at v2.6.27 2224 lines 66 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41 42#ifdef __KERNEL__ 43 44struct sched_param { 45 int sched_priority; 46}; 47 48#include <asm/param.h> /* for HZ */ 49 50#include <linux/capability.h> 51#include <linux/threads.h> 52#include <linux/kernel.h> 53#include <linux/types.h> 54#include <linux/timex.h> 55#include <linux/jiffies.h> 56#include <linux/rbtree.h> 57#include <linux/thread_info.h> 58#include <linux/cpumask.h> 59#include <linux/errno.h> 60#include <linux/nodemask.h> 61#include <linux/mm_types.h> 62 63#include <asm/system.h> 64#include <asm/page.h> 65#include <asm/ptrace.h> 66#include <asm/cputime.h> 67 68#include <linux/smp.h> 69#include <linux/sem.h> 70#include <linux/signal.h> 71#include <linux/fs_struct.h> 72#include <linux/compiler.h> 73#include <linux/completion.h> 74#include <linux/pid.h> 75#include <linux/percpu.h> 76#include <linux/topology.h> 77#include <linux/proportions.h> 78#include <linux/seccomp.h> 79#include <linux/rcupdate.h> 80#include <linux/rtmutex.h> 81 82#include <linux/time.h> 83#include <linux/param.h> 84#include <linux/resource.h> 85#include <linux/timer.h> 86#include <linux/hrtimer.h> 87#include <linux/task_io_accounting.h> 88#include <linux/kobject.h> 89#include <linux/latencytop.h> 90#include <linux/cred.h> 91 92#include <asm/processor.h> 93 94struct mem_cgroup; 95struct exec_domain; 96struct futex_pi_state; 97struct robust_list_head; 98struct bio; 99 100/* 101 * List of flags we want to share for kernel threads, 102 * if only because they are not used by them anyway. 103 */ 104#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 105 106/* 107 * These are the constant used to fake the fixed-point load-average 108 * counting. Some notes: 109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 110 * a load-average precision of 10 bits integer + 11 bits fractional 111 * - if you want to count load-averages more often, you need more 112 * precision, or rounding will get you. With 2-second counting freq, 113 * the EXP_n values would be 1981, 2034 and 2043 if still using only 114 * 11 bit fractions. 115 */ 116extern unsigned long avenrun[]; /* Load averages */ 117 118#define FSHIFT 11 /* nr of bits of precision */ 119#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 120#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 121#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 122#define EXP_5 2014 /* 1/exp(5sec/5min) */ 123#define EXP_15 2037 /* 1/exp(5sec/15min) */ 124 125#define CALC_LOAD(load,exp,n) \ 126 load *= exp; \ 127 load += n*(FIXED_1-exp); \ 128 load >>= FSHIFT; 129 130extern unsigned long total_forks; 131extern int nr_threads; 132DECLARE_PER_CPU(unsigned long, process_counts); 133extern int nr_processes(void); 134extern unsigned long nr_running(void); 135extern unsigned long nr_uninterruptible(void); 136extern unsigned long nr_active(void); 137extern unsigned long nr_iowait(void); 138 139struct seq_file; 140struct cfs_rq; 141struct task_group; 142#ifdef CONFIG_SCHED_DEBUG 143extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 144extern void proc_sched_set_task(struct task_struct *p); 145extern void 146print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 147#else 148static inline void 149proc_sched_show_task(struct task_struct *p, struct seq_file *m) 150{ 151} 152static inline void proc_sched_set_task(struct task_struct *p) 153{ 154} 155static inline void 156print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 157{ 158} 159#endif 160 161extern unsigned long long time_sync_thresh; 162 163/* 164 * Task state bitmask. NOTE! These bits are also 165 * encoded in fs/proc/array.c: get_task_state(). 166 * 167 * We have two separate sets of flags: task->state 168 * is about runnability, while task->exit_state are 169 * about the task exiting. Confusing, but this way 170 * modifying one set can't modify the other one by 171 * mistake. 172 */ 173#define TASK_RUNNING 0 174#define TASK_INTERRUPTIBLE 1 175#define TASK_UNINTERRUPTIBLE 2 176#define __TASK_STOPPED 4 177#define __TASK_TRACED 8 178/* in tsk->exit_state */ 179#define EXIT_ZOMBIE 16 180#define EXIT_DEAD 32 181/* in tsk->state again */ 182#define TASK_DEAD 64 183#define TASK_WAKEKILL 128 184 185/* Convenience macros for the sake of set_task_state */ 186#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 187#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 188#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 189 190/* Convenience macros for the sake of wake_up */ 191#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 192#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 193 194/* get_task_state() */ 195#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 197 __TASK_TRACED) 198 199#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 200#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 201#define task_is_stopped_or_traced(task) \ 202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 203#define task_contributes_to_load(task) \ 204 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 205 206#define __set_task_state(tsk, state_value) \ 207 do { (tsk)->state = (state_value); } while (0) 208#define set_task_state(tsk, state_value) \ 209 set_mb((tsk)->state, (state_value)) 210 211/* 212 * set_current_state() includes a barrier so that the write of current->state 213 * is correctly serialised wrt the caller's subsequent test of whether to 214 * actually sleep: 215 * 216 * set_current_state(TASK_UNINTERRUPTIBLE); 217 * if (do_i_need_to_sleep()) 218 * schedule(); 219 * 220 * If the caller does not need such serialisation then use __set_current_state() 221 */ 222#define __set_current_state(state_value) \ 223 do { current->state = (state_value); } while (0) 224#define set_current_state(state_value) \ 225 set_mb(current->state, (state_value)) 226 227/* Task command name length */ 228#define TASK_COMM_LEN 16 229 230#include <linux/spinlock.h> 231 232/* 233 * This serializes "schedule()" and also protects 234 * the run-queue from deletions/modifications (but 235 * _adding_ to the beginning of the run-queue has 236 * a separate lock). 237 */ 238extern rwlock_t tasklist_lock; 239extern spinlock_t mmlist_lock; 240 241struct task_struct; 242 243extern void sched_init(void); 244extern void sched_init_smp(void); 245extern asmlinkage void schedule_tail(struct task_struct *prev); 246extern void init_idle(struct task_struct *idle, int cpu); 247extern void init_idle_bootup_task(struct task_struct *idle); 248 249extern int runqueue_is_locked(void); 250 251extern cpumask_t nohz_cpu_mask; 252#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 253extern int select_nohz_load_balancer(int cpu); 254#else 255static inline int select_nohz_load_balancer(int cpu) 256{ 257 return 0; 258} 259#endif 260 261extern unsigned long rt_needs_cpu(int cpu); 262 263/* 264 * Only dump TASK_* tasks. (0 for all tasks) 265 */ 266extern void show_state_filter(unsigned long state_filter); 267 268static inline void show_state(void) 269{ 270 show_state_filter(0); 271} 272 273extern void show_regs(struct pt_regs *); 274 275/* 276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 277 * task), SP is the stack pointer of the first frame that should be shown in the back 278 * trace (or NULL if the entire call-chain of the task should be shown). 279 */ 280extern void show_stack(struct task_struct *task, unsigned long *sp); 281 282void io_schedule(void); 283long io_schedule_timeout(long timeout); 284 285extern void cpu_init (void); 286extern void trap_init(void); 287extern void account_process_tick(struct task_struct *task, int user); 288extern void update_process_times(int user); 289extern void scheduler_tick(void); 290extern void hrtick_resched(void); 291 292extern void sched_show_task(struct task_struct *p); 293 294#ifdef CONFIG_DETECT_SOFTLOCKUP 295extern void softlockup_tick(void); 296extern void touch_softlockup_watchdog(void); 297extern void touch_all_softlockup_watchdogs(void); 298extern unsigned int softlockup_panic; 299extern unsigned long sysctl_hung_task_check_count; 300extern unsigned long sysctl_hung_task_timeout_secs; 301extern unsigned long sysctl_hung_task_warnings; 302extern int softlockup_thresh; 303#else 304static inline void softlockup_tick(void) 305{ 306} 307static inline void spawn_softlockup_task(void) 308{ 309} 310static inline void touch_softlockup_watchdog(void) 311{ 312} 313static inline void touch_all_softlockup_watchdogs(void) 314{ 315} 316#endif 317 318 319/* Attach to any functions which should be ignored in wchan output. */ 320#define __sched __attribute__((__section__(".sched.text"))) 321 