at v2.6.28 447 lines 13 kB view raw
1/* 2 * arch/arm/include/asm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/sched.h> 14#include <linux/mm.h> 15 16#include <asm/glue.h> 17#include <asm/shmparam.h> 18 19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 20 21/* 22 * Cache Model 23 * =========== 24 */ 25#undef _CACHE 26#undef MULTI_CACHE 27 28#if defined(CONFIG_CPU_CACHE_V3) 29# ifdef _CACHE 30# define MULTI_CACHE 1 31# else 32# define _CACHE v3 33# endif 34#endif 35 36#if defined(CONFIG_CPU_CACHE_V4) 37# ifdef _CACHE 38# define MULTI_CACHE 1 39# else 40# define _CACHE v4 41# endif 42#endif 43 44#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 45 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 46# define MULTI_CACHE 1 47#endif 48 49#if defined(CONFIG_CPU_ARM926T) 50# ifdef _CACHE 51# define MULTI_CACHE 1 52# else 53# define _CACHE arm926 54# endif 55#endif 56 57#if defined(CONFIG_CPU_ARM940T) 58# ifdef _CACHE 59# define MULTI_CACHE 1 60# else 61# define _CACHE arm940 62# endif 63#endif 64 65#if defined(CONFIG_CPU_ARM946E) 66# ifdef _CACHE 67# define MULTI_CACHE 1 68# else 69# define _CACHE arm946 70# endif 71#endif 72 73#if defined(CONFIG_CPU_CACHE_V4WB) 74# ifdef _CACHE 75# define MULTI_CACHE 1 76# else 77# define _CACHE v4wb 78# endif 79#endif 80 81#if defined(CONFIG_CPU_XSCALE) 82# ifdef _CACHE 83# define MULTI_CACHE 1 84# else 85# define _CACHE xscale 86# endif 87#endif 88 89#if defined(CONFIG_CPU_XSC3) 90# ifdef _CACHE 91# define MULTI_CACHE 1 92# else 93# define _CACHE xsc3 94# endif 95#endif 96 97#if defined(CONFIG_CPU_FEROCEON) 98# define MULTI_CACHE 1 99#endif 100 101#if defined(CONFIG_CPU_V6) 102//# ifdef _CACHE 103# define MULTI_CACHE 1 104//# else 105//# define _CACHE v6 106//# endif 107#endif 108 109#if defined(CONFIG_CPU_V7) 110//# ifdef _CACHE 111# define MULTI_CACHE 1 112//# else 113//# define _CACHE v7 114//# endif 115#endif 116 117#if !defined(_CACHE) && !defined(MULTI_CACHE) 118#error Unknown cache maintainence model 119#endif 120 121/* 122 * This flag is used to indicate that the page pointed to by a pte 123 * is dirty and requires cleaning before returning it to the user. 124 */ 125#define PG_dcache_dirty PG_arch_1 126 127/* 128 * MM Cache Management 129 * =================== 130 * 131 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 132 * implement these methods. 133 * 134 * Start addresses are inclusive and end addresses are exclusive; 135 * start addresses should be rounded down, end addresses up. 136 * 137 * See Documentation/cachetlb.txt for more information. 138 * Please note that the implementation of these, and the required 139 * effects are cache-type (VIVT/VIPT/PIPT) specific. 140 * 141 * flush_cache_kern_all() 142 * 143 * Unconditionally clean and invalidate the entire cache. 144 * 145 * flush_cache_user_mm(mm) 146 * 147 * Clean and invalidate all user space cache entries 148 * before a change of page tables. 149 * 150 * flush_cache_user_range(start, end, flags) 151 * 152 * Clean and invalidate a range of cache entries in the 153 * specified address space before a change of page tables. 154 * - start - user start address (inclusive, page aligned) 155 * - end - user end address (exclusive, page aligned) 156 * - flags - vma->vm_flags field 157 * 158 * coherent_kern_range(start, end) 159 * 160 * Ensure coherency between the Icache and the Dcache in the 161 * region described by start, end. If you have non-snooping 162 * Harvard caches, you need to implement this function. 163 * - start - virtual start address 164 * - end - virtual end address 165 * 166 * DMA Cache Coherency 167 * =================== 168 * 169 * dma_inv_range(start, end) 170 * 171 * Invalidate (discard) the specified virtual address range. 172 * May not write back any entries. If 'start' or 'end' 173 * are not cache line aligned, those lines must be written 174 * back. 175 * - start - virtual start address 176 * - end - virtual end address 177 * 178 * dma_clean_range(start, end) 179 * 180 * Clean (write back) the specified virtual address range. 181 * - start - virtual start address 182 * - end - virtual end address 183 * 184 * dma_flush_range(start, end) 185 * 186 * Clean and invalidate the specified virtual address range. 