Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/ethtool.h>
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
103#include <linux/if_macvlan.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/kallsyms.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <linux/ipv6.h>
127#include <linux/in.h>
128#include <linux/jhash.h>
129#include <linux/random.h>
130
131#include "net-sysfs.h"
132
133/*
134 * The list of packet types we will receive (as opposed to discard)
135 * and the routines to invoke.
136 *
137 * Why 16. Because with 16 the only overlap we get on a hash of the
138 * low nibble of the protocol value is RARP/SNAP/X.25.
139 *
140 * NOTE: That is no longer true with the addition of VLAN tags. Not
141 * sure which should go first, but I bet it won't make much
142 * difference if we are running VLANs. The good news is that
143 * this protocol won't be in the list unless compiled in, so
144 * the average user (w/out VLANs) will not be adversely affected.
145 * --BLG
146 *
147 * 0800 IP
148 * 8100 802.1Q VLAN
149 * 0001 802.3
150 * 0002 AX.25
151 * 0004 802.2
152 * 8035 RARP
153 * 0005 SNAP
154 * 0805 X.25
155 * 0806 ARP
156 * 8137 IPX
157 * 0009 Localtalk
158 * 86DD IPv6
159 */
160
161#define PTYPE_HASH_SIZE (16)
162#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
163
164static DEFINE_SPINLOCK(ptype_lock);
165static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
166static struct list_head ptype_all __read_mostly; /* Taps */
167
168#ifdef CONFIG_NET_DMA
169struct net_dma {
170 struct dma_client client;
171 spinlock_t lock;
172 cpumask_t channel_mask;
173 struct dma_chan **channels;
174};
175
176static enum dma_state_client
177netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
178 enum dma_state state);
179
180static struct net_dma net_dma = {
181 .client = {
182 .event_callback = netdev_dma_event,
183 },
184};
185#endif
186
187/*
188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
189 * semaphore.
190 *
191 * Pure readers hold dev_base_lock for reading.
192 *
193 * Writers must hold the rtnl semaphore while they loop through the
194 * dev_base_head list, and hold dev_base_lock for writing when they do the
195 * actual updates. This allows pure readers to access the list even
196 * while a writer is preparing to update it.
197 *
198 * To put it another way, dev_base_lock is held for writing only to
199 * protect against pure readers; the rtnl semaphore provides the
200 * protection against other writers.
201 *
202 * See, for example usages, register_netdevice() and
203 * unregister_netdevice(), which must be called with the rtnl
204 * semaphore held.
205 */
206DEFINE_RWLOCK(dev_base_lock);
207
208EXPORT_SYMBOL(dev_base_lock);
209
210#define NETDEV_HASHBITS 8
211#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
212
213static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214{
215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
217}
218
219static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220{
221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
222}
223
224/* Device list insertion */
225static int list_netdevice(struct net_device *dev)
226{
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
237}
238
239/* Device list removal */
240static void unlist_netdevice(struct net_device *dev)
241{
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del(&dev->dev_list);
247 hlist_del(&dev->name_hlist);
248 hlist_del(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
250}
251
252/*
253 * Our notifier list
254 */
255
256static RAW_NOTIFIER_HEAD(netdev_chain);
257
258/*
259 * Device drivers call our routines to queue packets here. We empty the
260 * queue in the local softnet handler.
261 */
262
263DEFINE_PER_CPU(struct softnet_data, softnet_data);
264
265#ifdef CONFIG_LOCKDEP
266/*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
285 ARPHRD_NONE};
286
287static const char *netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
302 "_xmit_NONE"};
303
304static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308{
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316}
317
318static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320{
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326}
327
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336}
337#else
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341}
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344}
345#endif
346
347/*******************************************************************************
348
349 Protocol management and registration routines
350
351*******************************************************************************/
352
353/*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369/**
370 * dev_add_pack - add packet handler
371 * @pt: packet type declaration
372 *
373 * Add a protocol handler to the networking stack. The passed &packet_type
374 * is linked into kernel lists and may not be freed until it has been
375 * removed from the kernel lists.
376 *
377 * This call does not sleep therefore it can not
378 * guarantee all CPU's that are in middle of receiving packets
379 * will see the new packet type (until the next received packet).
380 */
381
382void dev_add_pack(struct packet_type *pt)
383{
384 int hash;
385
386 spin_lock_bh(&ptype_lock);
387 if (pt->type == htons(ETH_P_ALL))
388 list_add_rcu(&pt->list, &ptype_all);
389 else {
390 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
391 list_add_rcu(&pt->list, &ptype_base[hash]);
392 }
393 spin_unlock_bh(&ptype_lock);
394}
395
396/**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409void __dev_remove_pack(struct packet_type *pt)
410{
411 struct list_head *head;
412 struct packet_type *pt1;
413
414 spin_lock_bh(&ptype_lock);
415
416 if (pt->type == htons(ETH_P_ALL))
417 head = &ptype_all;
418 else
419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
420
421 list_for_each_entry(pt1, head, list) {
422 if (pt == pt1) {
423 list_del_rcu(&pt->list);
424 goto out;
425 }
426 }
427
428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
429out:
430 spin_unlock_bh(&ptype_lock);
431}
432/**
433 * dev_remove_pack - remove packet handler
434 * @pt: packet type declaration
435 *
436 * Remove a protocol handler that was previously added to the kernel
437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
438 * from the kernel lists and can be freed or reused once this function
439 * returns.
440 *
441 * This call sleeps to guarantee that no CPU is looking at the packet
442 * type after return.
443 */
444void dev_remove_pack(struct packet_type *pt)
445{
446 __dev_remove_pack(pt);
447
448 synchronize_net();
449}
450
451/******************************************************************************
452
453 Device Boot-time Settings Routines
454
455*******************************************************************************/
456
457/* Boot time configuration table */
458static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
459
460/**
461 * netdev_boot_setup_add - add new setup entry
462 * @name: name of the device
463 * @map: configured settings for the device
464 *
465 * Adds new setup entry to the dev_boot_setup list. The function
466 * returns 0 on error and 1 on success. This is a generic routine to
467 * all netdevices.
468 */
469static int netdev_boot_setup_add(char *name, struct ifmap *map)
470{
471 struct netdev_boot_setup *s;
472 int i;
473
474 s = dev_boot_setup;
475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
477 memset(s[i].name, 0, sizeof(s[i].name));
478 strlcpy(s[i].name, name, IFNAMSIZ);
479 memcpy(&s[i].map, map, sizeof(s[i].map));
480 break;
481 }
482 }
483
484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
485}
486
487/**
488 * netdev_boot_setup_check - check boot time settings
489 * @dev: the netdevice
490 *
491 * Check boot time settings for the device.
492 * The found settings are set for the device to be used
493 * later in the device probing.
494 * Returns 0 if no settings found, 1 if they are.
495 */
496int netdev_boot_setup_check(struct net_device *dev)
497{
498 struct netdev_boot_setup *s = dev_boot_setup;
499 int i;
500
501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
503 !strcmp(dev->name, s[i].name)) {
504 dev->irq = s[i].map.irq;
505 dev->base_addr = s[i].map.base_addr;
506 dev->mem_start = s[i].map.mem_start;
507 dev->mem_end = s[i].map.mem_end;
508 return 1;
509 }
510 }
511 return 0;
512}
513
514
515/**
516 * netdev_boot_base - get address from boot time settings
517 * @prefix: prefix for network device
518 * @unit: id for network device
519 *
520 * Check boot time settings for the base address of device.
521 * The found settings are set for the device to be used
522 * later in the device probing.
523 * Returns 0 if no settings found.
524 */
525unsigned long netdev_boot_base(const char *prefix, int unit)
526{
527 const struct netdev_boot_setup *s = dev_boot_setup;
528 char name[IFNAMSIZ];
529 int i;
530
531 sprintf(name, "%s%d", prefix, unit);
532
533 /*
534 * If device already registered then return base of 1
535 * to indicate not to probe for this interface
536 */
537 if (__dev_get_by_name(&init_net, name))
538 return 1;
539
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
541 if (!strcmp(name, s[i].name))
542 return s[i].map.base_addr;
543 return 0;
544}
545
546/*
547 * Saves at boot time configured settings for any netdevice.
548 */
549int __init netdev_boot_setup(char *str)
550{
551 int ints[5];
552 struct ifmap map;
553
554 str = get_options(str, ARRAY_SIZE(ints), ints);
555 if (!str || !*str)
556 return 0;
557
558 /* Save settings */
559 memset(&map, 0, sizeof(map));
560 if (ints[0] > 0)
561 map.irq = ints[1];
562 if (ints[0] > 1)
563 map.base_addr = ints[2];
564 if (ints[0] > 2)
565 map.mem_start = ints[3];
566 if (ints[0] > 3)
567 map.mem_end = ints[4];
568
569 /* Add new entry to the list */
570 return netdev_boot_setup_add(str, &map);
571}
572
573__setup("netdev=", netdev_boot_setup);
574
575/*******************************************************************************
576
577 Device Interface Subroutines
578
579*******************************************************************************/
580
581/**
582 * __dev_get_by_name - find a device by its name
583 * @net: the applicable net namespace
584 * @name: name to find
585 *
586 * Find an interface by name. Must be called under RTNL semaphore
587 * or @dev_base_lock. If the name is found a pointer to the device
588 * is returned. If the name is not found then %NULL is returned. The
589 * reference counters are not incremented so the caller must be
590 * careful with locks.
591 */
592
593struct net_device *__dev_get_by_name(struct net *net, const char *name)
594{
595 struct hlist_node *p;
596
597 hlist_for_each(p, dev_name_hash(net, name)) {
598 struct net_device *dev
599 = hlist_entry(p, struct net_device, name_hlist);
600 if (!strncmp(dev->name, name, IFNAMSIZ))
601 return dev;
602 }
603 return NULL;
604}
605
606/**
607 * dev_get_by_name - find a device by its name
608 * @net: the applicable net namespace
609 * @name: name to find
610 *
611 * Find an interface by name. This can be called from any
612 * context and does its own locking. The returned handle has
613 * the usage count incremented and the caller must use dev_put() to
614 * release it when it is no longer needed. %NULL is returned if no
615 * matching device is found.
616 */
617
618struct net_device *dev_get_by_name(struct net *net, const char *name)
619{
620 struct net_device *dev;
621
622 read_lock(&dev_base_lock);
623 dev = __dev_get_by_name(net, name);
624 if (dev)
625 dev_hold(dev);
626 read_unlock(&dev_base_lock);
627 return dev;
628}
629
630/**
631 * __dev_get_by_index - find a device by its ifindex
632 * @net: the applicable net namespace
633 * @ifindex: index of device
634 *
635 * Search for an interface by index. Returns %NULL if the device
636 * is not found or a pointer to the device. The device has not
637 * had its reference counter increased so the caller must be careful
638 * about locking. The caller must hold either the RTNL semaphore
639 * or @dev_base_lock.
640 */
641
642struct net_device *__dev_get_by_index(struct net *net, int ifindex)
643{
644 struct hlist_node *p;
645
646 hlist_for_each(p, dev_index_hash(net, ifindex)) {
647 struct net_device *dev
648 = hlist_entry(p, struct net_device, index_hlist);
649 if (dev->ifindex == ifindex)
650 return dev;
651 }
652 return NULL;
653}
654
655
656/**
657 * dev_get_by_index - find a device by its ifindex
658 * @net: the applicable net namespace
659 * @ifindex: index of device
660 *
661 * Search for an interface by index. Returns NULL if the device
662 * is not found or a pointer to the device. The device returned has
663 * had a reference added and the pointer is safe until the user calls
664 * dev_put to indicate they have finished with it.
665 */
666
667struct net_device *dev_get_by_index(struct net *net, int ifindex)
668{
669 struct net_device *dev;
670
671 read_lock(&dev_base_lock);
672 dev = __dev_get_by_index(net, ifindex);
673 if (dev)
674 dev_hold(dev);
675 read_unlock(&dev_base_lock);
676 return dev;
677}
678
679/**
680 * dev_getbyhwaddr - find a device by its hardware address
681 * @net: the applicable net namespace
682 * @type: media type of device
683 * @ha: hardware address
684 *
685 * Search for an interface by MAC address. Returns NULL if the device
686 * is not found or a pointer to the device. The caller must hold the
687 * rtnl semaphore. The returned device has not had its ref count increased
688 * and the caller must therefore be careful about locking
689 *
690 * BUGS:
691 * If the API was consistent this would be __dev_get_by_hwaddr
692 */
693
694struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
695{
696 struct net_device *dev;
697
698 ASSERT_RTNL();
699
700 for_each_netdev(net, dev)
701 if (dev->type == type &&
702 !memcmp(dev->dev_addr, ha, dev->addr_len))
703 return dev;
704
705 return NULL;
706}
707
708EXPORT_SYMBOL(dev_getbyhwaddr);
709
710struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
711{
712 struct net_device *dev;
713
714 ASSERT_RTNL();
715 for_each_netdev(net, dev)
716 if (dev->type == type)
717 return dev;
718
719 return NULL;
720}
721
722EXPORT_SYMBOL(__dev_getfirstbyhwtype);
723
724struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
725{
726 struct net_device *dev;
727
728 rtnl_lock();
729 dev = __dev_getfirstbyhwtype(net, type);
730 if (dev)
731 dev_hold(dev);
732 rtnl_unlock();
733 return dev;
734}
735
736EXPORT_SYMBOL(dev_getfirstbyhwtype);
737
738/**
739 * dev_get_by_flags - find any device with given flags
740 * @net: the applicable net namespace
741 * @if_flags: IFF_* values
742 * @mask: bitmask of bits in if_flags to check
743 *
744 * Search for any interface with the given flags. Returns NULL if a device
745 * is not found or a pointer to the device. The device returned has
746 * had a reference added and the pointer is safe until the user calls
747 * dev_put to indicate they have finished with it.
748 */
749
750struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
751{
752 struct net_device *dev, *ret;
753
754 ret = NULL;
755 read_lock(&dev_base_lock);
756 for_each_netdev(net, dev) {
757 if (((dev->flags ^ if_flags) & mask) == 0) {
758 dev_hold(dev);
759 ret = dev;
760 break;
761 }
762 }
763 read_unlock(&dev_base_lock);
764 return ret;
765}
766
767/**
768 * dev_valid_name - check if name is okay for network device
769 * @name: name string
770 *
771 * Network device names need to be valid file names to
772 * to allow sysfs to work. We also disallow any kind of
773 * whitespace.
774 */
775int dev_valid_name(const char *name)
776{
777 if (*name == '\0')
778 return 0;
779 if (strlen(name) >= IFNAMSIZ)
780 return 0;
781 if (!strcmp(name, ".") || !strcmp(name, ".."))
782 return 0;
783
784 while (*name) {
785 if (*name == '/' || isspace(*name))
786 return 0;
787 name++;
788 }
789 return 1;
790}
791
792/**
793 * __dev_alloc_name - allocate a name for a device
794 * @net: network namespace to allocate the device name in
795 * @name: name format string
796 * @buf: scratch buffer and result name string
797 *
798 * Passed a format string - eg "lt%d" it will try and find a suitable
799 * id. It scans list of devices to build up a free map, then chooses
800 * the first empty slot. The caller must hold the dev_base or rtnl lock
801 * while allocating the name and adding the device in order to avoid
802 * duplicates.
803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
804 * Returns the number of the unit assigned or a negative errno code.
805 */
806
807static int __dev_alloc_name(struct net *net, const char *name, char *buf)
808{
809 int i = 0;
810 const char *p;
811 const int max_netdevices = 8*PAGE_SIZE;
812 unsigned long *inuse;
813 struct net_device *d;
814
815 p = strnchr(name, IFNAMSIZ-1, '%');
816 if (p) {
817 /*
818 * Verify the string as this thing may have come from
819 * the user. There must be either one "%d" and no other "%"
820 * characters.
