at v2.6.28 45 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/list.h> 10#include <linux/mmdebug.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/prio_tree.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16 17struct mempolicy; 18struct anon_vma; 19struct file_ra_state; 20struct user_struct; 21struct writeback_control; 22 23#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 24extern unsigned long max_mapnr; 25#endif 26 27extern unsigned long num_physpages; 28extern void * high_memory; 29extern int page_cluster; 30 31#ifdef CONFIG_SYSCTL 32extern int sysctl_legacy_va_layout; 33#else 34#define sysctl_legacy_va_layout 0 35#endif 36 37extern unsigned long mmap_min_addr; 38 39#include <asm/page.h> 40#include <asm/pgtable.h> 41#include <asm/processor.h> 42 43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45/* to align the pointer to the (next) page boundary */ 46#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 47 48/* 49 * Linux kernel virtual memory manager primitives. 50 * The idea being to have a "virtual" mm in the same way 51 * we have a virtual fs - giving a cleaner interface to the 52 * mm details, and allowing different kinds of memory mappings 53 * (from shared memory to executable loading to arbitrary 54 * mmap() functions). 55 */ 56 57extern struct kmem_cache *vm_area_cachep; 58 59/* 60 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 61 * disabled, then there's a single shared list of VMAs maintained by the 62 * system, and mm's subscribe to these individually 63 */ 64struct vm_list_struct { 65 struct vm_list_struct *next; 66 struct vm_area_struct *vma; 67}; 68 69#ifndef CONFIG_MMU 70extern struct rb_root nommu_vma_tree; 71extern struct rw_semaphore nommu_vma_sem; 72 73extern unsigned int kobjsize(const void *objp); 74#endif 75 76/* 77 * vm_flags in vm_area_struct, see mm_types.h. 78 */ 79#define VM_READ 0x00000001 /* currently active flags */ 80#define VM_WRITE 0x00000002 81#define VM_EXEC 0x00000004 82#define VM_SHARED 0x00000008 83 84/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 85#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 86#define VM_MAYWRITE 0x00000020 87#define VM_MAYEXEC 0x00000040 88#define VM_MAYSHARE 0x00000080 89 90#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 91#define VM_GROWSUP 0x00000200 92#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 93#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 94 95#define VM_EXECUTABLE 0x00001000 96#define VM_LOCKED 0x00002000 97#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 98 99 /* Used by sys_madvise() */ 100#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 101#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 102 103#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 104#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 105#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 106#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 107#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 108#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 109#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 110#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 111#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 112#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 113 114#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 115#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 116#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 117 118#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 119#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 120#endif 121 122#ifdef CONFIG_STACK_GROWSUP 123#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 124#else 125#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 126#endif 127 128#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 129#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 130#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 131#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 132#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 133 134/* 135 * special vmas that are non-mergable, non-mlock()able 136 */ 137#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 138 139/* 140 * mapping from the currently active vm_flags protection bits (the 141 * low four bits) to a page protection mask.. 142 */ 143extern pgprot_t protection_map[16]; 144 145#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 146#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 147 148 149/* 150 * vm_fault is filled by the the pagefault handler and passed to the vma's 151 * ->fault function. The vma's ->fault is responsible for returning a bitmask 152 * of VM_FAULT_xxx flags that give details about how the fault was handled. 153 * 154 * pgoff should be used in favour of virtual_address, if possible. If pgoff 155 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 156 * mapping support. 157 */ 158struct vm_fault { 159 unsigned int flags; /* FAULT_FLAG_xxx flags */ 160 pgoff_t pgoff; /* Logical page offset based on vma */ 161 void __user *virtual_address; /* Faulting virtual address */ 162 163 struct page *page; /* ->fault handlers should return a 164 * page here, unless VM_FAULT_NOPAGE 165 * is set (which is also implied by 166 * VM_FAULT_ERROR). 167 */ 168}; 169 170/* 171 * These are the virtual MM functions - opening of an area, closing and 172 * unmapping it (needed to keep files on disk up-to-date etc), pointer 173 * to the functions called when a no-page or a wp-page exception occurs. 