at v2.6.28 657 lines 16 kB view raw
1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf 9 * 10 * This is the core of the buffer management. Each 11 * CPU buffer is processed and entered into the 12 * global event buffer. Such processing is necessary 13 * in several circumstances, mentioned below. 14 * 15 * The processing does the job of converting the 16 * transitory EIP value into a persistent dentry/offset 17 * value that the profiler can record at its leisure. 18 * 19 * See fs/dcookies.c for a description of the dentry/offset 20 * objects. 21 */ 22 23#include <linux/mm.h> 24#include <linux/workqueue.h> 25#include <linux/notifier.h> 26#include <linux/dcookies.h> 27#include <linux/profile.h> 28#include <linux/module.h> 29#include <linux/fs.h> 30#include <linux/oprofile.h> 31#include <linux/sched.h> 32 33#include "oprofile_stats.h" 34#include "event_buffer.h" 35#include "cpu_buffer.h" 36#include "buffer_sync.h" 37 38static LIST_HEAD(dying_tasks); 39static LIST_HEAD(dead_tasks); 40static cpumask_t marked_cpus = CPU_MASK_NONE; 41static DEFINE_SPINLOCK(task_mortuary); 42static void process_task_mortuary(void); 43 44/* Take ownership of the task struct and place it on the 45 * list for processing. Only after two full buffer syncs 46 * does the task eventually get freed, because by then 47 * we are sure we will not reference it again. 48 * Can be invoked from softirq via RCU callback due to 49 * call_rcu() of the task struct, hence the _irqsave. 50 */ 51static int 52task_free_notify(struct notifier_block *self, unsigned long val, void *data) 53{ 54 unsigned long flags; 55 struct task_struct *task = data; 56 spin_lock_irqsave(&task_mortuary, flags); 57 list_add(&task->tasks, &dying_tasks); 58 spin_unlock_irqrestore(&task_mortuary, flags); 59 return NOTIFY_OK; 60} 61 62 63/* The task is on its way out. A sync of the buffer means we can catch 64 * any remaining samples for this task. 65 */ 66static int 67task_exit_notify(struct notifier_block *self, unsigned long val, void *data) 68{ 69 /* To avoid latency problems, we only process the current CPU, 70 * hoping that most samples for the task are on this CPU 71 */ 72 sync_buffer(raw_smp_processor_id()); 73 return 0; 74} 75 76 77/* The task is about to try a do_munmap(). We peek at what it's going to 78 * do, and if it's an executable region, process the samples first, so 79 * we don't lose any. This does not have to be exact, it's a QoI issue 80 * only. 81 */ 82static int 83munmap_notify(struct notifier_block *self, unsigned long val, void *data) 84{ 85 unsigned long addr = (unsigned long)data; 86 struct mm_struct *mm = current->mm; 87 struct vm_area_struct *mpnt; 88 89 down_read(&mm->mmap_sem); 90 91 mpnt = find_vma(mm, addr); 92 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 93 up_read(&mm->mmap_sem); 94 /* To avoid latency problems, we only process the current CPU, 95 * hoping that most samples for the task are on this CPU 96 */ 97 sync_buffer(raw_smp_processor_id()); 98 return 0; 99 } 100 101 up_read(&mm->mmap_sem); 102 return 0; 103} 104 105 106/* We need to be told about new modules so we don't attribute to a previously 107 * loaded module, or drop the samples on the floor. 