322/* Linker adds these: start and end of __sched functions */ 323extern char __sched_text_start[], __sched_text_end[]; 324 325/* Is this address in the __sched functions? */ 326extern int in_sched_functions(unsigned long addr); 327 328#define MAX_SCHEDULE_TIMEOUT LONG_MAX 329extern signed long schedule_timeout(signed long timeout); 330extern signed long schedule_timeout_interruptible(signed long timeout); 331extern signed long schedule_timeout_killable(signed long timeout); 332extern signed long schedule_timeout_uninterruptible(signed long timeout); 333asmlinkage void schedule(void); 334 335struct nsproxy; 336struct user_namespace; 337 338/* Maximum number of active map areas.. This is a random (large) number */ 339#define DEFAULT_MAX_MAP_COUNT 65536 340 341extern int sysctl_max_map_count; 342 343#include <linux/aio.h> 344 345extern unsigned long 346arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 347 unsigned long, unsigned long); 348extern unsigned long 349arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 350 unsigned long len, unsigned long pgoff, 351 unsigned long flags); 352extern void arch_unmap_area(struct mm_struct *, unsigned long); 353extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 354 355#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 356/* 357 * The mm counters are not protected by its page_table_lock, 358 * so must be incremented atomically. 359 */ 360#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 361#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 362#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 363#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 364#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 365 366#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 367/* 368 * The mm counters are protected by its page_table_lock, 369 * so can be incremented directly. 370 */ 371#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 372#define get_mm_counter(mm, member) ((mm)->_##member) 373#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 374#define inc_mm_counter(mm, member) (mm)->_##member++ 375#define dec_mm_counter(mm, member) (mm)->_##member-- 376 377#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 378 379#define get_mm_rss(mm) \ 380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 381#define update_hiwater_rss(mm) do { \ 382 unsigned long _rss = get_mm_rss(mm); \ 383 if ((mm)->hiwater_rss < _rss) \ 384 (mm)->hiwater_rss = _rss; \ 385} while (0) 386#define update_hiwater_vm(mm) do { \ 387 if ((mm)->hiwater_vm < (mm)->total_vm) \ 388 (mm)->hiwater_vm = (mm)->total_vm; \ 389} while (0) 390 391extern void set_dumpable(struct mm_struct *mm, int value); 392extern int get_dumpable(struct mm_struct *mm); 393 394/* mm flags */ 395/* dumpable bits */ 396#define MMF_DUMPABLE 0 /* core dump is permitted */ 397#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 398#define MMF_DUMPABLE_BITS 2 399 400/* coredump filter bits */ 401#define MMF_DUMP_ANON_PRIVATE 2 402#define MMF_DUMP_ANON_SHARED 3 403#define MMF_DUMP_MAPPED_PRIVATE 4 404#define MMF_DUMP_MAPPED_SHARED 5 405#define MMF_DUMP_ELF_HEADERS 6 406#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 407#define MMF_DUMP_FILTER_BITS 5 408#define MMF_DUMP_FILTER_MASK \ 409 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 410#define MMF_DUMP_FILTER_DEFAULT \ 411 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED)) 412 413struct sighand_struct { 414 atomic_t count; 415 struct k_sigaction action[_NSIG]; 416 spinlock_t siglock; 417 wait_queue_head_t signalfd_wqh; 418}; 419 420struct pacct_struct { 421 int ac_flag; 422 long ac_exitcode; 423 unsigned long ac_mem; 424 cputime_t ac_utime, ac_stime; 425 unsigned long ac_minflt, ac_majflt; 426}; 427 428/* 429 * NOTE! "signal_struct" does not have it's own 430 * locking, because a shared signal_struct always 431 * implies a shared sighand_struct, so locking 432 * sighand_struct is always a proper superset of 433 * the locking of signal_struct. 434 */ 435struct signal_struct { 436 atomic_t count; 437 atomic_t live; 438 439 wait_queue_head_t wait_chldexit; /* for wait4() */ 440 441 /* current thread group signal load-balancing target: */ 442 struct task_struct *curr_target; 443 444 /* shared signal handling: */ 445 struct sigpending shared_pending; 446 447 /* thread group exit support */ 448 int group_exit_code; 449 /* overloaded: 450 * - notify group_exit_task when ->count is equal to notify_count 451 * - everyone except group_exit_task is stopped during signal delivery 452 * of fatal signals, group_exit_task processes the signal. 453 */ 454 struct task_struct *group_exit_task; 455 int notify_count; 456 457 /* thread group stop support, overloads group_exit_code too */ 458 int group_stop_count; 459 unsigned int flags; /* see SIGNAL_* flags below */ 460 461 /* POSIX.1b Interval Timers */ 462 struct list_head posix_timers; 463 464 /* ITIMER_REAL timer for the process */ 465 struct hrtimer real_timer; 466 struct pid *leader_pid; 467 ktime_t it_real_incr; 468 469 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 470 cputime_t it_prof_expires, it_virt_expires; 471 cputime_t it_prof_incr, it_virt_incr; 472 473 /* job control IDs */ 474 475 /* 476 * pgrp and session fields are deprecated. 477 * use the task_session_Xnr and task_pgrp_Xnr routines below 478 */ 479 480 union { 481 pid_t pgrp __deprecated; 482 pid_t __pgrp; 483 }; 484 485 struct pid *tty_old_pgrp; 486 487 union { 488 pid_t session __deprecated; 489 pid_t __session; 490 }; 491 492 /* boolean value for session group leader */ 493 int leader; 494 495 struct tty_struct *tty; /* NULL if no tty */ 496 497 /* 498 * Cumulative resource counters for dead threads in the group, 499 * and for reaped dead child processes forked by this group. 500 * Live threads maintain their own counters and add to these 501 * in __exit_signal, except for the group leader. 502 */ 503 cputime_t utime, stime, cutime, cstime; 504 cputime_t gtime; 505 cputime_t cgtime; 506 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 507 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 508 unsigned long inblock, oublock, cinblock, coublock; 509 struct task_io_accounting ioac; 510 511 /* 512 * Cumulative ns of scheduled CPU time for dead threads in the 513 * group, not including a zombie group leader. (This only differs 514 * from jiffies_to_ns(utime + stime) if sched_clock uses something 515 * other than jiffies.) 516 */ 517 unsigned long long sum_sched_runtime; 518 519 /* 520 * We don't bother to synchronize most readers of this at all, 521 * because there is no reader checking a limit that actually needs 522 * to get both rlim_cur and rlim_max atomically, and either one 523 * alone is a single word that can safely be read normally. 524 * getrlimit/setrlimit use task_lock(current->group_leader) to 525 * protect this instead of the siglock, because they really 526 * have no need to disable irqs. 527 */ 528 struct rlimit rlim[RLIM_NLIMITS]; 529 530 struct list_head cpu_timers[3]; 531 532 /* keep the process-shared keyrings here so that they do the right 533 * thing in threads created with CLONE_THREAD */ 534#ifdef CONFIG_KEYS 535 struct key *session_keyring; /* keyring inherited over fork */ 536 struct key *process_keyring; /* keyring private to this process */ 537#endif 538#ifdef CONFIG_BSD_PROCESS_ACCT 539 struct pacct_struct pacct; /* per-process accounting information */ 540#endif 541#ifdef CONFIG_TASKSTATS 542 struct taskstats *stats; 543#endif 544#ifdef CONFIG_AUDIT 545 unsigned audit_tty; 546 struct tty_audit_buf *tty_audit_buf; 547#endif 548}; 549 550/* Context switch must be unlocked if interrupts are to be enabled */ 551#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 552# define __ARCH_WANT_UNLOCKED_CTXSW 553#endif 554 555/* 556 * Bits in flags field of signal_struct. 557 */ 558#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 559#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 560#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 561#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 562/* 563 * Pending notifications to parent. 564 */ 565#define SIGNAL_CLD_STOPPED 0x00000010 566#define SIGNAL_CLD_CONTINUED 0x00000020 567#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 568 569#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 570 571/* If true, all threads except ->group_exit_task have pending SIGKILL */ 572static inline int signal_group_exit(const struct signal_struct *sig) 573{ 574 return (sig->flags & SIGNAL_GROUP_EXIT) || 575 (sig->group_exit_task != NULL); 576} 577 578/* 579 * Some day this will be a full-fledged user tracking system.. 