187 * - start - virtual start address 188 * - end - virtual end address 189 */ 190 191struct cpu_cache_fns { 192 void (*flush_kern_all)(void); 193 void (*flush_user_all)(void); 194 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 195 196 void (*coherent_kern_range)(unsigned long, unsigned long); 197 void (*coherent_user_range)(unsigned long, unsigned long); 198 void (*flush_kern_dcache_page)(void *); 199 200 void (*dma_inv_range)(const void *, const void *); 201 void (*dma_clean_range)(const void *, const void *); 202 void (*dma_flush_range)(const void *, const void *); 203}; 204 205struct outer_cache_fns { 206 void (*inv_range)(unsigned long, unsigned long); 207 void (*clean_range)(unsigned long, unsigned long); 208 void (*flush_range)(unsigned long, unsigned long); 209}; 210 211/* 212 * Select the calling method 213 */ 214#ifdef MULTI_CACHE 215 216extern struct cpu_cache_fns cpu_cache; 217 218#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 219#define __cpuc_flush_user_all cpu_cache.flush_user_all 220#define __cpuc_flush_user_range cpu_cache.flush_user_range 221#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 222#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 223#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 224 225/* 226 * These are private to the dma-mapping API. Do not use directly. 227 * Their sole purpose is to ensure that data held in the cache 228 * is visible to DMA, or data written by DMA to system memory is 229 * visible to the CPU. 230 */ 231#define dmac_inv_range cpu_cache.dma_inv_range 232#define dmac_clean_range cpu_cache.dma_clean_range 233#define dmac_flush_range cpu_cache.dma_flush_range 234 235#else 236 237#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 238#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 239#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 240#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 241#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 242#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 243 244extern void __cpuc_flush_kern_all(void); 245extern void __cpuc_flush_user_all(void); 246extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 247extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 248extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 249extern void __cpuc_flush_dcache_page(void *); 250 251/* 252 * These are private to the dma-mapping API. Do not use directly. 253 * Their sole purpose is to ensure that data held in the cache 254 * is visible to DMA, or data written by DMA to system memory is 255 * visible to the CPU. 256 */ 257#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 258#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 259#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 260 261extern void dmac_inv_range(const void *, const void *); 262extern void dmac_clean_range(const void *, const void *); 263extern void dmac_flush_range(const void *, const void *); 264 265#endif 266 267#ifdef CONFIG_OUTER_CACHE 268 269extern struct outer_cache_fns outer_cache; 270 271static inline void outer_inv_range(unsigned long start, unsigned long end) 272{ 273 if (outer_cache.inv_range) 274 outer_cache.inv_range(start, end); 275} 276static inline void outer_clean_range(unsigned long start, unsigned long end) 277{ 278 if (outer_cache.clean_range) 279 outer_cache.clean_range(start, end); 280} 281static inline void outer_flush_range(unsigned long start, unsigned long end) 282{ 283 if (outer_cache.flush_range) 284 outer_cache.flush_range(start, end); 285} 286 287#else 288 289static inline void outer_inv_range(unsigned long start, unsigned long end) 290{ } 291static inline void outer_clean_range(unsigned long start, unsigned long end) 292{ } 293static inline void outer_flush_range(unsigned long start, unsigned long end) 294{ } 295 296#endif 297 298/* 299 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 300 * vmalloc, ioremap etc) in kernel space for pages. Since the 301 * direct-mappings of these pages may contain cached data, we need 302 * to do a full cache flush to ensure that writebacks don't corrupt 303 * data placed into these pages via the new mappings. 304 */ 305#define flush_cache_vmap(start, end) flush_cache_all() 306#define flush_cache_vunmap(start, end) flush_cache_all() 307 308/* 309 * Copy user data from/to a page which is mapped into a different 310 * processes address space. Really, we want to allow our "user 311 * space" model to handle this. 312 */ 313#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 314 do { \ 315 memcpy(dst, src, len); \ 316 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\ 317 } while (0) 318 319#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 320 do { \ 321 memcpy(dst, src, len); \ 322 } while (0) 323 324/* 325 * Convert calls to our calling convention. 