 511 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 512 cputime_t it_prof_expires, it_virt_expires; 513 cputime_t it_prof_incr, it_virt_incr; 514 515 /* 516 * Thread group totals for process CPU clocks. 517 * See thread_group_cputime(), et al, for details. 518 */ 519 struct thread_group_cputime cputime; 520 521 /* Earliest-expiration cache. */ 522 struct task_cputime cputime_expires; 523 524 struct list_head cpu_timers[3]; 525 526 /* job control IDs */ 527 528 /* 529 * pgrp and session fields are deprecated. 530 * use the task_session_Xnr and task_pgrp_Xnr routines below 531 */ 532 533 union { 534 pid_t pgrp __deprecated; 535 pid_t __pgrp; 536 }; 537 538 struct pid *tty_old_pgrp; 539 540 union { 541 pid_t session __deprecated; 542 pid_t __session; 543 }; 544 545 /* boolean value for session group leader */ 546 int leader; 547 548 struct tty_struct *tty; /* NULL if no tty */ 549 550 /* 551 * Cumulative resource counters for dead threads in the group, 552 * and for reaped dead child processes forked by this group. 553 * Live threads maintain their own counters and add to these 554 * in __exit_signal, except for the group leader. 555 */ 556 cputime_t cutime, cstime; 557 cputime_t gtime; 558 cputime_t cgtime; 559 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 560 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 561 unsigned long inblock, oublock, cinblock, coublock; 562 struct task_io_accounting ioac; 563 564 /* 565 * We don't bother to synchronize most readers of this at all, 566 * because there is no reader checking a limit that actually needs 567 * to get both rlim_cur and rlim_max atomically, and either one 568 * alone is a single word that can safely be read normally. 569 * getrlimit/setrlimit use task_lock(current->group_leader) to 570 * protect this instead of the siglock, because they really 571 * have no need to disable irqs. 572 */ 573 struct rlimit rlim[RLIM_NLIMITS]; 574 575 /* keep the process-shared keyrings here so that they do the right 576 * thing in threads created with CLONE_THREAD */ 577#ifdef CONFIG_KEYS 578 struct key *session_keyring; /* keyring inherited over fork */ 579 struct key *process_keyring; /* keyring private to this process */ 580#endif 581#ifdef CONFIG_BSD_PROCESS_ACCT 582 struct pacct_struct pacct; /* per-process accounting information */ 583#endif 584#ifdef CONFIG_TASKSTATS 585 struct taskstats *stats; 586#endif 587#ifdef CONFIG_AUDIT 588 unsigned audit_tty; 589 struct tty_audit_buf *tty_audit_buf; 590#endif 591}; 592 593/* Context switch must be unlocked if interrupts are to be enabled */ 594#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 595# define __ARCH_WANT_UNLOCKED_CTXSW 596#endif 597 598/* 599 * Bits in flags field of signal_struct. 600 */ 601#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 602#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 603#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 604#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 605/* 606 * Pending notifications to parent. 607 */ 608#define SIGNAL_CLD_STOPPED 0x00000010 609#define SIGNAL_CLD_CONTINUED 0x00000020 610#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 611 612#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 613 614/* If true, all threads except ->group_exit_task have pending SIGKILL */ 615static inline int signal_group_exit(const struct signal_struct *sig) 616{ 617 return (sig->flags & SIGNAL_GROUP_EXIT) || 618 (sig->group_exit_task != NULL); 619} 620 621/* 622 * Some day this will be a full-fledged user tracking system.. 623 */ 624struct user_struct { 625 atomic_t __count; /* reference count */ 626 atomic_t processes; /* How many processes does this user have? */ 627 atomic_t files; /* How many open files does this user have? */ 628 atomic_t sigpending; /* How many pending signals does this user have? */ 629#ifdef CONFIG_INOTIFY_USER 630 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 631 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 632#endif 633#ifdef CONFIG_EPOLL 634 atomic_t epoll_devs; /* The number of epoll descriptors currently open */ 635 atomic_t epoll_watches; /* The number of file descriptors currently watched */ 636#endif 637#ifdef CONFIG_POSIX_MQUEUE 638 /* protected by mq_lock */ 639 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 640#endif 641 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 642 643#ifdef CONFIG_KEYS 644 struct key *uid_keyring; /* UID specific keyring */ 645 struct key *session_keyring; /* UID's default session keyring */ 646#endif 647 648 /* Hash table maintenance information */ 649 struct hlist_node uidhash_node; 650 uid_t uid; 651 652#ifdef CONFIG_USER_SCHED 653 struct task_group *tg; 654#ifdef CONFIG_SYSFS 655 struct kobject kobj; 656 struct work_struct work; 657#endif 658#endif 659}; 660 661extern int uids_sysfs_init(void); 662 663extern struct user_struct *find_user(uid_t); 664 665extern struct user_struct root_user; 666#define INIT_USER (&root_user) 667 668struct backing_dev_info; 669struct reclaim_state; 670 671#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 672struct sched_info { 673 /* cumulative counters */ 674 unsigned long pcount; /* # of times run on this cpu */ 675 unsigned long long cpu_time, /* time spent on the cpu */ 676 run_delay; /* time spent waiting on a runqueue */ 677 678 /* timestamps */ 679 unsigned long long last_arrival,/* when we last ran on a cpu */ 680 last_queued; /* when we were last queued to run */ 681#ifdef CONFIG_SCHEDSTATS 682 /* BKL stats */ 683 unsigned int bkl_count; 684#endif 685}; 686#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 687 688#ifdef CONFIG_TASK_DELAY_ACCT 689struct task_delay_info { 690 spinlock_t lock; 691 unsigned int flags; /* Private per-task flags */ 692 693 /* For each stat XXX, add following, aligned appropriately 694 * 695 * struct timespec XXX_start, XXX_end; 696 * u64 XXX_delay; 697 * u32 XXX_count; 698 * 699 * Atomicity of updates to XXX_delay, XXX_count protected by 700 * single lock above (split into XXX_lock if contention is an issue). 701 */ 702 703 /* 704 * XXX_count is incremented on every XXX operation, the delay 705 * associated with the operation is added to XXX_delay. 706 * XXX_delay contains the accumulated delay time in nanoseconds. 