at v2.6.27 461 lines 12 kB view raw
1#ifndef _ASM_X86_BITOPS_H 2#define _ASM_X86_BITOPS_H 3 4/* 5 * Copyright 1992, Linus Torvalds. 6 */ 7 8#ifndef _LINUX_BITOPS_H 9#error only <linux/bitops.h> can be included directly 10#endif 11 12#include <linux/compiler.h> 13#include <asm/alternative.h> 14 15/* 16 * These have to be done with inline assembly: that way the bit-setting 17 * is guaranteed to be atomic. All bit operations return 0 if the bit 18 * was cleared before the operation and != 0 if it was not. 19 * 20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). 21 */ 22 23#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1) 24/* Technically wrong, but this avoids compilation errors on some gcc 25 versions. */ 26#define BITOP_ADDR(x) "=m" (*(volatile long *) (x)) 27#else 28#define BITOP_ADDR(x) "+m" (*(volatile long *) (x)) 29#endif 30 31#define ADDR BITOP_ADDR(addr) 32 33/* 34 * We do the locked ops that don't return the old value as 35 * a mask operation on a byte. 36 */ 37#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr)) 38#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3)) 39#define CONST_MASK(nr) (1 << ((nr) & 7)) 40 41/** 42 * set_bit - Atomically set a bit in memory 43 * @nr: the bit to set 44 * @addr: the address to start counting from 45 * 46 * This function is atomic and may not be reordered. See __set_bit() 47 * if you do not require the atomic guarantees. 48 * 49 * Note: there are no guarantees that this function will not be reordered 50 * on non x86 architectures, so if you are writing portable code, 51 * make sure not to rely on its reordering guarantees. 52 * 53 * Note that @nr may be almost arbitrarily large; this function is not 54 * restricted to acting on a single-word quantity. 55 */ 56static inline void set_bit(unsigned int nr, volatile unsigned long *addr) 57{ 58 if (IS_IMMEDIATE(nr)) { 59 asm volatile(LOCK_PREFIX "orb %1,%0" 60 : CONST_MASK_ADDR(nr, addr) 61 : "iq" ((u8)CONST_MASK(nr)) 62 : "memory"); 63 } else { 64 asm volatile(LOCK_PREFIX "bts %1,%0" 65 : BITOP_ADDR(addr) : "Ir" (nr) : "memory"); 66 } 67} 68 69/** 70 * __set_bit - Set a bit in memory 71 * @nr: the bit to set 72 * @addr: the address to start counting from 73 * 74 * Unlike set_bit(), this function is non-atomic and may be reordered. 75 * If it's called on the same region of memory simultaneously, the effect 76 * may be that only one operation succeeds. 77 */ 78static inline void __set_bit(int nr, volatile unsigned long *addr) 79{ 80 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory"); 81} 82 83/** 84 * clear_bit - Clears a bit in memory 85 * @nr: Bit to clear 86 * @addr: Address to start counting from 87 * 88 * clear_bit() is atomic and may not be reordered. However, it does 89 * not contain a memory barrier, so if it is used for locking purposes, 90 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() 91 * in order to ensure changes are visible on other processors. 92 */ 93static inline void clear_bit(int nr, volatile unsigned long *addr) 94{ 95 if (IS_IMMEDIATE(nr)) { 96 asm volatile(LOCK_PREFIX "andb %1,%0" 97 : CONST_MASK_ADDR(nr, addr) 98 : "iq" ((u8)~CONST_MASK(nr))); 99 } else { 100 asm volatile(LOCK_PREFIX "btr %1,%0" 101 : BITOP_ADDR(addr) 102 : "Ir" (nr)); 103 } 104} 105 106/* 107 * clear_bit_unlock - Clears a bit in memory 108 * @nr: Bit to clear 109 * @addr: Address to start counting from 110 * 111 * clear_bit() is atomic and implies release semantics before the memory 112 * operation. It can be used for an unlock. 113 */ 114static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr) 115{ 116 barrier(); 117 clear_bit(nr, addr); 118} 119 120static inline void __clear_bit(int nr, volatile unsigned long *addr) 121{ 122 asm volatile("btr %1,%0" : ADDR : "Ir" (nr)); 123} 124 125/* 126 * __clear_bit_unlock - Clears a bit in memory 127 * @nr: Bit to clear 128 * @addr: Address to start counting from 129 * 130 * __clear_bit() is non-atomic and implies release semantics before the memory 131 * operation. It can be used for an unlock if no other CPUs can concurrently 132 * modify other bits in the word. 133 * 134 * No memory barrier is required here, because x86 cannot reorder stores past 135 * older loads. Same principle as spin_unlock. 