174 */ 175struct vm_operations_struct { 176 void (*open)(struct vm_area_struct * area); 177 void (*close)(struct vm_area_struct * area); 178 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 179 180 /* notification that a previously read-only page is about to become 181 * writable, if an error is returned it will cause a SIGBUS */ 182 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 183 184 /* called by access_process_vm when get_user_pages() fails, typically 185 * for use by special VMAs that can switch between memory and hardware 186 */ 187 int (*access)(struct vm_area_struct *vma, unsigned long addr, 188 void *buf, int len, int write); 189#ifdef CONFIG_NUMA 190 /* 191 * set_policy() op must add a reference to any non-NULL @new mempolicy 192 * to hold the policy upon return. Caller should pass NULL @new to 193 * remove a policy and fall back to surrounding context--i.e. do not 194 * install a MPOL_DEFAULT policy, nor the task or system default 195 * mempolicy. 196 */ 197 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 198 199 /* 200 * get_policy() op must add reference [mpol_get()] to any policy at 201 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 202 * in mm/mempolicy.c will do this automatically. 203 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 204 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 205 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 206 * must return NULL--i.e., do not "fallback" to task or system default 207 * policy. 208 */ 209 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 210 unsigned long addr); 211 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 212 const nodemask_t *to, unsigned long flags); 213#endif 214}; 215 216struct mmu_gather; 217struct inode; 218 219#define page_private(page) ((page)->private) 220#define set_page_private(page, v) ((page)->private = (v)) 221 222/* 223 * FIXME: take this include out, include page-flags.h in 224 * files which need it (119 of them) 225 */ 226#include <linux/page-flags.h> 227 228/* 229 * Methods to modify the page usage count. 230 * 231 * What counts for a page usage: 232 * - cache mapping (page->mapping) 233 * - private data (page->private) 234 * - page mapped in a task's page tables, each mapping 235 * is counted separately 236 * 237 * Also, many kernel routines increase the page count before a critical 238 * routine so they can be sure the page doesn't go away from under them. 239 */ 240 241/* 242 * Drop a ref, return true if the refcount fell to zero (the page has no users) 243 */ 244static inline int put_page_testzero(struct page *page) 245{ 246 VM_BUG_ON(atomic_read(&page->_count) == 0); 247 return atomic_dec_and_test(&page->_count); 248} 249 250/* 251 * Try to grab a ref unless the page has a refcount of zero, return false if 252 * that is the case. 253 */ 254static inline int get_page_unless_zero(struct page *page) 255{ 256 VM_BUG_ON(PageTail(page)); 257 return atomic_inc_not_zero(&page->_count); 258} 259 260/* Support for virtually mapped pages */ 261struct page *vmalloc_to_page(const void *addr); 262unsigned long vmalloc_to_pfn(const void *addr); 263 264/* 265 * Determine if an address is within the vmalloc range 266 * 267 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 268 * is no special casing required. 269 */ 270static inline int is_vmalloc_addr(const void *x) 271{ 272#ifdef CONFIG_MMU 273 unsigned long addr = (unsigned long)x; 274 275 return addr >= VMALLOC_START && addr < VMALLOC_END; 276#else 277 return 0; 278#endif 279} 280 281static inline struct page *compound_head(struct page *page) 282{ 283 if (unlikely(PageTail(page))) 284 return page->first_page; 285 return page; 286} 287 288static inline int page_count(struct page *page) 289{ 290 return atomic_read(&compound_head(page)->_count); 291} 292 293static inline void get_page(struct page *page) 294{ 295 page = compound_head(page); 296 VM_BUG_ON(atomic_read(&page->_count) == 0); 297 atomic_inc(&page->_count); 298} 299 300static inline struct page *virt_to_head_page(const void *x) 301{ 302 struct page *page = virt_to_page(x); 303 return compound_head(page); 304} 305 306/* 307 * Setup the page count before being freed into the page allocator for 308 * the first time (boot or memory hotplug) 309 */ 310static inline void init_page_count(struct page *page) 311{ 312 atomic_set(&page->_count, 1); 313} 314 315void put_page(struct page *page); 316void put_pages_list(struct list_head *pages); 317 318void split_page(struct page *page, unsigned int order); 319 320/* 321 * Compound pages have a destructor function. Provide a 322 * prototype for that function and accessor functions. 323 * These are _only_ valid on the head of a PG_compound page. 324 */ 325typedef void compound_page_dtor(struct page *); 326 327static inline void set_compound_page_dtor(struct page *page, 328 compound_page_dtor *dtor) 329{ 330 page[1].lru.next = (void *)dtor; 331} 332 333static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 334{ 335 return (compound_page_dtor *)page[1].lru.next; 336} 337 338static inline int compound_order(struct page *page) 339{ 340 if (!PageHead(page)) 341 return 0; 342 return (unsigned long)page[1].lru.prev; 343} 344 345static inline void set_compound_order(struct page *page, unsigned long order) 346{ 347 page[1].lru.prev = (void *)order; 348} 349 350/* 351 * Multiple processes may "see" the same page. E.g. for untouched 352 * mappings of /dev/null, all processes see the same page full of 353 * zeroes, and text pages of executables and shared libraries have 354 * only one copy in memory, at most, normally. 355 * 356 * For the non-reserved pages, page_count(page) denotes a reference count. 357 * page_count() == 0 means the page is free. page->lru is then used for 358 * freelist management in the buddy allocator. 359 * page_count() > 0 means the page has been allocated. 