108 */ 109static int 110module_load_notify(struct notifier_block *self, unsigned long val, void *data) 111{ 112#ifdef CONFIG_MODULES 113 if (val != MODULE_STATE_COMING) 114 return 0; 115 116 /* FIXME: should we process all CPU buffers ? */ 117 mutex_lock(&buffer_mutex); 118 add_event_entry(ESCAPE_CODE); 119 add_event_entry(MODULE_LOADED_CODE); 120 mutex_unlock(&buffer_mutex); 121#endif 122 return 0; 123} 124 125 126static struct notifier_block task_free_nb = { 127 .notifier_call = task_free_notify, 128}; 129 130static struct notifier_block task_exit_nb = { 131 .notifier_call = task_exit_notify, 132}; 133 134static struct notifier_block munmap_nb = { 135 .notifier_call = munmap_notify, 136}; 137 138static struct notifier_block module_load_nb = { 139 .notifier_call = module_load_notify, 140}; 141 142 143static void end_sync(void) 144{ 145 end_cpu_work(); 146 /* make sure we don't leak task structs */ 147 process_task_mortuary(); 148 process_task_mortuary(); 149} 150 151 152int sync_start(void) 153{ 154 int err; 155 156 start_cpu_work(); 157 158 err = task_handoff_register(&task_free_nb); 159 if (err) 160 goto out1; 161 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 162 if (err) 163 goto out2; 164 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 165 if (err) 166 goto out3; 167 err = register_module_notifier(&module_load_nb); 168 if (err) 169 goto out4; 170 171out: 172 return err; 173out4: 174 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 175out3: 176 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 177out2: 178 task_handoff_unregister(&task_free_nb); 179out1: 180 end_sync(); 181 goto out; 182} 183 184 185void sync_stop(void) 186{ 187 unregister_module_notifier(&module_load_nb); 188 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 189 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 190 task_handoff_unregister(&task_free_nb); 191 end_sync(); 192} 193 194 195/* Optimisation. We can manage without taking the dcookie sem 196 * because we cannot reach this code without at least one 197 * dcookie user still being registered (namely, the reader 198 * of the event buffer). */ 199static inline unsigned long fast_get_dcookie(struct path *path) 200{ 201 unsigned long cookie; 202 203 if (path->dentry->d_cookie) 204 return (unsigned long)path->dentry; 205 get_dcookie(path, &cookie); 206 return cookie; 207} 208 209 210/* Look up the dcookie for the task's first VM_EXECUTABLE mapping, 211 * which corresponds loosely to "application name". This is 212 * not strictly necessary but allows oprofile to associate 213 * shared-library samples with particular applications 214 */ 215static unsigned long get_exec_dcookie(struct mm_struct *mm) 216{ 217 unsigned long cookie = NO_COOKIE; 218 struct vm_area_struct *vma; 219 220 if (!mm) 221 goto out; 222 223 for (vma = mm->mmap; vma; vma = vma->vm_next) { 224 if (!vma->vm_file) 225 continue; 226 if (!(vma->vm_flags & VM_EXECUTABLE)) 227 continue; 228 cookie = fast_get_dcookie(&vma->vm_file->f_path); 229 break; 230 } 231 232out: 233 return cookie; 234} 235 236 237/* Convert the EIP value of a sample into a persistent dentry/offset 238 * pair that can then be added to the global event buffer. We make 239 * sure to do this lookup before a mm->mmap modification happens so 240 * we don't lose track. 