821 */
822 if (p[1] != 'd' || strchr(p + 2, '%'))
823 return -EINVAL;
824
825 /* Use one page as a bit array of possible slots */
826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
827 if (!inuse)
828 return -ENOMEM;
829
830 for_each_netdev(net, d) {
831 if (!sscanf(d->name, name, &i))
832 continue;
833 if (i < 0 || i >= max_netdevices)
834 continue;
835
836 /* avoid cases where sscanf is not exact inverse of printf */
837 snprintf(buf, IFNAMSIZ, name, i);
838 if (!strncmp(buf, d->name, IFNAMSIZ))
839 set_bit(i, inuse);
840 }
841
842 i = find_first_zero_bit(inuse, max_netdevices);
843 free_page((unsigned long) inuse);
844 }
845
846 snprintf(buf, IFNAMSIZ, name, i);
847 if (!__dev_get_by_name(net, buf))
848 return i;
849
850 /* It is possible to run out of possible slots
851 * when the name is long and there isn't enough space left
852 * for the digits, or if all bits are used.
853 */
854 return -ENFILE;
855}
856
857/**
858 * dev_alloc_name - allocate a name for a device
859 * @dev: device
860 * @name: name format string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871int dev_alloc_name(struct net_device *dev, const char *name)
872{
873 char buf[IFNAMSIZ];
874 struct net *net;
875 int ret;
876
877 BUG_ON(!dev_net(dev));
878 net = dev_net(dev);
879 ret = __dev_alloc_name(net, name, buf);
880 if (ret >= 0)
881 strlcpy(dev->name, buf, IFNAMSIZ);
882 return ret;
883}
884
885
886/**
887 * dev_change_name - change name of a device
888 * @dev: device
889 * @newname: name (or format string) must be at least IFNAMSIZ
890 *
891 * Change name of a device, can pass format strings "eth%d".
892 * for wildcarding.
893 */
894int dev_change_name(struct net_device *dev, char *newname)
895{
896 char oldname[IFNAMSIZ];
897 int err = 0;
898 int ret;
899 struct net *net;
900
901 ASSERT_RTNL();
902 BUG_ON(!dev_net(dev));
903
904 net = dev_net(dev);
905 if (dev->flags & IFF_UP)
906 return -EBUSY;
907
908 if (!dev_valid_name(newname))
909 return -EINVAL;
910
911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
912 return 0;
913
914 memcpy(oldname, dev->name, IFNAMSIZ);
915
916 if (strchr(newname, '%')) {
917 err = dev_alloc_name(dev, newname);
918 if (err < 0)
919 return err;
920 strcpy(newname, dev->name);
921 }
922 else if (__dev_get_by_name(net, newname))
923 return -EEXIST;
924 else
925 strlcpy(dev->name, newname, IFNAMSIZ);
926
927rollback:
928 err = device_rename(&dev->dev, dev->name);
929 if (err) {
930 memcpy(dev->name, oldname, IFNAMSIZ);
931 return err;
932 }
933
934 write_lock_bh(&dev_base_lock);
935 hlist_del(&dev->name_hlist);
936 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
937 write_unlock_bh(&dev_base_lock);
938
939 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
940 ret = notifier_to_errno(ret);
941
942 if (ret) {
943 if (err) {
944 printk(KERN_ERR
945 "%s: name change rollback failed: %d.\n",
946 dev->name, ret);
947 } else {
948 err = ret;
949 memcpy(dev->name, oldname, IFNAMSIZ);
950 goto rollback;
951 }
952 }
953
954 return err;
955}
956
957/**
958 * netdev_features_change - device changes features
959 * @dev: device to cause notification
960 *
961 * Called to indicate a device has changed features.
962 */
963void netdev_features_change(struct net_device *dev)
964{
965 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
966}
967EXPORT_SYMBOL(netdev_features_change);
968
969/**
970 * netdev_state_change - device changes state
971 * @dev: device to cause notification
972 *
973 * Called to indicate a device has changed state. This function calls
974 * the notifier chains for netdev_chain and sends a NEWLINK message
975 * to the routing socket.
976 */
977void netdev_state_change(struct net_device *dev)
978{
979 if (dev->flags & IFF_UP) {
980 call_netdevice_notifiers(NETDEV_CHANGE, dev);
981 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
982 }
983}
984
985void netdev_bonding_change(struct net_device *dev)
986{
987 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
988}
989EXPORT_SYMBOL(netdev_bonding_change);
990
991/**
992 * dev_load - load a network module
993 * @net: the applicable net namespace
994 * @name: name of interface
995 *
996 * If a network interface is not present and the process has suitable
997 * privileges this function loads the module. If module loading is not
998 * available in this kernel then it becomes a nop.
999 */
1000
1001void dev_load(struct net *net, const char *name)
1002{
1003 struct net_device *dev;
1004
1005 read_lock(&dev_base_lock);
1006 dev = __dev_get_by_name(net, name);
1007 read_unlock(&dev_base_lock);
1008
1009 if (!dev && capable(CAP_SYS_MODULE))
1010 request_module("%s", name);
1011}
1012
1013/**
1014 * dev_open - prepare an interface for use.
1015 * @dev: device to open
1016 *
1017 * Takes a device from down to up state. The device's private open
1018 * function is invoked and then the multicast lists are loaded. Finally
1019 * the device is moved into the up state and a %NETDEV_UP message is
1020 * sent to the netdev notifier chain.
1021 *
1022 * Calling this function on an active interface is a nop. On a failure
1023 * a negative errno code is returned.
1024 */
1025int dev_open(struct net_device *dev)
1026{
1027 int ret = 0;
1028
1029 ASSERT_RTNL();
1030
1031 /*
1032 * Is it already up?
1033 */
1034
1035 if (dev->flags & IFF_UP)
1036 return 0;
1037
1038 /*
1039 * Is it even present?
1040 */
1041 if (!netif_device_present(dev))
1042 return -ENODEV;
1043
1044 /*
1045 * Call device private open method
1046 */
1047 set_bit(__LINK_STATE_START, &dev->state);
1048
1049 if (dev->validate_addr)
1050 ret = dev->validate_addr(dev);
1051
1052 if (!ret && dev->open)
1053 ret = dev->open(dev);
1054
1055 /*
1056 * If it went open OK then:
1057 */
1058
1059 if (ret)
1060 clear_bit(__LINK_STATE_START, &dev->state);
1061 else {
1062 /*
1063 * Set the flags.
1064 */
1065 dev->flags |= IFF_UP;
1066
1067 /*
1068 * Initialize multicasting status
1069 */
1070 dev_set_rx_mode(dev);
1071
1072 /*
1073 * Wakeup transmit queue engine
1074 */
1075 dev_activate(dev);
1076
1077 /*
1078 * ... and announce new interface.
1079 */
1080 call_netdevice_notifiers(NETDEV_UP, dev);
1081 }
1082
1083 return ret;
1084}
1085
1086/**
1087 * dev_close - shutdown an interface.
1088 * @dev: device to shutdown
1089 *
1090 * This function moves an active device into down state. A
1091 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1092 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1093 * chain.
1094 */
1095int dev_close(struct net_device *dev)
1096{
1097 ASSERT_RTNL();
1098
1099 might_sleep();
1100
1101 if (!(dev->flags & IFF_UP))
1102 return 0;
1103
1104 /*
1105 * Tell people we are going down, so that they can
1106 * prepare to death, when device is still operating.
1107 */
1108 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1109
1110 clear_bit(__LINK_STATE_START, &dev->state);
1111
1112 /* Synchronize to scheduled poll. We cannot touch poll list,
1113 * it can be even on different cpu. So just clear netif_running().
1114 *
1115 * dev->stop() will invoke napi_disable() on all of it's
1116 * napi_struct instances on this device.
1117 */
1118 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1119
1120 dev_deactivate(dev);
1121
1122 /*
1123 * Call the device specific close. This cannot fail.
1124 * Only if device is UP
1125 *
1126 * We allow it to be called even after a DETACH hot-plug
1127 * event.
1128 */
1129 if (dev->stop)
1130 dev->stop(dev);
1131
1132 /*
1133 * Device is now down.
1134 */
1135
1136 dev->flags &= ~IFF_UP;
1137
1138 /*
1139 * Tell people we are down
1140 */
1141 call_netdevice_notifiers(NETDEV_DOWN, dev);
1142
1143 return 0;
1144}
1145
1146
1147/**
1148 * dev_disable_lro - disable Large Receive Offload on a device
1149 * @dev: device
1150 *
1151 * Disable Large Receive Offload (LRO) on a net device. Must be
1152 * called under RTNL. This is needed if received packets may be
1153 * forwarded to another interface.
1154 */
1155void dev_disable_lro(struct net_device *dev)
1156{
1157 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1158 dev->ethtool_ops->set_flags) {
1159 u32 flags = dev->ethtool_ops->get_flags(dev);
1160 if (flags & ETH_FLAG_LRO) {
1161 flags &= ~ETH_FLAG_LRO;
1162 dev->ethtool_ops->set_flags(dev, flags);
1163 }
1164 }
1165 WARN_ON(dev->features & NETIF_F_LRO);
1166}
1167EXPORT_SYMBOL(dev_disable_lro);
1168
1169
1170static int dev_boot_phase = 1;
1171
1172/*
1173 * Device change register/unregister. These are not inline or static
1174 * as we export them to the world.
1175 */
1176
1177/**
1178 * register_netdevice_notifier - register a network notifier block
1179 * @nb: notifier
1180 *
1181 * Register a notifier to be called when network device events occur.
1182 * The notifier passed is linked into the kernel structures and must
1183 * not be reused until it has been unregistered. A negative errno code
1184 * is returned on a failure.
1185 *
1186 * When registered all registration and up events are replayed
1187 * to the new notifier to allow device to have a race free
1188 * view of the network device list.
1189 */
1190
1191int register_netdevice_notifier(struct notifier_block *nb)
1192{
1193 struct net_device *dev;
1194 struct net_device *last;
1195 struct net *net;
1196 int err;
1197
1198 rtnl_lock();
1199 err = raw_notifier_chain_register(&netdev_chain, nb);
1200 if (err)
1201 goto unlock;
1202 if (dev_boot_phase)
1203 goto unlock;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1207 err = notifier_to_errno(err);
1208 if (err)
1209 goto rollback;
1210
1211 if (!(dev->flags & IFF_UP))
1212 continue;
1213
1214 nb->notifier_call(nb, NETDEV_UP, dev);
1215 }
1216 }
1217
1218unlock:
1219 rtnl_unlock();
1220 return err;
1221
1222rollback:
1223 last = dev;
1224 for_each_net(net) {
1225 for_each_netdev(net, dev) {
1226 if (dev == last)
1227 break;
1228
1229 if (dev->flags & IFF_UP) {
1230 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1231 nb->notifier_call(nb, NETDEV_DOWN, dev);
1232 }
1233 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1234 }
1235 }
1236
1237 raw_notifier_chain_unregister(&netdev_chain, nb);
1238 goto unlock;
1239}
1240
1241/**
1242 * unregister_netdevice_notifier - unregister a network notifier block
1243 * @nb: notifier
1244 *
1245 * Unregister a notifier previously registered by
1246 * register_netdevice_notifier(). The notifier is unlinked into the
1247 * kernel structures and may then be reused. A negative errno code
1248 * is returned on a failure.
1249 */
1250
1251int unregister_netdevice_notifier(struct notifier_block *nb)
1252{
1253 int err;
1254
1255 rtnl_lock();
1256 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1257 rtnl_unlock();
1258 return err;
1259}
1260
1261/**
1262 * call_netdevice_notifiers - call all network notifier blocks
1263 * @val: value passed unmodified to notifier function
1264 * @dev: net_device pointer passed unmodified to notifier function
1265 *
1266 * Call all network notifier blocks. Parameters and return value
1267 * are as for raw_notifier_call_chain().
1268 */
1269
1270int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1271{
1272 return raw_notifier_call_chain(&netdev_chain, val, dev);
1273}
1274
1275/* When > 0 there are consumers of rx skb time stamps */
1276static atomic_t netstamp_needed = ATOMIC_INIT(0);
1277
1278void net_enable_timestamp(void)
1279{
1280 atomic_inc(&netstamp_needed);
1281}
1282
1283void net_disable_timestamp(void)
1284{
1285 atomic_dec(&netstamp_needed);
1286}
1287
1288static inline void net_timestamp(struct sk_buff *skb)
1289{
1290 if (atomic_read(&netstamp_needed))
1291 __net_timestamp(skb);
1292 else
1293 skb->tstamp.tv64 = 0;
1294}
1295
1296/*
1297 * Support routine. Sends outgoing frames to any network
1298 * taps currently in use.
1299 */
1300
1301static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1302{
1303 struct packet_type *ptype;
1304
1305 net_timestamp(skb);
1306
1307 rcu_read_lock();
1308 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1309 /* Never send packets back to the socket
1310 * they originated from - MvS (miquels@drinkel.ow.org)
1311 */
1312 if ((ptype->dev == dev || !ptype->dev) &&
1313 (ptype->af_packet_priv == NULL ||
1314 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1315 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1316 if (!skb2)
1317 break;
1318
1319 /* skb->nh should be correctly
1320 set by sender, so that the second statement is
1321 just protection against buggy protocols.
1322 */
1323 skb_reset_mac_header(skb2);
1324
1325 if (skb_network_header(skb2) < skb2->data ||
1326 skb2->network_header > skb2->tail) {
1327 if (net_ratelimit())
1328 printk(KERN_CRIT "protocol %04x is "
1329 "buggy, dev %s\n",
1330 skb2->protocol, dev->name);
1331 skb_reset_network_header(skb2);
1332 }
1333
1334 skb2->transport_header = skb2->network_header;
1335 skb2->pkt_type = PACKET_OUTGOING;
1336 ptype->func(skb2, skb->dev, ptype, skb->dev);
1337 }
1338 }
1339 rcu_read_unlock();
1340}
1341
1342
1343static inline void __netif_reschedule(struct Qdisc *q)
1344{
1345 struct softnet_data *sd;
1346 unsigned long flags;
1347
1348 local_irq_save(flags);
1349 sd = &__get_cpu_var(softnet_data);
1350 q->next_sched = sd->output_queue;
1351 sd->output_queue = q;
1352 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1353 local_irq_restore(flags);
1354}
1355
1356void __netif_schedule(struct Qdisc *q)
1357{
1358 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1359 __netif_reschedule(q);
1360}
1361EXPORT_SYMBOL(__netif_schedule);
1362
1363void dev_kfree_skb_irq(struct sk_buff *skb)
1364{
1365 if (atomic_dec_and_test(&skb->users)) {
1366 struct softnet_data *sd;
1367 unsigned long flags;
1368
1369 local_irq_save(flags);
1370 sd = &__get_cpu_var(softnet_data);
1371 skb->next = sd->completion_queue;
1372 sd->completion_queue = skb;
1373 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1374 local_irq_restore(flags);
1375 }
1376}
1377EXPORT_SYMBOL(dev_kfree_skb_irq);
1378
1379void dev_kfree_skb_any(struct sk_buff *skb)
1380{
1381 if (in_irq() || irqs_disabled())
1382 dev_kfree_skb_irq(skb);
1383 else
1384 dev_kfree_skb(skb);
1385}
1386EXPORT_SYMBOL(dev_kfree_skb_any);
1387
1388
1389/**
1390 * netif_device_detach - mark device as removed
1391 * @dev: network device
1392 *
1393 * Mark device as removed from system and therefore no longer available.
1394 */
1395void netif_device_detach(struct net_device *dev)
1396{
1397 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1398 netif_running(dev)) {
1399 netif_stop_queue(dev);
1400 }
1401}
1402EXPORT_SYMBOL(netif_device_detach);
1403
1404/**
1405 * netif_device_attach - mark device as attached
1406 * @dev: network device
1407 *
1408 * Mark device as attached from system and restart if needed.