360 * 361 * Pages are allocated by the slab allocator in order to provide memory 362 * to kmalloc and kmem_cache_alloc. In this case, the management of the 363 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 364 * unless a particular usage is carefully commented. (the responsibility of 365 * freeing the kmalloc memory is the caller's, of course). 366 * 367 * A page may be used by anyone else who does a __get_free_page(). 368 * In this case, page_count still tracks the references, and should only 369 * be used through the normal accessor functions. The top bits of page->flags 370 * and page->virtual store page management information, but all other fields 371 * are unused and could be used privately, carefully. The management of this 372 * page is the responsibility of the one who allocated it, and those who have 373 * subsequently been given references to it. 374 * 375 * The other pages (we may call them "pagecache pages") are completely 376 * managed by the Linux memory manager: I/O, buffers, swapping etc. 377 * The following discussion applies only to them. 378 * 379 * A pagecache page contains an opaque `private' member, which belongs to the 380 * page's address_space. Usually, this is the address of a circular list of 381 * the page's disk buffers. PG_private must be set to tell the VM to call 382 * into the filesystem to release these pages. 383 * 384 * A page may belong to an inode's memory mapping. In this case, page->mapping 385 * is the pointer to the inode, and page->index is the file offset of the page, 386 * in units of PAGE_CACHE_SIZE. 387 * 388 * If pagecache pages are not associated with an inode, they are said to be 389 * anonymous pages. These may become associated with the swapcache, and in that 390 * case PG_swapcache is set, and page->private is an offset into the swapcache. 391 * 392 * In either case (swapcache or inode backed), the pagecache itself holds one 393 * reference to the page. Setting PG_private should also increment the 394 * refcount. The each user mapping also has a reference to the page. 395 * 396 * The pagecache pages are stored in a per-mapping radix tree, which is 397 * rooted at mapping->page_tree, and indexed by offset. 398 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 399 * lists, we instead now tag pages as dirty/writeback in the radix tree. 400 * 401 * All pagecache pages may be subject to I/O: 402 * - inode pages may need to be read from disk, 403 * - inode pages which have been modified and are MAP_SHARED may need 404 * to be written back to the inode on disk, 405 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 406 * modified may need to be swapped out to swap space and (later) to be read 407 * back into memory. 408 */ 409 410/* 411 * The zone field is never updated after free_area_init_core() 412 * sets it, so none of the operations on it need to be atomic. 413 */ 414 415 416/* 417 * page->flags layout: 418 * 419 * There are three possibilities for how page->flags get 420 * laid out. The first is for the normal case, without 421 * sparsemem. The second is for sparsemem when there is 422 * plenty of space for node and section. The last is when 423 * we have run out of space and have to fall back to an 424 * alternate (slower) way of determining the node. 425 * 426 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 427 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 428 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 429 */ 430#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 431#define SECTIONS_WIDTH SECTIONS_SHIFT 432#else 433#define SECTIONS_WIDTH 0 434#endif 435 436#define ZONES_WIDTH ZONES_SHIFT 437 438#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 439#define NODES_WIDTH NODES_SHIFT 440#else 441#ifdef CONFIG_SPARSEMEM_VMEMMAP 442#error "Vmemmap: No space for nodes field in page flags" 443#endif 444#define NODES_WIDTH 0 445#endif 446 447/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 448#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 449#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 450#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 451 452/* 453 * We are going to use the flags for the page to node mapping if its in 454 * there. This includes the case where there is no node, so it is implicit. 455 */ 456#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 457#define NODE_NOT_IN_PAGE_FLAGS 458#endif 459 460#ifndef PFN_SECTION_SHIFT 461#define PFN_SECTION_SHIFT 0 462#endif 463 464/* 465 * Define the bit shifts to access each section. For non-existant 466 * sections we define the shift as 0; that plus a 0 mask ensures 467 * the compiler will optimise away reference to them. 468 */ 469#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 470#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 471#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 472 473/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 474#ifdef NODE_NOT_IN_PAGEFLAGS 475#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 476#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 477 SECTIONS_PGOFF : ZONES_PGOFF) 478#else 479#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 480#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 481 NODES_PGOFF : ZONES_PGOFF) 482#endif 483 484#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 485 486#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 487#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 488#endif 489 490#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 491#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 492#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 493#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 494 495static inline enum zone_type page_zonenum(struct page *page) 496{ 497 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 498} 499 500/* 501 * The identification function is only used by the buddy allocator for 502 * determining if two pages could be buddies. We are not really 503 * identifying a zone since we could be using a the section number 504 * id if we have not node id available in page flags. 