580 */ 581struct user_struct { 582 atomic_t __count; /* reference count */ 583 atomic_t processes; /* How many processes does this user have? */ 584 atomic_t files; /* How many open files does this user have? */ 585 atomic_t sigpending; /* How many pending signals does this user have? */ 586#ifdef CONFIG_INOTIFY_USER 587 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 588 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 589#endif 590#ifdef CONFIG_POSIX_MQUEUE 591 /* protected by mq_lock */ 592 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 593#endif 594 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 595 596#ifdef CONFIG_KEYS 597 struct key *uid_keyring; /* UID specific keyring */ 598 struct key *session_keyring; /* UID's default session keyring */ 599#endif 600 601 /* Hash table maintenance information */ 602 struct hlist_node uidhash_node; 603 uid_t uid; 604 605#ifdef CONFIG_USER_SCHED 606 struct task_group *tg; 607#ifdef CONFIG_SYSFS 608 struct kobject kobj; 609 struct work_struct work; 610#endif 611#endif 612}; 613 614extern int uids_sysfs_init(void); 615 616extern struct user_struct *find_user(uid_t); 617 618extern struct user_struct root_user; 619#define INIT_USER (&root_user) 620 621struct backing_dev_info; 622struct reclaim_state; 623 624#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 625struct sched_info { 626 /* cumulative counters */ 627 unsigned long pcount; /* # of times run on this cpu */ 628 unsigned long long cpu_time, /* time spent on the cpu */ 629 run_delay; /* time spent waiting on a runqueue */ 630 631 /* timestamps */ 632 unsigned long long last_arrival,/* when we last ran on a cpu */ 633 last_queued; /* when we were last queued to run */ 634#ifdef CONFIG_SCHEDSTATS 635 /* BKL stats */ 636 unsigned int bkl_count; 637#endif 638}; 639#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 640 641#ifdef CONFIG_SCHEDSTATS 642extern const struct file_operations proc_schedstat_operations; 643#endif /* CONFIG_SCHEDSTATS */ 644 645#ifdef CONFIG_TASK_DELAY_ACCT 646struct task_delay_info { 647 spinlock_t lock; 648 unsigned int flags; /* Private per-task flags */ 649 650 /* For each stat XXX, add following, aligned appropriately 651 * 652 * struct timespec XXX_start, XXX_end; 653 * u64 XXX_delay; 654 * u32 XXX_count; 655 * 656 * Atomicity of updates to XXX_delay, XXX_count protected by 657 * single lock above (split into XXX_lock if contention is an issue). 658 */ 659 660 /* 661 * XXX_count is incremented on every XXX operation, the delay 662 * associated with the operation is added to XXX_delay. 663 * XXX_delay contains the accumulated delay time in nanoseconds. 664 */ 665 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 666 u64 blkio_delay; /* wait for sync block io completion */ 667 u64 swapin_delay; /* wait for swapin block io completion */ 668 u32 blkio_count; /* total count of the number of sync block */ 669 /* io operations performed */ 670 u32 swapin_count; /* total count of the number of swapin block */ 671 /* io operations performed */ 672 673 struct timespec freepages_start, freepages_end; 674 u64 freepages_delay; /* wait for memory reclaim */ 675 u32 freepages_count; /* total count of memory reclaim */ 676}; 677#endif /* CONFIG_TASK_DELAY_ACCT */ 678 679static inline int sched_info_on(void) 680{ 681#ifdef CONFIG_SCHEDSTATS 682 return 1; 683#elif defined(CONFIG_TASK_DELAY_ACCT) 684 extern int delayacct_on; 685 return delayacct_on; 686#else 687 return 0; 688#endif 689} 690 691enum cpu_idle_type { 692 CPU_IDLE, 693 CPU_NOT_IDLE, 694 CPU_NEWLY_IDLE, 695 CPU_MAX_IDLE_TYPES 696}; 697 698/* 699 * sched-domains (multiprocessor balancing) declarations: 700 */ 701 702/* 703 * Increase resolution of nice-level calculations: 704 */ 705#define SCHED_LOAD_SHIFT 10 706#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 707 708#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 709 710#ifdef CONFIG_SMP 711#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 712#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 713#define SD_BALANCE_EXEC 4 /* Balance on exec */ 714#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 715#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 716#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 717#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 718#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 719#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 720#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 721#define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 722#define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */ 723 724#define BALANCE_FOR_MC_POWER \ 725 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 726 727#define BALANCE_FOR_PKG_POWER \ 728 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 729 SD_POWERSAVINGS_BALANCE : 0) 730 731#define test_sd_parent(sd, flag) ((sd->parent && \ 732 (sd->parent->flags & flag)) ? 1 : 0) 733 734 735struct sched_group { 736 struct sched_group *next; /* Must be a circular list */ 737 cpumask_t cpumask; 738 739 /* 740 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 741 * single CPU. This is read only (except for setup, hotplug CPU). 742 * Note : Never change cpu_power without recompute its reciprocal 743 */ 744 unsigned int __cpu_power; 745 /* 746 * reciprocal value of cpu_power to avoid expensive divides 747 * (see include/linux/reciprocal_div.h) 748 */ 749 u32 reciprocal_cpu_power; 750}; 751 752enum sched_domain_level { 753 SD_LV_NONE = 0, 754 SD_LV_SIBLING, 755 SD_LV_MC, 756 SD_LV_CPU, 757 SD_LV_NODE, 758 SD_LV_ALLNODES, 759 SD_LV_MAX 760}; 761 762struct sched_domain_attr { 763 int relax_domain_level; 764}; 765 766#define SD_ATTR_INIT (struct sched_domain_attr) { \ 767 .relax_domain_level = -1, \ 768} 769 770struct sched_domain { 771 /* These fields must be setup */ 772 struct sched_domain *parent; /* top domain must be null terminated */ 773 struct sched_domain *child; /* bottom domain must be null terminated */ 774 struct sched_group *groups; /* the balancing groups of the domain */ 775 cpumask_t span; /* span of all CPUs in this domain */ 776 unsigned long min_interval; /* Minimum balance interval ms */ 777 unsigned long max_interval; /* Maximum balance interval ms */ 778 unsigned int busy_factor; /* less balancing by factor if busy */ 779 unsigned int imbalance_pct; /* No balance until over watermark */ 780 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 781 unsigned int busy_idx; 782 unsigned int idle_idx; 783 unsigned int newidle_idx; 784 unsigned int wake_idx; 785 unsigned int forkexec_idx; 786 int flags; /* See SD_* */ 787 enum sched_domain_level level; 788 789 /* Runtime fields. */ 790 unsigned long last_balance; /* init to jiffies. units in jiffies */ 791 unsigned int balance_interval; /* initialise to 1. units in ms. */ 792 unsigned int nr_balance_failed; /* initialise to 0 */ 793 794 u64 last_update; 795 796#ifdef CONFIG_SCHEDSTATS 797 /* load_balance() stats */ 798 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 799 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 800 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 801 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 802 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 803 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 804 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 805 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 806 807 /* Active load balancing */ 808 unsigned int alb_count; 809 unsigned int alb_failed; 810 unsigned int alb_pushed; 811 812 /* SD_BALANCE_EXEC stats */ 813 unsigned int sbe_count; 814 unsigned int sbe_balanced; 815 unsigned int sbe_pushed; 816 817 /* SD_BALANCE_FORK stats */ 818 unsigned int sbf_count; 819 unsigned int sbf_balanced; 820 unsigned int sbf_pushed; 821 822 /* try_to_wake_up() stats */ 823 unsigned int ttwu_wake_remote; 824 unsigned int ttwu_move_affine; 825 unsigned int ttwu_move_balance; 826#endif 827}; 828 829extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 830 struct sched_domain_attr *dattr_new); 831extern int arch_reinit_sched_domains(void); 832 833#else /* CONFIG_SMP */ 834 835struct sched_domain_attr; 836 837static inline void 838partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 839 struct sched_domain_attr *dattr_new) 840{ 841} 842#endif /* !CONFIG_SMP */ 843 844struct io_context; /* See blkdev.h */ 845#define NGROUPS_SMALL 32 846#define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t))) 847struct group_info { 848 int ngroups; 849 atomic_t usage; 850 gid_t