1409 */
1410void netif_device_attach(struct net_device *dev)
1411{
1412 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1413 netif_running(dev)) {
1414 netif_wake_queue(dev);
1415 __netdev_watchdog_up(dev);
1416 }
1417}
1418EXPORT_SYMBOL(netif_device_attach);
1419
1420static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1421{
1422 return ((features & NETIF_F_GEN_CSUM) ||
1423 ((features & NETIF_F_IP_CSUM) &&
1424 protocol == htons(ETH_P_IP)) ||
1425 ((features & NETIF_F_IPV6_CSUM) &&
1426 protocol == htons(ETH_P_IPV6)));
1427}
1428
1429static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1430{
1431 if (can_checksum_protocol(dev->features, skb->protocol))
1432 return true;
1433
1434 if (skb->protocol == htons(ETH_P_8021Q)) {
1435 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1436 if (can_checksum_protocol(dev->features & dev->vlan_features,
1437 veh->h_vlan_encapsulated_proto))
1438 return true;
1439 }
1440
1441 return false;
1442}
1443
1444/*
1445 * Invalidate hardware checksum when packet is to be mangled, and
1446 * complete checksum manually on outgoing path.
1447 */
1448int skb_checksum_help(struct sk_buff *skb)
1449{
1450 __wsum csum;
1451 int ret = 0, offset;
1452
1453 if (skb->ip_summed == CHECKSUM_COMPLETE)
1454 goto out_set_summed;
1455
1456 if (unlikely(skb_shinfo(skb)->gso_size)) {
1457 /* Let GSO fix up the checksum. */
1458 goto out_set_summed;
1459 }
1460
1461 offset = skb->csum_start - skb_headroom(skb);
1462 BUG_ON(offset >= skb_headlen(skb));
1463 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1464
1465 offset += skb->csum_offset;
1466 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1467
1468 if (skb_cloned(skb) &&
1469 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1470 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1471 if (ret)
1472 goto out;
1473 }
1474
1475 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1476out_set_summed:
1477 skb->ip_summed = CHECKSUM_NONE;
1478out:
1479 return ret;
1480}
1481
1482/**
1483 * skb_gso_segment - Perform segmentation on skb.
1484 * @skb: buffer to segment
1485 * @features: features for the output path (see dev->features)
1486 *
1487 * This function segments the given skb and returns a list of segments.
1488 *
1489 * It may return NULL if the skb requires no segmentation. This is
1490 * only possible when GSO is used for verifying header integrity.
1491 */
1492struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1493{
1494 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1495 struct packet_type *ptype;
1496 __be16 type = skb->protocol;
1497 int err;
1498
1499 BUG_ON(skb_shinfo(skb)->frag_list);
1500
1501 skb_reset_mac_header(skb);
1502 skb->mac_len = skb->network_header - skb->mac_header;
1503 __skb_pull(skb, skb->mac_len);
1504
1505 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1506 if (skb_header_cloned(skb) &&
1507 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1508 return ERR_PTR(err);
1509 }
1510
1511 rcu_read_lock();
1512 list_for_each_entry_rcu(ptype,
1513 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1514 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1515 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1516 err = ptype->gso_send_check(skb);
1517 segs = ERR_PTR(err);
1518 if (err || skb_gso_ok(skb, features))
1519 break;
1520 __skb_push(skb, (skb->data -
1521 skb_network_header(skb)));
1522 }
1523 segs = ptype->gso_segment(skb, features);
1524 break;
1525 }
1526 }
1527 rcu_read_unlock();
1528
1529 __skb_push(skb, skb->data - skb_mac_header(skb));
1530
1531 return segs;
1532}
1533
1534EXPORT_SYMBOL(skb_gso_segment);
1535
1536/* Take action when hardware reception checksum errors are detected. */
1537#ifdef CONFIG_BUG
1538void netdev_rx_csum_fault(struct net_device *dev)
1539{
1540 if (net_ratelimit()) {
1541 printk(KERN_ERR "%s: hw csum failure.\n",
1542 dev ? dev->name : "<unknown>");
1543 dump_stack();
1544 }
1545}
1546EXPORT_SYMBOL(netdev_rx_csum_fault);
1547#endif
1548
1549/* Actually, we should eliminate this check as soon as we know, that:
1550 * 1. IOMMU is present and allows to map all the memory.
1551 * 2. No high memory really exists on this machine.
1552 */
1553
1554static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1555{
1556#ifdef CONFIG_HIGHMEM
1557 int i;
1558
1559 if (dev->features & NETIF_F_HIGHDMA)
1560 return 0;
1561
1562 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1563 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1564 return 1;
1565
1566#endif
1567 return 0;
1568}
1569
1570struct dev_gso_cb {
1571 void (*destructor)(struct sk_buff *skb);
1572};
1573
1574#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1575
1576static void dev_gso_skb_destructor(struct sk_buff *skb)
1577{
1578 struct dev_gso_cb *cb;
1579
1580 do {
1581 struct sk_buff *nskb = skb->next;
1582
1583 skb->next = nskb->next;
1584 nskb->next = NULL;
1585 kfree_skb(nskb);
1586 } while (skb->next);
1587
1588 cb = DEV_GSO_CB(skb);
1589 if (cb->destructor)
1590 cb->destructor(skb);
1591}
1592
1593/**
1594 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1595 * @skb: buffer to segment
1596 *
1597 * This function segments the given skb and stores the list of segments
1598 * in skb->next.
1599 */
1600static int dev_gso_segment(struct sk_buff *skb)
1601{
1602 struct net_device *dev = skb->dev;
1603 struct sk_buff *segs;
1604 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1605 NETIF_F_SG : 0);
1606
1607 segs = skb_gso_segment(skb, features);
1608
1609 /* Verifying header integrity only. */
1610 if (!segs)
1611 return 0;
1612
1613 if (IS_ERR(segs))
1614 return PTR_ERR(segs);
1615
1616 skb->next = segs;
1617 DEV_GSO_CB(skb)->destructor = skb->destructor;
1618 skb->destructor = dev_gso_skb_destructor;
1619
1620 return 0;
1621}
1622
1623int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1624 struct netdev_queue *txq)
1625{
1626 if (likely(!skb->next)) {
1627 if (!list_empty(&ptype_all))
1628 dev_queue_xmit_nit(skb, dev);
1629
1630 if (netif_needs_gso(dev, skb)) {
1631 if (unlikely(dev_gso_segment(skb)))
1632 goto out_kfree_skb;
1633 if (skb->next)
1634 goto gso;
1635 }
1636
1637 return dev->hard_start_xmit(skb, dev);
1638 }
1639
1640gso:
1641 do {
1642 struct sk_buff *nskb = skb->next;
1643 int rc;
1644
1645 skb->next = nskb->next;
1646 nskb->next = NULL;
1647 rc = dev->hard_start_xmit(nskb, dev);
1648 if (unlikely(rc)) {
1649 nskb->next = skb->next;
1650 skb->next = nskb;
1651 return rc;
1652 }
1653 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1654 return NETDEV_TX_BUSY;
1655 } while (skb->next);
1656
1657 skb->destructor = DEV_GSO_CB(skb)->destructor;
1658
1659out_kfree_skb:
1660 kfree_skb(skb);
1661 return 0;
1662}
1663
1664static u32 simple_tx_hashrnd;
1665static int simple_tx_hashrnd_initialized = 0;
1666
1667static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1668{
1669 u32 addr1, addr2, ports;
1670 u32 hash, ihl;
1671 u8 ip_proto = 0;
1672
1673 if (unlikely(!simple_tx_hashrnd_initialized)) {
1674 get_random_bytes(&simple_tx_hashrnd, 4);
1675 simple_tx_hashrnd_initialized = 1;
1676 }
1677
1678 switch (skb->protocol) {
1679 case __constant_htons(ETH_P_IP):
1680 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1681 ip_proto = ip_hdr(skb)->protocol;
1682 addr1 = ip_hdr(skb)->saddr;
1683 addr2 = ip_hdr(skb)->daddr;
1684 ihl = ip_hdr(skb)->ihl;
1685 break;
1686 case __constant_htons(ETH_P_IPV6):
1687 ip_proto = ipv6_hdr(skb)->nexthdr;
1688 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1689 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1690 ihl = (40 >> 2);
1691 break;
1692 default:
1693 return 0;
1694 }
1695
1696
1697 switch (ip_proto) {
1698 case IPPROTO_TCP:
1699 case IPPROTO_UDP:
1700 case IPPROTO_DCCP:
1701 case IPPROTO_ESP:
1702 case IPPROTO_AH:
1703 case IPPROTO_SCTP:
1704 case IPPROTO_UDPLITE:
1705 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1706 break;
1707
1708 default:
1709 ports = 0;
1710 break;
1711 }
1712
1713 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1714
1715 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1716}
1717
1718static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1719 struct sk_buff *skb)
1720{
1721 u16 queue_index = 0;
1722
1723 if (dev->select_queue)
1724 queue_index = dev->select_queue(dev, skb);
1725 else if (dev->real_num_tx_queues > 1)
1726 queue_index = simple_tx_hash(dev, skb);
1727
1728 skb_set_queue_mapping(skb, queue_index);
1729 return netdev_get_tx_queue(dev, queue_index);
1730}
1731
1732/**
1733 * dev_queue_xmit - transmit a buffer
1734 * @skb: buffer to transmit
1735 *
1736 * Queue a buffer for transmission to a network device. The caller must
1737 * have set the device and priority and built the buffer before calling
1738 * this function. The function can be called from an interrupt.
1739 *
1740 * A negative errno code is returned on a failure. A success does not
1741 * guarantee the frame will be transmitted as it may be dropped due
1742 * to congestion or traffic shaping.
1743 *
1744 * -----------------------------------------------------------------------------------
1745 * I notice this method can also return errors from the queue disciplines,
1746 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1747 * be positive.
1748 *
1749 * Regardless of the return value, the skb is consumed, so it is currently
1750 * difficult to retry a send to this method. (You can bump the ref count
1751 * before sending to hold a reference for retry if you are careful.)
1752 *
1753 * When calling this method, interrupts MUST be enabled. This is because
1754 * the BH enable code must have IRQs enabled so that it will not deadlock.
1755 * --BLG
1756 */
1757int dev_queue_xmit(struct sk_buff *skb)
1758{
1759 struct net_device *dev = skb->dev;
1760 struct netdev_queue *txq;
1761 struct Qdisc *q;
1762 int rc = -ENOMEM;
1763
1764 /* GSO will handle the following emulations directly. */
1765 if (netif_needs_gso(dev, skb))
1766 goto gso;
1767
1768 if (skb_shinfo(skb)->frag_list &&
1769 !(dev->features & NETIF_F_FRAGLIST) &&
1770 __skb_linearize(skb))
1771 goto out_kfree_skb;
1772
1773 /* Fragmented skb is linearized if device does not support SG,
1774 * or if at least one of fragments is in highmem and device
1775 * does not support DMA from it.
1776 */
1777 if (skb_shinfo(skb)->nr_frags &&
1778 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1779 __skb_linearize(skb))
1780 goto out_kfree_skb;
1781
1782 /* If packet is not checksummed and device does not support
1783 * checksumming for this protocol, complete checksumming here.
1784 */
1785 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1786 skb_set_transport_header(skb, skb->csum_start -
1787 skb_headroom(skb));
1788 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1789 goto out_kfree_skb;
1790 }
1791
1792gso:
1793 /* Disable soft irqs for various locks below. Also
1794 * stops preemption for RCU.
1795 */
1796 rcu_read_lock_bh();
1797
1798 txq = dev_pick_tx(dev, skb);
1799 q = rcu_dereference(txq->qdisc);
1800
1801#ifdef CONFIG_NET_CLS_ACT
1802 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1803#endif
1804 if (q->enqueue) {
1805 spinlock_t *root_lock = qdisc_lock(q);
1806
1807 spin_lock(root_lock);
1808
1809 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1810 kfree_skb(skb);
1811 rc = NET_XMIT_DROP;
1812 } else {
1813 rc = qdisc_enqueue_root(skb, q);
1814 qdisc_run(q);
1815 }
1816 spin_unlock(root_lock);
1817
1818 goto out;
1819 }
1820
1821 /* The device has no queue. Common case for software devices:
1822 loopback, all the sorts of tunnels...
1823
1824 Really, it is unlikely that netif_tx_lock protection is necessary
1825 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1826 counters.)
1827 However, it is possible, that they rely on protection
1828 made by us here.
1829
1830 Check this and shot the lock. It is not prone from deadlocks.
1831 Either shot noqueue qdisc, it is even simpler 8)
1832 */
1833 if (dev->flags & IFF_UP) {
1834 int cpu = smp_processor_id(); /* ok because BHs are off */
1835
1836 if (txq->xmit_lock_owner != cpu) {
1837
1838 HARD_TX_LOCK(dev, txq, cpu);
1839
1840 if (!netif_tx_queue_stopped(txq)) {
1841 rc = 0;
1842 if (!dev_hard_start_xmit(skb, dev, txq)) {
1843 HARD_TX_UNLOCK(dev, txq);
1844 goto out;
1845 }
1846 }
1847 HARD_TX_UNLOCK(dev, txq);
1848 if (net_ratelimit())
1849 printk(KERN_CRIT "Virtual device %s asks to "
1850 "queue packet!\n", dev->name);
1851 } else {
1852 /* Recursion is detected! It is possible,
1853 * unfortunately */
1854 if (net_ratelimit())
1855 printk(KERN_CRIT "Dead loop on virtual device "
1856 "%s, fix it urgently!\n", dev->name);
1857 }
1858 }
1859
1860 rc = -ENETDOWN;
1861 rcu_read_unlock_bh();
1862
1863out_kfree_skb:
1864 kfree_skb(skb);
1865 return rc;
1866out:
1867 rcu_read_unlock_bh();
1868 return rc;
1869}
1870
1871
1872/*=======================================================================
1873 Receiver routines
1874 =======================================================================*/
1875
1876int netdev_max_backlog __read_mostly = 1000;
1877int netdev_budget __read_mostly = 300;
1878int weight_p __read_mostly = 64; /* old backlog weight */
1879
1880DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1881
1882
1883/**
1884 * netif_rx - post buffer to the network code
1885 * @skb: buffer to post
1886 *
1887 * This function receives a packet from a device driver and queues it for
1888 * the upper (protocol) levels to process. It always succeeds. The buffer
1889 * may be dropped during processing for congestion control or by the
1890 * protocol layers.
1891 *
1892 * return values:
1893 * NET_RX_SUCCESS (no congestion)
1894 * NET_RX_DROP (packet was dropped)
1895 *
1896 */
1897
1898int netif_rx(struct sk_buff *skb)
1899{
1900 struct softnet_data *queue;
1901 unsigned long flags;
1902
1903 /* if netpoll wants it, pretend we never saw it */
1904 if (netpoll_rx(skb))
1905 return NET_RX_DROP;
1906
1907 if (!skb->tstamp.tv64)
1908 net_timestamp(skb);
1909
1910 /*
1911 * The code is rearranged so that the path is the most
1912 * short when CPU is congested, but is still operating.