505 * We guarantee only that it will return the same value for two 506 * combinable pages in a zone. 507 */ 508static inline int page_zone_id(struct page *page) 509{ 510 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 511} 512 513static inline int zone_to_nid(struct zone *zone) 514{ 515#ifdef CONFIG_NUMA 516 return zone->node; 517#else 518 return 0; 519#endif 520} 521 522#ifdef NODE_NOT_IN_PAGE_FLAGS 523extern int page_to_nid(struct page *page); 524#else 525static inline int page_to_nid(struct page *page) 526{ 527 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 528} 529#endif 530 531static inline struct zone *page_zone(struct page *page) 532{ 533 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 534} 535 536#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 537static inline unsigned long page_to_section(struct page *page) 538{ 539 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 540} 541#endif 542 543static inline void set_page_zone(struct page *page, enum zone_type zone) 544{ 545 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 546 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 547} 548 549static inline void set_page_node(struct page *page, unsigned long node) 550{ 551 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 552 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 553} 554 555static inline void set_page_section(struct page *page, unsigned long section) 556{ 557 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 558 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 559} 560 561static inline void set_page_links(struct page *page, enum zone_type zone, 562 unsigned long node, unsigned long pfn) 563{ 564 set_page_zone(page, zone); 565 set_page_node(page, node); 566 set_page_section(page, pfn_to_section_nr(pfn)); 567} 568 569/* 570 * If a hint addr is less than mmap_min_addr change hint to be as 571 * low as possible but still greater than mmap_min_addr 572 */ 573static inline unsigned long round_hint_to_min(unsigned long hint) 574{ 575#ifdef CONFIG_SECURITY 576 hint &= PAGE_MASK; 577 if (((void *)hint != NULL) && 578 (hint < mmap_min_addr)) 579 return PAGE_ALIGN(mmap_min_addr); 580#endif 581 return hint; 582} 583 584/* 585 * Some inline functions in vmstat.h depend on page_zone() 586 */ 587#include <linux/vmstat.h> 588 589static __always_inline void *lowmem_page_address(struct page *page) 590{ 591 return __va(page_to_pfn(page) << PAGE_SHIFT); 592} 593 594#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 595#define HASHED_PAGE_VIRTUAL 596#endif 597 598#if defined(WANT_PAGE_VIRTUAL) 599#define page_address(page) ((page)->virtual) 600#define set_page_address(page, address) \ 601 do { \ 602 (page)->virtual = (address); \ 603 } while(0) 604#define page_address_init() do { } while(0) 605#endif 606 607#if defined(HASHED_PAGE_VIRTUAL) 608void *page_address(struct page *page); 609void set_page_address(struct page *page, void *virtual); 610void page_address_init(void); 611#endif 612 613#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 614#define page_address(page) lowmem_page_address(page) 615#define set_page_address(page, address) do { } while(0) 616#define page_address_init() do { } while(0) 617#endif 618 619/* 620 * On an anonymous page mapped into a user virtual memory area, 621 * page->mapping points to its anon_vma, not to a struct address_space; 622 * with the PAGE_MAPPING_ANON bit set to distinguish it. 623 * 624 * Please note that, confusingly, "page_mapping" refers to the inode 625 * address_space which maps the page from disk; whereas "page_mapped" 626 * refers to user virtual address space into which the page is mapped. 627 */ 628#define PAGE_MAPPING_ANON 1 629 630extern struct address_space swapper_space; 631static inline struct address_space *page_mapping(struct page *page) 632{ 633 struct address_space *mapping = page->mapping; 634 635 VM_BUG_ON(PageSlab(page)); 636#ifdef CONFIG_SWAP 637 if (unlikely(PageSwapCache(page))) 638 mapping = &swapper_space; 639 else 640#endif 641 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 642 mapping = NULL; 643 return mapping; 644} 645 646static inline int PageAnon(struct page *page) 647{ 648 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 649} 650 651/* 652 * Return the pagecache index of the passed page. Regular pagecache pages 653 * use ->index whereas swapcache pages use ->private 654 */ 655static inline pgoff_t page_index(struct page *page) 656{ 657 if (unlikely(PageSwapCache(page))) 658 return page_private(page); 659 return page->index; 660} 661 662/* 663 * The atomic page->_mapcount, like _count, starts from -1: 664 * so that transitions both from it and to it can be tracked, 665 * using atomic_inc_and_test and atomic_add_negative(-1). 666 */ 667static inline void reset_page_mapcount(struct page *page) 668{ 669 atomic_set(&(page)->_mapcount, -1); 670} 671 672static inline int page_mapcount(struct page *page) 673{ 674 return atomic_read(&(page)->_mapcount) + 1; 675} 676 677/* 678 * Return true if this page is mapped into pagetables. 679 */ 680static inline int page_mapped(struct page *page) 681{ 682 return atomic_read(&(page)->_mapcount) >= 0; 683} 684 685/* 686 * Different kinds of faults, as returned by handle_mm_fault(). 