at v2.6.27 1.6 kB view raw
1#ifndef _ASMi386_TIMER_H 2#define _ASMi386_TIMER_H 3#include <linux/init.h> 4#include <linux/pm.h> 5#include <linux/percpu.h> 6 7#define TICK_SIZE (tick_nsec / 1000) 8 9unsigned long long native_sched_clock(void); 10unsigned long native_calibrate_tsc(void); 11 12extern int timer_ack; 13extern int no_timer_check; 14extern int recalibrate_cpu_khz(void); 15 16#ifndef CONFIG_PARAVIRT 17#define calibrate_tsc() native_calibrate_tsc() 18#endif 19 20/* Accelerators for sched_clock() 21 * convert from cycles(64bits) => nanoseconds (64bits) 22 * basic equation: 23 * ns = cycles / (freq / ns_per_sec) 24 * ns = cycles * (ns_per_sec / freq) 25 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 26 * ns = cycles * (10^6 / cpu_khz) 27 * 28 * Then we use scaling math (suggested by george@mvista.com) to get: 29 * ns = cycles * (10^6 * SC / cpu_khz) / SC 30 * ns = cycles * cyc2ns_scale / SC 31 * 32 * And since SC is a constant power of two, we can convert the div 33 * into a shift. 34 * 35 * We can use khz divisor instead of mhz to keep a better precision, since 36 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 37 * (mathieu.desnoyers@polymtl.ca) 38 * 39 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 40 */ 41 42DECLARE_PER_CPU(unsigned long, cyc2ns); 43 44#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ 45 46static inline unsigned long long __cycles_2_ns(unsigned long long cyc) 47{ 48 return cyc * per_cpu(cyc2ns, smp_processor_id()) >> CYC2NS_SCALE_FACTOR; 49} 50 51static inline unsigned long long cycles_2_ns(unsigned long long cyc) 52{ 53 unsigned long long ns; 54 unsigned long flags; 55 56 local_irq_save(flags); 57 ns = __cycles_2_ns(cyc); 58 local_irq_restore(flags); 59 60 return ns; 61} 62 63#endif