1913 */
1914 local_irq_save(flags);
1915 queue = &__get_cpu_var(softnet_data);
1916
1917 __get_cpu_var(netdev_rx_stat).total++;
1918 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1919 if (queue->input_pkt_queue.qlen) {
1920enqueue:
1921 __skb_queue_tail(&queue->input_pkt_queue, skb);
1922 local_irq_restore(flags);
1923 return NET_RX_SUCCESS;
1924 }
1925
1926 napi_schedule(&queue->backlog);
1927 goto enqueue;
1928 }
1929
1930 __get_cpu_var(netdev_rx_stat).dropped++;
1931 local_irq_restore(flags);
1932
1933 kfree_skb(skb);
1934 return NET_RX_DROP;
1935}
1936
1937int netif_rx_ni(struct sk_buff *skb)
1938{
1939 int err;
1940
1941 preempt_disable();
1942 err = netif_rx(skb);
1943 if (local_softirq_pending())
1944 do_softirq();
1945 preempt_enable();
1946
1947 return err;
1948}
1949
1950EXPORT_SYMBOL(netif_rx_ni);
1951
1952static void net_tx_action(struct softirq_action *h)
1953{
1954 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1955
1956 if (sd->completion_queue) {
1957 struct sk_buff *clist;
1958
1959 local_irq_disable();
1960 clist = sd->completion_queue;
1961 sd->completion_queue = NULL;
1962 local_irq_enable();
1963
1964 while (clist) {
1965 struct sk_buff *skb = clist;
1966 clist = clist->next;
1967
1968 WARN_ON(atomic_read(&skb->users));
1969 __kfree_skb(skb);
1970 }
1971 }
1972
1973 if (sd->output_queue) {
1974 struct Qdisc *head;
1975
1976 local_irq_disable();
1977 head = sd->output_queue;
1978 sd->output_queue = NULL;
1979 local_irq_enable();
1980
1981 while (head) {
1982 struct Qdisc *q = head;
1983 spinlock_t *root_lock;
1984
1985 head = head->next_sched;
1986
1987 root_lock = qdisc_lock(q);
1988 if (spin_trylock(root_lock)) {
1989 smp_mb__before_clear_bit();
1990 clear_bit(__QDISC_STATE_SCHED,
1991 &q->state);
1992 qdisc_run(q);
1993 spin_unlock(root_lock);
1994 } else {
1995 if (!test_bit(__QDISC_STATE_DEACTIVATED,
1996 &q->state)) {
1997 __netif_reschedule(q);
1998 } else {
1999 smp_mb__before_clear_bit();
2000 clear_bit(__QDISC_STATE_SCHED,
2001 &q->state);
2002 }
2003 }
2004 }
2005 }
2006}
2007
2008static inline int deliver_skb(struct sk_buff *skb,
2009 struct packet_type *pt_prev,
2010 struct net_device *orig_dev)
2011{
2012 atomic_inc(&skb->users);
2013 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2014}
2015
2016#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2017/* These hooks defined here for ATM */
2018struct net_bridge;
2019struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2020 unsigned char *addr);
2021void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2022
2023/*
2024 * If bridge module is loaded call bridging hook.
2025 * returns NULL if packet was consumed.
2026 */
2027struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2028 struct sk_buff *skb) __read_mostly;
2029static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2030 struct packet_type **pt_prev, int *ret,
2031 struct net_device *orig_dev)
2032{
2033 struct net_bridge_port *port;
2034
2035 if (skb->pkt_type == PACKET_LOOPBACK ||
2036 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2037 return skb;
2038
2039 if (*pt_prev) {
2040 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2041 *pt_prev = NULL;
2042 }
2043
2044 return br_handle_frame_hook(port, skb);
2045}
2046#else
2047#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2048#endif
2049
2050#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2051struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2052EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2053
2054static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2055 struct packet_type **pt_prev,
2056 int *ret,
2057 struct net_device *orig_dev)
2058{
2059 if (skb->dev->macvlan_port == NULL)
2060 return skb;
2061
2062 if (*pt_prev) {
2063 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2064 *pt_prev = NULL;
2065 }
2066 return macvlan_handle_frame_hook(skb);
2067}
2068#else
2069#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2070#endif
2071
2072#ifdef CONFIG_NET_CLS_ACT
2073/* TODO: Maybe we should just force sch_ingress to be compiled in
2074 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2075 * a compare and 2 stores extra right now if we dont have it on
2076 * but have CONFIG_NET_CLS_ACT
2077 * NOTE: This doesnt stop any functionality; if you dont have
2078 * the ingress scheduler, you just cant add policies on ingress.
2079 *
2080 */
2081static int ing_filter(struct sk_buff *skb)
2082{
2083 struct net_device *dev = skb->dev;
2084 u32 ttl = G_TC_RTTL(skb->tc_verd);
2085 struct netdev_queue *rxq;
2086 int result = TC_ACT_OK;
2087 struct Qdisc *q;
2088
2089 if (MAX_RED_LOOP < ttl++) {
2090 printk(KERN_WARNING
2091 "Redir loop detected Dropping packet (%d->%d)\n",
2092 skb->iif, dev->ifindex);
2093 return TC_ACT_SHOT;
2094 }
2095
2096 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2097 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2098
2099 rxq = &dev->rx_queue;
2100
2101 q = rxq->qdisc;
2102 if (q != &noop_qdisc) {
2103 spin_lock(qdisc_lock(q));
2104 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2105 result = qdisc_enqueue_root(skb, q);
2106 spin_unlock(qdisc_lock(q));
2107 }
2108
2109 return result;
2110}
2111
2112static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2113 struct packet_type **pt_prev,
2114 int *ret, struct net_device *orig_dev)
2115{
2116 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2117 goto out;
2118
2119 if (*pt_prev) {
2120 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2121 *pt_prev = NULL;
2122 } else {
2123 /* Huh? Why does turning on AF_PACKET affect this? */
2124 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2125 }
2126
2127 switch (ing_filter(skb)) {
2128 case TC_ACT_SHOT:
2129 case TC_ACT_STOLEN:
2130 kfree_skb(skb);
2131 return NULL;
2132 }
2133
2134out:
2135 skb->tc_verd = 0;
2136 return skb;
2137}
2138#endif
2139
2140/*
2141 * netif_nit_deliver - deliver received packets to network taps
2142 * @skb: buffer
2143 *
2144 * This function is used to deliver incoming packets to network
2145 * taps. It should be used when the normal netif_receive_skb path
2146 * is bypassed, for example because of VLAN acceleration.
2147 */
2148void netif_nit_deliver(struct sk_buff *skb)
2149{
2150 struct packet_type *ptype;
2151
2152 if (list_empty(&ptype_all))
2153 return;
2154
2155 skb_reset_network_header(skb);
2156 skb_reset_transport_header(skb);
2157 skb->mac_len = skb->network_header - skb->mac_header;
2158
2159 rcu_read_lock();
2160 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2161 if (!ptype->dev || ptype->dev == skb->dev)
2162 deliver_skb(skb, ptype, skb->dev);
2163 }
2164 rcu_read_unlock();
2165}
2166
2167/**
2168 * netif_receive_skb - process receive buffer from network
2169 * @skb: buffer to process
2170 *
2171 * netif_receive_skb() is the main receive data processing function.
2172 * It always succeeds. The buffer may be dropped during processing
2173 * for congestion control or by the protocol layers.
2174 *
2175 * This function may only be called from softirq context and interrupts
2176 * should be enabled.
2177 *
2178 * Return values (usually ignored):
2179 * NET_RX_SUCCESS: no congestion
2180 * NET_RX_DROP: packet was dropped
2181 */
2182int netif_receive_skb(struct sk_buff *skb)
2183{
2184 struct packet_type *ptype, *pt_prev;
2185 struct net_device *orig_dev;
2186 struct net_device *null_or_orig;
2187 int ret = NET_RX_DROP;
2188 __be16 type;
2189
2190 /* if we've gotten here through NAPI, check netpoll */
2191 if (netpoll_receive_skb(skb))
2192 return NET_RX_DROP;
2193
2194 if (!skb->tstamp.tv64)
2195 net_timestamp(skb);
2196
2197 if (!skb->iif)
2198 skb->iif = skb->dev->ifindex;
2199
2200 null_or_orig = NULL;
2201 orig_dev = skb->dev;
2202 if (orig_dev->master) {
2203 if (skb_bond_should_drop(skb))
2204 null_or_orig = orig_dev; /* deliver only exact match */
2205 else
2206 skb->dev = orig_dev->master;
2207 }
2208
2209 __get_cpu_var(netdev_rx_stat).total++;
2210
2211 skb_reset_network_header(skb);
2212 skb_reset_transport_header(skb);
2213 skb->mac_len = skb->network_header - skb->mac_header;
2214
2215 pt_prev = NULL;
2216
2217 rcu_read_lock();
2218
2219 /* Don't receive packets in an exiting network namespace */
2220 if (!net_alive(dev_net(skb->dev)))
2221 goto out;
2222
2223#ifdef CONFIG_NET_CLS_ACT
2224 if (skb->tc_verd & TC_NCLS) {
2225 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2226 goto ncls;
2227 }
2228#endif
2229
2230 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2231 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2232 ptype->dev == orig_dev) {
2233 if (pt_prev)
2234 ret = deliver_skb(skb, pt_prev, orig_dev);
2235 pt_prev = ptype;
2236 }
2237 }
2238
2239#ifdef CONFIG_NET_CLS_ACT
2240 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2241 if (!skb)
2242 goto out;
2243ncls:
2244#endif
2245
2246 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2247 if (!skb)
2248 goto out;
2249 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2250 if (!skb)
2251 goto out;
2252
2253 type = skb->protocol;
2254 list_for_each_entry_rcu(ptype,
2255 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2256 if (ptype->type == type &&
2257 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2258 ptype->dev == orig_dev)) {
2259 if (pt_prev)
2260 ret = deliver_skb(skb, pt_prev, orig_dev);
2261 pt_prev = ptype;
2262 }
2263 }
2264
2265 if (pt_prev) {
2266 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2267 } else {
2268 kfree_skb(skb);
2269 /* Jamal, now you will not able to escape explaining
2270 * me how you were going to use this. :-)
2271 */
2272 ret = NET_RX_DROP;
2273 }
2274
2275out:
2276 rcu_read_unlock();
2277 return ret;
2278}
2279
2280/* Network device is going away, flush any packets still pending */
2281static void flush_backlog(void *arg)
2282{
2283 struct net_device *dev = arg;
2284 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2285 struct sk_buff *skb, *tmp;
2286
2287 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2288 if (skb->dev == dev) {
2289 __skb_unlink(skb, &queue->input_pkt_queue);
2290 kfree_skb(skb);
2291 }
2292}
2293
2294static int process_backlog(struct napi_struct *napi, int quota)
2295{
2296 int work = 0;
2297 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2298 unsigned long start_time = jiffies;
2299
2300 napi->weight = weight_p;
2301 do {
2302 struct sk_buff *skb;
2303
2304 local_irq_disable();
2305 skb = __skb_dequeue(&queue->input_pkt_queue);
2306 if (!skb) {
2307 __napi_complete(napi);
2308 local_irq_enable();
2309 break;
2310 }
2311 local_irq_enable();
2312
2313 netif_receive_skb(skb);
2314 } while (++work < quota && jiffies == start_time);
2315
2316 return work;
2317}
2318
2319/**
2320 * __napi_schedule - schedule for receive
2321 * @n: entry to schedule
2322 *
2323 * The entry's receive function will be scheduled to run
2324 */
2325void __napi_schedule(struct napi_struct *n)
2326{
2327 unsigned long flags;
2328
2329 local_irq_save(flags);
2330 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2331 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2332 local_irq_restore(flags);
2333}
2334EXPORT_SYMBOL(__napi_schedule);
2335
2336
2337static void net_rx_action(struct softirq_action *h)
2338{
2339 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2340 unsigned long start_time = jiffies;
2341 int budget = netdev_budget;
2342 void *have;
2343
2344 local_irq_disable();
2345
2346 while (!list_empty(list)) {
2347 struct napi_struct *n;
2348 int work, weight;
2349
2350 /* If softirq window is exhuasted then punt.
2351 *
2352 * Note that this is a slight policy change from the
2353 * previous NAPI code, which would allow up to 2
2354 * jiffies to pass before breaking out. The test
2355 * used to be "jiffies - start_time > 1".
2356 */
2357 if (unlikely(budget <= 0 || jiffies != start_time))
2358 goto softnet_break;
2359
2360 local_irq_enable();
2361
2362 /* Even though interrupts have been re-enabled, this
2363 * access is safe because interrupts can only add new
2364 * entries to the tail of this list, and only ->poll()
2365 * calls can remove this head entry from the list.
2366 */
2367 n = list_entry(list->next, struct napi_struct, poll_list);
2368
2369 have = netpoll_poll_lock(n);
2370
2371 weight = n->weight;
2372
2373 /* This NAPI_STATE_SCHED test is for avoiding a race
2374 * with netpoll's poll_napi(). Only the entity which
2375 * obtains the lock and sees NAPI_STATE_SCHED set will
2376 * actually make the ->poll() call. Therefore we avoid
2377 * accidently calling ->poll() when NAPI is not scheduled.
2378 */
2379 work = 0;
2380 if (test_bit(NAPI_STATE_SCHED, &n->state))
2381 work = n->poll(n, weight);
2382
2383 WARN_ON_ONCE(work > weight);
2384
2385 budget -= work;
2386
2387 local_irq_disable();
2388
2389 /* Drivers must not modify the NAPI state if they
2390 * consume the entire weight. In such cases this code
2391 * still "owns" the NAPI instance and therefore can
2392 * move the instance around on the list at-will.
2393 */
2394 if (unlikely(work == weight)) {
2395 if (unlikely(napi_disable_pending(n)))
2396 __napi_complete(n);
2397 else
2398 list_move_tail(&n->poll_list, list);
2399 }
2400
2401 netpoll_poll_unlock(have);
2402 }
2403out:
2404 local_irq_enable();
2405
2406#ifdef CONFIG_NET_DMA
2407 /*
2408 * There may not be any more sk_buffs coming right now, so push
2409 * any pending DMA copies to hardware
2410 */
2411 if (!cpus_empty(net_dma.channel_mask)) {
2412 int chan_idx;
2413 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2414 struct dma_chan *chan = net_dma.channels[chan_idx];
2415 if (chan)
2416 dma_async_memcpy_issue_pending(chan);
2417 }
2418 }
2419#endif
2420
2421 return;
2422
2423softnet_break:
2424 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2425 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2426 goto out;
2427}
2428
2429static gifconf_func_t * gifconf_list [NPROTO];
2430
2431/**
2432 * register_gifconf - register a SIOCGIF handler
2433 * @family: Address family
2434 * @gifconf: Function handler
2435 *
2436 * Register protocol dependent address dumping routines. The handler
2437 * that is passed must not be freed or reused until it has been replaced
2438 * by another handler.
2439 */
2440int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2441{
2442 if (family >= NPROTO)
2443 return -EINVAL;
2444 gifconf_list[family] = gifconf;
2445 return 0;
2446}
2447
2448
2449/*
2450 * Map an interface index to its name (SIOCGIFNAME)
2451 */
2452
2453/*
2454 * We need this ioctl for efficient implementation of the
2455 * if_indextoname() function required by the IPv6 API. Without
2456 * it, we would have to search all the interfaces to find a
2457 * match. --pb
2458 */
2459
2460static int dev_ifname(struct net *net, struct ifreq __user *arg)
2461{
2462 struct net_device *dev;
2463 struct ifreq ifr;
2464
2465 /*
2466 * Fetch the caller's info block.
2467 */
2468
2469 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2470 return -EFAULT;
2471
2472 read_lock(&dev_base_lock);
2473 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2474 if (!dev) {
2475 read_unlock(&dev_base_lock);
2476 return -ENODEV;
2477 }
2478
2479 strcpy(ifr.ifr_name, dev->name);
2480 read_unlock(&dev_base_lock);
2481
2482 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2483 return -EFAULT;
2484 return 0;
2485}
2486
2487/*
2488 * Perform a SIOCGIFCONF call. This structure will change
2489 * size eventually, and there is nothing I can do about it.
2490 * Thus we will need a 'compatibility mode'.
2491 */
2492
2493static int dev_ifconf(struct net *net, char __user *arg)
2494{
2495 struct ifconf ifc;
2496 struct net_device *dev;
2497 char __user *pos;
2498 int len;
2499 int total;
2500 int i;
2501
2502 /*
2503 * Fetch the caller's info block.
2504 */
2505
2506 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2507 return -EFAULT;
2508
2509 pos = ifc.ifc_buf;
2510 len = ifc.ifc_len;
2511
2512 /*
2513 * Loop over the interfaces, and write an info block for each.
2514 */
2515
2516 total = 0;
2517 for_each_netdev(net, dev) {
2518 for (i = 0; i < NPROTO; i++) {
2519 if (gifconf_list[i]) {
2520 int done;
2521 if (!pos)
2522 done = gifconf_list[i](dev, NULL, 0);
2523 else
2524 done = gifconf_list[i](dev, pos + total,
2525 len - total);
2526 if (done < 0)
2527 return -EFAULT;
2528 total += done;
2529 }
2530 }
2531 }
2532
2533 /*
2534 * All done. Write the updated control block back to the caller.
2535 */
2536 ifc.ifc_len = total;
2537
2538 /*
2539 * Both BSD and Solaris return 0 here, so we do too.