707 */ 708 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 709 u64 blkio_delay; /* wait for sync block io completion */ 710 u64 swapin_delay; /* wait for swapin block io completion */ 711 u32 blkio_count; /* total count of the number of sync block */ 712 /* io operations performed */ 713 u32 swapin_count; /* total count of the number of swapin block */ 714 /* io operations performed */ 715 716 struct timespec freepages_start, freepages_end; 717 u64 freepages_delay; /* wait for memory reclaim */ 718 u32 freepages_count; /* total count of memory reclaim */ 719}; 720#endif /* CONFIG_TASK_DELAY_ACCT */ 721 722static inline int sched_info_on(void) 723{ 724#ifdef CONFIG_SCHEDSTATS 725 return 1; 726#elif defined(CONFIG_TASK_DELAY_ACCT) 727 extern int delayacct_on; 728 return delayacct_on; 729#else 730 return 0; 731#endif 732} 733 734enum cpu_idle_type { 735 CPU_IDLE, 736 CPU_NOT_IDLE, 737 CPU_NEWLY_IDLE, 738 CPU_MAX_IDLE_TYPES 739}; 740 741/* 742 * sched-domains (multiprocessor balancing) declarations: 743 */ 744 745/* 746 * Increase resolution of nice-level calculations: 747 */ 748#define SCHED_LOAD_SHIFT 10 749#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 750 751#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 752 753#ifdef CONFIG_SMP 754#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 755#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 756#define SD_BALANCE_EXEC 4 /* Balance on exec */ 757#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 758#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 759#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 760#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 761#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 762#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 763#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 764#define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 765#define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */ 766 767#define BALANCE_FOR_MC_POWER \ 768 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 769 770#define BALANCE_FOR_PKG_POWER \ 771 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 772 SD_POWERSAVINGS_BALANCE : 0) 773 774#define test_sd_parent(sd, flag) ((sd->parent && \ 775 (sd->parent->flags & flag)) ? 1 : 0) 776 777 778struct sched_group { 779 struct sched_group *next; /* Must be a circular list */ 780 cpumask_t cpumask; 781 782 /* 783 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 784 * single CPU. This is read only (except for setup, hotplug CPU). 785 * Note : Never change cpu_power without recompute its reciprocal 786 */ 787 unsigned int __cpu_power; 788 /* 789 * reciprocal value of cpu_power to avoid expensive divides 790 * (see include/linux/reciprocal_div.h) 791 */ 792 u32 reciprocal_cpu_power; 793}; 794 795enum sched_domain_level { 796 SD_LV_NONE = 0, 797 SD_LV_SIBLING, 798 SD_LV_MC, 799 SD_LV_CPU, 800 SD_LV_NODE, 801 SD_LV_ALLNODES, 802 SD_LV_MAX 803}; 804 805struct sched_domain_attr { 806 int relax_domain_level; 807}; 808 809#define SD_ATTR_INIT (struct sched_domain_attr) { \ 810 .relax_domain_level = -1, \ 811} 812 813struct sched_domain { 814 /* These fields must be setup */ 815 struct sched_domain *parent; /* top domain must be null terminated */ 816 struct sched_domain *child; /* bottom domain must be null terminated */ 817 struct sched_group *groups; /* the balancing groups of the domain */ 818 cpumask_t span; /* span of all CPUs in this domain */ 819 unsigned long min_interval; /* Minimum balance interval ms */ 820 unsigned long max_interval; /* Maximum balance interval ms */ 821 unsigned int busy_factor; /* less balancing by factor if busy */ 822 unsigned int imbalance_pct; /* No balance until over watermark */ 823 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 824 unsigned int busy_idx; 825 unsigned int idle_idx; 826 unsigned int newidle_idx; 827 unsigned int wake_idx; 828 unsigned int forkexec_idx; 829 int flags; /* See SD_* */ 830 enum sched_domain_level level; 831 832 /* Runtime fields. */ 833 unsigned long last_balance; /* init to jiffies. units in jiffies */ 834 unsigned int balance_interval; /* initialise to 1. units in ms. */ 835 unsigned int nr_balance_failed; /* initialise to 0 */ 836 837 u64 last_update; 838 839#ifdef CONFIG_SCHEDSTATS 840 /* load_balance() stats */ 841 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 842 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 843 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 844 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 845 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 846 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 847 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 848 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 849 850 /* Active load balancing */ 851 unsigned int alb_count; 852 unsigned int alb_failed; 853 unsigned int alb_pushed; 854 855 /* SD_BALANCE_EXEC stats */ 856 unsigned int sbe_count; 857 unsigned int sbe_balanced; 858 unsigned int sbe_pushed; 859 860 /* SD_BALANCE_FORK stats */ 861 unsigned int sbf_count; 862 unsigned int sbf_balanced; 863 unsigned int sbf_pushed; 864 865 /* try_to_wake_up() stats */ 866 unsigned int ttwu_wake_remote; 867 unsigned int ttwu_move_affine; 868 unsigned int ttwu_move_balance; 869#endif 870#ifdef CONFIG_SCHED_DEBUG 871 char *name; 872#endif 873}; 874 875extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 876 struct sched_domain_attr *dattr_new); 877extern int arch_reinit_sched_domains(void); 878 879#else /* CONFIG_SMP */ 880 881struct sched_domain_attr; 882 883static inline void 884partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 885 struct sched_domain_attr *dattr_new) 886{ 887} 888#endif /* !CONFIG_SMP */ 889 890struct io_context; /* See blkdev.h */ 891#define NGROUPS_SMALL 32 892#define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t))) 893struct group_info { 894 int ngroups; 895 atomic_t usage; 896 gid_t small_block[NGROUPS_SMALL]; 897 int nblocks; 898 gid_t *blocks[0]; 899}; 900 901/* 902 * get_group_info() must be called with the owning task locked (via task_lock()) 903 * when task != current. The reason being that the vast majority of callers are 904 * looking at current->group_info, which can not be changed except by the 905 * current task. Changing current->group_info requires the task lock, too. 906 */ 907#define get_group_info(group_info) do { \ 908 atomic_inc(&(group_info)->usage); \ 909} while (0) 910 911#define put_group_info(group_info) do { \ 912 if (atomic_dec_and_test(&(group_info)->usage)) \ 913 groups_free(group_info); \ 914} while (0) 915 916extern struct group_info *groups_alloc(int gidsetsize); 917extern void groups_free(struct group_info *group_info); 918extern int set_current_groups(struct group_info *group_info); 919extern int groups_search(struct group_info *group_info, gid_t grp); 920/* access the groups "array" with this macro */ 921#define GROUP_AT(gi, i) \ 922 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 923 924#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 925extern void prefetch_stack(struct task_struct *t); 926#else 927static inline void prefetch_stack(struct task_struct *t) { } 928#endif 929 930struct audit_context; /* See audit.c */ 931struct mempolicy; 932struct pipe_inode_info; 933struct uts_namespace; 934 935struct rq; 936struct sched_domain; 937 938struct sched_class { 939 const struct sched_class *next; 940 941 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 942 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 943 void (*yield_task) (struct rq *rq); 944 945 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync); 946 947 struct task_struct * (*pick_next_task) (struct rq *rq); 948 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 949 950#ifdef