small_block[NGROUPS_SMALL]; 851 int nblocks; 852 gid_t *blocks[0]; 853}; 854 855/* 856 * get_group_info() must be called with the owning task locked (via task_lock()) 857 * when task != current. The reason being that the vast majority of callers are 858 * looking at current->group_info, which can not be changed except by the 859 * current task. Changing current->group_info requires the task lock, too. 860 */ 861#define get_group_info(group_info) do { \ 862 atomic_inc(&(group_info)->usage); \ 863} while (0) 864 865#define put_group_info(group_info) do { \ 866 if (atomic_dec_and_test(&(group_info)->usage)) \ 867 groups_free(group_info); \ 868} while (0) 869 870extern struct group_info *groups_alloc(int gidsetsize); 871extern void groups_free(struct group_info *group_info); 872extern int set_current_groups(struct group_info *group_info); 873extern int groups_search(struct group_info *group_info, gid_t grp); 874/* access the groups "array" with this macro */ 875#define GROUP_AT(gi, i) \ 876 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 877 878#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 879extern void prefetch_stack(struct task_struct *t); 880#else 881static inline void prefetch_stack(struct task_struct *t) { } 882#endif 883 884struct audit_context; /* See audit.c */ 885struct mempolicy; 886struct pipe_inode_info; 887struct uts_namespace; 888 889struct rq; 890struct sched_domain; 891 892struct sched_class { 893 const struct sched_class *next; 894 895 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 896 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 897 void (*yield_task) (struct rq *rq); 898 int (*select_task_rq)(struct task_struct *p, int sync); 899 900 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); 901 902 struct task_struct * (*pick_next_task) (struct rq *rq); 903 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 904 905#ifdef CONFIG_SMP 906 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 907 struct rq *busiest, unsigned long max_load_move, 908 struct sched_domain *sd, enum cpu_idle_type idle, 909 int *all_pinned, int *this_best_prio); 910 911 int (*move_one_task) (struct rq *this_rq, int this_cpu, 912 struct rq *busiest, struct sched_domain *sd, 913 enum cpu_idle_type idle); 914 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 915 void (*post_schedule) (struct rq *this_rq); 916 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 917#endif 918 919 void (*set_curr_task) (struct rq *rq); 920 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 921 void (*task_new) (struct rq *rq, struct task_struct *p); 922 void (*set_cpus_allowed)(struct task_struct *p, 923 const cpumask_t *newmask); 924 925 void (*rq_online)(struct rq *rq); 926 void (*rq_offline)(struct rq *rq); 927 928 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 929 int running); 930 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 931 int running); 932 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 933 int oldprio, int running); 934 935#ifdef CONFIG_FAIR_GROUP_SCHED 936 void (*moved_group) (struct task_struct *p); 937#endif 938}; 939 940struct load_weight { 941 unsigned long weight, inv_weight; 942}; 943 944/* 945 * CFS stats for a schedulable entity (task, task-group etc) 946 * 947 * Current field usage histogram: 948 * 949 * 4 se->block_start 950 * 4 se->run_node 951 * 4 se->sleep_start 952 * 6 se->load.weight 953 */ 954struct sched_entity { 955 struct load_weight load; /* for load-balancing */ 956 struct rb_node run_node; 957 struct list_head group_node; 958 unsigned int on_rq; 959 960 u64 exec_start; 961 u64 sum_exec_runtime; 962 u64 vruntime; 963 u64 prev_sum_exec_runtime; 964 965 u64 last_wakeup; 966 u64 avg_overlap; 967 968#ifdef CONFIG_SCHEDSTATS 969 u64 wait_start; 970 u64 wait_max; 971 u64 wait_count; 972 u64 wait_sum; 973 974 u64 sleep_start; 975 u64 sleep_max; 976 s64 sum_sleep_runtime; 977 978 u64 block_start; 979 u64 block_max; 980 u64 exec_max; 981 u64 slice_max; 982 983 u64 nr_migrations; 984 u64 nr_migrations_cold; 985 u64 nr_failed_migrations_affine; 986 u64 nr_failed_migrations_running; 987 u64 nr_failed_migrations_hot; 988 u64 nr_forced_migrations; 989 u64 nr_forced2_migrations; 990 991 u64 nr_wakeups; 992 u64 nr_wakeups_sync; 993 u64 nr_wakeups_migrate; 994 u64 nr_wakeups_local; 995 u64 nr_wakeups_remote; 996 u64 nr_wakeups_affine; 997 u64 nr_wakeups_affine_attempts; 998 u64 nr_wakeups_passive; 999 u64 nr_wakeups_idle; 1000#endif 1001 1002#ifdef CONFIG_FAIR_GROUP_SCHED 1003 struct sched_entity *parent; 1004 /* rq on which this entity is (to be) queued: */ 1005 struct cfs_rq *cfs_rq; 1006 /* rq "owned" by this entity/group: */ 1007 struct cfs_rq *my_q; 1008#endif 1009}; 1010 1011struct sched_rt_entity { 1012 struct list_head run_list; 1013 unsigned int time_slice; 1014 unsigned long timeout; 1015 int nr_cpus_allowed; 1016 1017 struct sched_rt_entity *back; 1018#ifdef CONFIG_RT_GROUP_SCHED 1019 struct sched_rt_entity *parent; 1020 /* rq on which this entity is (to be) queued: */ 1021 struct rt_rq *rt_rq; 1022 /* rq "owned" by this entity/group: */ 1023 struct rt_rq *my_q; 1024#endif 1025}; 1026 1027struct task_struct { 1028 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1029 void *stack; 1030 atomic_t usage; 1031 unsigned int flags; /* per process flags, defined below */ 1032 unsigned int ptrace; 1033 1034 int lock_depth; /* BKL lock depth */ 1035 1036#ifdef CONFIG_SMP 1037#ifdef __ARCH_WANT_UNLOCKED_CTXSW 1038 int oncpu; 1039#endif 1040#endif 1041 1042 int prio, static_prio, normal_prio; 1043 unsigned int rt_priority; 1044 const struct sched_class *sched_class; 1045 struct sched_entity se; 1046 struct sched_rt_entity rt; 1047 1048#ifdef CONFIG_PREEMPT_NOTIFIERS 1049 /* list of struct preempt_notifier: */ 1050 struct hlist_head preempt_notifiers; 1051#endif 1052 1053 /* 1054 * fpu_counter contains the number of consecutive context switches 1055 * that the FPU is used. If this is over a threshold, the lazy fpu 1056 * saving becomes unlazy to save the trap. This is an unsigned char 1057 * so that after 256 times the counter wraps and the behavior turns 1058 * lazy again; this to deal with bursty apps that only use FPU for 1059 * a short time 1060 */ 1061 unsigned char fpu_counter; 1062 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1063#ifdef CONFIG_BLK_DEV_IO_TRACE 1064 unsigned int btrace_seq; 1065#endif 1066 1067 unsigned int policy; 1068 cpumask_t cpus_allowed; 1069 1070#ifdef CONFIG_PREEMPT_RCU 1071 int rcu_read_lock_nesting; 1072 int rcu_flipctr_idx; 1073#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1074 1075#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1076 struct sched_info sched_info; 1077#endif 1078 1079 struct list_head tasks; 1080 1081 struct mm_struct *mm, *active_mm; 1082 1083/* task state */ 1084 struct linux_binfmt *binfmt; 1085 int exit_state; 1086 int exit_code, exit_signal; 1087 int pdeath_signal; /* The signal sent when the parent dies */ 1088 /* ??? */ 1089 unsigned int personality; 1090 unsigned did_exec:1; 1091 pid_t pid; 1092 pid_t tgid; 1093 1094#ifdef CONFIG_CC_STACKPROTECTOR 1095 /* Canary value for the -fstack-protector gcc feature */ 1096 unsigned long stack_canary; 1097#endif 1098 /* 1099 * pointers to (original) parent process, youngest child, younger sibling, 1100 * older sibling, respectively. (p->father can be replaced with 1101 * p->real_parent->pid) 1102 */ 1103 struct task_struct *real_parent; /* real parent process */ 1104 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1105 /* 1106 * children/sibling forms the list of my natural children 1107 */ 1108 struct list_head children; /* list of my children */ 1109 struct list_head sibling; /* linkage in my parent's children list */ 1110 struct task_struct *group_leader; /* threadgroup leader */ 1111 1112 /* 1113 * ptraced is the list of tasks this task is using ptrace on. 1114 * This includes both natural children and PTRACE_ATTACH targets. 