2540 */
2541 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2542}
2543
2544#ifdef CONFIG_PROC_FS
2545/*
2546 * This is invoked by the /proc filesystem handler to display a device
2547 * in detail.
2548 */
2549void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2550 __acquires(dev_base_lock)
2551{
2552 struct net *net = seq_file_net(seq);
2553 loff_t off;
2554 struct net_device *dev;
2555
2556 read_lock(&dev_base_lock);
2557 if (!*pos)
2558 return SEQ_START_TOKEN;
2559
2560 off = 1;
2561 for_each_netdev(net, dev)
2562 if (off++ == *pos)
2563 return dev;
2564
2565 return NULL;
2566}
2567
2568void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2569{
2570 struct net *net = seq_file_net(seq);
2571 ++*pos;
2572 return v == SEQ_START_TOKEN ?
2573 first_net_device(net) : next_net_device((struct net_device *)v);
2574}
2575
2576void dev_seq_stop(struct seq_file *seq, void *v)
2577 __releases(dev_base_lock)
2578{
2579 read_unlock(&dev_base_lock);
2580}
2581
2582static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2583{
2584 struct net_device_stats *stats = dev->get_stats(dev);
2585
2586 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2587 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2588 dev->name, stats->rx_bytes, stats->rx_packets,
2589 stats->rx_errors,
2590 stats->rx_dropped + stats->rx_missed_errors,
2591 stats->rx_fifo_errors,
2592 stats->rx_length_errors + stats->rx_over_errors +
2593 stats->rx_crc_errors + stats->rx_frame_errors,
2594 stats->rx_compressed, stats->multicast,
2595 stats->tx_bytes, stats->tx_packets,
2596 stats->tx_errors, stats->tx_dropped,
2597 stats->tx_fifo_errors, stats->collisions,
2598 stats->tx_carrier_errors +
2599 stats->tx_aborted_errors +
2600 stats->tx_window_errors +
2601 stats->tx_heartbeat_errors,
2602 stats->tx_compressed);
2603}
2604
2605/*
2606 * Called from the PROCfs module. This now uses the new arbitrary sized
2607 * /proc/net interface to create /proc/net/dev
2608 */
2609static int dev_seq_show(struct seq_file *seq, void *v)
2610{
2611 if (v == SEQ_START_TOKEN)
2612 seq_puts(seq, "Inter-| Receive "
2613 " | Transmit\n"
2614 " face |bytes packets errs drop fifo frame "
2615 "compressed multicast|bytes packets errs "
2616 "drop fifo colls carrier compressed\n");
2617 else
2618 dev_seq_printf_stats(seq, v);
2619 return 0;
2620}
2621
2622static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2623{
2624 struct netif_rx_stats *rc = NULL;
2625
2626 while (*pos < nr_cpu_ids)
2627 if (cpu_online(*pos)) {
2628 rc = &per_cpu(netdev_rx_stat, *pos);
2629 break;
2630 } else
2631 ++*pos;
2632 return rc;
2633}
2634
2635static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2636{
2637 return softnet_get_online(pos);
2638}
2639
2640static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2641{
2642 ++*pos;
2643 return softnet_get_online(pos);
2644}
2645
2646static void softnet_seq_stop(struct seq_file *seq, void *v)
2647{
2648}
2649
2650static int softnet_seq_show(struct seq_file *seq, void *v)
2651{
2652 struct netif_rx_stats *s = v;
2653
2654 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2655 s->total, s->dropped, s->time_squeeze, 0,
2656 0, 0, 0, 0, /* was fastroute */
2657 s->cpu_collision );
2658 return 0;
2659}
2660
2661static const struct seq_operations dev_seq_ops = {
2662 .start = dev_seq_start,
2663 .next = dev_seq_next,
2664 .stop = dev_seq_stop,
2665 .show = dev_seq_show,
2666};
2667
2668static int dev_seq_open(struct inode *inode, struct file *file)
2669{
2670 return seq_open_net(inode, file, &dev_seq_ops,
2671 sizeof(struct seq_net_private));
2672}
2673
2674static const struct file_operations dev_seq_fops = {
2675 .owner = THIS_MODULE,
2676 .open = dev_seq_open,
2677 .read = seq_read,
2678 .llseek = seq_lseek,
2679 .release = seq_release_net,
2680};
2681
2682static const struct seq_operations softnet_seq_ops = {
2683 .start = softnet_seq_start,
2684 .next = softnet_seq_next,
2685 .stop = softnet_seq_stop,
2686 .show = softnet_seq_show,
2687};
2688
2689static int softnet_seq_open(struct inode *inode, struct file *file)
2690{
2691 return seq_open(file, &softnet_seq_ops);
2692}
2693
2694static const struct file_operations softnet_seq_fops = {
2695 .owner = THIS_MODULE,
2696 .open = softnet_seq_open,
2697 .read = seq_read,
2698 .llseek = seq_lseek,
2699 .release = seq_release,
2700};
2701
2702static void *ptype_get_idx(loff_t pos)
2703{
2704 struct packet_type *pt = NULL;
2705 loff_t i = 0;
2706 int t;
2707
2708 list_for_each_entry_rcu(pt, &ptype_all, list) {
2709 if (i == pos)
2710 return pt;
2711 ++i;
2712 }
2713
2714 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2715 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2716 if (i == pos)
2717 return pt;
2718 ++i;
2719 }
2720 }
2721 return NULL;
2722}
2723
2724static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2725 __acquires(RCU)
2726{
2727 rcu_read_lock();
2728 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2729}
2730
2731static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2732{
2733 struct packet_type *pt;
2734 struct list_head *nxt;
2735 int hash;
2736
2737 ++*pos;
2738 if (v == SEQ_START_TOKEN)
2739 return ptype_get_idx(0);
2740
2741 pt = v;
2742 nxt = pt->list.next;
2743 if (pt->type == htons(ETH_P_ALL)) {
2744 if (nxt != &ptype_all)
2745 goto found;
2746 hash = 0;
2747 nxt = ptype_base[0].next;
2748 } else
2749 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2750
2751 while (nxt == &ptype_base[hash]) {
2752 if (++hash >= PTYPE_HASH_SIZE)
2753 return NULL;
2754 nxt = ptype_base[hash].next;
2755 }
2756found:
2757 return list_entry(nxt, struct packet_type, list);
2758}
2759
2760static void ptype_seq_stop(struct seq_file *seq, void *v)
2761 __releases(RCU)
2762{
2763 rcu_read_unlock();
2764}
2765
2766static void ptype_seq_decode(struct seq_file *seq, void *sym)
2767{
2768#ifdef CONFIG_KALLSYMS
2769 unsigned long offset = 0, symsize;
2770 const char *symname;
2771 char *modname;
2772 char namebuf[128];
2773
2774 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2775 &modname, namebuf);
2776
2777 if (symname) {
2778 char *delim = ":";
2779
2780 if (!modname)
2781 modname = delim = "";
2782 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2783 symname, offset);
2784 return;
2785 }
2786#endif
2787
2788 seq_printf(seq, "[%p]", sym);
2789}
2790
2791static int ptype_seq_show(struct seq_file *seq, void *v)
2792{
2793 struct packet_type *pt = v;
2794
2795 if (v == SEQ_START_TOKEN)
2796 seq_puts(seq, "Type Device Function\n");
2797 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2798 if (pt->type == htons(ETH_P_ALL))
2799 seq_puts(seq, "ALL ");
2800 else
2801 seq_printf(seq, "%04x", ntohs(pt->type));
2802
2803 seq_printf(seq, " %-8s ",
2804 pt->dev ? pt->dev->name : "");
2805 ptype_seq_decode(seq, pt->func);
2806 seq_putc(seq, '\n');
2807 }
2808
2809 return 0;
2810}
2811
2812static const struct seq_operations ptype_seq_ops = {
2813 .start = ptype_seq_start,
2814 .next = ptype_seq_next,
2815 .stop = ptype_seq_stop,
2816 .show = ptype_seq_show,
2817};
2818
2819static int ptype_seq_open(struct inode *inode, struct file *file)
2820{
2821 return seq_open_net(inode, file, &ptype_seq_ops,
2822 sizeof(struct seq_net_private));
2823}
2824
2825static const struct file_operations ptype_seq_fops = {
2826 .owner = THIS_MODULE,
2827 .open = ptype_seq_open,
2828 .read = seq_read,
2829 .llseek = seq_lseek,
2830 .release = seq_release_net,
2831};
2832
2833
2834static int __net_init dev_proc_net_init(struct net *net)
2835{
2836 int rc = -ENOMEM;
2837
2838 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2839 goto out;
2840 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2841 goto out_dev;
2842 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2843 goto out_softnet;
2844
2845 if (wext_proc_init(net))
2846 goto out_ptype;
2847 rc = 0;
2848out:
2849 return rc;
2850out_ptype:
2851 proc_net_remove(net, "ptype");
2852out_softnet:
2853 proc_net_remove(net, "softnet_stat");
2854out_dev:
2855 proc_net_remove(net, "dev");
2856 goto out;
2857}
2858
2859static void __net_exit dev_proc_net_exit(struct net *net)
2860{
2861 wext_proc_exit(net);
2862
2863 proc_net_remove(net, "ptype");
2864 proc_net_remove(net, "softnet_stat");
2865 proc_net_remove(net, "dev");
2866}
2867
2868static struct pernet_operations __net_initdata dev_proc_ops = {
2869 .init = dev_proc_net_init,
2870 .exit = dev_proc_net_exit,
2871};
2872
2873static int __init dev_proc_init(void)
2874{
2875 return register_pernet_subsys(&dev_proc_ops);
2876}
2877#else
2878#define dev_proc_init() 0
2879#endif /* CONFIG_PROC_FS */
2880
2881
2882/**
2883 * netdev_set_master - set up master/slave pair
2884 * @slave: slave device
2885 * @master: new master device
2886 *
2887 * Changes the master device of the slave. Pass %NULL to break the
2888 * bonding. The caller must hold the RTNL semaphore. On a failure
2889 * a negative errno code is returned. On success the reference counts
2890 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2891 * function returns zero.
2892 */
2893int netdev_set_master(struct net_device *slave, struct net_device *master)
2894{
2895 struct net_device *old = slave->master;
2896
2897 ASSERT_RTNL();
2898
2899 if (master) {
2900 if (old)
2901 return -EBUSY;
2902 dev_hold(master);
2903 }
2904
2905 slave->master = master;
2906
2907 synchronize_net();
2908
2909 if (old)
2910 dev_put(old);
2911
2912 if (master)
2913 slave->flags |= IFF_SLAVE;
2914 else
2915 slave->flags &= ~IFF_SLAVE;
2916
2917 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2918 return 0;
2919}
2920
2921static int __dev_set_promiscuity(struct net_device *dev, int inc)
2922{
2923 unsigned short old_flags = dev->flags;
2924
2925 ASSERT_RTNL();
2926
2927 dev->flags |= IFF_PROMISC;
2928 dev->promiscuity += inc;
2929 if (dev->promiscuity == 0) {
2930 /*
2931 * Avoid overflow.
2932 * If inc causes overflow, untouch promisc and return error.
2933 */
2934 if (inc < 0)
2935 dev->flags &= ~IFF_PROMISC;
2936 else {
2937 dev->promiscuity -= inc;
2938 printk(KERN_WARNING "%s: promiscuity touches roof, "
2939 "set promiscuity failed, promiscuity feature "
2940 "of device might be broken.\n", dev->name);
2941 return -EOVERFLOW;
2942 }
2943 }
2944 if (dev->flags != old_flags) {
2945 printk(KERN_INFO "device %s %s promiscuous mode\n",
2946 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2947 "left");
2948 if (audit_enabled)
2949 audit_log(current->audit_context, GFP_ATOMIC,
2950 AUDIT_ANOM_PROMISCUOUS,
2951 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2952 dev->name, (dev->flags & IFF_PROMISC),
2953 (old_flags & IFF_PROMISC),
2954 audit_get_loginuid(current),
2955 current->uid, current->gid,
2956 audit_get_sessionid(current));
2957
2958 if (dev->change_rx_flags)
2959 dev->change_rx_flags(dev, IFF_PROMISC);
2960 }
2961 return 0;
2962}
2963
2964/**
2965 * dev_set_promiscuity - update promiscuity count on a device
2966 * @dev: device
2967 * @inc: modifier
2968 *
2969 * Add or remove promiscuity from a device. While the count in the device
2970 * remains above zero the interface remains promiscuous. Once it hits zero
2971 * the device reverts back to normal filtering operation. A negative inc
2972 * value is used to drop promiscuity on the device.
2973 * Return 0 if successful or a negative errno code on error.
2974 */
2975int dev_set_promiscuity(struct net_device *dev, int inc)
2976{
2977 unsigned short old_flags = dev->flags;
2978 int err;
2979
2980 err = __dev_set_promiscuity(dev, inc);
2981 if (err < 0)
2982 return err;
2983 if (dev->flags != old_flags)
2984 dev_set_rx_mode(dev);
2985 return err;
2986}
2987
2988/**
2989 * dev_set_allmulti - update allmulti count on a device
2990 * @dev: device
2991 * @inc: modifier
2992 *
2993 * Add or remove reception of all multicast frames to a device. While the
2994 * count in the device remains above zero the interface remains listening
2995 * to all interfaces. Once it hits zero the device reverts back to normal
2996 * filtering operation. A negative @inc value is used to drop the counter
2997 * when releasing a resource needing all multicasts.
2998 * Return 0 if successful or a negative errno code on error.
2999 */
3000
3001int dev_set_allmulti(struct net_device *dev, int inc)
3002{
3003 unsigned short old_flags = dev->flags;
3004
3005 ASSERT_RTNL();
3006
3007 dev->flags |= IFF_ALLMULTI;
3008 dev->allmulti += inc;
3009 if (dev->allmulti == 0) {
3010 /*
3011 * Avoid overflow.
3012 * If inc causes overflow, untouch allmulti and return error.
3013 */
3014 if (inc < 0)
3015 dev->flags &= ~IFF_ALLMULTI;
3016 else {
3017 dev->allmulti -= inc;
3018 printk(KERN_WARNING "%s: allmulti touches roof, "
3019 "set allmulti failed, allmulti feature of "
3020 "device might be broken.\n", dev->name);
3021 return -EOVERFLOW;
3022 }
3023 }
3024 if (dev->flags ^ old_flags) {
3025 if (dev->change_rx_flags)
3026 dev->change_rx_flags(dev, IFF_ALLMULTI);
3027 dev_set_rx_mode(dev);
3028 }
3029 return 0;
3030}
3031
3032/*
3033 * Upload unicast and multicast address lists to device and
3034 * configure RX filtering. When the device doesn't support unicast
3035 * filtering it is put in promiscuous mode while unicast addresses
3036 * are present.
3037 */
3038void __dev_set_rx_mode(struct net_device *dev)
3039{
3040 /* dev_open will call this function so the list will stay sane. */
3041 if (!(dev->flags&IFF_UP))
3042 return;
3043
3044 if (!netif_device_present(dev))
3045 return;
3046
3047 if (dev->set_rx_mode)
3048 dev->set_rx_mode(dev);
3049 else {
3050 /* Unicast addresses changes may only happen under the rtnl,
3051 * therefore calling __dev_set_promiscuity here is safe.