CONFIG_SMP 951 int (*select_task_rq)(struct task_struct *p, int sync); 952 953 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 954 struct rq *busiest, unsigned long max_load_move, 955 struct sched_domain *sd, enum cpu_idle_type idle, 956 int *all_pinned, int *this_best_prio); 957 958 int (*move_one_task) (struct rq *this_rq, int this_cpu, 959 struct rq *busiest, struct sched_domain *sd, 960 enum cpu_idle_type idle); 961 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 962 void (*post_schedule) (struct rq *this_rq); 963 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 964 965 void (*set_cpus_allowed)(struct task_struct *p, 966 const cpumask_t *newmask); 967 968 void (*rq_online)(struct rq *rq); 969 void (*rq_offline)(struct rq *rq); 970#endif 971 972 void (*set_curr_task) (struct rq *rq); 973 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 974 void (*task_new) (struct rq *rq, struct task_struct *p); 975 976 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 977 int running); 978 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 979 int running); 980 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 981 int oldprio, int running); 982 983#ifdef CONFIG_FAIR_GROUP_SCHED 984 void (*moved_group) (struct task_struct *p); 985#endif 986}; 987 988struct load_weight { 989 unsigned long weight, inv_weight; 990}; 991 992/* 993 * CFS stats for a schedulable entity (task, task-group etc) 994 * 995 * Current field usage histogram: 996 * 997 * 4 se->block_start 998 * 4 se->run_node 999 * 4 se->sleep_start 1000 * 6 se->load.weight 1001 */ 1002struct sched_entity { 1003 struct load_weight load; /* for load-balancing */ 1004 struct rb_node run_node; 1005 struct list_head group_node; 1006 unsigned int on_rq; 1007 1008 u64 exec_start; 1009 u64 sum_exec_runtime; 1010 u64 vruntime; 1011 u64 prev_sum_exec_runtime; 1012 1013 u64 last_wakeup; 1014 u64 avg_overlap; 1015 1016#ifdef CONFIG_SCHEDSTATS 1017 u64 wait_start; 1018 u64 wait_max; 1019 u64 wait_count; 1020 u64 wait_sum; 1021 1022 u64 sleep_start; 1023 u64 sleep_max; 1024 s64 sum_sleep_runtime; 1025 1026 u64 block_start; 1027 u64 block_max; 1028 u64 exec_max; 1029 u64 slice_max; 1030 1031 u64 nr_migrations; 1032 u64 nr_migrations_cold; 1033 u64 nr_failed_migrations_affine; 1034 u64 nr_failed_migrations_running; 1035 u64 nr_failed_migrations_hot; 1036 u64 nr_forced_migrations; 1037 u64 nr_forced2_migrations; 1038 1039 u64 nr_wakeups; 1040 u64 nr_wakeups_sync; 1041 u64 nr_wakeups_migrate; 1042 u64 nr_wakeups_local; 1043 u64 nr_wakeups_remote; 1044 u64 nr_wakeups_affine; 1045 u64 nr_wakeups_affine_attempts; 1046 u64 nr_wakeups_passive; 1047 u64 nr_wakeups_idle; 1048#endif 1049 1050#ifdef CONFIG_FAIR_GROUP_SCHED 1051 struct sched_entity *parent; 1052 /* rq on which this entity is (to be) queued: */ 1053 struct cfs_rq *cfs_rq; 1054 /* rq "owned" by this entity/group: */ 1055 struct cfs_rq *my_q; 1056#endif 1057}; 1058 1059struct sched_rt_entity { 1060 struct list_head run_list; 1061 unsigned long timeout; 1062 unsigned int time_slice; 1063 int nr_cpus_allowed; 1064 1065 struct sched_rt_entity *back; 1066#ifdef CONFIG_RT_GROUP_SCHED 1067 struct sched_rt_entity *parent; 1068 /* rq on which this entity is (to be) queued: */ 1069 struct rt_rq *rt_rq; 1070 /* rq "owned" by this entity/group: */ 1071 struct rt_rq *my_q; 1072#endif 1073}; 1074 1075struct task_struct { 1076 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1077 void *stack; 1078 atomic_t usage; 1079 unsigned int flags; /* per process flags, defined below */ 1080 unsigned int ptrace; 1081 1082 int lock_depth; /* BKL lock depth */ 1083 1084#ifdef CONFIG_SMP 1085#ifdef __ARCH_WANT_UNLOCKED_CTXSW 1086 int oncpu; 1087#endif 1088#endif 1089 1090 int prio, static_prio, normal_prio; 1091 unsigned int rt_priority; 1092 const struct sched_class *sched_class; 1093 struct sched_entity se; 1094 struct sched_rt_entity rt; 1095 1096#ifdef CONFIG_PREEMPT_NOTIFIERS 1097 /* list of struct preempt_notifier: */ 1098 struct hlist_head preempt_notifiers; 1099#endif 1100 1101 /* 1102 * fpu_counter contains the number of consecutive context switches 1103 * that the FPU is used. If this is over a threshold, the lazy fpu 1104 * saving becomes unlazy to save the trap. This is an unsigned char 1105 * so that after 256 times the counter wraps and the behavior turns 1106 * lazy again; this to deal with bursty apps that only use FPU for 1107 * a short time 1108 */ 1109 unsigned char fpu_counter; 1110 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1111#ifdef CONFIG_BLK_DEV_IO_TRACE 1112 unsigned int btrace_seq; 1113#endif 1114 1115 unsigned int policy; 1116 cpumask_t cpus_allowed; 1117 1118#ifdef CONFIG_PREEMPT_RCU 1119 int rcu_read_lock_nesting; 1120 int rcu_flipctr_idx; 1121#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1122 1123#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1124 struct sched_info sched_info; 1125#endif 1126 1127 struct list_head tasks; 1128 1129 struct mm_struct *mm, *active_mm; 1130 1131/* task state */ 1132 struct linux_binfmt *binfmt; 1133 int exit_state; 1134 int exit_code, exit_signal; 1135 int pdeath_signal; /* The signal sent when the parent dies */ 1136 /* ??? */ 1137 unsigned int personality; 1138 unsigned did_exec:1; 1139 pid_t pid; 1140 pid_t tgid; 1141 1142#ifdef CONFIG_CC_STACKPROTECTOR 1143 /* Canary value for the -fstack-protector gcc feature */ 1144 unsigned long stack_canary; 1145#endif 1146 /* 1147 * pointers to (original) parent process, youngest child, younger sibling, 1148 * older sibling, respectively. (p->father can be replaced with 1149 * p->real_parent->pid) 1150 */ 1151 struct task_struct *real_parent; /* real parent process */ 1152 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1153 /* 1154 * children/sibling forms the list of my natural children 1155 */ 1156 struct list_head children; /* list of my children */ 1157 struct list_head sibling; /* linkage in my parent's children list */ 1158 struct task_struct *group_leader; /* threadgroup leader */ 1159 1160 /* 1161 * ptraced is the list of tasks this task is using ptrace on. 1162 * This includes both natural children and PTRACE_ATTACH targets. 