687 * Used to decide whether a process gets delivered SIGBUS or 688 * just gets major/minor fault counters bumped up. 689 */ 690 691#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 692 693#define VM_FAULT_OOM 0x0001 694#define VM_FAULT_SIGBUS 0x0002 695#define VM_FAULT_MAJOR 0x0004 696#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 697 698#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 699#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 700 701#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 702 703#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 704 705extern void show_free_areas(void); 706 707#ifdef CONFIG_SHMEM 708extern int shmem_lock(struct file *file, int lock, struct user_struct *user); 709#else 710static inline int shmem_lock(struct file *file, int lock, 711 struct user_struct *user) 712{ 713 return 0; 714} 715#endif 716struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 717 718int shmem_zero_setup(struct vm_area_struct *); 719 720#ifndef CONFIG_MMU 721extern unsigned long shmem_get_unmapped_area(struct file *file, 722 unsigned long addr, 723 unsigned long len, 724 unsigned long pgoff, 725 unsigned long flags); 726#endif 727 728extern int can_do_mlock(void); 729extern int user_shm_lock(size_t, struct user_struct *); 730extern void user_shm_unlock(size_t, struct user_struct *); 731 732/* 733 * Parameter block passed down to zap_pte_range in exceptional cases. 734 */ 735struct zap_details { 736 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 737 struct address_space *check_mapping; /* Check page->mapping if set */ 738 pgoff_t first_index; /* Lowest page->index to unmap */ 739 pgoff_t last_index; /* Highest page->index to unmap */ 740 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 741 unsigned long truncate_count; /* Compare vm_truncate_count */ 742}; 743 744struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 745 pte_t pte); 746 747int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 748 unsigned long size); 749unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 750 unsigned long size, struct zap_details *); 751unsigned long unmap_vmas(struct mmu_gather **tlb, 752 struct vm_area_struct *start_vma, unsigned long start_addr, 753 unsigned long end_addr, unsigned long *nr_accounted, 754 struct zap_details *); 755 756/** 757 * mm_walk - callbacks for walk_page_range 758 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 759 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 760 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 761 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 762 * @pte_hole: if set, called for each hole at all levels 763 * 764 * (see walk_page_range for more details) 765 */ 766struct mm_walk { 767 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 768 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 769 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 770 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 771 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 772 struct mm_struct *mm; 773 void *private; 774}; 775 776int walk_page_range(unsigned long addr, unsigned long end, 777 struct mm_walk *walk); 778void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 779 unsigned long end, unsigned long floor, unsigned long ceiling); 780int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 781 struct vm_area_struct *vma); 782void unmap_mapping_range(struct address_space *mapping, 783 loff_t const holebegin, loff_t const holelen, int even_cows); 784int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 785 void *buf, int len, int write); 786 787static inline void unmap_shared_mapping_range(struct address_space *mapping, 788 loff_t const holebegin, loff_t const holelen) 789{ 790 unmap_mapping_range(mapping, holebegin, holelen, 0); 791} 792 793extern int vmtruncate(struct inode * inode, loff_t offset); 794extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 795 796#ifdef CONFIG_MMU 797extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 798 unsigned long address, int write_access); 799#else 800static inline int handle_mm_fault(struct mm_struct *mm, 801 struct vm_area_struct *vma, unsigned long address, 802 int write_access) 803{ 804 /* should never happen if there's no MMU */ 805 BUG(); 806 return VM_FAULT_SIGBUS; 807} 808#endif 809 810extern int make_pages_present(unsigned long addr, unsigned long end); 811extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 812 813int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 814 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 815 816extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 817extern void do_invalidatepage(struct page *page, unsigned long offset); 818 819int __set_page_dirty_nobuffers(struct page *page); 820int __set_page_dirty_no_writeback(struct page *page); 821int redirty_page_for_writepage(struct writeback_control *wbc, 822 struct page *page); 823int set_page_dirty(struct page *page); 824int set_page_dirty_lock(struct page *page); 825int clear_page_dirty_for_io(struct page *page); 826 827extern unsigned long move_page_tables(struct vm_area_struct *vma, 828 unsigned long old_addr, struct vm_area_struct *new_vma, 829 unsigned long new_addr, unsigned long len); 830extern unsigned long do_mremap(unsigned long addr, 831 unsigned long old_len, unsigned long new_len, 832 unsigned long flags, unsigned long new_addr); 833extern int mprotect_fixup(struct vm_area_struct *vma, 834 struct vm_area_struct **pprev, unsigned long start, 835 unsigned long end, unsigned long newflags); 836 837/* 838 * get_user_pages_fast provides equivalent functionality to get_user_pages, 839 * operating on current and current->mm (force=0 and doesn't return any vmas). 