3052 */
3053 if (dev->uc_count > 0 && !dev->uc_promisc) {
3054 __dev_set_promiscuity(dev, 1);
3055 dev->uc_promisc = 1;
3056 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3057 __dev_set_promiscuity(dev, -1);
3058 dev->uc_promisc = 0;
3059 }
3060
3061 if (dev->set_multicast_list)
3062 dev->set_multicast_list(dev);
3063 }
3064}
3065
3066void dev_set_rx_mode(struct net_device *dev)
3067{
3068 netif_addr_lock_bh(dev);
3069 __dev_set_rx_mode(dev);
3070 netif_addr_unlock_bh(dev);
3071}
3072
3073int __dev_addr_delete(struct dev_addr_list **list, int *count,
3074 void *addr, int alen, int glbl)
3075{
3076 struct dev_addr_list *da;
3077
3078 for (; (da = *list) != NULL; list = &da->next) {
3079 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3080 alen == da->da_addrlen) {
3081 if (glbl) {
3082 int old_glbl = da->da_gusers;
3083 da->da_gusers = 0;
3084 if (old_glbl == 0)
3085 break;
3086 }
3087 if (--da->da_users)
3088 return 0;
3089
3090 *list = da->next;
3091 kfree(da);
3092 (*count)--;
3093 return 0;
3094 }
3095 }
3096 return -ENOENT;
3097}
3098
3099int __dev_addr_add(struct dev_addr_list **list, int *count,
3100 void *addr, int alen, int glbl)
3101{
3102 struct dev_addr_list *da;
3103
3104 for (da = *list; da != NULL; da = da->next) {
3105 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3106 da->da_addrlen == alen) {
3107 if (glbl) {
3108 int old_glbl = da->da_gusers;
3109 da->da_gusers = 1;
3110 if (old_glbl)
3111 return 0;
3112 }
3113 da->da_users++;
3114 return 0;
3115 }
3116 }
3117
3118 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3119 if (da == NULL)
3120 return -ENOMEM;
3121 memcpy(da->da_addr, addr, alen);
3122 da->da_addrlen = alen;
3123 da->da_users = 1;
3124 da->da_gusers = glbl ? 1 : 0;
3125 da->next = *list;
3126 *list = da;
3127 (*count)++;
3128 return 0;
3129}
3130
3131/**
3132 * dev_unicast_delete - Release secondary unicast address.
3133 * @dev: device
3134 * @addr: address to delete
3135 * @alen: length of @addr
3136 *
3137 * Release reference to a secondary unicast address and remove it
3138 * from the device if the reference count drops to zero.
3139 *
3140 * The caller must hold the rtnl_mutex.
3141 */
3142int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3143{
3144 int err;
3145
3146 ASSERT_RTNL();
3147
3148 netif_addr_lock_bh(dev);
3149 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3150 if (!err)
3151 __dev_set_rx_mode(dev);
3152 netif_addr_unlock_bh(dev);
3153 return err;
3154}
3155EXPORT_SYMBOL(dev_unicast_delete);
3156
3157/**
3158 * dev_unicast_add - add a secondary unicast address
3159 * @dev: device
3160 * @addr: address to add
3161 * @alen: length of @addr
3162 *
3163 * Add a secondary unicast address to the device or increase
3164 * the reference count if it already exists.
3165 *
3166 * The caller must hold the rtnl_mutex.
3167 */
3168int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3169{
3170 int err;
3171
3172 ASSERT_RTNL();
3173
3174 netif_addr_lock_bh(dev);
3175 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3176 if (!err)
3177 __dev_set_rx_mode(dev);
3178 netif_addr_unlock_bh(dev);
3179 return err;
3180}
3181EXPORT_SYMBOL(dev_unicast_add);
3182
3183int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3184 struct dev_addr_list **from, int *from_count)
3185{
3186 struct dev_addr_list *da, *next;
3187 int err = 0;
3188
3189 da = *from;
3190 while (da != NULL) {
3191 next = da->next;
3192 if (!da->da_synced) {
3193 err = __dev_addr_add(to, to_count,
3194 da->da_addr, da->da_addrlen, 0);
3195 if (err < 0)
3196 break;
3197 da->da_synced = 1;
3198 da->da_users++;
3199 } else if (da->da_users == 1) {
3200 __dev_addr_delete(to, to_count,
3201 da->da_addr, da->da_addrlen, 0);
3202 __dev_addr_delete(from, from_count,
3203 da->da_addr, da->da_addrlen, 0);
3204 }
3205 da = next;
3206 }
3207 return err;
3208}
3209
3210void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3211 struct dev_addr_list **from, int *from_count)
3212{
3213 struct dev_addr_list *da, *next;
3214
3215 da = *from;
3216 while (da != NULL) {
3217 next = da->next;
3218 if (da->da_synced) {
3219 __dev_addr_delete(to, to_count,
3220 da->da_addr, da->da_addrlen, 0);
3221 da->da_synced = 0;
3222 __dev_addr_delete(from, from_count,
3223 da->da_addr, da->da_addrlen, 0);
3224 }
3225 da = next;
3226 }
3227}
3228
3229/**
3230 * dev_unicast_sync - Synchronize device's unicast list to another device
3231 * @to: destination device
3232 * @from: source device
3233 *
3234 * Add newly added addresses to the destination device and release
3235 * addresses that have no users left. The source device must be
3236 * locked by netif_tx_lock_bh.
3237 *
3238 * This function is intended to be called from the dev->set_rx_mode
3239 * function of layered software devices.
3240 */
3241int dev_unicast_sync(struct net_device *to, struct net_device *from)
3242{
3243 int err = 0;
3244
3245 netif_addr_lock_bh(to);
3246 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3247 &from->uc_list, &from->uc_count);
3248 if (!err)
3249 __dev_set_rx_mode(to);
3250 netif_addr_unlock_bh(to);
3251 return err;
3252}
3253EXPORT_SYMBOL(dev_unicast_sync);
3254
3255/**
3256 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3257 * @to: destination device
3258 * @from: source device
3259 *
3260 * Remove all addresses that were added to the destination device by
3261 * dev_unicast_sync(). This function is intended to be called from the
3262 * dev->stop function of layered software devices.
3263 */
3264void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3265{
3266 netif_addr_lock_bh(from);
3267 netif_addr_lock(to);
3268
3269 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3270 &from->uc_list, &from->uc_count);
3271 __dev_set_rx_mode(to);
3272
3273 netif_addr_unlock(to);
3274 netif_addr_unlock_bh(from);
3275}
3276EXPORT_SYMBOL(dev_unicast_unsync);
3277
3278static void __dev_addr_discard(struct dev_addr_list **list)
3279{
3280 struct dev_addr_list *tmp;
3281
3282 while (*list != NULL) {
3283 tmp = *list;
3284 *list = tmp->next;
3285 if (tmp->da_users > tmp->da_gusers)
3286 printk("__dev_addr_discard: address leakage! "
3287 "da_users=%d\n", tmp->da_users);
3288 kfree(tmp);
3289 }
3290}
3291
3292static void dev_addr_discard(struct net_device *dev)
3293{
3294 netif_addr_lock_bh(dev);
3295
3296 __dev_addr_discard(&dev->uc_list);
3297 dev->uc_count = 0;
3298
3299 __dev_addr_discard(&dev->mc_list);
3300 dev->mc_count = 0;
3301
3302 netif_addr_unlock_bh(dev);
3303}
3304
3305unsigned dev_get_flags(const struct net_device *dev)
3306{
3307 unsigned flags;
3308
3309 flags = (dev->flags & ~(IFF_PROMISC |
3310 IFF_ALLMULTI |
3311 IFF_RUNNING |
3312 IFF_LOWER_UP |
3313 IFF_DORMANT)) |
3314 (dev->gflags & (IFF_PROMISC |
3315 IFF_ALLMULTI));
3316
3317 if (netif_running(dev)) {
3318 if (netif_oper_up(dev))
3319 flags |= IFF_RUNNING;
3320 if (netif_carrier_ok(dev))
3321 flags |= IFF_LOWER_UP;
3322 if (netif_dormant(dev))
3323 flags |= IFF_DORMANT;
3324 }
3325
3326 return flags;
3327}
3328
3329int dev_change_flags(struct net_device *dev, unsigned flags)
3330{
3331 int ret, changes;
3332 int old_flags = dev->flags;
3333
3334 ASSERT_RTNL();
3335
3336 /*
3337 * Set the flags on our device.
3338 */
3339
3340 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3341 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3342 IFF_AUTOMEDIA)) |
3343 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3344 IFF_ALLMULTI));
3345
3346 /*
3347 * Load in the correct multicast list now the flags have changed.
3348 */
3349
3350 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3351 dev->change_rx_flags(dev, IFF_MULTICAST);
3352
3353 dev_set_rx_mode(dev);
3354
3355 /*
3356 * Have we downed the interface. We handle IFF_UP ourselves
3357 * according to user attempts to set it, rather than blindly
3358 * setting it.
3359 */
3360
3361 ret = 0;
3362 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3363 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3364
3365 if (!ret)
3366 dev_set_rx_mode(dev);
3367 }
3368
3369 if (dev->flags & IFF_UP &&
3370 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3371 IFF_VOLATILE)))
3372 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3373
3374 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3375 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3376 dev->gflags ^= IFF_PROMISC;
3377 dev_set_promiscuity(dev, inc);
3378 }
3379
3380 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3381 is important. Some (broken) drivers set IFF_PROMISC, when
3382 IFF_ALLMULTI is requested not asking us and not reporting.
3383 */
3384 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3385 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3386 dev->gflags ^= IFF_ALLMULTI;
3387 dev_set_allmulti(dev, inc);
3388 }
3389
3390 /* Exclude state transition flags, already notified */
3391 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3392 if (changes)
3393 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3394
3395 return ret;
3396}
3397
3398int dev_set_mtu(struct net_device *dev, int new_mtu)
3399{
3400 int err;
3401
3402 if (new_mtu == dev->mtu)
3403 return 0;
3404
3405 /* MTU must be positive. */
3406 if (new_mtu < 0)
3407 return -EINVAL;
3408
3409 if (!netif_device_present(dev))
3410 return -ENODEV;
3411
3412 err = 0;
3413 if (dev->change_mtu)
3414 err = dev->change_mtu(dev, new_mtu);
3415 else
3416 dev->mtu = new_mtu;
3417 if (!err && dev->flags & IFF_UP)
3418 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3419 return err;
3420}
3421
3422int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3423{
3424 int err;
3425
3426 if (!dev->set_mac_address)
3427 return -EOPNOTSUPP;
3428 if (sa->sa_family != dev->type)
3429 return -EINVAL;
3430 if (!netif_device_present(dev))
3431 return -ENODEV;
3432 err = dev->set_mac_address(dev, sa);
3433 if (!err)
3434 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3435 return err;
3436}
3437
3438/*
3439 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3440 */
3441static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3442{
3443 int err;
3444 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3445
3446 if (!dev)
3447 return -ENODEV;
3448
3449 switch (cmd) {
3450 case SIOCGIFFLAGS: /* Get interface flags */
3451 ifr->ifr_flags = dev_get_flags(dev);
3452 return 0;
3453
3454 case SIOCGIFMETRIC: /* Get the metric on the interface
3455 (currently unused) */
3456 ifr->ifr_metric = 0;
3457 return 0;
3458
3459 case SIOCGIFMTU: /* Get the MTU of a device */
3460 ifr->ifr_mtu = dev->mtu;
3461 return 0;
3462
3463 case SIOCGIFHWADDR:
3464 if (!dev->addr_len)
3465 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3466 else
3467 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3468 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3469 ifr->ifr_hwaddr.sa_family = dev->type;
3470 return 0;
3471
3472 case SIOCGIFSLAVE:
3473 err = -EINVAL;
3474 break;
3475
3476 case SIOCGIFMAP:
3477 ifr->ifr_map.mem_start = dev->mem_start;
3478 ifr->ifr_map.mem_end = dev->mem_end;
3479 ifr->ifr_map.base_addr = dev->base_addr;
3480 ifr->ifr_map.irq = dev->irq;
3481 ifr->ifr_map.dma = dev->dma;
3482 ifr->ifr_map.port = dev->if_port;
3483 return 0;
3484
3485 case SIOCGIFINDEX:
3486 ifr->ifr_ifindex = dev->ifindex;
3487 return 0;
3488
3489 case SIOCGIFTXQLEN:
3490 ifr->ifr_qlen = dev->tx_queue_len;
3491 return 0;
3492
3493 default:
3494 /* dev_ioctl() should ensure this case
3495 * is never reached
3496 */
3497 WARN_ON(1);
3498 err = -EINVAL;
3499 break;
3500
3501 }
3502 return err;
3503}
3504
3505/*
3506 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3507 */
3508static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3509{
3510 int err;
3511 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3512
3513 if (!dev)
3514 return -ENODEV;
3515
3516 switch (cmd) {
3517 case SIOCSIFFLAGS: /* Set interface flags */
3518 return dev_change_flags(dev, ifr->ifr_flags);
3519
3520 case SIOCSIFMETRIC: /* Set the metric on the interface
3521 (currently unused) */
3522 return -EOPNOTSUPP;
3523
3524 case SIOCSIFMTU: /* Set the MTU of a device */
3525 return dev_set_mtu(dev, ifr->ifr_mtu);
3526
3527 case SIOCSIFHWADDR:
3528 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3529
3530 case SIOCSIFHWBROADCAST:
3531 if (ifr->ifr_hwaddr.sa_family != dev->type)
3532 return -EINVAL;
3533 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3534 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3535 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3536 return 0;
3537
3538 case SIOCSIFMAP:
3539 if (dev->set_config) {
3540 if (!netif_device_present(dev))
3541 return -ENODEV;
3542 return dev->set_config(dev, &ifr->ifr_map);
3543 }
3544 return -EOPNOTSUPP;
3545
3546 case SIOCADDMULTI:
3547 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3548 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3549 return -EINVAL;
3550 if (!netif_device_present(dev))
3551 return -ENODEV;
3552 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3553 dev->addr_len, 1);
3554
3555 case SIOCDELMULTI:
3556 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3557 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3558 return -EINVAL;
3559 if (!netif_device_present(dev))
3560 return -ENODEV;
3561 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3562 dev->addr_len, 1);
3563
3564 case SIOCSIFTXQLEN:
3565 if (ifr->ifr_qlen < 0)
3566 return -EINVAL;
3567 dev->tx_queue_len = ifr->ifr_qlen;
3568 return 0;
3569
3570 case SIOCSIFNAME:
3571 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3572 return dev_change_name(dev, ifr->ifr_newname);
3573
3574 /*
3575 * Unknown or private ioctl
3576 */
3577
3578 default:
3579 if ((cmd >= SIOCDEVPRIVATE &&
3580 cmd <= SIOCDEVPRIVATE + 15) ||
3581 cmd == SIOCBONDENSLAVE ||
3582 cmd == SIOCBONDRELEASE ||
3583 cmd == SIOCBONDSETHWADDR ||
3584 cmd == SIOCBONDSLAVEINFOQUERY ||
3585 cmd == SIOCBONDINFOQUERY ||
3586 cmd == SIOCBONDCHANGEACTIVE ||
3587 cmd == SIOCGMIIPHY ||
3588 cmd == SIOCGMIIREG ||
3589 cmd == SIOCSMIIREG ||
3590 cmd == SIOCBRADDIF ||
3591 cmd == SIOCBRDELIF ||
3592 cmd == SIOCWANDEV) {
3593 err = -EOPNOTSUPP;
3594 if (dev->do_ioctl) {
3595 if (netif_device_present(dev))
3596 err = dev->do_ioctl(dev, ifr,
3597 cmd);
3598 else
3599 err = -ENODEV;
3600 }
3601 } else
3602 err = -EINVAL;
3603
3604 }
3605 return err;
3606}
3607
3608/*
3609 * This function handles all "interface"-type I/O control requests. The actual
3610 * 'doing' part of this is dev_ifsioc above.
3611 */
3612
3613/**
3614 * dev_ioctl - network device ioctl
3615 * @net: the applicable net namespace
3616 * @cmd: command to issue
3617 * @arg: pointer to a struct ifreq in user space
3618 *
3619 * Issue ioctl functions to devices. This is normally called by the
3620 * user space syscall interfaces but can sometimes be useful for
3621 * other purposes. The return value is the return from the syscall if
3622 * positive or a negative errno code on error.
3623 */
3624
3625int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3626{
3627 struct ifreq ifr;
3628 int ret;
3629 char *colon;
3630
3631 /* One special case: SIOCGIFCONF takes ifconf argument
3632 and requires shared lock, because it sleeps writing
3633 to user space.