1163 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1164 */ 1165 struct list_head ptraced; 1166 struct list_head ptrace_entry; 1167 1168 /* PID/PID hash table linkage. */ 1169 struct pid_link pids[PIDTYPE_MAX]; 1170 struct list_head thread_group; 1171 1172 struct completion *vfork_done; /* for vfork() */ 1173 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1174 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1175 1176 cputime_t utime, stime, utimescaled, stimescaled; 1177 cputime_t gtime; 1178 cputime_t prev_utime, prev_stime; 1179 unsigned long nvcsw, nivcsw; /* context switch counts */ 1180 struct timespec start_time; /* monotonic time */ 1181 struct timespec real_start_time; /* boot based time */ 1182/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1183 unsigned long min_flt, maj_flt; 1184 1185 struct task_cputime cputime_expires; 1186 struct list_head cpu_timers[3]; 1187 1188/* process credentials */ 1189 uid_t uid,euid,suid,fsuid; 1190 gid_t gid,egid,sgid,fsgid; 1191 struct group_info *group_info; 1192 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset; 1193 struct user_struct *user; 1194 unsigned securebits; 1195#ifdef CONFIG_KEYS 1196 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1197 struct key *request_key_auth; /* assumed request_key authority */ 1198 struct key *thread_keyring; /* keyring private to this thread */ 1199#endif 1200 char comm[TASK_COMM_LEN]; /* executable name excluding path 1201 - access with [gs]et_task_comm (which lock 1202 it with task_lock()) 1203 - initialized normally by flush_old_exec */ 1204/* file system info */ 1205 int link_count, total_link_count; 1206#ifdef CONFIG_SYSVIPC 1207/* ipc stuff */ 1208 struct sysv_sem sysvsem; 1209#endif 1210#ifdef CONFIG_DETECT_SOFTLOCKUP 1211/* hung task detection */ 1212 unsigned long last_switch_timestamp; 1213 unsigned long last_switch_count; 1214#endif 1215/* CPU-specific state of this task */ 1216 struct thread_struct thread; 1217/* filesystem information */ 1218 struct fs_struct *fs; 1219/* open file information */ 1220 struct files_struct *files; 1221/* namespaces */ 1222 struct nsproxy *nsproxy; 1223/* signal handlers */ 1224 struct signal_struct *signal; 1225 struct sighand_struct *sighand; 1226 1227 sigset_t blocked, real_blocked; 1228 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1229 struct sigpending pending; 1230 1231 unsigned long sas_ss_sp; 1232 size_t sas_ss_size; 1233 int (*notifier)(void *priv); 1234 void *notifier_data; 1235 sigset_t *notifier_mask; 1236#ifdef CONFIG_SECURITY 1237 void *security; 1238#endif 1239 struct audit_context *audit_context; 1240#ifdef CONFIG_AUDITSYSCALL 1241 uid_t loginuid; 1242 unsigned int sessionid; 1243#endif 1244 seccomp_t seccomp; 1245 1246/* Thread group tracking */ 1247 u32 parent_exec_id; 1248 u32 self_exec_id; 1249/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1250 spinlock_t alloc_lock; 1251 1252 /* Protection of the PI data structures: */ 1253 spinlock_t pi_lock; 1254 1255#ifdef CONFIG_RT_MUTEXES 1256 /* PI waiters blocked on a rt_mutex held by this task */ 1257 struct plist_head pi_waiters; 1258 /* Deadlock detection and priority inheritance handling */ 1259 struct rt_mutex_waiter *pi_blocked_on; 1260#endif 1261 1262#ifdef CONFIG_DEBUG_MUTEXES 1263 /* mutex deadlock detection */ 1264 struct mutex_waiter *blocked_on; 1265#endif 1266#ifdef CONFIG_TRACE_IRQFLAGS 1267 unsigned int irq_events; 1268 int hardirqs_enabled; 1269 unsigned long hardirq_enable_ip; 1270 unsigned int hardirq_enable_event; 1271 unsigned long hardirq_disable_ip; 1272 unsigned int hardirq_disable_event; 1273 int softirqs_enabled; 1274 unsigned long softirq_disable_ip; 1275 unsigned int softirq_disable_event; 1276 unsigned long softirq_enable_ip; 1277 unsigned int softirq_enable_event; 1278 int hardirq_context; 1279 int softirq_context; 1280#endif 1281#ifdef CONFIG_LOCKDEP 1282# define MAX_LOCK_DEPTH 48UL 1283 u64 curr_chain_key; 1284 int lockdep_depth; 1285 unsigned int lockdep_recursion; 1286 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1287#endif 1288 1289/* journalling filesystem info */ 1290 void *journal_info; 1291 1292/* stacked block device info */ 1293 struct bio *bio_list, **bio_tail; 1294 1295/* VM state */ 1296 struct reclaim_state *reclaim_state; 1297 1298 struct backing_dev_info *backing_dev_info; 1299 1300 struct io_context *io_context; 1301 1302 unsigned long ptrace_message; 1303 siginfo_t *last_siginfo; /* For ptrace use. */ 1304 struct task_io_accounting ioac; 1305#if defined(CONFIG_TASK_XACCT) 1306 u64 acct_rss_mem1; /* accumulated rss usage */ 1307 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1308 cputime_t acct_timexpd; /* stime + utime since last update */ 1309#endif 1310#ifdef CONFIG_CPUSETS 1311 nodemask_t mems_allowed; 1312 int cpuset_mems_generation; 1313 int cpuset_mem_spread_rotor; 1314#endif 1315#ifdef CONFIG_CGROUPS 1316 /* Control Group info protected by css_set_lock */ 1317 struct css_set *cgroups; 1318 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1319 struct list_head cg_list; 1320#endif 1321#ifdef CONFIG_FUTEX 1322 struct robust_list_head __user *robust_list; 1323#ifdef CONFIG_COMPAT 1324 struct compat_robust_list_head __user *compat_robust_list; 1325#endif 1326 struct list_head pi_state_list; 1327 struct futex_pi_state *pi_state_cache; 1328#endif 1329#ifdef CONFIG_NUMA 1330 struct mempolicy *mempolicy; 1331 short il_next; 1332#endif 1333 atomic_t fs_excl; /* holding fs exclusive resources */ 1334 struct rcu_head rcu; 1335 1336 /* 1337 * cache last used pipe for splice 1338 */ 1339 struct pipe_inode_info *splice_pipe; 1340#ifdef CONFIG_TASK_DELAY_ACCT 1341 struct task_delay_info *delays; 1342#endif 1343#ifdef CONFIG_FAULT_INJECTION 1344 int make_it_fail; 1345#endif 1346 struct prop_local_single dirties; 1347#ifdef CONFIG_LATENCYTOP 1348 int latency_record_count; 1349 struct latency_record latency_record[LT_SAVECOUNT]; 1350#endif 1351 /* 1352 * time slack values; these are used to round up poll() and 1353 * select() etc timeout values. These are in nanoseconds. 1354 */ 1355 unsigned long timer_slack_ns; 1356 unsigned long default_timer_slack_ns; 1357 1358 struct list_head *scm_work_list; 1359}; 1360 1361/* 1362 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1363 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1364 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1365 * values are inverted: lower p->prio value means higher priority. 1366 * 1367 * The MAX_USER_RT_PRIO value allows the actual maximum 1368 * RT priority to be separate from the value exported to 1369 * user-space. This allows kernel threads to set their 1370 * priority to a value higher than any user task. Note: 1371 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1372 */ 1373 1374#define MAX_USER_RT_PRIO 100 1375#define MAX_RT_PRIO MAX_USER_RT_PRIO 1376 1377#define MAX_PRIO (MAX_RT_PRIO + 40) 1378#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1379 1380static inline int rt_prio(int prio) 1381{ 1382 if (unlikely(prio < MAX_RT_PRIO)) 1383 return 1; 1384 return 0; 1385} 1386 1387static inline int rt_task(struct task_struct *p) 1388{ 1389 return rt_prio(p->prio); 1390} 1391 1392static inline void set_task_session(struct task_struct *tsk, pid_t session) 1393{ 1394 tsk->signal->__session = session; 1395} 1396 1397static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1398{ 1399 tsk->signal->__pgrp = pgrp; 1400} 1401 1402static inline struct pid *task_pid(struct task_struct *task) 1403{ 1404 return task->pids[PIDTYPE_PID].pid; 1405} 1406 1407static inline struct pid *task_tgid(struct task_struct *task) 1408{ 1409 return task->group_leader->pids[PIDTYPE_PID].pid; 1410} 1411 1412static inline struct pid *task_pgrp(struct task_struct *task) 1413{ 1414 return task->group_leader->pids[PIDTYPE_PGID].pid; 1415} 1416 1417static inline struct pid *task_session(struct task_struct *task) 1418{ 1419 return task->group_leader->pids[PIDTYPE_SID].pid; 1420} 1421 1422struct pid_namespace; 1423 1424/* 1425 * the helpers to get the task's different pids as they are seen 1426 * from various namespaces 1427 * 1428 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1429 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1430 * current. 