1115 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1116 */ 1117 struct list_head ptraced; 1118 struct list_head ptrace_entry; 1119 1120 /* PID/PID hash table linkage. */ 1121 struct pid_link pids[PIDTYPE_MAX]; 1122 struct list_head thread_group; 1123 1124 struct completion *vfork_done; /* for vfork() */ 1125 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1126 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1127 1128 cputime_t utime, stime, utimescaled, stimescaled; 1129 cputime_t gtime; 1130 cputime_t prev_utime, prev_stime; 1131 unsigned long nvcsw, nivcsw; /* context switch counts */ 1132 struct timespec start_time; /* monotonic time */ 1133 struct timespec real_start_time; /* boot based time */ 1134/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1135 unsigned long min_flt, maj_flt; 1136 1137 cputime_t it_prof_expires, it_virt_expires; 1138 unsigned long long it_sched_expires; 1139 struct list_head cpu_timers[3]; 1140 1141/* process credentials */ 1142 uid_t uid,euid,suid,fsuid; 1143 gid_t gid,egid,sgid,fsgid; 1144 struct group_info *group_info; 1145 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset; 1146 struct user_struct *user; 1147 unsigned securebits; 1148#ifdef CONFIG_KEYS 1149 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1150 struct key *request_key_auth; /* assumed request_key authority */ 1151 struct key *thread_keyring; /* keyring private to this thread */ 1152#endif 1153 char comm[TASK_COMM_LEN]; /* executable name excluding path 1154 - access with [gs]et_task_comm (which lock 1155 it with task_lock()) 1156 - initialized normally by flush_old_exec */ 1157/* file system info */ 1158 int link_count, total_link_count; 1159#ifdef CONFIG_SYSVIPC 1160/* ipc stuff */ 1161 struct sysv_sem sysvsem; 1162#endif 1163#ifdef CONFIG_DETECT_SOFTLOCKUP 1164/* hung task detection */ 1165 unsigned long last_switch_timestamp; 1166 unsigned long last_switch_count; 1167#endif 1168/* CPU-specific state of this task */ 1169 struct thread_struct thread; 1170/* filesystem information */ 1171 struct fs_struct *fs; 1172/* open file information */ 1173 struct files_struct *files; 1174/* namespaces */ 1175 struct nsproxy *nsproxy; 1176/* signal handlers */ 1177 struct signal_struct *signal; 1178 struct sighand_struct *sighand; 1179 1180 sigset_t blocked, real_blocked; 1181 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1182 struct sigpending pending; 1183 1184 unsigned long sas_ss_sp; 1185 size_t sas_ss_size; 1186 int (*notifier)(void *priv); 1187 void *notifier_data; 1188 sigset_t *notifier_mask; 1189#ifdef CONFIG_SECURITY 1190 void *security; 1191#endif 1192 struct audit_context *audit_context; 1193#ifdef CONFIG_AUDITSYSCALL 1194 uid_t loginuid; 1195 unsigned int sessionid; 1196#endif 1197 seccomp_t seccomp; 1198 1199/* Thread group tracking */ 1200 u32 parent_exec_id; 1201 u32 self_exec_id; 1202/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1203 spinlock_t alloc_lock; 1204 1205 /* Protection of the PI data structures: */ 1206 spinlock_t pi_lock; 1207 1208#ifdef CONFIG_RT_MUTEXES 1209 /* PI waiters blocked on a rt_mutex held by this task */ 1210 struct plist_head pi_waiters; 1211 /* Deadlock detection and priority inheritance handling */ 1212 struct rt_mutex_waiter *pi_blocked_on; 1213#endif 1214 1215#ifdef CONFIG_DEBUG_MUTEXES 1216 /* mutex deadlock detection */ 1217 struct mutex_waiter *blocked_on; 1218#endif 1219#ifdef CONFIG_TRACE_IRQFLAGS 1220 unsigned int irq_events; 1221 int hardirqs_enabled; 1222 unsigned long hardirq_enable_ip; 1223 unsigned int hardirq_enable_event; 1224 unsigned long hardirq_disable_ip; 1225 unsigned int hardirq_disable_event; 1226 int softirqs_enabled; 1227 unsigned long softirq_disable_ip; 1228 unsigned int softirq_disable_event; 1229 unsigned long softirq_enable_ip; 1230 unsigned int softirq_enable_event; 1231 int hardirq_context; 1232 int softirq_context; 1233#endif 1234#ifdef CONFIG_LOCKDEP 1235# define MAX_LOCK_DEPTH 48UL 1236 u64 curr_chain_key; 1237 int lockdep_depth; 1238 unsigned int lockdep_recursion; 1239 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1240#endif 1241 1242/* journalling filesystem info */ 1243 void *journal_info; 1244 1245/* stacked block device info */ 1246 struct bio *bio_list, **bio_tail; 1247 1248/* VM state */ 1249 struct reclaim_state *reclaim_state; 1250 1251 struct backing_dev_info *backing_dev_info; 1252 1253 struct io_context *io_context; 1254 1255 unsigned long ptrace_message; 1256 siginfo_t *last_siginfo; /* For ptrace use. */ 1257 struct task_io_accounting ioac; 1258#if defined(CONFIG_TASK_XACCT) 1259 u64 acct_rss_mem1; /* accumulated rss usage */ 1260 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1261 cputime_t acct_timexpd; /* stime + utime since last update */ 1262#endif 1263#ifdef CONFIG_CPUSETS 1264 nodemask_t mems_allowed; 1265 int cpuset_mems_generation; 1266 int cpuset_mem_spread_rotor; 1267#endif 1268#ifdef CONFIG_CGROUPS 1269 /* Control Group info protected by css_set_lock */ 1270 struct css_set *cgroups; 1271 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1272 struct list_head cg_list; 1273#endif 1274#ifdef CONFIG_FUTEX 1275 struct robust_list_head __user *robust_list; 1276#ifdef CONFIG_COMPAT 1277 struct compat_robust_list_head __user *compat_robust_list; 1278#endif 1279 struct list_head pi_state_list; 1280 struct futex_pi_state *pi_state_cache; 1281#endif 1282#ifdef CONFIG_NUMA 1283 struct mempolicy *mempolicy; 1284 short il_next; 1285#endif 1286 atomic_t fs_excl; /* holding fs exclusive resources */ 1287 struct rcu_head rcu; 1288 1289 /* 1290 * cache last used pipe for splice 1291 */ 1292 struct pipe_inode_info *splice_pipe; 1293#ifdef CONFIG_TASK_DELAY_ACCT 1294 struct task_delay_info *delays; 1295#endif 1296#ifdef CONFIG_FAULT_INJECTION 1297 int make_it_fail; 1298#endif 1299 struct prop_local_single dirties; 1300#ifdef CONFIG_LATENCYTOP 1301 int latency_record_count; 1302 struct latency_record latency_record[LT_SAVECOUNT]; 1303#endif 1304}; 1305 1306/* 1307 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1308 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1309 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1310 * values are inverted: lower p->prio value means higher priority. 1311 * 1312 * The MAX_USER_RT_PRIO value allows the actual maximum 1313 * RT priority to be separate from the value exported to 1314 * user-space. This allows kernel threads to set their 1315 * priority to a value higher than any user task. Note: 1316 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1317 */ 1318 1319#define MAX_USER_RT_PRIO 100 1320#define MAX_RT_PRIO MAX_USER_RT_PRIO 1321 1322#define MAX_PRIO (MAX_RT_PRIO + 40) 1323#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1324 1325static inline int rt_prio(int prio) 1326{ 1327 if (unlikely(prio < MAX_RT_PRIO)) 1328 return 1; 1329 return 0; 1330} 1331 1332static inline int rt_task(struct task_struct *p) 1333{ 1334 return rt_prio(p->prio); 1335} 1336 1337static inline void set_task_session(struct task_struct *tsk, pid_t session) 1338{ 1339 tsk->signal->__session = session; 1340} 1341 1342static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1343{ 1344 tsk->signal->__pgrp = pgrp; 1345} 1346 1347static inline struct pid *task_pid(struct task_struct *task) 1348{ 1349 return task->pids[PIDTYPE_PID].pid; 1350} 1351 1352static inline struct pid *task_tgid(struct task_struct *task) 1353{ 1354 return task->group_leader->pids[PIDTYPE_PID].pid; 1355} 1356 1357static inline struct pid *task_pgrp(struct task_struct *task) 1358{ 1359 return task->group_leader->pids[PIDTYPE_PGID].pid; 1360} 1361 1362static inline struct pid *task_session(struct task_struct *task) 1363{ 1364 return task->group_leader->pids[PIDTYPE_SID].pid; 1365} 1366 1367struct pid_namespace; 1368 1369/* 1370 * the helpers to get the task's different pids as they are seen 1371 * from various namespaces 1372 * 1373 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1374 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1375 * current. 1376 * task_xid_nr_ns() : id seen from the ns specified; 1377 * 1378 * set_task_vxid() : assigns a virtual id to a task; 1379 * 1380 * see also pid_nr() etc in include/linux/pid.h 1381 */ 1382 1383static inline pid_t task_pid_nr(struct task_struct *tsk) 1384{ 1385 return tsk->pid; 1386} 1387 1388pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1389 1390static inline pid_t task_pid_vnr(struct task_struct *tsk) 1391{ 1392 return pid_vnr(task_pid(tsk)); 1393} 1394 1395 1396static inline pid_t task_tgid_nr(struct task_struct *tsk) 1397{ 1398 return tsk->tgid; 1399} 1400 1401pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1402 1403static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1404{ 1405 return pid_vnr(task_tgid(tsk)); 1406} 1407 1408 1409static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1410{ 1411 return tsk->signal->__pgrp; 1412} 1413 1414pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1415 1416static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1417{ 1418 return pid_vnr(task_pgrp(tsk)); 1419} 1420 1421 1422static inline pid_t task_session_nr(struct task_struct *tsk) 1423{ 1424 return tsk->signal->__session; 1425} 1426 1427pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1428 1429static inline pid_t task_session_vnr(struct task_struct *tsk) 1430{ 1431 return pid_vnr(task_session(tsk)); 1432} 1433 1434 1435/** 1436 * pid_alive - check that a task structure is not stale 1437 * @p: Task structure to be checked. 