at v2.6.27 530 lines 19 kB view raw
1#ifndef __LINUX_CPUMASK_H 2#define __LINUX_CPUMASK_H 3 4/* 5 * Cpumasks provide a bitmap suitable for representing the 6 * set of CPU's in a system, one bit position per CPU number. 7 * 8 * See detailed comments in the file linux/bitmap.h describing the 9 * data type on which these cpumasks are based. 10 * 11 * For details of cpumask_scnprintf() and cpumask_parse_user(), 12 * see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c. 13 * For details of cpulist_scnprintf() and cpulist_parse(), see 14 * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c. 15 * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c 16 * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c. 17 * For details of cpus_onto(), see bitmap_onto in lib/bitmap.c. 18 * For details of cpus_fold(), see bitmap_fold in lib/bitmap.c. 19 * 20 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 * Note: The alternate operations with the suffix "_nr" are used 22 * to limit the range of the loop to nr_cpu_ids instead of 23 * NR_CPUS when NR_CPUS > 64 for performance reasons. 24 * If NR_CPUS is <= 64 then most assembler bitmask 25 * operators execute faster with a constant range, so 26 * the operator will continue to use NR_CPUS. 27 * 28 * Another consideration is that nr_cpu_ids is initialized 29 * to NR_CPUS and isn't lowered until the possible cpus are 30 * discovered (including any disabled cpus). So early uses 31 * will span the entire range of NR_CPUS. 32 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 * 34 * The available cpumask operations are: 35 * 36 * void cpu_set(cpu, mask) turn on bit 'cpu' in mask 37 * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask 38 * void cpus_setall(mask) set all bits 39 * void cpus_clear(mask) clear all bits 40 * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask 41 * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask 42 * 43 * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection] 44 * void cpus_or(dst, src1, src2) dst = src1 | src2 [union] 45 * void cpus_xor(dst, src1, src2) dst = src1 ^ src2 46 * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2 47 * void cpus_complement(dst, src) dst = ~src 48 * 49 * int cpus_equal(mask1, mask2) Does mask1 == mask2? 50 * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect? 51 * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2? 52 * int cpus_empty(mask) Is mask empty (no bits sets)? 53 * int cpus_full(mask) Is mask full (all bits sets)? 54 * int cpus_weight(mask) Hamming weigh - number of set bits 55 * int cpus_weight_nr(mask) Same using nr_cpu_ids instead of NR_CPUS 56 * 57 * void cpus_shift_right(dst, src, n) Shift right 58 * void cpus_shift_left(dst, src, n) Shift left 59 * 60 * int first_cpu(mask) Number lowest set bit, or NR_CPUS 61 * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS 62 * int next_cpu_nr(cpu, mask) Next cpu past 'cpu', or nr_cpu_ids 63 * 64 * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set 65 * (can be used as an lvalue) 66 * CPU_MASK_ALL Initializer - all bits set 67 * CPU_MASK_NONE Initializer - no bits set 68 * unsigned long *cpus_addr(mask) Array of unsigned long's in mask 69 * 70 * CPUMASK_ALLOC kmalloc's a structure that is a composite of many cpumask_t 71 * variables, and CPUMASK_PTR provides pointers to each field. 72 * 73 * The structure should be defined something like this: 74 * struct my_cpumasks { 75 * cpumask_t mask1; 76 * cpumask_t mask2; 77 * }; 78 * 79 * Usage is then: 80 * CPUMASK_ALLOC(my_cpumasks); 81 * CPUMASK_PTR(mask1, my_cpumasks); 82 * CPUMASK_PTR(mask2, my_cpumasks); 83 * 84 * --- DO NOT reference cpumask_t pointers until this check --- 85 * if (my_cpumasks == NULL) 86 * "kmalloc failed"... 87 * 88 * References are now pointers to the cpumask_t variables (*mask1, ...) 