241 */ 242static unsigned long 243lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) 244{ 245 unsigned long cookie = NO_COOKIE; 246 struct vm_area_struct *vma; 247 248 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 249 250 if (addr < vma->vm_start || addr >= vma->vm_end) 251 continue; 252 253 if (vma->vm_file) { 254 cookie = fast_get_dcookie(&vma->vm_file->f_path); 255 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 256 vma->vm_start; 257 } else { 258 /* must be an anonymous map */ 259 *offset = addr; 260 } 261 262 break; 263 } 264 265 if (!vma) 266 cookie = INVALID_COOKIE; 267 268 return cookie; 269} 270 271static void increment_tail(struct oprofile_cpu_buffer *b) 272{ 273 unsigned long new_tail = b->tail_pos + 1; 274 275 rmb(); /* be sure fifo pointers are synchromized */ 276 277 if (new_tail < b->buffer_size) 278 b->tail_pos = new_tail; 279 else 280 b->tail_pos = 0; 281} 282 283static unsigned long last_cookie = INVALID_COOKIE; 284 285static void add_cpu_switch(int i) 286{ 287 add_event_entry(ESCAPE_CODE); 288 add_event_entry(CPU_SWITCH_CODE); 289 add_event_entry(i); 290 last_cookie = INVALID_COOKIE; 291} 292 293static void add_kernel_ctx_switch(unsigned int in_kernel) 294{ 295 add_event_entry(ESCAPE_CODE); 296 if (in_kernel) 297 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 298 else 299 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 300} 301 302static void 303add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) 304{ 305 add_event_entry(ESCAPE_CODE); 306 add_event_entry(CTX_SWITCH_CODE); 307 add_event_entry(task->pid); 308 add_event_entry(cookie); 309 /* Another code for daemon back-compat */ 310 add_event_entry(ESCAPE_CODE); 311 add_event_entry(CTX_TGID_CODE); 312 add_event_entry(task->tgid); 313} 314 315 316static void add_cookie_switch(unsigned long cookie) 317{ 318 add_event_entry(ESCAPE_CODE); 319 add_event_entry(COOKIE_SWITCH_CODE); 320 add_event_entry(cookie); 321} 322 323 324static void add_trace_begin(void) 325{ 326 add_event_entry(ESCAPE_CODE); 327 add_event_entry(TRACE_BEGIN_CODE); 328} 329 330#ifdef CONFIG_OPROFILE_IBS 331 332#define IBS_FETCH_CODE_SIZE 2 333#define IBS_OP_CODE_SIZE 5 334#define IBS_EIP(offset) \ 335 (((struct op_sample *)&cpu_buf->buffer[(offset)])->eip) 336#define IBS_EVENT(offset) \ 337 (((struct op_sample *)&cpu_buf->buffer[(offset)])->event) 338 339/* 340 * Add IBS fetch and op entries to event buffer 341 */ 342static void add_ibs_begin(struct oprofile_cpu_buffer *cpu_buf, int code, 343 struct mm_struct *mm) 344{ 345 unsigned long rip; 346 int i, count; 347 unsigned long ibs_cookie = 0; 348 off_t offset; 349 350 increment_tail(cpu_buf); /* move to RIP entry */ 351 352 rip = IBS_EIP(cpu_buf->tail_pos); 353 354#ifdef __LP64__ 355 rip += IBS_EVENT(cpu_buf->tail_pos) << 32; 356#endif 357 358 if (mm) { 359 ibs_cookie = lookup_dcookie(mm, rip, &offset); 360 361 if (ibs_cookie == NO_COOKIE) 362 offset = rip; 363 if (ibs_cookie == INVALID_COOKIE) { 364 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 365 offset = rip; 366 } 367 if (ibs_cookie != last_cookie) { 368 add_cookie_switch(ibs_cookie); 369 last_cookie = ibs_cookie; 370 } 371 } else 372 offset = rip; 373 374 add_event_entry(ESCAPE_CODE); 375 add_event_entry(code); 376 add_event_entry(offset); /* Offset from Dcookie */ 377 378 /* we send the Dcookie offset, but send the raw Linear Add also*/ 379 add_event_entry(IBS_EIP(cpu_buf->tail_pos)); 380 add_event_entry(IBS_EVENT(cpu_buf->tail_pos)); 381 382 if (code == IBS_FETCH_CODE) 383 count = IBS_FETCH_CODE_SIZE; /*IBS FETCH is 2 int64s*/ 384 else 385 count = IBS_OP_CODE_SIZE; /*IBS OP is 5 int64s*/ 386 387 for (i = 0; i < count; i++) { 