1431 * task_xid_nr_ns() : id seen from the ns specified; 1432 * 1433 * set_task_vxid() : assigns a virtual id to a task; 1434 * 1435 * see also pid_nr() etc in include/linux/pid.h 1436 */ 1437 1438static inline pid_t task_pid_nr(struct task_struct *tsk) 1439{ 1440 return tsk->pid; 1441} 1442 1443pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1444 1445static inline pid_t task_pid_vnr(struct task_struct *tsk) 1446{ 1447 return pid_vnr(task_pid(tsk)); 1448} 1449 1450 1451static inline pid_t task_tgid_nr(struct task_struct *tsk) 1452{ 1453 return tsk->tgid; 1454} 1455 1456pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1457 1458static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1459{ 1460 return pid_vnr(task_tgid(tsk)); 1461} 1462 1463 1464static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1465{ 1466 return tsk->signal->__pgrp; 1467} 1468 1469pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1470 1471static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1472{ 1473 return pid_vnr(task_pgrp(tsk)); 1474} 1475 1476 1477static inline pid_t task_session_nr(struct task_struct *tsk) 1478{ 1479 return tsk->signal->__session; 1480} 1481 1482pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1483 1484static inline pid_t task_session_vnr(struct task_struct *tsk) 1485{ 1486 return pid_vnr(task_session(tsk)); 1487} 1488 1489 1490/** 1491 * pid_alive - check that a task structure is not stale 1492 * @p: Task structure to be checked. 1493 * 1494 * Test if a process is not yet dead (at most zombie state) 1495 * If pid_alive fails, then pointers within the task structure 1496 * can be stale and must not be dereferenced. 1497 */ 1498static inline int pid_alive(struct task_struct *p) 1499{ 1500 return p->pids[PIDTYPE_PID].pid != NULL; 1501} 1502 1503/** 1504 * is_global_init - check if a task structure is init 1505 * @tsk: Task structure to be checked. 1506 * 1507 * Check if a task structure is the first user space task the kernel created. 1508 */ 1509static inline int is_global_init(struct task_struct *tsk) 1510{ 1511 return tsk->pid == 1; 1512} 1513 1514/* 1515 * is_container_init: 1516 * check whether in the task is init in its own pid namespace. 1517 */ 1518extern int is_container_init(struct task_struct *tsk); 1519 1520extern struct pid *cad_pid; 1521 1522extern void free_task(struct task_struct *tsk); 1523#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1524 1525extern void __put_task_struct(struct task_struct *t); 1526 1527static inline void put_task_struct(struct task_struct *t) 1528{ 1529 if (atomic_dec_and_test(&t->usage)) 1530 __put_task_struct(t); 1531} 1532 1533extern cputime_t task_utime(struct task_struct *p); 1534extern cputime_t task_stime(struct task_struct *p); 1535extern cputime_t task_gtime(struct task_struct *p); 1536 1537/* 1538 * Per process flags 1539 */ 1540#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1541 /* Not implemented yet, only for 486*/ 1542#define PF_STARTING 0x00000002 /* being created */ 1543#define PF_EXITING 0x00000004 /* getting shut down */ 1544#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1545#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1546#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1547#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1548#define PF_DUMPCORE 0x00000200 /* dumped core */ 1549#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1550#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1551#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1552#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1553#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1554#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1555#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1556#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1557#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1558#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1559#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1560#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1561#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1562#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1563#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1564#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1565#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1566#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1567#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1568#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1569 1570/* 1571 * Only the _current_ task can read/write to tsk->flags, but other 1572 * tasks can access tsk->flags in readonly mode for example 1573 * with tsk_used_math (like during threaded core dumping). 1574 * There is however an exception to this rule during ptrace 1575 * or during fork: the ptracer task is allowed to write to the 1576 * child->flags of its traced child (same goes for fork, the parent 1577 * can write to the child->flags), because we're guaranteed the 1578 * child is not running and in turn not changing child->flags 1579 * at the same time the parent does it. 1580 */ 1581#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1582#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1583#define clear_used_math() clear_stopped_child_used_math(current) 1584#define set_used_math() set_stopped_child_used_math(current) 1585#define conditional_stopped_child_used_math(condition, child) \ 1586 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1587#define conditional_used_math(condition) \ 1588 conditional_stopped_child_used_math(condition, current) 1589#define copy_to_stopped_child_used_math(child) \ 1590 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1591/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1592#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1593#define used_math() tsk_used_math(current) 1594 1595#ifdef CONFIG_SMP 1596extern int set_cpus_allowed_ptr(struct task_struct *p, 1597 const cpumask_t *new_mask); 1598#else 1599static inline int set_cpus_allowed_ptr(struct task_struct *p, 1600 const cpumask_t *new_mask) 1601{ 1602 if (!cpu_isset(0, *new_mask)) 1603 return -EINVAL; 1604 return 0; 1605} 1606#endif 1607static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1608{ 1609 return set_cpus_allowed_ptr(p, &new_mask); 1610} 1611 1612extern unsigned long long sched_clock(void); 1613 1614extern void sched_clock_init(void); 1615extern u64 sched_clock_cpu(int cpu); 1616 1617#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1618static inline void sched_clock_tick(void) 1619{ 1620} 1621 1622static inline void sched_clock_idle_sleep_event(void) 1623{ 1624} 1625 1626static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1627{ 