89 * 90 *if NR_CPUS > BITS_PER_LONG 91 * CPUMASK_ALLOC(m) Declares and allocates struct m *m = 92 * kmalloc(sizeof(*m), GFP_KERNEL) 93 * CPUMASK_FREE(m) Macro for kfree(m) 94 *else 95 * CPUMASK_ALLOC(m) Declares struct m _m, *m = &_m 96 * CPUMASK_FREE(m) Nop 97 *endif 98 * CPUMASK_PTR(v, m) Declares cpumask_t *v = &(m->v) 99 * ------------------------------------------------------------------------ 100 * 101 * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing 102 * int cpumask_parse_user(ubuf, ulen, mask) Parse ascii string as cpumask 103 * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing 104 * int cpulist_parse(buf, map) Parse ascii string as cpulist 105 * int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit) 106 * void cpus_remap(dst, src, old, new) *dst = map(old, new)(src) 107 * void cpus_onto(dst, orig, relmap) *dst = orig relative to relmap 108 * void cpus_fold(dst, orig, sz) dst bits = orig bits mod sz 109 * 110 * for_each_cpu_mask(cpu, mask) for-loop cpu over mask using NR_CPUS 111 * for_each_cpu_mask_nr(cpu, mask) for-loop cpu over mask using nr_cpu_ids 112 * 113 * int num_online_cpus() Number of online CPUs 114 * int num_possible_cpus() Number of all possible CPUs 115 * int num_present_cpus() Number of present CPUs 116 * 117 * int cpu_online(cpu) Is some cpu online? 118 * int cpu_possible(cpu) Is some cpu possible? 119 * int cpu_present(cpu) Is some cpu present (can schedule)? 120 * 121 * int any_online_cpu(mask) First online cpu in mask 122 * 123 * for_each_possible_cpu(cpu) for-loop cpu over cpu_possible_map 124 * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map 125 * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map 126 * 127 * Subtlety: 128 * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway) 129 * to generate slightly worse code. Note for example the additional 130 * 40 lines of assembly code compiling the "for each possible cpu" 131 * loops buried in the disk_stat_read() macros calls when compiling 132 * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple 133 * one-line #define for cpu_isset(), instead of wrapping an inline 134 * inside a macro, the way we do the other calls. 135 */ 136 137#include <linux/kernel.h> 138#include <linux/threads.h> 139#include <linux/bitmap.h> 140 141typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; 142extern cpumask_t _unused_cpumask_arg_; 143 144#define cpu_set(cpu, dst) __cpu_set((cpu), &(dst)) 145static inline void __cpu_set(int cpu, volatile cpumask_t *dstp) 146{ 147 set_bit(cpu, dstp->bits); 148} 149 150#define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst)) 151static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp) 152{ 153 clear_bit(cpu, dstp->bits); 154} 155 156#define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS) 157static inline void __cpus_setall(cpumask_t *dstp, int nbits) 158{ 159 bitmap_fill(dstp->bits, nbits); 160} 161 162#define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS) 163static inline void __cpus_clear(cpumask_t *dstp, int nbits) 164{ 165 bitmap_zero(dstp->bits, nbits); 166} 167 168/* No static inline type checking - see Subtlety (1) above. */ 169#define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits) 170 171#define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask)) 172static inline int __cpu_test_and_set(int cpu, cpumask_t *addr) 173{ 174 return test_and_set_bit(cpu, addr->bits); 175} 176 177#define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS) 178static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p, 179 const cpumask_t *src2p, int nbits) 180{ 181 bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits); 182} 183 184#define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS) 185static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p, 186 const cpumask_t *src2p, int nbits) 187{ 188 bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits); 189} 190 191#define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS) 192static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p, 193 const cpumask_t *src2p, int nbits) 