3634 */
3635
3636 if (cmd == SIOCGIFCONF) {
3637 rtnl_lock();
3638 ret = dev_ifconf(net, (char __user *) arg);
3639 rtnl_unlock();
3640 return ret;
3641 }
3642 if (cmd == SIOCGIFNAME)
3643 return dev_ifname(net, (struct ifreq __user *)arg);
3644
3645 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3646 return -EFAULT;
3647
3648 ifr.ifr_name[IFNAMSIZ-1] = 0;
3649
3650 colon = strchr(ifr.ifr_name, ':');
3651 if (colon)
3652 *colon = 0;
3653
3654 /*
3655 * See which interface the caller is talking about.
3656 */
3657
3658 switch (cmd) {
3659 /*
3660 * These ioctl calls:
3661 * - can be done by all.
3662 * - atomic and do not require locking.
3663 * - return a value
3664 */
3665 case SIOCGIFFLAGS:
3666 case SIOCGIFMETRIC:
3667 case SIOCGIFMTU:
3668 case SIOCGIFHWADDR:
3669 case SIOCGIFSLAVE:
3670 case SIOCGIFMAP:
3671 case SIOCGIFINDEX:
3672 case SIOCGIFTXQLEN:
3673 dev_load(net, ifr.ifr_name);
3674 read_lock(&dev_base_lock);
3675 ret = dev_ifsioc_locked(net, &ifr, cmd);
3676 read_unlock(&dev_base_lock);
3677 if (!ret) {
3678 if (colon)
3679 *colon = ':';
3680 if (copy_to_user(arg, &ifr,
3681 sizeof(struct ifreq)))
3682 ret = -EFAULT;
3683 }
3684 return ret;
3685
3686 case SIOCETHTOOL:
3687 dev_load(net, ifr.ifr_name);
3688 rtnl_lock();
3689 ret = dev_ethtool(net, &ifr);
3690 rtnl_unlock();
3691 if (!ret) {
3692 if (colon)
3693 *colon = ':';
3694 if (copy_to_user(arg, &ifr,
3695 sizeof(struct ifreq)))
3696 ret = -EFAULT;
3697 }
3698 return ret;
3699
3700 /*
3701 * These ioctl calls:
3702 * - require superuser power.
3703 * - require strict serialization.
3704 * - return a value
3705 */
3706 case SIOCGMIIPHY:
3707 case SIOCGMIIREG:
3708 case SIOCSIFNAME:
3709 if (!capable(CAP_NET_ADMIN))
3710 return -EPERM;
3711 dev_load(net, ifr.ifr_name);
3712 rtnl_lock();
3713 ret = dev_ifsioc(net, &ifr, cmd);
3714 rtnl_unlock();
3715 if (!ret) {
3716 if (colon)
3717 *colon = ':';
3718 if (copy_to_user(arg, &ifr,
3719 sizeof(struct ifreq)))
3720 ret = -EFAULT;
3721 }
3722 return ret;
3723
3724 /*
3725 * These ioctl calls:
3726 * - require superuser power.
3727 * - require strict serialization.
3728 * - do not return a value
3729 */
3730 case SIOCSIFFLAGS:
3731 case SIOCSIFMETRIC:
3732 case SIOCSIFMTU:
3733 case SIOCSIFMAP:
3734 case SIOCSIFHWADDR:
3735 case SIOCSIFSLAVE:
3736 case SIOCADDMULTI:
3737 case SIOCDELMULTI:
3738 case SIOCSIFHWBROADCAST:
3739 case SIOCSIFTXQLEN:
3740 case SIOCSMIIREG:
3741 case SIOCBONDENSLAVE:
3742 case SIOCBONDRELEASE:
3743 case SIOCBONDSETHWADDR:
3744 case SIOCBONDCHANGEACTIVE:
3745 case SIOCBRADDIF:
3746 case SIOCBRDELIF:
3747 if (!capable(CAP_NET_ADMIN))
3748 return -EPERM;
3749 /* fall through */
3750 case SIOCBONDSLAVEINFOQUERY:
3751 case SIOCBONDINFOQUERY:
3752 dev_load(net, ifr.ifr_name);
3753 rtnl_lock();
3754 ret = dev_ifsioc(net, &ifr, cmd);
3755 rtnl_unlock();
3756 return ret;
3757
3758 case SIOCGIFMEM:
3759 /* Get the per device memory space. We can add this but
3760 * currently do not support it */
3761 case SIOCSIFMEM:
3762 /* Set the per device memory buffer space.
3763 * Not applicable in our case */
3764 case SIOCSIFLINK:
3765 return -EINVAL;
3766
3767 /*
3768 * Unknown or private ioctl.
3769 */
3770 default:
3771 if (cmd == SIOCWANDEV ||
3772 (cmd >= SIOCDEVPRIVATE &&
3773 cmd <= SIOCDEVPRIVATE + 15)) {
3774 dev_load(net, ifr.ifr_name);
3775 rtnl_lock();
3776 ret = dev_ifsioc(net, &ifr, cmd);
3777 rtnl_unlock();
3778 if (!ret && copy_to_user(arg, &ifr,
3779 sizeof(struct ifreq)))
3780 ret = -EFAULT;
3781 return ret;
3782 }
3783 /* Take care of Wireless Extensions */
3784 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3785 return wext_handle_ioctl(net, &ifr, cmd, arg);
3786 return -EINVAL;
3787 }
3788}
3789
3790
3791/**
3792 * dev_new_index - allocate an ifindex
3793 * @net: the applicable net namespace
3794 *
3795 * Returns a suitable unique value for a new device interface
3796 * number. The caller must hold the rtnl semaphore or the
3797 * dev_base_lock to be sure it remains unique.
3798 */
3799static int dev_new_index(struct net *net)
3800{
3801 static int ifindex;
3802 for (;;) {
3803 if (++ifindex <= 0)
3804 ifindex = 1;
3805 if (!__dev_get_by_index(net, ifindex))
3806 return ifindex;
3807 }
3808}
3809
3810/* Delayed registration/unregisteration */
3811static DEFINE_SPINLOCK(net_todo_list_lock);
3812static LIST_HEAD(net_todo_list);
3813
3814static void net_set_todo(struct net_device *dev)
3815{
3816 spin_lock(&net_todo_list_lock);
3817 list_add_tail(&dev->todo_list, &net_todo_list);
3818 spin_unlock(&net_todo_list_lock);
3819}
3820
3821static void rollback_registered(struct net_device *dev)
3822{
3823 BUG_ON(dev_boot_phase);
3824 ASSERT_RTNL();
3825
3826 /* Some devices call without registering for initialization unwind. */
3827 if (dev->reg_state == NETREG_UNINITIALIZED) {
3828 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3829 "was registered\n", dev->name, dev);
3830
3831 WARN_ON(1);
3832 return;
3833 }
3834
3835 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3836
3837 /* If device is running, close it first. */
3838 dev_close(dev);
3839
3840 /* And unlink it from device chain. */
3841 unlist_netdevice(dev);
3842
3843 dev->reg_state = NETREG_UNREGISTERING;
3844
3845 synchronize_net();
3846
3847 /* Shutdown queueing discipline. */
3848 dev_shutdown(dev);
3849
3850
3851 /* Notify protocols, that we are about to destroy
3852 this device. They should clean all the things.
3853 */
3854 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3855
3856 /*
3857 * Flush the unicast and multicast chains
3858 */
3859 dev_addr_discard(dev);
3860
3861 if (dev->uninit)
3862 dev->uninit(dev);
3863
3864 /* Notifier chain MUST detach us from master device. */
3865 WARN_ON(dev->master);
3866
3867 /* Remove entries from kobject tree */
3868 netdev_unregister_kobject(dev);
3869
3870 synchronize_net();
3871
3872 dev_put(dev);
3873}
3874
3875static void __netdev_init_queue_locks_one(struct net_device *dev,
3876 struct netdev_queue *dev_queue,
3877 void *_unused)
3878{
3879 spin_lock_init(&dev_queue->_xmit_lock);
3880 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3881 dev_queue->xmit_lock_owner = -1;
3882}
3883
3884static void netdev_init_queue_locks(struct net_device *dev)
3885{
3886 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3887 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3888}
3889
3890/**
3891 * register_netdevice - register a network device
3892 * @dev: device to register
3893 *
3894 * Take a completed network device structure and add it to the kernel
3895 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3896 * chain. 0 is returned on success. A negative errno code is returned
3897 * on a failure to set up the device, or if the name is a duplicate.
3898 *
3899 * Callers must hold the rtnl semaphore. You may want
3900 * register_netdev() instead of this.
3901 *
3902 * BUGS:
3903 * The locking appears insufficient to guarantee two parallel registers
3904 * will not get the same name.
3905 */
3906
3907int register_netdevice(struct net_device *dev)
3908{
3909 struct hlist_head *head;
3910 struct hlist_node *p;
3911 int ret;
3912 struct net *net;
3913
3914 BUG_ON(dev_boot_phase);
3915 ASSERT_RTNL();
3916
3917 might_sleep();
3918
3919 /* When net_device's are persistent, this will be fatal. */
3920 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3921 BUG_ON(!dev_net(dev));
3922 net = dev_net(dev);
3923
3924 spin_lock_init(&dev->addr_list_lock);
3925 netdev_set_addr_lockdep_class(dev);
3926 netdev_init_queue_locks(dev);
3927
3928 dev->iflink = -1;
3929
3930 /* Init, if this function is available */
3931 if (dev->init) {
3932 ret = dev->init(dev);
3933 if (ret) {
3934 if (ret > 0)
3935 ret = -EIO;
3936 goto out;
3937 }
3938 }
3939
3940 if (!dev_valid_name(dev->name)) {
3941 ret = -EINVAL;
3942 goto err_uninit;
3943 }
3944
3945 dev->ifindex = dev_new_index(net);
3946 if (dev->iflink == -1)
3947 dev->iflink = dev->ifindex;
3948
3949 /* Check for existence of name */
3950 head = dev_name_hash(net, dev->name);
3951 hlist_for_each(p, head) {
3952 struct net_device *d
3953 = hlist_entry(p, struct net_device, name_hlist);
3954 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3955 ret = -EEXIST;
3956 goto err_uninit;
3957 }
3958 }
3959
3960 /* Fix illegal checksum combinations */
3961 if ((dev->features & NETIF_F_HW_CSUM) &&
3962 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3963 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3964 dev->name);
3965 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3966 }
3967
3968 if ((dev->features & NETIF_F_NO_CSUM) &&
3969 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3970 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3971 dev->name);
3972 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3973 }
3974
3975
3976 /* Fix illegal SG+CSUM combinations. */
3977 if ((dev->features & NETIF_F_SG) &&
3978 !(dev->features & NETIF_F_ALL_CSUM)) {
3979 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3980 dev->name);
3981 dev->features &= ~NETIF_F_SG;
3982 }
3983
3984 /* TSO requires that SG is present as well. */
3985 if ((dev->features & NETIF_F_TSO) &&
3986 !(dev->features & NETIF_F_SG)) {
3987 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3988 dev->name);
3989 dev->features &= ~NETIF_F_TSO;
3990 }
3991 if (dev->features & NETIF_F_UFO) {
3992 if (!(dev->features & NETIF_F_HW_CSUM)) {
3993 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3994 "NETIF_F_HW_CSUM feature.\n",
3995 dev->name);
3996 dev->features &= ~NETIF_F_UFO;
3997 }
3998 if (!(dev->features & NETIF_F_SG)) {
3999 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
4000 "NETIF_F_SG feature.\n",
4001 dev->name);
4002 dev->features &= ~NETIF_F_UFO;
4003 }
4004 }
4005
4006 /* Enable software GSO if SG is supported. */
4007 if (dev->features & NETIF_F_SG)
4008 dev->features |= NETIF_F_GSO;
4009
4010 netdev_initialize_kobject(dev);
4011 ret = netdev_register_kobject(dev);
4012 if (ret)
4013 goto err_uninit;
4014 dev->reg_state = NETREG_REGISTERED;
4015
4016 /*
4017 * Default initial state at registry is that the
4018 * device is present.
4019 */
4020
4021 set_bit(__LINK_STATE_PRESENT, &dev->state);
4022
4023 dev_init_scheduler(dev);
4024 dev_hold(dev);
4025 list_netdevice(dev);
4026
4027 /* Notify protocols, that a new device appeared. */
4028 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4029 ret = notifier_to_errno(ret);
4030 if (ret) {
4031 rollback_registered(dev);
4032 dev->reg_state = NETREG_UNREGISTERED;
4033 }
4034
4035out:
4036 return ret;
4037
4038err_uninit:
4039 if (dev->uninit)
4040 dev->uninit(dev);
4041 goto out;
4042}
4043
4044/**
4045 * register_netdev - register a network device
4046 * @dev: device to register
4047 *
4048 * Take a completed network device structure and add it to the kernel
4049 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4050 * chain. 0 is returned on success. A negative errno code is returned
4051 * on a failure to set up the device, or if the name is a duplicate.
4052 *
4053 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4054 * and expands the device name if you passed a format string to
4055 * alloc_netdev.
4056 */
4057int register_netdev(struct net_device *dev)
4058{
4059 int err;
4060
4061 rtnl_lock();
4062
4063 /*
4064 * If the name is a format string the caller wants us to do a
4065 * name allocation.
4066 */
4067 if (strchr(dev->name, '%')) {
4068 err = dev_alloc_name(dev, dev->name);
4069 if (err < 0)
4070 goto out;
4071 }
4072
4073 err = register_netdevice(dev);
4074out:
4075 rtnl_unlock();
4076 return err;
4077}
4078EXPORT_SYMBOL(register_netdev);
4079
4080/*
4081 * netdev_wait_allrefs - wait until all references are gone.
4082 *
4083 * This is called when unregistering network devices.
4084 *
4085 * Any protocol or device that holds a reference should register
4086 * for netdevice notification, and cleanup and put back the
4087 * reference if they receive an UNREGISTER event.
4088 * We can get stuck here if buggy protocols don't correctly
4089 * call dev_put.
4090 */
4091static void netdev_wait_allrefs(struct net_device *dev)
4092{
4093 unsigned long rebroadcast_time, warning_time;
4094
4095 rebroadcast_time = warning_time = jiffies;
4096 while (atomic_read(&dev->refcnt) != 0) {
4097 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4098 rtnl_lock();
4099
4100 /* Rebroadcast unregister notification */
4101 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4102
4103 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4104 &dev->state)) {
4105 /* We must not have linkwatch events
4106 * pending on unregister. If this
4107 * happens, we simply run the queue
4108 * unscheduled, resulting in a noop
4109 * for this device.
4110 */
4111 linkwatch_run_queue();
4112 }
4113
4114 __rtnl_unlock();
4115
4116 rebroadcast_time = jiffies;
4117 }
4118
4119 msleep(250);
4120
4121 if (time_after(jiffies, warning_time + 10 * HZ)) {
4122 printk(KERN_EMERG "unregister_netdevice: "
4123 "waiting for %s to become free. Usage "
4124 "count = %d\n",
4125 dev->name, atomic_read(&dev->refcnt));
4126 warning_time = jiffies;
4127 }
4128 }
4129}
4130
4131/* The sequence is:
4132 *
4133 * rtnl_lock();
4134 * ...
4135 * register_netdevice(x1);
4136 * register_netdevice(x2);
4137 * ...
4138 * unregister_netdevice(y1);
4139 * unregister_netdevice(y2);
4140 * ...
4141 * rtnl_unlock();
4142 * free_netdev(y1);
4143 * free_netdev(y2);
4144 *
4145 * We are invoked by rtnl_unlock() after it drops the semaphore.
4146 * This allows us to deal with problems:
4147 * 1) We can delete sysfs objects which invoke hotplug
4148 * without deadlocking with linkwatch via keventd.
4149 * 2) Since we run with the RTNL semaphore not held, we can sleep
4150 * safely in order to wait for the netdev refcnt to drop to zero.
4151 */
4152static DEFINE_MUTEX(net_todo_run_mutex);
4153void netdev_run_todo(void)
4154{
4155 struct list_head list;
4156
4157 /* Need to guard against multiple cpu's getting out of order. */
4158 mutex_lock(&net_todo_run_mutex);
4159
4160 /* Not safe to do outside the semaphore. We must not return
4161 * until all unregister events invoked by the local processor
4162 * have been completed (either by this todo run, or one on
4163 * another cpu).