1438 * 1439 * Test if a process is not yet dead (at most zombie state) 1440 * If pid_alive fails, then pointers within the task structure 1441 * can be stale and must not be dereferenced. 1442 */ 1443static inline int pid_alive(struct task_struct *p) 1444{ 1445 return p->pids[PIDTYPE_PID].pid != NULL; 1446} 1447 1448/** 1449 * is_global_init - check if a task structure is init 1450 * @tsk: Task structure to be checked. 1451 * 1452 * Check if a task structure is the first user space task the kernel created. 1453 */ 1454static inline int is_global_init(struct task_struct *tsk) 1455{ 1456 return tsk->pid == 1; 1457} 1458 1459/* 1460 * is_container_init: 1461 * check whether in the task is init in its own pid namespace. 1462 */ 1463extern int is_container_init(struct task_struct *tsk); 1464 1465extern struct pid *cad_pid; 1466 1467extern void free_task(struct task_struct *tsk); 1468#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1469 1470extern void __put_task_struct(struct task_struct *t); 1471 1472static inline void put_task_struct(struct task_struct *t) 1473{ 1474 if (atomic_dec_and_test(&t->usage)) 1475 __put_task_struct(t); 1476} 1477 1478extern cputime_t task_utime(struct task_struct *p); 1479extern cputime_t task_stime(struct task_struct *p); 1480extern cputime_t task_gtime(struct task_struct *p); 1481 1482/* 1483 * Per process flags 1484 */ 1485#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1486 /* Not implemented yet, only for 486*/ 1487#define PF_STARTING 0x00000002 /* being created */ 1488#define PF_EXITING 0x00000004 /* getting shut down */ 1489#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1490#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1491#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1492#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1493#define PF_DUMPCORE 0x00000200 /* dumped core */ 1494#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1495#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1496#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1497#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1498#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1499#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1500#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1501#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1502#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1503#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1504#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1505#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1506#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1507#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1508#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1509#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1510#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1511#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1512#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1513#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1514 1515/* 1516 * Only the _current_ task can read/write to tsk->flags, but other 1517 * tasks can access tsk->flags in readonly mode for example 1518 * with tsk_used_math (like during threaded core dumping). 1519 * There is however an exception to this rule during ptrace 1520 * or during fork: the ptracer task is allowed to write to the 1521 * child->flags of its traced child (same goes for fork, the parent 1522 * can write to the child->flags), because we're guaranteed the 1523 * child is not running and in turn not changing child->flags 1524 * at the same time the parent does it. 1525 */ 1526#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1527#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1528#define clear_used_math() clear_stopped_child_used_math(current) 1529#define set_used_math() set_stopped_child_used_math(current) 1530#define conditional_stopped_child_used_math(condition, child) \ 1531 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1532#define conditional_used_math(condition) \ 1533 conditional_stopped_child_used_math(condition, current) 1534#define copy_to_stopped_child_used_math(child) \ 1535 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1536/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1537#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1538#define used_math() tsk_used_math(current) 1539 1540#ifdef CONFIG_SMP 1541extern int set_cpus_allowed_ptr(struct task_struct *p, 1542 const cpumask_t *new_mask); 1543#else 1544static inline int set_cpus_allowed_ptr(struct task_struct *p, 1545 const cpumask_t *new_mask) 1546{ 1547 if (!cpu_isset(0, *new_mask)) 1548 return -EINVAL; 1549 return 0; 1550} 1551#endif 1552static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1553{ 1554 return set_cpus_allowed_ptr(p, &new_mask); 1555} 1556 1557extern unsigned long long sched_clock(void); 1558 1559extern void sched_clock_init(void); 1560extern u64 sched_clock_cpu(int cpu); 1561 1562#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1563static inline void sched_clock_tick(void) 1564{ 1565} 1566 1567static inline void sched_clock_idle_sleep_event(void) 1568{ 1569} 1570 1571static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1572{ 1573} 1574#else 1575extern void sched_clock_tick(void); 1576extern void sched_clock_idle_sleep_event(void); 1577extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1578#endif 1579 1580/* 1581 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1582 * clock constructed from sched_clock(): 1583 */ 1584extern unsigned long long cpu_clock(int cpu); 1585 1586extern unsigned long long 1587task_sched_runtime(struct task_struct *task); 1588 1589/* sched_exec is called by processes performing an exec */ 1590#ifdef CONFIG_SMP 1591extern void sched_exec(void); 1592#else 1593#define sched_exec() {} 1594#endif 1595 1596extern void sched_clock_idle_sleep_event(void); 1597extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1598 1599#ifdef CONFIG_HOTPLUG_CPU 1600extern void idle_task_exit(void); 1601#else 1602static inline void idle_task_exit(void) {} 1603#endif 1604 1605extern void sched_idle_next(void); 1606 1607#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1608extern void wake_up_idle_cpu(int cpu); 1609#else 1610static inline void wake_up_idle_cpu(int cpu) { } 1611#endif 1612 1613#ifdef CONFIG_SCHED_DEBUG 1614extern unsigned int sysctl_sched_latency; 1615extern unsigned int sysctl_sched_min_granularity; 1616extern unsigned int sysctl_sched_wakeup_granularity; 1617extern unsigned int sysctl_sched_child_runs_first; 1618extern unsigned int sysctl_sched_features; 1619extern unsigned int sysctl_sched_migration_cost; 1620extern unsigned int sysctl_sched_nr_migrate; 1621extern unsigned int sysctl_sched_shares_ratelimit; 1622 1623int sched_nr_latency_handler(struct ctl_table *table, int write, 1624 struct file *file, void __user *buffer, size_t *length, 1625 loff_t *ppos); 1626#endif 1627extern unsigned int sysctl_sched_rt_period; 1628extern int sysctl_sched_rt_runtime; 1629 1630int sched_rt_handler(struct ctl_table *table, int write, 1631 struct file *filp, void __user *buffer, size_t *lenp, 1632 loff_t *ppos); 1633 1634extern unsigned int sysctl_sched_compat_yield; 1635 1636#ifdef CONFIG_RT_MUTEXES 1637extern int rt_mutex_getprio(struct task_struct *p); 1638extern void rt_mutex_setprio(struct task_struct *p, int prio); 1639extern void rt_mutex_adjust_pi(struct task_struct *p); 1640#else 1641static inline int rt_mutex_getprio(struct task_struct *p) 1642{ 1643 return p->normal_prio; 1644} 1645# define rt_mutex_adjust_pi(p) do { } while (0) 1646#endif 1647 1648extern void set_user_nice(struct task_struct *p, long nice); 1649extern int task_prio(const struct task_struct *p); 1650extern int task_nice(const struct task_struct *p); 1651extern int can_nice(const struct task_struct *p, const int nice); 1652extern int task_curr(const struct task_struct *p); 1653extern int idle_cpu(int cpu); 1654extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1655extern int sched_setscheduler_nocheck(struct task_struct *, int, 1656 struct sched_param *); 1657extern struct task_struct *idle_task(int cpu); 1658extern struct task_struct *curr_task(int cpu); 1659extern void set_curr_task(int cpu, struct task_struct *p); 1660 1661void yield(void); 1662 1663/* 1664 * The default (Linux) execution domain. 