194{ 195 bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits); 196} 197 198#define cpus_andnot(dst, src1, src2) \ 199 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS) 200static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p, 201 const cpumask_t *src2p, int nbits) 202{ 203 bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits); 204} 205 206#define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS) 207static inline void __cpus_complement(cpumask_t *dstp, 208 const cpumask_t *srcp, int nbits) 209{ 210 bitmap_complement(dstp->bits, srcp->bits, nbits); 211} 212 213#define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS) 214static inline int __cpus_equal(const cpumask_t *src1p, 215 const cpumask_t *src2p, int nbits) 216{ 217 return bitmap_equal(src1p->bits, src2p->bits, nbits); 218} 219 220#define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS) 221static inline int __cpus_intersects(const cpumask_t *src1p, 222 const cpumask_t *src2p, int nbits) 223{ 224 return bitmap_intersects(src1p->bits, src2p->bits, nbits); 225} 226 227#define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS) 228static inline int __cpus_subset(const cpumask_t *src1p, 229 const cpumask_t *src2p, int nbits) 230{ 231 return bitmap_subset(src1p->bits, src2p->bits, nbits); 232} 233 234#define cpus_empty(src) __cpus_empty(&(src), NR_CPUS) 235static inline int __cpus_empty(const cpumask_t *srcp, int nbits) 236{ 237 return bitmap_empty(srcp->bits, nbits); 238} 239 240#define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS) 241static inline int __cpus_full(const cpumask_t *srcp, int nbits) 242{ 243 return bitmap_full(srcp->bits, nbits); 244} 245 246#define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS) 247static inline int __cpus_weight(const cpumask_t *srcp, int nbits) 248{ 249 return bitmap_weight(srcp->bits, nbits); 250} 251 252#define cpus_shift_right(dst, src, n) \ 253 __cpus_shift_right(&(dst), &(src), (n), NR_CPUS) 254static inline void __cpus_shift_right(cpumask_t *dstp, 255 const cpumask_t *srcp, int n, int nbits) 256{ 257 bitmap_shift_right(dstp->bits, srcp->bits, n, nbits); 258} 259 260#define cpus_shift_left(dst, src, n) \ 261 __cpus_shift_left(&(dst), &(src), (n), NR_CPUS) 262static inline void __cpus_shift_left(cpumask_t *dstp, 263 const cpumask_t *srcp, int n, int nbits) 264{ 265 bitmap_shift_left(dstp->bits, srcp->bits, n, nbits); 266} 267 268/* 269 * Special-case data structure for "single bit set only" constant CPU masks. 270 * 271 * We pre-generate all the 64 (or 32) possible bit positions, with enough 272 * padding to the left and the right, and return the constant pointer 273 * appropriately offset. 274 */ 275extern const unsigned long 276 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 277 278static inline const cpumask_t *get_cpu_mask(unsigned int cpu) 279{ 280 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 281 p -= cpu / BITS_PER_LONG; 282 return (const cpumask_t *)p; 283} 284 285/* 286 * In cases where we take the address of the cpumask immediately, 287 * gcc optimizes it out (it's a constant) and there's no huge stack 288 * variable created: 289 */ 290#define cpumask_of_cpu(cpu) (*get_cpu_mask(cpu)) 291 292 293#define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS) 294 295#if NR_CPUS <= BITS_PER_LONG 296 297#define CPU_MASK_ALL \ 298(cpumask_t) { { \ 299 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \ 300} } 301 302#define CPU_MASK_ALL_PTR (&CPU_MASK_ALL) 303 304#else 305 306#define CPU_MASK_ALL \ 307(cpumask_t) { { \ 308 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 309 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \ 310} } 311 312/* cpu_mask_all is in init/main.c */ 313extern cpumask_t cpu_mask_all; 314#define CPU_MASK_ALL_PTR (&cpu_mask_all) 315 316#endif 317 318#define CPU_MASK_NONE \ 319(cpumask_t) { { \ 320 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 321} } 322 323#define CPU_MASK_CPU0 \ 324(cpumask_t) { { \ 325 [0] = 1UL \ 326} } 327 328#define cpus_addr(src) ((src).bits) 329 330#if NR_CPUS > BITS_PER_LONG 331#define CPUMASK_ALLOC(m) struct m *m = kmalloc(sizeof(*m), GFP_KERNEL) 332#define CPUMASK_FREE(m) kfree(m) 333#else 334#define CPUMASK_ALLOC(m) struct m _m, *m = &_m 335#define CPUMASK_FREE(m) 336#endif 337#define CPUMASK_PTR(v, m) cpumask_t *v = &(m->v) 338 339#define cpumask_scnprintf(buf, len, src) \ 340 __cpumask_scnprintf((buf), (len), &(src), NR_CPUS) 341static inline int __cpumask_scnprintf(char *buf, int len, 342 const cpumask_t *srcp, int nbits) 343{ 344 return bitmap_scnprintf(buf, len, srcp->bits, nbits); 345} 346 347#define cpumask_parse_user(ubuf, ulen, dst) \ 348 __cpumask_parse_user((ubuf), (ulen), &(dst), NR_CPUS) 349static inline int __cpumask_parse_user(const char __user *buf, int len, 350 cpumask_t *dstp, int nbits) 351{ 352 return bitmap_parse_user(buf, len, dstp->bits, nbits); 353} 354 355#define cpulist_scnprintf(buf, len, src) \ 356 __cpulist_scnprintf((buf), (len), &(src), NR_CPUS) 357static inline int __cpulist_scnprintf(char *buf, int len, 358 const cpumask_t *srcp, int nbits) 359{ 360 return bitmap_scnlistprintf(buf, len, srcp->bits, nbits); 361} 362 363#define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS) 364static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits) 365{ 366 return bitmap_parselist(buf, dstp->bits, nbits); 367} 368 369#define cpu_remap(oldbit, old, new) \ 370 __cpu_remap((oldbit), &(old), &(new), NR_CPUS) 371static inline int __cpu_remap(int oldbit, 372 const cpumask_t *oldp, const cpumask_t *newp, int nbits) 373{ 374 return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits); 375} 376 377#define cpus_remap(dst, src, old, new) \ 378 __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS) 379static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp, 380 const cpumask_t *oldp, const cpumask_t *newp, int nbits) 381{ 382 bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits); 383} 384 385#define cpus_onto(dst, orig, relmap) \ 386 __cpus_onto(&(dst), &(orig), &(relmap), NR_CPUS) 387static inline void __cpus_onto(cpumask_t *dstp, const cpumask_t *origp, 388 const cpumask_t *relmapp, int nbits) 389{ 390 bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits); 391} 392 393#define cpus_fold(dst, orig, sz) \ 394 __cpus_fold(&(dst), &(orig), sz, NR_CPUS) 395static inline void __cpus_fold(cpumask_t *dstp, const cpumask_t *origp, 396 int sz, int nbits) 397{ 398 bitmap_fold(dstp->bits, origp->bits, sz, nbits); 399} 400 401#if NR_CPUS == 1 402 403#define nr_cpu_ids 1 404#define first_cpu(src) ({ (void)(src); 0; }) 405#define next_cpu(n, src) ({ (void)(src); 1; }) 406#define any_online_cpu(mask) 0 407#define for_each_cpu_mask(cpu, mask) \ 408 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) 409 410#else /* NR_CPUS > 1 */ 411 412extern int nr_cpu_ids; 413int __first_cpu(const cpumask_t *srcp); 414int __next_cpu(int n, const cpumask_t *srcp); 415int __any_online_cpu(const cpumask_t *mask); 416 417#define first_cpu(src) __first_cpu(&(src)) 418#define next_cpu(n, src) __next_cpu((n), &(src)) 419#define any_online_cpu(mask) __any_online_cpu(&(mask)) 420#define for_each_cpu_mask(cpu, mask) \ 421 for ((cpu) = -1; \ 422 (cpu) = next_cpu((cpu), (mask)), \ 423 (cpu) < NR_CPUS; ) 424#endif 425 426#if NR_CPUS <= 64 427 428#define next_cpu_nr(n, src) next_cpu(n, src) 429#define cpus_weight_nr(cpumask) cpus_weight(cpumask) 430#define for_each_cpu_mask_nr(cpu, mask) for_each_cpu_mask(cpu, mask) 431 432#else /* NR_CPUS > 64 */ 433 434int __next_cpu_nr(int n, const cpumask_t *srcp); 435#define next_cpu_nr(n, src) __next_cpu_nr((n), &(src)) 436#define cpus_weight_nr(cpumask) __cpus_weight(&(cpumask), nr_cpu_ids) 437#define for_each_cpu_mask_nr(cpu, mask) \ 438 for ((cpu) = -1; \ 439 (cpu) = next_cpu_nr((cpu), (mask)), \ 440 (cpu) < nr_cpu_ids; ) 441 442#endif /* NR_CPUS > 64 */ 443 444/* 445 * The