136 */ 137static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr) 138{ 139 barrier(); 140 __clear_bit(nr, addr); 141} 142 143#define smp_mb__before_clear_bit() barrier() 144#define smp_mb__after_clear_bit() barrier() 145 146/** 147 * __change_bit - Toggle a bit in memory 148 * @nr: the bit to change 149 * @addr: the address to start counting from 150 * 151 * Unlike change_bit(), this function is non-atomic and may be reordered. 152 * If it's called on the same region of memory simultaneously, the effect 153 * may be that only one operation succeeds. 154 */ 155static inline void __change_bit(int nr, volatile unsigned long *addr) 156{ 157 asm volatile("btc %1,%0" : ADDR : "Ir" (nr)); 158} 159 160/** 161 * change_bit - Toggle a bit in memory 162 * @nr: Bit to change 163 * @addr: Address to start counting from 164 * 165 * change_bit() is atomic and may not be reordered. 166 * Note that @nr may be almost arbitrarily large; this function is not 167 * restricted to acting on a single-word quantity. 168 */ 169static inline void change_bit(int nr, volatile unsigned long *addr) 170{ 171 asm volatile(LOCK_PREFIX "btc %1,%0" : ADDR : "Ir" (nr)); 172} 173 174/** 175 * test_and_set_bit - Set a bit and return its old value 176 * @nr: Bit to set 177 * @addr: Address to count from 178 * 179 * This operation is atomic and cannot be reordered. 180 * It also implies a memory barrier. 181 */ 182static inline int test_and_set_bit(int nr, volatile unsigned long *addr) 183{ 184 int oldbit; 185 186 asm volatile(LOCK_PREFIX "bts %2,%1\n\t" 187 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory"); 188 189 return oldbit; 190} 191 192/** 193 * test_and_set_bit_lock - Set a bit and return its old value for lock 194 * @nr: Bit to set 195 * @addr: Address to count from 196 * 197 * This is the same as test_and_set_bit on x86. 198 */ 199static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr) 200{ 201 return test_and_set_bit(nr, addr); 202} 203 204/** 205 * __test_and_set_bit - Set a bit and return its old value 206 * @nr: Bit to set 207 * @addr: Address to count from 208 * 209 * This operation is non-atomic and can be reordered. 210 * If two examples of this operation race, one can appear to succeed 211 * but actually fail. You must protect multiple accesses with a lock. 212 */ 213static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) 214{ 215 int oldbit; 216 217 asm("bts %2,%1\n\t" 218 "sbb %0,%0" 219 : "=r" (oldbit), ADDR 220 : "Ir" (nr)); 221 return oldbit; 222} 223 224/** 225 * test_and_clear_bit - Clear a bit and return its old value 226 * @nr: Bit to clear 227 * @addr: Address to count from 228 * 229 * This operation is atomic and cannot be reordered. 230 * It also implies a memory barrier. 231 */ 232static inline int test_and_clear_bit(int nr, volatile unsigned long *addr) 233{ 234 int oldbit; 235 236 asm volatile(LOCK_PREFIX "btr %2,%1\n\t" 237 "sbb %0,%0" 238 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory"); 239 240 return oldbit; 241} 242 243/** 244 * __test_and_clear_bit - Clear a bit and return its old value 245 * @nr: Bit to clear 246 * @addr: Address to count from 247 * 248 * This operation is non-atomic and can be reordered. 249 * If two examples of this operation race, one can appear to succeed 250 * but actually fail. You must protect multiple accesses with a lock. 251 */ 252static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) 253{ 254 int oldbit; 255 256 asm volatile("btr %2,%1\n\t" 257 "sbb %0,%0" 258 : "=r" (oldbit), ADDR 259 : "Ir" (nr)); 260 return oldbit; 261} 262 263/* WARNING: non atomic and it can be reordered! */ 264static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) 265{ 266 int oldbit; 267 268 asm volatile("btc %2,%1\n\t" 269 "sbb %0,%0" 270 : "=r" (oldbit), ADDR 271 : "Ir" (nr) : "memory"); 272 273 return oldbit; 274} 275 276/** 277 * test_and_change_bit - Change a bit and return its old value 278 * @nr: Bit to change 279 * @addr: Address to count from 280 * 281 * This operation is atomic and cannot be reordered. 282 * It also implies a memory barrier. 