1665 */ 1666extern struct exec_domain default_exec_domain; 1667 1668union thread_union { 1669 struct thread_info thread_info; 1670 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1671}; 1672 1673#ifndef __HAVE_ARCH_KSTACK_END 1674static inline int kstack_end(void *addr) 1675{ 1676 /* Reliable end of stack detection: 1677 * Some APM bios versions misalign the stack 1678 */ 1679 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1680} 1681#endif 1682 1683extern union thread_union init_thread_union; 1684extern struct task_struct init_task; 1685 1686extern struct mm_struct init_mm; 1687 1688extern struct pid_namespace init_pid_ns; 1689 1690/* 1691 * find a task by one of its numerical ids 1692 * 1693 * find_task_by_pid_type_ns(): 1694 * it is the most generic call - it finds a task by all id, 1695 * type and namespace specified 1696 * find_task_by_pid_ns(): 1697 * finds a task by its pid in the specified namespace 1698 * find_task_by_vpid(): 1699 * finds a task by its virtual pid 1700 * 1701 * see also find_vpid() etc in include/linux/pid.h 1702 */ 1703 1704extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1705 struct pid_namespace *ns); 1706 1707extern struct task_struct *find_task_by_vpid(pid_t nr); 1708extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1709 struct pid_namespace *ns); 1710 1711extern void __set_special_pids(struct pid *pid); 1712 1713/* per-UID process charging. */ 1714extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1715static inline struct user_struct *get_uid(struct user_struct *u) 1716{ 1717 atomic_inc(&u->__count); 1718 return u; 1719} 1720extern void free_uid(struct user_struct *); 1721extern void switch_uid(struct user_struct *); 1722extern void release_uids(struct user_namespace *ns); 1723 1724#include <asm/current.h> 1725 1726extern void do_timer(unsigned long ticks); 1727 1728extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1729extern int wake_up_process(struct task_struct *tsk); 1730extern void wake_up_new_task(struct task_struct *tsk, 1731 unsigned long clone_flags); 1732#ifdef CONFIG_SMP 1733 extern void kick_process(struct task_struct *tsk); 1734#else 1735 static inline void kick_process(struct task_struct *tsk) { } 1736#endif 1737extern void sched_fork(struct task_struct *p, int clone_flags); 1738extern void sched_dead(struct task_struct *p); 1739 1740extern int in_group_p(gid_t); 1741extern int in_egroup_p(gid_t); 1742 1743extern void proc_caches_init(void); 1744extern void flush_signals(struct task_struct *); 1745extern void ignore_signals(struct task_struct *); 1746extern void flush_signal_handlers(struct task_struct *, int force_default); 1747extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1748 1749static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1750{ 1751 unsigned long flags; 1752 int ret; 1753 1754 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1755 ret = dequeue_signal(tsk, mask, info); 1756 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1757 1758 return ret; 1759} 1760 1761extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1762 sigset_t *mask); 1763extern void unblock_all_signals(void); 1764extern void release_task(struct task_struct * p); 1765extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1766extern int force_sigsegv(int, struct task_struct *); 1767extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1768extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1769extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1770extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1771extern int kill_pgrp(struct pid *pid, int sig, int priv); 1772extern int kill_pid(struct pid *pid, int sig, int priv); 1773extern int kill_proc_info(int, struct siginfo *, pid_t); 1774extern int do_notify_parent(struct task_struct *, int); 1775extern void force_sig(int, struct task_struct *); 1776extern void force_sig_specific(int, struct task_struct *); 1777extern int send_sig(int, struct task_struct *, int); 1778extern void zap_other_threads(struct task_struct *p); 1779extern struct sigqueue *sigqueue_alloc(void); 1780extern void sigqueue_free(struct sigqueue *); 1781extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 1782extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1783extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1784 1785static inline int kill_cad_pid(int sig, int priv) 1786{ 1787 return kill_pid(cad_pid, sig, priv); 1788} 1789 1790/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1791#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1792#define SEND_SIG_PRIV ((struct siginfo *) 1) 1793#define SEND_SIG_FORCED ((struct siginfo *) 2) 1794 1795static inline int is_si_special(const struct siginfo *info) 1796{ 1797 return info <= SEND_SIG_FORCED; 1798} 1799 1800/* True if we are on the alternate signal stack. */ 1801 1802static inline int on_sig_stack(unsigned long sp) 1803{ 1804 return (sp - current->sas_ss_sp < current->sas_ss_size); 1805} 1806 1807static inline int sas_ss_flags(unsigned long sp) 1808{ 1809 return (current->sas_ss_size == 0 ? SS_DISABLE 1810 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1811} 1812 1813/* 1814 * Routines for handling mm_structs 1815 */ 1816extern struct mm_struct * mm_alloc(void); 1817 1818/* mmdrop drops the mm and the page tables */ 1819extern void __mmdrop(struct mm_struct *); 1820static inline void mmdrop(struct mm_struct * mm) 1821{ 1822 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1823 __mmdrop(mm); 1824} 1825 1826/* mmput gets rid of the mappings and all user-space */ 1827extern void mmput(struct mm_struct *); 1828/* Grab a reference to a task's mm, if it is not already going away */ 1829extern struct mm_struct *get_task_mm(struct task_struct *task); 1830/* Remove the current tasks stale references to the old mm_struct */ 1831extern void mm_release(struct task_struct *, struct mm_struct *); 1832/* Allocate a new mm structure and copy contents from tsk->mm */ 1833extern struct mm_struct *dup_mm(struct task_struct *tsk); 1834 1835extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1836extern void flush_thread(void); 1837extern void exit_thread(void); 1838 1839extern void exit_files(struct task_struct *); 1840extern void __cleanup_signal(struct signal_struct *); 1841extern void __cleanup_sighand(struct sighand_struct *); 1842 1843extern void exit_itimers(struct signal_struct *); 1844extern void flush_itimer_signals(void); 1845 1846extern NORET_TYPE void do_group_exit(int); 1847 1848extern void daemonize(const char *, ...); 1849extern int allow_signal(int); 1850extern int disallow_signal(int); 1851 1852extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1853extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1854struct task_struct *fork_idle(int); 1855 1856extern void set_task_comm(struct task_struct *tsk, char *from); 1857extern char *get_task_comm(char *to, struct task_struct *tsk); 1858 1859#ifdef CONFIG_SMP 1860extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1861#else 1862static inline unsigned long wait_task_inactive(struct task_struct *p, 1863 long match_state) 1864{ 1865 return 1; 1866} 1867#endif 1868 1869#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1870 1871#define for_each_process(p) \ 1872 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1873 1874/* 1875 * Careful: do_each_thread/while_each_thread is a double loop so 1876 * 'break' will not work as expected - use goto instead. 1877 */ 1878#define do_each_thread(g, t) \ 1879 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1880 1881#define while_each_thread(g, t) \ 1882 while ((t = next_thread(t)) != g) 1883 1884/* de_thread depends on thread_group_leader not being a pid based check */ 1885#define thread_group_leader(p) (p == p->group_leader) 1886 1887/* Do to the insanities of de_thread it is possible for a process 1888 * to have the pid of the thread group leader without actually being 1889 * the thread group leader. For iteration through the pids in proc 1890 * all we care about is that we have a task with the appropriate 1891 * pid, we don't actually care if we have the right task. 1892 */ 1893static inline int has_group_leader_pid(struct task_struct *p) 1894{ 1895 return p->pid == p->tgid; 1896} 1897 1898static inline 1899int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1900{ 1901 return p1->tgid == p2->tgid; 1902} 1903 1904static inline struct task_struct *next_thread(const struct task_struct *p) 1905{ 1906 return list_entry(rcu_dereference(p->thread_group.next), 1907 struct task_struct, thread_group); 1908} 1909 1910static inline int thread_group_empty(struct task_struct *p) 1911{ 1912 return list_empty(&p->thread_group); 1913} 1914 1915#define delay_group_leader(p) \ 1916 (thread_group_leader(p) && !thread_group_empty(p)) 1917 1918/* 1919 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1920 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1921 * pins the final release of task.io_context. Also protects ->cpuset and 1922 * ->cgroup.subsys[]. 