following particular system cpumasks and operations manage 446 * possible, present, active and online cpus. Each of them is a fixed size 447 * bitmap of size NR_CPUS. 448 * 449 * #ifdef CONFIG_HOTPLUG_CPU 450 * cpu_possible_map - has bit 'cpu' set iff cpu is populatable 451 * cpu_present_map - has bit 'cpu' set iff cpu is populated 452 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler 453 * cpu_active_map - has bit 'cpu' set iff cpu available to migration 454 * #else 455 * cpu_possible_map - has bit 'cpu' set iff cpu is populated 456 * cpu_present_map - copy of cpu_possible_map 457 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler 458 * #endif 459 * 460 * In either case, NR_CPUS is fixed at compile time, as the static 461 * size of these bitmaps. The cpu_possible_map is fixed at boot 462 * time, as the set of CPU id's that it is possible might ever 463 * be plugged in at anytime during the life of that system boot. 464 * The cpu_present_map is dynamic(*), representing which CPUs 465 * are currently plugged in. And cpu_online_map is the dynamic 466 * subset of cpu_present_map, indicating those CPUs available 467 * for scheduling. 468 * 469 * If HOTPLUG is enabled, then cpu_possible_map is forced to have 470 * all NR_CPUS bits set, otherwise it is just the set of CPUs that 471 * ACPI reports present at boot. 472 * 473 * If HOTPLUG is enabled, then cpu_present_map varies dynamically, 474 * depending on what ACPI reports as currently plugged in, otherwise 475 * cpu_present_map is just a copy of cpu_possible_map. 476 * 477 * (*) Well, cpu_present_map is dynamic in the hotplug case. If not 478 * hotplug, it's a copy of cpu_possible_map, hence fixed at boot. 479 * 480 * Subtleties: 481 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 482 * assumption that their single CPU is online. The UP 483 * cpu_{online,possible,present}_maps are placebos. Changing them 484 * will have no useful affect on the following num_*_cpus() 485 * and cpu_*() macros in the UP case. This ugliness is a UP 486 * optimization - don't waste any instructions or memory references 487 * asking if you're online or how many CPUs there are if there is 488 * only one CPU. 489 * 2) Most SMP arch's #define some of these maps to be some 490 * other map specific to that arch. Therefore, the following 491 * must be #define macros, not inlines. To see why, examine 492 * the assembly code produced by the following. Note that 493 * set1() writes phys_x_map, but set2() writes x_map: 494 * int x_map, phys_x_map; 495 * #define set1(a) x_map = a 496 * inline void set2(int a) { x_map = a; } 497 * #define x_map phys_x_map 498 * main(){ set1(3); set2(5); } 499 */ 500 501extern cpumask_t cpu_possible_map; 502extern cpumask_t cpu_online_map; 503extern cpumask_t cpu_present_map; 504extern cpumask_t cpu_active_map; 505 506#if NR_CPUS > 1 507#define num_online_cpus() cpus_weight_nr(cpu_online_map) 508#define num_possible_cpus() cpus_weight_nr(cpu_possible_map) 509#define num_present_cpus() cpus_weight_nr(cpu_present_map) 510#define cpu_online(cpu) cpu_isset((cpu), cpu_online_map) 511#define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map) 512#define cpu_present(cpu) cpu_isset((cpu), cpu_present_map) 513#define cpu_active(cpu) cpu_isset((cpu), cpu_active_map) 514#else 515#define num_online_cpus() 1 516#define num_possible_cpus() 1 517#define num_present_cpus() 1 518#define cpu_online(cpu) ((cpu) == 0) 519#define cpu_possible(cpu) ((cpu) == 0) 520#define cpu_present(cpu) ((cpu) == 0) 521#define cpu_active(cpu) ((cpu) == 0) 522#endif 523 524#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 525 526#define for_each_possible_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_possible_map) 527#define for_each_online_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_online_map) 528#define for_each_present_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_present_map) 529 530#endif /* __LINUX_CPUMASK_H */