283 */ 284static inline int test_and_change_bit(int nr, volatile unsigned long *addr) 285{ 286 int oldbit; 287 288 asm volatile(LOCK_PREFIX "btc %2,%1\n\t" 289 "sbb %0,%0" 290 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory"); 291 292 return oldbit; 293} 294 295static inline int constant_test_bit(int nr, const volatile unsigned long *addr) 296{ 297 return ((1UL << (nr % BITS_PER_LONG)) & 298 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0; 299} 300 301static inline int variable_test_bit(int nr, volatile const unsigned long *addr) 302{ 303 int oldbit; 304 305 asm volatile("bt %2,%1\n\t" 306 "sbb %0,%0" 307 : "=r" (oldbit) 308 : "m" (*(unsigned long *)addr), "Ir" (nr)); 309 310 return oldbit; 311} 312 313#if 0 /* Fool kernel-doc since it doesn't do macros yet */ 314/** 315 * test_bit - Determine whether a bit is set 316 * @nr: bit number to test 317 * @addr: Address to start counting from 318 */ 319static int test_bit(int nr, const volatile unsigned long *addr); 320#endif 321 322#define test_bit(nr, addr) \ 323 (__builtin_constant_p((nr)) \ 324 ? constant_test_bit((nr), (addr)) \ 325 : variable_test_bit((nr), (addr))) 326 327/** 328 * __ffs - find first set bit in word 329 * @word: The word to search 330 * 331 * Undefined if no bit exists, so code should check against 0 first. 332 */ 333static inline unsigned long __ffs(unsigned long word) 334{ 335 asm("bsf %1,%0" 336 : "=r" (word) 337 : "rm" (word)); 338 return word; 339} 340 341/** 342 * ffz - find first zero bit in word 343 * @word: The word to search 344 * 345 * Undefined if no zero exists, so code should check against ~0UL first. 346 */ 347static inline unsigned long ffz(unsigned long word) 348{ 349 asm("bsf %1,%0" 350 : "=r" (word) 351 : "r" (~word)); 352 return word; 353} 354 355/* 356 * __fls: find last set bit in word 357 * @word: The word to search 358 * 359 * Undefined if no set bit exists, so code should check against 0 first. 360 */ 361static inline unsigned long __fls(unsigned long word) 362{ 363 asm("bsr %1,%0" 364 : "=r" (word) 365 : "rm" (word)); 366 return word; 367} 368 369#ifdef __KERNEL__ 370/** 371 * ffs - find first set bit in word 372 * @x: the word to search 373 * 374 * This is defined the same way as the libc and compiler builtin ffs 375 * routines, therefore differs in spirit from the other bitops. 376 * 377 * ffs(value) returns 0 if value is 0 or the position of the first 378 * set bit if value is nonzero. The first (least significant) bit 379 * is at position 1. 380 */ 381static inline int ffs(int x) 382{ 383 int r; 384#ifdef CONFIG_X86_CMOV 385 asm("bsfl %1,%0\n\t" 386 "cmovzl %2,%0" 387 : "=r" (r) : "rm" (x), "r" (-1)); 388#else 389 asm("bsfl %1,%0\n\t" 390 "jnz 1f\n\t" 391 "movl $-1,%0\n" 392 "1:" : "=r" (r) : "rm" (x)); 393#endif 394 return r + 1; 395} 396 397/** 398 * fls - find last set bit in word 399 * @x: the word to search 400 * 401 * This is defined in a similar way as the libc and compiler builtin 402 * ffs, but returns the position of the most significant set bit. 403 * 404 * fls(value) returns 0 if value is 0 or the position of the last 405 * set bit if value is nonzero. The last (most significant) bit is 406 * at position 32. 407 */ 408static inline int fls(int x) 409{ 410 int r; 411#ifdef CONFIG_X86_CMOV 412 asm("bsrl %1,%0\n\t" 413 "cmovzl %2,%0" 414 : "=&r" (r) : "rm" (x), "rm" (-1)); 415#else 416 asm("bsrl %1,%0\n\t" 417 "jnz 1f\n\t" 418 "movl $-1,%0\n" 419 "1:" : "=r" (r) : "rm" (x)); 420#endif 421 return r + 1; 422} 423#endif /* __KERNEL__ */ 424 425#undef ADDR 426 427static inline void set_bit_string(unsigned long *bitmap, 428 unsigned long i, int len) 429{ 430 unsigned long end = i + len; 431 while (i < end) { 432 __set_bit(i, bitmap); 433 i++; 434 } 435} 436 437#ifdef __KERNEL__ 438 439#include <asm-generic/bitops/sched.h> 440 441#define ARCH_HAS_FAST_MULTIPLIER 1 442 443#include <asm-generic/bitops/hweight.h> 444 445#endif /* __KERNEL__ */ 446 447#include <asm-generic/bitops/fls64.h> 448 449#ifdef __KERNEL__ 450 451#include <asm-generic/bitops/ext2-non-atomic.h> 452 453#define ext2_set_bit_atomic(lock, nr, addr) \ 454 test_and_set_bit((nr), (unsigned long *)(addr)) 455#define ext2_clear_bit_atomic(lock, nr, addr) \ 456 test_and_clear_bit((nr), (unsigned long *)(addr)) 457 458#include <asm-generic/bitops/minix.h> 459 460#endif /* __KERNEL__ */ 461#endif /* _ASM_X86_BITOPS_H */