1628} 1629#else 1630extern void sched_clock_tick(void); 1631extern void sched_clock_idle_sleep_event(void); 1632extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1633#endif 1634 1635/* 1636 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1637 * clock constructed from sched_clock(): 1638 */ 1639extern unsigned long long cpu_clock(int cpu); 1640 1641extern unsigned long long 1642task_sched_runtime(struct task_struct *task); 1643extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1644 1645/* sched_exec is called by processes performing an exec */ 1646#ifdef CONFIG_SMP 1647extern void sched_exec(void); 1648#else 1649#define sched_exec() {} 1650#endif 1651 1652extern void sched_clock_idle_sleep_event(void); 1653extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1654 1655#ifdef CONFIG_HOTPLUG_CPU 1656extern void idle_task_exit(void); 1657#else 1658static inline void idle_task_exit(void) {} 1659#endif 1660 1661extern void sched_idle_next(void); 1662 1663#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1664extern void wake_up_idle_cpu(int cpu); 1665#else 1666static inline void wake_up_idle_cpu(int cpu) { } 1667#endif 1668 1669#ifdef CONFIG_SCHED_DEBUG 1670extern unsigned int sysctl_sched_latency; 1671extern unsigned int sysctl_sched_min_granularity; 1672extern unsigned int sysctl_sched_wakeup_granularity; 1673extern unsigned int sysctl_sched_child_runs_first; 1674extern unsigned int sysctl_sched_features; 1675extern unsigned int sysctl_sched_migration_cost; 1676extern unsigned int sysctl_sched_nr_migrate; 1677extern unsigned int sysctl_sched_shares_ratelimit; 1678extern unsigned int sysctl_sched_shares_thresh; 1679 1680int sched_nr_latency_handler(struct ctl_table *table, int write, 1681 struct file *file, void __user *buffer, size_t *length, 1682 loff_t *ppos); 1683#endif 1684extern unsigned int sysctl_sched_rt_period; 1685extern int sysctl_sched_rt_runtime; 1686 1687int sched_rt_handler(struct ctl_table *table, int write, 1688 struct file *filp, void __user *buffer, size_t *lenp, 1689 loff_t *ppos); 1690 1691extern unsigned int sysctl_sched_compat_yield; 1692 1693#ifdef CONFIG_RT_MUTEXES 1694extern int rt_mutex_getprio(struct task_struct *p); 1695extern void rt_mutex_setprio(struct task_struct *p, int prio); 1696extern void rt_mutex_adjust_pi(struct task_struct *p); 1697#else 1698static inline int rt_mutex_getprio(struct task_struct *p) 1699{ 1700 return p->normal_prio; 1701} 1702# define rt_mutex_adjust_pi(p) do { } while (0) 1703#endif 1704 1705extern void set_user_nice(struct task_struct *p, long nice); 1706extern int task_prio(const struct task_struct *p); 1707extern int task_nice(const struct task_struct *p); 1708extern int can_nice(const struct task_struct *p, const int nice); 1709extern int task_curr(const struct task_struct *p); 1710extern int idle_cpu(int cpu); 1711extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1712extern int sched_setscheduler_nocheck(struct task_struct *, int, 1713 struct sched_param *); 1714extern struct task_struct *idle_task(int cpu); 1715extern struct task_struct *curr_task(int cpu); 1716extern void set_curr_task(int cpu, struct task_struct *p); 1717 1718void yield(void); 1719 1720/* 1721 * The default (Linux) execution domain. 1722 */ 1723extern struct exec_domain default_exec_domain; 1724 1725union thread_union { 1726 struct thread_info thread_info; 1727 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1728}; 1729 1730#ifndef __HAVE_ARCH_KSTACK_END 1731static inline int kstack_end(void *addr) 1732{ 1733 /* Reliable end of stack detection: 1734 * Some APM bios versions misalign the stack 1735 */ 1736 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1737} 1738#endif 1739 1740extern union thread_union init_thread_union; 1741extern struct task_struct init_task; 1742 1743extern struct mm_struct init_mm; 1744 1745extern struct pid_namespace init_pid_ns; 1746 1747/* 1748 * find a task by one of its numerical ids 1749 * 1750 * find_task_by_pid_type_ns(): 1751 * it is the most generic call - it finds a task by all id, 1752 * type and namespace specified 1753 * find_task_by_pid_ns(): 1754 * finds a task by its pid in the specified namespace 1755 * find_task_by_vpid(): 1756 * finds a task by its virtual pid 1757 * 1758 * see also find_vpid() etc in include/linux/pid.h 1759 */ 1760 1761extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1762 struct pid_namespace *ns); 1763 1764extern struct task_struct *find_task_by_vpid(pid_t nr); 1765extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1766 struct pid_namespace *ns); 1767 1768extern void __set_special_pids(struct pid *pid); 1769 1770/* per-UID process charging. */ 1771extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1772static inline struct user_struct *get_uid(struct user_struct *u) 1773{ 1774 atomic_inc(&u->__count); 1775 return u; 1776} 1777extern void free_uid(struct user_struct *); 1778extern void switch_uid(struct user_struct *); 1779extern void release_uids(struct user_namespace *ns); 1780 1781#include <asm/current.h> 1782 1783extern void do_timer(unsigned long ticks); 1784 1785extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1786extern int wake_up_process(struct task_struct *tsk); 1787extern void wake_up_new_task(struct task_struct *tsk, 1788 unsigned long clone_flags); 1789#ifdef CONFIG_SMP 1790 extern void kick_process(struct task_struct *tsk); 1791#else 1792 static inline void kick_process(struct task_struct *tsk) { } 1793#endif 1794extern void sched_fork(struct task_struct *p, int clone_flags); 1795extern void sched_dead(struct task_struct *p); 1796 1797extern int in_group_p(gid_t); 1798extern int in_egroup_p(gid_t); 1799 1800extern void proc_caches_init(void); 1801extern void flush_signals(struct task_struct *); 1802extern void ignore_signals(struct task_struct *); 1803extern void flush_signal_handlers(struct task_struct *, int force_default); 1804extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1805 1806static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1807{ 1808 unsigned long flags; 1809 int ret; 1810 1811 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1812 ret = dequeue_signal(tsk, mask, info); 1813 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1814 1815 return ret; 1816} 1817 1818extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1819 sigset_t *mask); 1820extern void unblock_all_signals(void); 1821extern void release_task(struct task_struct * p); 1822extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1823extern int force_sigsegv(int, struct task_struct *); 1824extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1825extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1826extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1827extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1828extern int kill_pgrp(struct pid *pid, int sig, int priv); 1829extern int kill_pid(struct pid *pid, int sig, int priv); 1830extern int kill_proc_info(int, struct siginfo *, pid_t); 1831extern int do_notify_parent(struct task_struct *, int); 1832extern void force_sig(int, struct task_struct *); 1833extern void force_sig_specific(int, struct task_struct *); 1834extern int send_sig(int, struct task_struct *, int); 1835extern void zap_other_threads(struct task_struct *p); 1836extern struct sigqueue *sigqueue_alloc(void); 1837extern void sigqueue_free(struct sigqueue *); 1838extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 1839extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1840extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1841 1842static inline int kill_cad_pid(int sig, int priv) 1843{ 1844 return kill_pid(cad_pid, sig, priv); 1845} 1846 1847/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1848#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1849#define SEND_SIG_PRIV ((struct siginfo *) 1) 1850#define SEND_SIG_FORCED ((struct siginfo *) 2) 1851 1852static inline int is_si_special(const struct siginfo *info) 1853{ 1854 return info <= SEND_SIG_FORCED; 1855} 1856 1857/* True if we are on the alternate signal stack. */ 1858 1859static inline int on_sig_stack(unsigned long sp) 1860{ 1861 return (sp - current->sas_ss_sp < current->sas_ss_size); 1862} 1863 1864static inline int sas_ss_flags(unsigned long sp) 1865{ 1866 return (current->sas_ss_size == 0 ? SS_DISABLE 1867 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1868} 1869 1870/* 1871 * Routines for handling mm_structs 1872 */ 1873extern struct mm_struct * mm_alloc(void); 1874 1875/* mmdrop drops the mm and the page tables */ 1876extern void __mmdrop(struct mm_struct *); 1877static inline void mmdrop(struct mm_struct * mm) 1878{ 1879 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1880 __mmdrop(mm); 1881} 1882 1883/* mmput gets rid of the mappings and all user-space */ 1884extern void mmput(struct mm_struct *); 1885/* Grab a reference to a task's mm, if it is not already going away */ 1886extern struct mm_struct *get_task_mm(struct task_struct *task); 1887/* Remove the current tasks stale references to the old mm_struct */ 1888extern void mm_release(struct task_struct *, struct mm_struct *); 1889/* Allocate a new mm structure and copy contents from tsk->mm */ 1890extern struct mm_struct *dup_mm(struct task_struct *tsk); 1891 1892extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1893extern void flush_thread(void); 1894extern void exit_thread(void); 1895 1896extern void exit_files(struct task_struct *); 1897extern void __cleanup_signal(struct signal_struct *); 1898extern void __cleanup_sighand(struct sighand_struct *); 1899 1900extern void exit_itimers(struct signal_struct *); 1901extern void flush_itimer_signals(void); 1902 1903extern NORET_TYPE void do_group_exit(int); 1904 1905extern void daemonize(const char *, ...); 1906extern int allow_signal(int); 1907extern int disallow_signal(int); 1908 1909extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1910extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1911struct task_struct *fork_idle(int); 1912 1913extern void set_task_comm(struct task_struct *tsk, char *from); 1914extern char *get_task_comm(char *to, struct task_struct *tsk); 1915 1916#ifdef CONFIG_SMP 1917extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1918#else 1919static inline unsigned long wait_task_inactive(struct task_struct *p, 1920 long match_state) 1921{ 1922 return 1; 1923} 1924#endif 1925 1926#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1927 1928#define for_each_process(p) \ 1929 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1930 1931/* 1932 * Careful: do_each_thread/while_each_thread is a double loop so 1933 * 'break' will not work as expected - use goto instead. 1934 */ 1935#define do_each_thread(g, t) \ 1936 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1937 1938#define while_each_thread(g, t) \ 1939 while ((t = next_thread(t)) != g) 1940 1941/* de_thread depends on thread_group_leader not being a pid based check */ 1942#define thread_group_leader(p) (p == p->group_leader) 1943 1944/* Do to the insanities of de_thread it is possible for a process 1945 * to have the pid of the thread group leader without actually being 1946 * the thread group leader. For iteration through the pids in proc 1947 * all we care about is that we have a task with the appropriate 1948 * pid, we don't actually care if we have the right task. 1949 */ 1950static inline int has_group_leader_pid(struct task_struct *p) 1951{ 1952 return p->pid == p->tgid; 1953} 1954 1955static inline 1956int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1957{ 1958 return p1->tgid == p2->tgid; 1959} 1960 1961static inline struct task_struct *next_thread(const struct task_struct *p) 1962{ 1963 return list_entry(rcu_dereference(p->thread_group.next), 1964 struct task_struct, thread_group); 1965} 1966 1967static inline int thread_group_empty(struct task_struct *p) 1968{ 1969 return list_empty(&p->thread_group); 1970} 1971 1972#define delay_group_leader(p) \ 1973 (thread_group_leader(p) && !thread_group_empty(p)) 1974 1975/* 1976 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1977 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1978 * pins the final release of task.io_context. Also protects ->cpuset and 1979 * ->cgroup.subsys[]. 1980 * 1981 * Nests both inside and outside of read_lock(&tasklist_lock). 1982 * It must not be nested with write_lock_irq(&tasklist_lock), 1983 * neither inside nor outside. 1984 */ 1985static inline void task_lock(struct task_struct *p) 1986{ 1987 spin_lock(&p->alloc_lock); 1988} 1989 1990static inline void task_unlock(struct task_struct *p) 1991{ 1992 spin_unlock(&p->alloc_lock); 1993} 1994 1995extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1996 unsigned long *flags); 1997 1998static inline void unlock_task_sighand(struct task_struct *tsk, 1999 unsigned long *flags) 2000{ 2001 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2002} 2003 2004#ifndef __HAVE_THREAD_FUNCTIONS 2005 2006#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2007#define task_stack_page(task) ((task)->stack) 2008 2009static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2010{ 2011 *task_thread_info(p) = *task_thread_info(org); 2012 task_thread_info(p)->task = p; 2013} 2014 2015static inline unsigned long *end_of_stack(struct task_struct *p) 2016{ 2017 return (unsigned long *)(task_thread_info(p) + 1); 2018} 2019 2020#endif 2021 2022static inline int object_is_on_stack(void *obj) 2023{ 2024 void *stack = task_stack_page(current); 2025 2026 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2027} 2028 2029extern void thread_info_cache_init(void); 2030 2031/* set thread flags in other task's structures 2032 * - see asm/thread_info.h for TIF_xxxx flags available 2033 */ 2034static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2035{ 2036 set_ti_thread_flag(task_thread_info(tsk), flag); 2037} 2038 2039static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2040{ 2041 clear_ti_thread_flag(task_thread_info(tsk), flag); 2042} 2043 2044static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2045{ 2046 