840 * 841 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions 842 * can be made about locking. get_user_pages_fast is to be implemented in a 843 * way that is advantageous (vs get_user_pages()) when the user memory area is 844 * already faulted in and present in ptes. However if the pages have to be 845 * faulted in, it may turn out to be slightly slower). 846 */ 847int get_user_pages_fast(unsigned long start, int nr_pages, int write, 848 struct page **pages); 849 850/* 851 * A callback you can register to apply pressure to ageable caches. 852 * 853 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 854 * look through the least-recently-used 'nr_to_scan' entries and 855 * attempt to free them up. It should return the number of objects 856 * which remain in the cache. If it returns -1, it means it cannot do 857 * any scanning at this time (eg. there is a risk of deadlock). 858 * 859 * The 'gfpmask' refers to the allocation we are currently trying to 860 * fulfil. 861 * 862 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 863 * querying the cache size, so a fastpath for that case is appropriate. 864 */ 865struct shrinker { 866 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 867 int seeks; /* seeks to recreate an obj */ 868 869 /* These are for internal use */ 870 struct list_head list; 871 long nr; /* objs pending delete */ 872}; 873#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 874extern void register_shrinker(struct shrinker *); 875extern void unregister_shrinker(struct shrinker *); 876 877int vma_wants_writenotify(struct vm_area_struct *vma); 878 879extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 880 881#ifdef __PAGETABLE_PUD_FOLDED 882static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 883 unsigned long address) 884{ 885 return 0; 886} 887#else 888int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 889#endif 890 891#ifdef __PAGETABLE_PMD_FOLDED 892static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 893 unsigned long address) 894{ 895 return 0; 896} 897#else 898int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 899#endif 900 901int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 902int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 903 904/* 905 * The following ifdef needed to get the 4level-fixup.h header to work. 906 * Remove it when 4level-fixup.h has been removed. 907 */ 908#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 909static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 910{ 911 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 912 NULL: pud_offset(pgd, address); 913} 914 915static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 916{ 917 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 918 NULL: pmd_offset(pud, address); 919} 920#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 921 922#if USE_SPLIT_PTLOCKS 923/* 924 * We tuck a spinlock to guard each pagetable page into its struct page, 925 * at page->private, with BUILD_BUG_ON to make sure that this will not 926 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 927 * When freeing, reset page->mapping so free_pages_check won't complain. 928 */ 929#define __pte_lockptr(page) &((page)->ptl) 930#define pte_lock_init(_page) do { \ 931 spin_lock_init(__pte_lockptr(_page)); \ 932} while (0) 933#define pte_lock_deinit(page) ((page)->mapping = NULL) 934#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 935#else /* !USE_SPLIT_PTLOCKS */ 936/* 937 * We use mm->page_table_lock to guard all pagetable pages of the mm. 938 */ 939#define pte_lock_init(page) do {} while (0) 940#define pte_lock_deinit(page) do {} while (0) 941#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 942#endif /* USE_SPLIT_PTLOCKS */ 943 944static inline void pgtable_page_ctor(struct page *page) 945{ 946 pte_lock_init(page); 947 inc_zone_page_state(page, NR_PAGETABLE); 948} 949 950static inline void pgtable_page_dtor(struct page *page) 951{ 952 pte_lock_deinit(page); 953 dec_zone_page_state(page, NR_PAGETABLE); 954} 955 956#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 957({ \ 958 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 959 pte_t *__pte = pte_offset_map(pmd, address); \ 960 *(ptlp) = __ptl; \ 961 spin_lock(__ptl); \ 962 __pte; \ 963}) 964 965#define pte_unmap_unlock(pte, ptl) do { \ 966 spin_unlock(ptl); \ 967 pte_unmap(pte); \ 968} while (0) 969 970#define pte_alloc_map(mm, pmd, address) \ 971 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 972 NULL: pte_offset_map(pmd, address)) 973 974#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 975 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 976 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 977 978#define pte_alloc_kernel(pmd, address) \ 979 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 980 NULL: pte_offset_kernel(pmd, address)) 981 982extern void free_area_init(unsigned long * zones_size); 983extern void free_area_init_node(int nid, unsigned long * zones_size, 984 unsigned long zone_start_pfn, unsigned long *zholes_size); 985#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 986/* 987 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 988 * zones, allocate the backing mem_map and account for memory holes in a more 989 * architecture independent manner. This is a substitute for creating the 990 * zone_sizes[] and zholes_size[] arrays and passing them to 991 * free_area_init_node() 992 * 993 * An architecture is expected to register range of page frames backed by 994 * physical memory with add_active_range() before calling 995 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 996 * usage, an architecture is expected to do something like 997 * 998 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 999 * max_highmem_pfn}; 1000 * for_each_valid_physical_page_range() 1001 * add_active_range(node_id, start_pfn, end_pfn) 1002 * free_area_init_nodes(max_zone_pfns); 1003 * 1004 * If the architecture guarantees that there are no holes in the ranges 1005 * registered with add_active_range(), free_bootmem_active_regions() 1006 * will call free_bootmem_node() for each registered physical page range. 