388 increment_tail(cpu_buf); 389 add_event_entry(IBS_EIP(cpu_buf->tail_pos)); 390 add_event_entry(IBS_EVENT(cpu_buf->tail_pos)); 391 } 392} 393 394#endif 395 396static void add_sample_entry(unsigned long offset, unsigned long event) 397{ 398 add_event_entry(offset); 399 add_event_entry(event); 400} 401 402 403static int add_us_sample(struct mm_struct *mm, struct op_sample *s) 404{ 405 unsigned long cookie; 406 off_t offset; 407 408 cookie = lookup_dcookie(mm, s->eip, &offset); 409 410 if (cookie == INVALID_COOKIE) { 411 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 412 return 0; 413 } 414 415 if (cookie != last_cookie) { 416 add_cookie_switch(cookie); 417 last_cookie = cookie; 418 } 419 420 add_sample_entry(offset, s->event); 421 422 return 1; 423} 424 425 426/* Add a sample to the global event buffer. If possible the 427 * sample is converted into a persistent dentry/offset pair 428 * for later lookup from userspace. 429 */ 430static int 431add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) 432{ 433 if (in_kernel) { 434 add_sample_entry(s->eip, s->event); 435 return 1; 436 } else if (mm) { 437 return add_us_sample(mm, s); 438 } else { 439 atomic_inc(&oprofile_stats.sample_lost_no_mm); 440 } 441 return 0; 442} 443 444 445static void release_mm(struct mm_struct *mm) 446{ 447 if (!mm) 448 return; 449 up_read(&mm->mmap_sem); 450 mmput(mm); 451} 452 453 454static struct mm_struct *take_tasks_mm(struct task_struct *task) 455{ 456 struct mm_struct *mm = get_task_mm(task); 457 if (mm) 458 down_read(&mm->mmap_sem); 459 return mm; 460} 461 462 463static inline int is_code(unsigned long val) 464{ 465 return val == ESCAPE_CODE; 466} 467 468 469/* "acquire" as many cpu buffer slots as we can */ 470static unsigned long get_slots(struct oprofile_cpu_buffer *b) 471{ 472 unsigned long head = b->head_pos; 473 unsigned long tail = b->tail_pos; 474 475 /* 476 * Subtle. This resets the persistent last_task 477 * and in_kernel values used for switching notes. 478 * BUT, there is a small window between reading 479 * head_pos, and this call, that means samples 480 * can appear at the new head position, but not 481 * be prefixed with the notes for switching 482 * kernel mode or a task switch. This small hole 483 * can lead to mis-attribution or samples where 484 * we don't know if it's in the kernel or not, 485 * at the start of an event buffer. 486 */ 487 cpu_buffer_reset(b); 488 489 if (head >= tail) 490 return head - tail; 491 492 return head + (b->buffer_size - tail); 493} 494 495 496/* Move tasks along towards death. Any tasks on dead_tasks 497 * will definitely have no remaining references in any 498 * CPU buffers at this point, because we use two lists, 499 * and to have reached the list, it must have gone through 500 * one full sync already. 501 */ 502static void process_task_mortuary(void) 503{ 504 unsigned long flags; 505 LIST_HEAD(local_dead_tasks); 506 struct task_struct *task; 507 struct task_struct *ttask; 508 509 spin_lock_irqsave(&task_mortuary, flags); 510 511 list_splice_init(&dead_tasks, &local_dead_tasks); 512 list_splice_init(&dying_tasks, &dead_tasks); 513 514 spin_unlock_irqrestore(&task_mortuary, flags); 515 516 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 517 list_del(&task->tasks); 518 free_task(task); 519 } 520} 521 522 523static void mark_done(int cpu) 524{ 525 int i; 526 527 cpu_set(cpu, marked_cpus); 