326 */ 327#define flush_cache_all() __cpuc_flush_kern_all() 328#ifndef CONFIG_CPU_CACHE_VIPT 329static inline void flush_cache_mm(struct mm_struct *mm) 330{ 331 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) 332 __cpuc_flush_user_all(); 333} 334 335static inline void 336flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 337{ 338 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) 339 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 340 vma->vm_flags); 341} 342 343static inline void 344flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 345{ 346 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 347 unsigned long addr = user_addr & PAGE_MASK; 348 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 349 } 350} 351 352static inline void 353flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 354 unsigned long uaddr, void *kaddr, 355 unsigned long len, int write) 356{ 357 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 358 unsigned long addr = (unsigned long)kaddr; 359 __cpuc_coherent_kern_range(addr, addr + len); 360 } 361} 362#else 363extern void flush_cache_mm(struct mm_struct *mm); 364extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 365extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 366extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page, 367 unsigned long uaddr, void *kaddr, 368 unsigned long len, int write); 369#endif 370 371#define flush_cache_dup_mm(mm) flush_cache_mm(mm) 372 373/* 374 * flush_cache_user_range is used when we want to ensure that the 375 * Harvard caches are synchronised for the user space address range. 376 * This is used for the ARM private sys_cacheflush system call. 377 */ 378#define flush_cache_user_range(vma,start,end) \ 379 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 380 381/* 382 * Perform necessary cache operations to ensure that data previously 383 * stored within this range of addresses can be executed by the CPU. 384 */ 385#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 386 387/* 388 * Perform necessary cache operations to ensure that the TLB will 389 * see data written in the specified area. 390 */ 391#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 392 393/* 394 * flush_dcache_page is used when the kernel has written to the page 395 * cache page at virtual address page->virtual. 396 * 397 * If this page isn't mapped (ie, page_mapping == NULL), or it might 398 * have userspace mappings, then we _must_ always clean + invalidate 399 * the dcache entries associated with the kernel mapping. 400 * 401 * Otherwise we can defer the operation, and clean the cache when we are 402 * about to change to user space. This is the same method as used on SPARC64. 403 * See update_mmu_cache for the user space part. 404 */ 405extern void flush_dcache_page(struct page *); 406 407extern void __flush_dcache_page(struct address_space *mapping, struct page *page); 408 409static inline void __flush_icache_all(void) 410{ 411 asm("mcr p15, 0, %0, c7, c5, 0 @ invalidate I-cache\n" 412 : 413 : "r" (0)); 414} 415 416#define ARCH_HAS_FLUSH_ANON_PAGE 417static inline void flush_anon_page(struct vm_area_struct *vma, 418 struct page *page, unsigned long vmaddr) 419{ 420 extern void __flush_anon_page(struct vm_area_struct *vma, 421 struct page *, unsigned long); 422 if (PageAnon(page)) 423 __flush_anon_page(vma, page, vmaddr); 424} 425 426#define flush_dcache_mmap_lock(mapping) \ 427 spin_lock_irq(&(mapping)->tree_lock) 428#define flush_dcache_mmap_unlock(mapping) \ 429 spin_unlock_irq(&(mapping)->tree_lock) 430 431#define flush_icache_user_range(vma,page,addr,len) \ 432 flush_dcache_page(page) 433 434/* 435 * We don't appear to need to do anything here. In fact, if we did, we'd 436 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 437 */ 438#define flush_icache_page(vma,page) do { } while (0) 439 440static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt, 441 unsigned offset, size_t size) 442{ 443 const void *start = (void __force *)virt + offset; 444 dmac_inv_range(start, start + size); 445} 446 447#endif