1007 * Similarly sparse_memory_present_with_active_regions() calls 1008 * memory_present() for each range when SPARSEMEM is enabled. 1009 * 1010 * See mm/page_alloc.c for more information on each function exposed by 1011 * CONFIG_ARCH_POPULATES_NODE_MAP 1012 */ 1013extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1014extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1015 unsigned long end_pfn); 1016extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1017 unsigned long end_pfn); 1018extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 1019 unsigned long end_pfn); 1020extern void remove_all_active_ranges(void); 1021extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1022 unsigned long end_pfn); 1023extern void get_pfn_range_for_nid(unsigned int nid, 1024 unsigned long *start_pfn, unsigned long *end_pfn); 1025extern unsigned long find_min_pfn_with_active_regions(void); 1026extern void free_bootmem_with_active_regions(int nid, 1027 unsigned long max_low_pfn); 1028typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1029extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1030extern void sparse_memory_present_with_active_regions(int nid); 1031#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1032extern int early_pfn_to_nid(unsigned long pfn); 1033#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1034#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1035extern void set_dma_reserve(unsigned long new_dma_reserve); 1036extern void memmap_init_zone(unsigned long, int, unsigned long, 1037 unsigned long, enum memmap_context); 1038extern void setup_per_zone_pages_min(void); 1039extern void mem_init(void); 1040extern void show_mem(void); 1041extern void si_meminfo(struct sysinfo * val); 1042extern void si_meminfo_node(struct sysinfo *val, int nid); 1043extern int after_bootmem; 1044 1045#ifdef CONFIG_NUMA 1046extern void setup_per_cpu_pageset(void); 1047#else 1048static inline void setup_per_cpu_pageset(void) {} 1049#endif 1050 1051/* prio_tree.c */ 1052void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1053void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1054void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1055struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1056 struct prio_tree_iter *iter); 1057 1058#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1059 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1060 (vma = vma_prio_tree_next(vma, iter)); ) 1061 1062static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1063 struct list_head *list) 1064{ 1065 vma->shared.vm_set.parent = NULL; 1066 list_add_tail(&vma->shared.vm_set.list, list); 1067} 1068 1069/* mmap.c */ 1070extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1071extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1072 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1073extern struct vm_area_struct *vma_merge(struct mm_struct *, 1074 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1075 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1076 struct mempolicy *); 1077extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1078extern int split_vma(struct mm_struct *, 1079 struct vm_area_struct *, unsigned long addr, int new_below); 1080extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1081extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1082 struct rb_node **, struct rb_node *); 1083extern void unlink_file_vma(struct vm_area_struct *); 1084extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1085 unsigned long addr, unsigned long len, pgoff_t pgoff); 1086extern void exit_mmap(struct mm_struct *); 1087 1088extern int mm_take_all_locks(struct mm_struct *mm); 1089extern void mm_drop_all_locks(struct mm_struct *mm); 1090 1091#ifdef CONFIG_PROC_FS 1092/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1093extern void added_exe_file_vma(struct mm_struct *mm); 1094extern void removed_exe_file_vma(struct mm_struct *mm); 1095#else 1096static inline void added_exe_file_vma(struct mm_struct *mm) 1097{} 1098 1099static inline void removed_exe_file_vma(struct mm_struct *mm) 1100{} 1101#endif /* CONFIG_PROC_FS */ 1102 1103extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1104extern int install_special_mapping(struct mm_struct *mm, 1105 unsigned long addr, unsigned long len, 1106 unsigned long flags, struct page **pages); 1107 1108extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1109 1110extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1111 unsigned long len, unsigned long prot, 1112 unsigned long flag, unsigned long pgoff); 1113extern unsigned long mmap_region(struct file *file, unsigned long addr, 1114 unsigned long len, unsigned long flags, 1115 unsigned int vm_flags, unsigned long pgoff, 1116 int accountable); 1117 1118static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1119 unsigned long len, unsigned long prot, 1120 unsigned long flag, unsigned long offset) 1121{ 1122 unsigned long ret = -EINVAL; 1123 if ((offset + PAGE_ALIGN(len)) < offset) 1124 goto out; 1125 if (!