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2047} 2048 2049static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2050{ 2051 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2052} 2053 2054static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2055{ 2056 return test_ti_thread_flag(task_thread_info(tsk), flag); 2057} 2058 2059static inline void set_tsk_need_resched(struct task_struct *tsk) 2060{ 2061 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2062} 2063 2064static inline void clear_tsk_need_resched(struct task_struct *tsk) 2065{ 2066 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2067} 2068 2069static inline int test_tsk_need_resched(struct task_struct *tsk) 2070{ 2071 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2072} 2073 2074static inline int signal_pending(struct task_struct *p) 2075{ 2076 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2077} 2078 2079extern int __fatal_signal_pending(struct task_struct *p); 2080 2081static inline int fatal_signal_pending(struct task_struct *p) 2082{ 2083 return signal_pending(p) && __fatal_signal_pending(p); 2084} 2085 2086static inline int signal_pending_state(long state, struct task_struct *p) 2087{ 2088 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2089 return 0; 2090 if (!signal_pending(p)) 2091 return 0; 2092 2093 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2094} 2095 2096static inline int need_resched(void) 2097{ 2098 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2099} 2100 2101/* 2102 * cond_resched() and cond_resched_lock(): latency reduction via 2103 * explicit rescheduling in places that are safe. The return 2104 * value indicates whether a reschedule was done in fact. 2105 * cond_resched_lock() will drop the spinlock before scheduling, 2106 * cond_resched_softirq() will enable bhs before scheduling. 2107 */ 2108extern int _cond_resched(void); 2109#ifdef CONFIG_PREEMPT_BKL 2110static inline int cond_resched(void) 2111{ 2112 return 0; 2113} 2114#else 2115static inline int cond_resched(void) 2116{ 2117 return _cond_resched(); 2118} 2119#endif 2120extern int cond_resched_lock(spinlock_t * lock); 2121extern int cond_resched_softirq(void); 2122static inline int cond_resched_bkl(void) 2123{ 2124 return _cond_resched(); 2125} 2126 2127/* 2128 * Does a critical section need to be broken due to another 2129 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2130 * but a general need for low latency) 2131 */ 2132static inline int spin_needbreak(spinlock_t *lock) 2133{ 2134#ifdef CONFIG_PREEMPT 2135 return spin_is_contended(lock); 2136#else 2137 return 0; 2138#endif 2139} 2140 2141/* 2142 * Thread group CPU time accounting. 2143 */ 2144 2145extern int thread_group_cputime_alloc(struct task_struct *); 2146extern void thread_group_cputime(struct task_struct *, struct task_cputime *); 2147 2148static inline void thread_group_cputime_init(struct signal_struct *sig) 2149{ 2150 sig->cputime.totals = NULL; 2151} 2152 2153static inline int thread_group_cputime_clone_thread(struct task_struct *curr) 2154{ 2155 if (curr->signal->cputime.totals) 2156 return 0; 2157 return thread_group_cputime_alloc(curr); 2158} 2159 2160static inline void thread_group_cputime_free(struct signal_struct *sig) 2161{ 2162 free_percpu(sig->cputime.totals); 2163} 2164 2165/* 2166 * Reevaluate whether the task has signals pending delivery. 2167 * Wake the task if so. 2168 * This is required every time the blocked sigset_t changes. 2169 * callers must hold sighand->siglock. 2170 */ 2171extern void recalc_sigpending_and_wake(struct task_struct *t); 2172extern void recalc_sigpending(void); 2173 2174extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2175 2176/* 2177 * Wrappers for p->thread_info->cpu access. No-op on UP. 2178 */ 2179#ifdef CONFIG_SMP 2180 2181static inline unsigned int task_cpu(const struct task_struct *p) 2182{ 2183 return task_thread_info(p)->cpu; 2184} 2185 2186extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2187 2188#else 2189 2190static inline unsigned int task_cpu(const struct task_struct *p) 2191{ 2192 return 0; 2193} 2194 2195static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2196{ 2197} 2198 2199#endif /* CONFIG_SMP */ 2200 2201extern void arch_pick_mmap_layout(struct mm_struct *mm); 2202 2203#ifdef CONFIG_TRACING 2204extern void 2205__trace_special(void *__tr, void *__data, 2206 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2207#else 2208static inline void 2209__trace_special(void *__tr, void *__data, 2210 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2211{ 2212} 2213#endif 2214 2215extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask); 2216extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 2217 2218extern int sched_mc_power_savings, sched_smt_power_savings; 2219 2220extern void normalize_rt_tasks(void); 2221 2222#ifdef CONFIG_GROUP_SCHED 2223 2224extern struct task_group init_task_group; 2225#ifdef CONFIG_USER_SCHED 2226extern struct task_group root_task_group; 2227#endif 2228 2229extern struct task_group *sched_create_group(struct task_group *parent); 2230extern void sched_destroy_group(struct task_group *tg); 2231extern void sched_move_task(struct task_struct *tsk); 2232#ifdef CONFIG_FAIR_GROUP_SCHED 2233extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2234extern unsigned long sched_group_shares(struct task_group *tg); 2235#endif 2236#ifdef CONFIG_RT_GROUP_SCHED 2237extern int sched_group_set_rt_runtime(struct task_group *tg, 2238 long rt_runtime_us); 2239extern long sched_group_rt_runtime(struct task_group *tg); 2240extern int sched_group_set_rt_period(struct task_group *tg, 2241 long rt_period_us); 2242extern long sched_group_rt_period(struct task_group *tg); 2243#endif 2244#endif 2245 2246#ifdef CONFIG_TASK_XACCT 2247static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2248{ 2249 tsk->ioac.rchar += amt; 2250} 2251 2252static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2253{ 2254 tsk->ioac.wchar += amt; 2255} 2256 2257static inline void inc_syscr(struct task_struct *tsk) 2258{ 2259 tsk->ioac.syscr++; 2260} 2261 2262static inline void inc_syscw(struct task_struct *tsk) 2263{ 2264 tsk->ioac.syscw++; 2265} 2266#else 2267static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2268{ 2269} 2270 2271static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2272{ 2273} 2274 2275static inline void inc_syscr(struct task_struct *tsk) 2276{ 2277} 2278 2279static inline void inc_syscw(struct task_struct *tsk) 2280{ 2281} 2282#endif 2283 2284#ifndef TASK_SIZE_OF 2285#define TASK_SIZE_OF(tsk) TASK_SIZE 2286#endif 2287 2288#ifdef CONFIG_MM_OWNER 2289extern void mm_update_next_owner(struct mm_struct *mm); 2290extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2291#else 2292static inline void mm_update_next_owner(struct mm_struct *mm) 2293{ 2294} 2295 2296static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2297{ 2298} 2299#endif /* CONFIG_MM_OWNER */ 2300 2301#define TASK_STATE_TO_CHAR_STR "RSDTtZX" 2302 2303#endif /* __KERNEL__ */ 2304 2305#endif