528 529 for_each_online_cpu(i) { 530 if (!cpu_isset(i, marked_cpus)) 531 return; 532 } 533 534 /* All CPUs have been processed at least once, 535 * we can process the mortuary once 536 */ 537 process_task_mortuary(); 538 539 cpus_clear(marked_cpus); 540} 541 542 543/* FIXME: this is not sufficient if we implement syscall barrier backtrace 544 * traversal, the code switch to sb_sample_start at first kernel enter/exit 545 * switch so we need a fifth state and some special handling in sync_buffer() 546 */ 547typedef enum { 548 sb_bt_ignore = -2, 549 sb_buffer_start, 550 sb_bt_start, 551 sb_sample_start, 552} sync_buffer_state; 553 554/* Sync one of the CPU's buffers into the global event buffer. 555 * Here we need to go through each batch of samples punctuated 556 * by context switch notes, taking the task's mmap_sem and doing 557 * lookup in task->mm->mmap to convert EIP into dcookie/offset 558 * value. 559 */ 560void sync_buffer(int cpu) 561{ 562 struct oprofile_cpu_buffer *cpu_buf = &per_cpu(cpu_buffer, cpu); 563 struct mm_struct *mm = NULL; 564 struct task_struct *new; 565 unsigned long cookie = 0; 566 int in_kernel = 1; 567 sync_buffer_state state = sb_buffer_start; 568#ifndef CONFIG_OPROFILE_IBS 569 unsigned int i; 570 unsigned long available; 571#endif 572 573 mutex_lock(&buffer_mutex); 574 575 add_cpu_switch(cpu); 576 577 /* Remember, only we can modify tail_pos */ 578 579#ifndef CONFIG_OPROFILE_IBS 580 available = get_slots(cpu_buf); 581 582 for (i = 0; i < available; ++i) { 583#else 584 while (get_slots(cpu_buf)) { 585#endif 586 struct op_sample *s = &cpu_buf->buffer[cpu_buf->tail_pos]; 587 588 if (is_code(s->eip)) { 589 if (s->event <= CPU_IS_KERNEL) { 590 /* kernel/userspace switch */ 591 in_kernel = s->event; 592 if (state == sb_buffer_start) 593 state = sb_sample_start; 594 add_kernel_ctx_switch(s->event); 595 } else if (s->event == CPU_TRACE_BEGIN) { 596 state = sb_bt_start; 597 add_trace_begin(); 598#ifdef CONFIG_OPROFILE_IBS 599 } else if (s->event == IBS_FETCH_BEGIN) { 600 state = sb_bt_start; 601 add_ibs_begin(cpu_buf, IBS_FETCH_CODE, mm); 602 } else if (s->event == IBS_OP_BEGIN) { 603 state = sb_bt_start; 604 add_ibs_begin(cpu_buf, IBS_OP_CODE, mm); 605#endif 606 } else { 607 struct mm_struct *oldmm = mm; 608 609 /* userspace context switch */ 610 new = (struct task_struct *)s->event; 611 612 release_mm(oldmm); 613 mm = take_tasks_mm(new); 614 if (mm != oldmm) 615 cookie = get_exec_dcookie(mm); 616 add_user_ctx_switch(new, cookie); 617 } 618 } else if (state >= sb_bt_start && 619 !add_sample(mm, s, in_kernel)) { 620 if (state == sb_bt_start) { 621 state = sb_bt_ignore; 622 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 623 } 624 } 625 626 increment_tail(cpu_buf); 627 } 628 release_mm(mm); 629 630 mark_done(cpu); 631 632 mutex_unlock(&buffer_mutex); 633} 634 635/* The function can be used to add a buffer worth of data directly to 636 * the kernel buffer. The buffer is assumed to be a circular buffer. 637 * Take the entries from index start and end at index end, wrapping 638 * at max_entries. 639 */ 640void oprofile_put_buff(unsigned long *buf, unsigned int start, 641 unsigned int stop, unsigned int max) 642{ 643 int i; 644 645 i = start; 646 647 mutex_lock(&buffer_mutex); 648 while (i != stop) { 649 add_event_entry(buf[i++]); 650 651 if (i >= max) 652 i = 0; 653 } 654 655 mutex_unlock(&buffer_mutex); 656} 657