(offset & ~PAGE_MASK)) 1126 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1127out: 1128 return ret; 1129} 1130 1131extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1132 1133extern unsigned long do_brk(unsigned long, unsigned long); 1134 1135/* filemap.c */ 1136extern unsigned long page_unuse(struct page *); 1137extern void truncate_inode_pages(struct address_space *, loff_t); 1138extern void truncate_inode_pages_range(struct address_space *, 1139 loff_t lstart, loff_t lend); 1140 1141/* generic vm_area_ops exported for stackable file systems */ 1142extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1143 1144/* mm/page-writeback.c */ 1145int write_one_page(struct page *page, int wait); 1146 1147/* readahead.c */ 1148#define VM_MAX_READAHEAD 128 /* kbytes */ 1149#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1150 1151int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1152 pgoff_t offset, unsigned long nr_to_read); 1153int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1154 pgoff_t offset, unsigned long nr_to_read); 1155 1156void page_cache_sync_readahead(struct address_space *mapping, 1157 struct file_ra_state *ra, 1158 struct file *filp, 1159 pgoff_t offset, 1160 unsigned long size); 1161 1162void page_cache_async_readahead(struct address_space *mapping, 1163 struct file_ra_state *ra, 1164 struct file *filp, 1165 struct page *pg, 1166 pgoff_t offset, 1167 unsigned long size); 1168 1169unsigned long max_sane_readahead(unsigned long nr); 1170 1171/* Do stack extension */ 1172extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1173#ifdef CONFIG_IA64 1174extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1175#endif 1176extern int expand_stack_downwards(struct vm_area_struct *vma, 1177 unsigned long address); 1178 1179/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1180extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1181extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1182 struct vm_area_struct **pprev); 1183 1184/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1185 NULL if none. Assume start_addr < end_addr. */ 1186static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1187{ 1188 struct vm_area_struct * vma = find_vma(mm,start_addr); 1189 1190 if (vma && end_addr <= vma->vm_start) 1191 vma = NULL; 1192 return vma; 1193} 1194 1195static inline unsigned long vma_pages(struct vm_area_struct *vma) 1196{ 1197 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1198} 1199 1200pgprot_t vm_get_page_prot(unsigned long vm_flags); 1201struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1202int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1203 unsigned long pfn, unsigned long size, pgprot_t); 1204int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1205int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1206 unsigned long pfn); 1207int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1208 unsigned long pfn); 1209 1210struct page *follow_page(struct vm_area_struct *, unsigned long address, 1211 unsigned int foll_flags); 1212#define FOLL_WRITE 0x01 /* check pte is writable */ 1213#define FOLL_TOUCH 0x02 /* mark page accessed */ 1214#define FOLL_GET 0x04 /* do get_page on page */ 1215#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1216 1217typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1218 void *data); 1219extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1220 unsigned long size, pte_fn_t fn, void *data); 1221 1222#ifdef CONFIG_PROC_FS 1223void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1224#else 1225static inline void vm_stat_account(struct mm_struct *mm, 1226 unsigned long flags, struct file *file, long pages) 1227{ 1228} 1229#endif /* CONFIG_PROC_FS */ 1230 1231#ifdef CONFIG_DEBUG_PAGEALLOC 1232extern int debug_pagealloc_enabled; 1233 1234extern void kernel_map_pages(struct page *page, int numpages, int enable); 1235 1236static inline void enable_debug_pagealloc(void) 1237{ 1238 debug_pagealloc_enabled = 1; 1239} 1240#ifdef CONFIG_HIBERNATION 1241extern bool kernel_page_present(struct page *page); 1242#endif /* CONFIG_HIBERNATION */ 1243#else 1244static inline void 1245kernel_map_pages(struct page *page, int numpages, int enable) {} 1246static inline void enable_debug_pagealloc(void) 1247{ 1248} 1249#ifdef CONFIG_HIBERNATION 1250static inline bool kernel_page_present(struct page *page) { return true; } 1251#endif /* CONFIG_HIBERNATION */ 1252#endif 1253 1254extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1255#ifdef __HAVE_ARCH_GATE_AREA 1256int in_gate_area_no_task(unsigned long addr); 1257int in_gate_area(struct task_struct *task, unsigned long addr); 1258#else 1259int in_gate_area_no_task(unsigned long addr); 1260#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1261#endif /* __HAVE_ARCH_GATE_AREA */ 1262 1263int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1264 void __user *, size_t *, loff_t *); 1265unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1266 unsigned long lru_pages); 1267 1268#ifndef CONFIG_MMU 1269#define randomize_va_space 0 1270#else 1271extern int randomize_va_space; 1272#endif 1273 1274const char * arch_vma_name(struct vm_area_struct *vma); 1275void print_vma_addr(char *prefix, unsigned long rip); 1276 1277struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1278pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1279pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1280pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1281pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1282void *vmemmap_alloc_block(unsigned long size, int node); 1283void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1284int vmemmap_populate_basepages(struct page *start_page, 1285 unsigned long pages, int node); 1286int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1287void vmemmap_populate_print_last(void); 1288 1289#endif /* __KERNEL__ */ 1290#endif /* _LINUX_MM_H */