1923 * 1924 * Nests both inside and outside of read_lock(&tasklist_lock). 1925 * It must not be nested with write_lock_irq(&tasklist_lock), 1926 * neither inside nor outside. 1927 */ 1928static inline void task_lock(struct task_struct *p) 1929{ 1930 spin_lock(&p->alloc_lock); 1931} 1932 1933static inline void task_unlock(struct task_struct *p) 1934{ 1935 spin_unlock(&p->alloc_lock); 1936} 1937 1938extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1939 unsigned long *flags); 1940 1941static inline void unlock_task_sighand(struct task_struct *tsk, 1942 unsigned long *flags) 1943{ 1944 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1945} 1946 1947#ifndef __HAVE_THREAD_FUNCTIONS 1948 1949#define task_thread_info(task) ((struct thread_info *)(task)->stack) 1950#define task_stack_page(task) ((task)->stack) 1951 1952static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1953{ 1954 *task_thread_info(p) = *task_thread_info(org); 1955 task_thread_info(p)->task = p; 1956} 1957 1958static inline unsigned long *end_of_stack(struct task_struct *p) 1959{ 1960 return (unsigned long *)(task_thread_info(p) + 1); 1961} 1962 1963#endif 1964 1965static inline int object_is_on_stack(void *obj) 1966{ 1967 void *stack = task_stack_page(current); 1968 1969 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 1970} 1971 1972extern void thread_info_cache_init(void); 1973 1974/* set thread flags in other task's structures 1975 * - see asm/thread_info.h for TIF_xxxx flags available 1976 */ 1977static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1978{ 1979 set_ti_thread_flag(task_thread_info(tsk), flag); 1980} 1981 1982static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1983{ 1984 clear_ti_thread_flag(task_thread_info(tsk), flag); 1985} 1986 1987static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1988{ 1989 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1990} 1991 1992static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1993{ 1994 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1995} 1996 1997static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1998{ 1999 return test_ti_thread_flag(task_thread_info(tsk), flag); 2000} 2001 2002static inline void set_tsk_need_resched(struct task_struct *tsk) 2003{ 2004 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2005} 2006 2007static inline void clear_tsk_need_resched(struct task_struct *tsk) 2008{ 2009 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2010} 2011 2012static inline int test_tsk_need_resched(struct task_struct *tsk) 2013{ 2014 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2015} 2016 2017static inline int signal_pending(struct task_struct *p) 2018{ 2019 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2020} 2021 2022extern int __fatal_signal_pending(struct task_struct *p); 2023 2024static inline int fatal_signal_pending(struct task_struct *p) 2025{ 2026 return signal_pending(p) && __fatal_signal_pending(p); 2027} 2028 2029static inline int signal_pending_state(long state, struct task_struct *p) 2030{ 2031 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2032 return 0; 2033 if (!signal_pending(p)) 2034 return 0; 2035 2036 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2037} 2038 2039static inline int need_resched(void) 2040{ 2041 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2042} 2043 2044/* 2045 * cond_resched() and cond_resched_lock(): latency reduction via 2046 * explicit rescheduling in places that are safe. The return 2047 * value indicates whether a reschedule was done in fact. 2048 * cond_resched_lock() will drop the spinlock before scheduling, 2049 * cond_resched_softirq() will enable bhs before scheduling. 2050 */ 2051extern int _cond_resched(void); 2052#ifdef CONFIG_PREEMPT_BKL 2053static inline int cond_resched(void) 2054{ 2055 return 0; 2056} 2057#else 2058static inline int cond_resched(void) 2059{ 2060 return _cond_resched(); 2061} 2062#endif 2063extern int cond_resched_lock(spinlock_t * lock); 2064extern int cond_resched_softirq(void); 2065static inline int cond_resched_bkl(void) 2066{ 2067 return _cond_resched(); 2068} 2069 2070/* 2071 * Does a critical section need to be broken due to another 2072 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2073 * but a general need for low latency) 2074 */ 2075static inline int spin_needbreak(spinlock_t *lock) 2076{ 2077#ifdef CONFIG_PREEMPT 2078 return spin_is_contended(lock); 2079#else 2080 return 0; 2081#endif 2082} 2083 2084/* 2085 * Reevaluate whether the task has signals pending delivery. 2086 * Wake the task if so. 2087 * This is required every time the blocked sigset_t changes. 2088 * callers must hold sighand->siglock. 2089 */ 2090extern void recalc_sigpending_and_wake(struct task_struct *t); 2091extern void recalc_sigpending(void); 2092 2093extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2094 2095/* 2096 * Wrappers for p->thread_info->cpu access. No-op on UP. 2097 */ 2098#ifdef CONFIG_SMP 2099 2100static inline unsigned int task_cpu(const struct task_struct *p) 2101{ 2102 return task_thread_info(p)->cpu; 2103} 2104 2105extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2106 2107#else 2108 2109static inline unsigned int task_cpu(const struct task_struct *p) 2110{ 2111 return 0; 2112} 2113 2114static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2115{ 2116} 2117 2118#endif /* CONFIG_SMP */ 2119 2120extern void arch_pick_mmap_layout(struct mm_struct *mm); 2121 2122#ifdef CONFIG_TRACING 2123extern void 2124__trace_special(void *__tr, void *__data, 2125 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2126#else 2127static inline void 2128__trace_special(void *__tr, void *__data, 2129 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2130{ 2131} 2132#endif 2133 2134extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask); 2135extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 2136 2137extern int sched_mc_power_savings, sched_smt_power_savings; 2138 2139extern void normalize_rt_tasks(void); 2140 2141#ifdef CONFIG_GROUP_SCHED 2142 2143extern struct task_group init_task_group; 2144#ifdef CONFIG_USER_SCHED 2145extern struct task_group root_task_group; 2146#endif 2147 2148extern struct task_group *sched_create_group(struct task_group *parent); 2149extern void sched_destroy_group(struct task_group *tg); 2150extern void sched_move_task(struct task_struct *tsk); 2151#ifdef CONFIG_FAIR_GROUP_SCHED 2152extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2153extern unsigned long sched_group_shares(struct task_group *tg); 2154#endif 2155#ifdef CONFIG_RT_GROUP_SCHED 2156extern int sched_group_set_rt_runtime(struct task_group *tg, 2157 long rt_runtime_us); 2158extern long sched_group_rt_runtime(struct task_group *tg); 2159extern int sched_group_set_rt_period(struct task_group *tg, 2160 long rt_period_us); 2161extern long sched_group_rt_period(struct task_group *tg); 2162#endif 2163#endif 2164 2165#ifdef CONFIG_TASK_XACCT 2166static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2167{ 2168 tsk->ioac.rchar += amt; 2169} 2170 2171static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2172{ 2173 tsk->ioac.wchar += amt; 2174} 2175 2176static inline void inc_syscr(struct task_struct *tsk) 2177{ 2178 tsk->ioac.syscr++; 2179} 2180 2181static inline void inc_syscw(struct task_struct *tsk) 2182{ 2183 tsk->ioac.syscw++; 2184} 2185#else 2186static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2187{ 2188} 2189 2190static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2191{ 2192} 2193 2194static inline void inc_syscr(struct task_struct *tsk) 2195{ 2196} 2197 2198static inline void inc_syscw(struct task_struct *tsk) 2199{ 2200} 2201#endif 2202 2203#ifndef TASK_SIZE_OF 2204#define TASK_SIZE_OF(tsk) TASK_SIZE 2205#endif 2206 2207#ifdef CONFIG_MM_OWNER 2208extern void mm_update_next_owner(struct mm_struct *mm); 2209extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2210#else 2211static inline void mm_update_next_owner(struct mm_struct *mm) 2212{ 2213} 2214 2215static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2216{ 2217} 2218#endif /* CONFIG_MM_OWNER */ 2219 2220#define TASK_STATE_TO_CHAR_STR "RSDTtZX" 2221 2222#endif /* __KERNEL__ */ 2223 2224#endif