4164 */
4165 if (list_empty(&net_todo_list))
4166 goto out;
4167
4168 /* Snapshot list, allow later requests */
4169 spin_lock(&net_todo_list_lock);
4170 list_replace_init(&net_todo_list, &list);
4171 spin_unlock(&net_todo_list_lock);
4172
4173 while (!list_empty(&list)) {
4174 struct net_device *dev
4175 = list_entry(list.next, struct net_device, todo_list);
4176 list_del(&dev->todo_list);
4177
4178 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4179 printk(KERN_ERR "network todo '%s' but state %d\n",
4180 dev->name, dev->reg_state);
4181 dump_stack();
4182 continue;
4183 }
4184
4185 dev->reg_state = NETREG_UNREGISTERED;
4186
4187 on_each_cpu(flush_backlog, dev, 1);
4188
4189 netdev_wait_allrefs(dev);
4190
4191 /* paranoia */
4192 BUG_ON(atomic_read(&dev->refcnt));
4193 WARN_ON(dev->ip_ptr);
4194 WARN_ON(dev->ip6_ptr);
4195 WARN_ON(dev->dn_ptr);
4196
4197 if (dev->destructor)
4198 dev->destructor(dev);
4199
4200 /* Free network device */
4201 kobject_put(&dev->dev.kobj);
4202 }
4203
4204out:
4205 mutex_unlock(&net_todo_run_mutex);
4206}
4207
4208static struct net_device_stats *internal_stats(struct net_device *dev)
4209{
4210 return &dev->stats;
4211}
4212
4213static void netdev_init_one_queue(struct net_device *dev,
4214 struct netdev_queue *queue,
4215 void *_unused)
4216{
4217 queue->dev = dev;
4218}
4219
4220static void netdev_init_queues(struct net_device *dev)
4221{
4222 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4223 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4224 spin_lock_init(&dev->tx_global_lock);
4225}
4226
4227/**
4228 * alloc_netdev_mq - allocate network device
4229 * @sizeof_priv: size of private data to allocate space for
4230 * @name: device name format string
4231 * @setup: callback to initialize device
4232 * @queue_count: the number of subqueues to allocate
4233 *
4234 * Allocates a struct net_device with private data area for driver use
4235 * and performs basic initialization. Also allocates subquue structs
4236 * for each queue on the device at the end of the netdevice.
4237 */
4238struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4239 void (*setup)(struct net_device *), unsigned int queue_count)
4240{
4241 struct netdev_queue *tx;
4242 struct net_device *dev;
4243 size_t alloc_size;
4244 void *p;
4245
4246 BUG_ON(strlen(name) >= sizeof(dev->name));
4247
4248 alloc_size = sizeof(struct net_device);
4249 if (sizeof_priv) {
4250 /* ensure 32-byte alignment of private area */
4251 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4252 alloc_size += sizeof_priv;
4253 }
4254 /* ensure 32-byte alignment of whole construct */
4255 alloc_size += NETDEV_ALIGN_CONST;
4256
4257 p = kzalloc(alloc_size, GFP_KERNEL);
4258 if (!p) {
4259 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4260 return NULL;
4261 }
4262
4263 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4264 if (!tx) {
4265 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4266 "tx qdiscs.\n");
4267 kfree(p);
4268 return NULL;
4269 }
4270
4271 dev = (struct net_device *)
4272 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4273 dev->padded = (char *)dev - (char *)p;
4274 dev_net_set(dev, &init_net);
4275
4276 dev->_tx = tx;
4277 dev->num_tx_queues = queue_count;
4278 dev->real_num_tx_queues = queue_count;
4279
4280 if (sizeof_priv) {
4281 dev->priv = ((char *)dev +
4282 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4283 & ~NETDEV_ALIGN_CONST));
4284 }
4285
4286 dev->gso_max_size = GSO_MAX_SIZE;
4287
4288 netdev_init_queues(dev);
4289
4290 dev->get_stats = internal_stats;
4291 netpoll_netdev_init(dev);
4292 setup(dev);
4293 strcpy(dev->name, name);
4294 return dev;
4295}
4296EXPORT_SYMBOL(alloc_netdev_mq);
4297
4298/**
4299 * free_netdev - free network device
4300 * @dev: device
4301 *
4302 * This function does the last stage of destroying an allocated device
4303 * interface. The reference to the device object is released.
4304 * If this is the last reference then it will be freed.
4305 */
4306void free_netdev(struct net_device *dev)
4307{
4308 release_net(dev_net(dev));
4309
4310 kfree(dev->_tx);
4311
4312 /* Compatibility with error handling in drivers */
4313 if (dev->reg_state == NETREG_UNINITIALIZED) {
4314 kfree((char *)dev - dev->padded);
4315 return;
4316 }
4317
4318 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4319 dev->reg_state = NETREG_RELEASED;
4320
4321 /* will free via device release */
4322 put_device(&dev->dev);
4323}
4324
4325/* Synchronize with packet receive processing. */
4326void synchronize_net(void)
4327{
4328 might_sleep();
4329 synchronize_rcu();
4330}
4331
4332/**
4333 * unregister_netdevice - remove device from the kernel
4334 * @dev: device
4335 *
4336 * This function shuts down a device interface and removes it
4337 * from the kernel tables.
4338 *
4339 * Callers must hold the rtnl semaphore. You may want
4340 * unregister_netdev() instead of this.
4341 */
4342
4343void unregister_netdevice(struct net_device *dev)
4344{
4345 ASSERT_RTNL();
4346
4347 rollback_registered(dev);
4348 /* Finish processing unregister after unlock */
4349 net_set_todo(dev);
4350}
4351
4352/**
4353 * unregister_netdev - remove device from the kernel
4354 * @dev: device
4355 *
4356 * This function shuts down a device interface and removes it
4357 * from the kernel tables.
4358 *
4359 * This is just a wrapper for unregister_netdevice that takes
4360 * the rtnl semaphore. In general you want to use this and not
4361 * unregister_netdevice.
4362 */
4363void unregister_netdev(struct net_device *dev)
4364{
4365 rtnl_lock();
4366 unregister_netdevice(dev);
4367 rtnl_unlock();
4368}
4369
4370EXPORT_SYMBOL(unregister_netdev);
4371
4372/**
4373 * dev_change_net_namespace - move device to different nethost namespace
4374 * @dev: device
4375 * @net: network namespace
4376 * @pat: If not NULL name pattern to try if the current device name
4377 * is already taken in the destination network namespace.
4378 *
4379 * This function shuts down a device interface and moves it
4380 * to a new network namespace. On success 0 is returned, on
4381 * a failure a netagive errno code is returned.
4382 *
4383 * Callers must hold the rtnl semaphore.
4384 */
4385
4386int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4387{
4388 char buf[IFNAMSIZ];
4389 const char *destname;
4390 int err;
4391
4392 ASSERT_RTNL();
4393
4394 /* Don't allow namespace local devices to be moved. */
4395 err = -EINVAL;
4396 if (dev->features & NETIF_F_NETNS_LOCAL)
4397 goto out;
4398
4399 /* Ensure the device has been registrered */
4400 err = -EINVAL;
4401 if (dev->reg_state != NETREG_REGISTERED)
4402 goto out;
4403
4404 /* Get out if there is nothing todo */
4405 err = 0;
4406 if (net_eq(dev_net(dev), net))
4407 goto out;
4408
4409 /* Pick the destination device name, and ensure
4410 * we can use it in the destination network namespace.
4411 */
4412 err = -EEXIST;
4413 destname = dev->name;
4414 if (__dev_get_by_name(net, destname)) {
4415 /* We get here if we can't use the current device name */
4416 if (!pat)
4417 goto out;
4418 if (!dev_valid_name(pat))
4419 goto out;
4420 if (strchr(pat, '%')) {
4421 if (__dev_alloc_name(net, pat, buf) < 0)
4422 goto out;
4423 destname = buf;
4424 } else
4425 destname = pat;
4426 if (__dev_get_by_name(net, destname))
4427 goto out;
4428 }
4429
4430 /*
4431 * And now a mini version of register_netdevice unregister_netdevice.
4432 */
4433
4434 /* If device is running close it first. */
4435 dev_close(dev);
4436
4437 /* And unlink it from device chain */
4438 err = -ENODEV;
4439 unlist_netdevice(dev);
4440
4441 synchronize_net();
4442
4443 /* Shutdown queueing discipline. */
4444 dev_shutdown(dev);
4445
4446 /* Notify protocols, that we are about to destroy
4447 this device. They should clean all the things.
4448 */
4449 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4450
4451 /*
4452 * Flush the unicast and multicast chains
4453 */
4454 dev_addr_discard(dev);
4455
4456 /* Actually switch the network namespace */
4457 dev_net_set(dev, net);
4458
4459 /* Assign the new device name */
4460 if (destname != dev->name)
4461 strcpy(dev->name, destname);
4462
4463 /* If there is an ifindex conflict assign a new one */
4464 if (__dev_get_by_index(net, dev->ifindex)) {
4465 int iflink = (dev->iflink == dev->ifindex);
4466 dev->ifindex = dev_new_index(net);
4467 if (iflink)
4468 dev->iflink = dev->ifindex;
4469 }
4470
4471 /* Fixup kobjects */
4472 netdev_unregister_kobject(dev);
4473 err = netdev_register_kobject(dev);
4474 WARN_ON(err);
4475
4476 /* Add the device back in the hashes */
4477 list_netdevice(dev);
4478
4479 /* Notify protocols, that a new device appeared. */
4480 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4481
4482 synchronize_net();
4483 err = 0;
4484out:
4485 return err;
4486}
4487
4488static int dev_cpu_callback(struct notifier_block *nfb,
4489 unsigned long action,
4490 void *ocpu)
4491{
4492 struct sk_buff **list_skb;
4493 struct Qdisc **list_net;
4494 struct sk_buff *skb;
4495 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4496 struct softnet_data *sd, *oldsd;
4497
4498 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4499 return NOTIFY_OK;
4500
4501 local_irq_disable();
4502 cpu = smp_processor_id();
4503 sd = &per_cpu(softnet_data, cpu);
4504 oldsd = &per_cpu(softnet_data, oldcpu);
4505
4506 /* Find end of our completion_queue. */
4507 list_skb = &sd->completion_queue;
4508 while (*list_skb)
4509 list_skb = &(*list_skb)->next;
4510 /* Append completion queue from offline CPU. */
4511 *list_skb = oldsd->completion_queue;
4512 oldsd->completion_queue = NULL;
4513
4514 /* Find end of our output_queue. */
4515 list_net = &sd->output_queue;
4516 while (*list_net)
4517 list_net = &(*list_net)->next_sched;
4518 /* Append output queue from offline CPU. */
4519 *list_net = oldsd->output_queue;
4520 oldsd->output_queue = NULL;
4521
4522 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4523 local_irq_enable();
4524
4525 /* Process offline CPU's input_pkt_queue */
4526 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4527 netif_rx(skb);
4528
4529 return NOTIFY_OK;
4530}
4531
4532#ifdef CONFIG_NET_DMA
4533/**
4534 * net_dma_rebalance - try to maintain one DMA channel per CPU
4535 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4536 *
4537 * This is called when the number of channels allocated to the net_dma client
4538 * changes. The net_dma client tries to have one DMA channel per CPU.
4539 */
4540
4541static void net_dma_rebalance(struct net_dma *net_dma)
4542{
4543 unsigned int cpu, i, n, chan_idx;
4544 struct dma_chan *chan;
4545
4546 if (cpus_empty(net_dma->channel_mask)) {
4547 for_each_online_cpu(cpu)
4548 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4549 return;
4550 }
4551
4552 i = 0;
4553 cpu = first_cpu(cpu_online_map);
4554
4555 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4556 chan = net_dma->channels[chan_idx];
4557
4558 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4559 + (i < (num_online_cpus() %
4560 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4561
4562 while(n) {
4563 per_cpu(softnet_data, cpu).net_dma = chan;
4564 cpu = next_cpu(cpu, cpu_online_map);
4565 n--;
4566 }
4567 i++;
4568 }
4569}
4570
4571/**
4572 * netdev_dma_event - event callback for the net_dma_client
4573 * @client: should always be net_dma_client
4574 * @chan: DMA channel for the event
4575 * @state: DMA state to be handled
4576 */
4577static enum dma_state_client
4578netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4579 enum dma_state state)
4580{
4581 int i, found = 0, pos = -1;
4582 struct net_dma *net_dma =
4583 container_of(client, struct net_dma, client);
4584 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4585
4586 spin_lock(&net_dma->lock);
4587 switch (state) {
4588 case DMA_RESOURCE_AVAILABLE:
4589 for (i = 0; i < nr_cpu_ids; i++)
4590 if (net_dma->channels[i] == chan) {
4591 found = 1;
4592 break;
4593 } else if (net_dma->channels[i] == NULL && pos < 0)
4594 pos = i;
4595
4596 if (!found && pos >= 0) {
4597 ack = DMA_ACK;
4598 net_dma->channels[pos] = chan;
4599 cpu_set(pos, net_dma->channel_mask);
4600 net_dma_rebalance(net_dma);
4601 }
4602 break;
4603 case DMA_RESOURCE_REMOVED:
4604 for (i = 0; i < nr_cpu_ids; i++)
4605 if (net_dma->channels[i] == chan) {
4606 found = 1;
4607 pos = i;
4608 break;
4609 }
4610
4611 if (found) {
4612 ack = DMA_ACK;
4613 cpu_clear(pos, net_dma->channel_mask);
4614 net_dma->channels[i] = NULL;
4615 net_dma_rebalance(net_dma);
4616 }
4617 break;
4618 default:
4619 break;
4620 }
4621 spin_unlock(&net_dma->lock);
4622
4623 return ack;
4624}
4625
4626/**
4627 * netdev_dma_regiser - register the networking subsystem as a DMA client
4628 */
4629static int __init netdev_dma_register(void)
4630{
4631 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4632 GFP_KERNEL);
4633 if (unlikely(!net_dma.channels)) {
4634 printk(KERN_NOTICE
4635 "netdev_dma: no memory for net_dma.channels\n");
4636 return -ENOMEM;
4637 }
4638 spin_lock_init(&net_dma.lock);
4639 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4640 dma_async_client_register(&net_dma.client);
4641 dma_async_client_chan_request(&net_dma.client);
4642 return 0;
4643}
4644
4645#else
4646static int __init netdev_dma_register(void) { return -ENODEV; }
4647#endif /* CONFIG_NET_DMA */
4648
4649/**
4650 * netdev_compute_feature - compute conjunction of two feature sets
4651 * @all: first feature set
4652 * @one: second feature set
4653 *
4654 * Computes a new feature set after adding a device with feature set
4655 * @one to the master device with current feature set @all. Returns
4656 * the new feature set.
4657 */
4658int netdev_compute_features(unsigned long all, unsigned long one)
4659{
4660 /* if device needs checksumming, downgrade to hw checksumming */
4661 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4662 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4663
4664 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4665 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4666 all ^= NETIF_F_HW_CSUM
4667 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4668
4669 if (one & NETIF_F_GSO)
4670 one |= NETIF_F_GSO_SOFTWARE;
4671 one |= NETIF_F_GSO;
4672
4673 /* If even one device supports robust GSO, enable it for all. */
4674 if (one & NETIF_F_GSO_ROBUST)
4675 all |= NETIF_F_GSO_ROBUST;
4676
4677 all &= one | NETIF_F_LLTX;
4678
4679 if (!(all & NETIF_F_ALL_CSUM))
4680 all &= ~NETIF_F_SG;
4681 if (!(all & NETIF_F_SG))
4682 all &= ~NETIF_F_GSO_MASK;
4683
4684 return all;
4685}
4686EXPORT_SYMBOL(netdev_compute_features);
4687
4688static struct hlist_head *netdev_create_hash(void)
4689{
4690 int i;
4691 struct hlist_head *hash;
4692
4693 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4694 if (hash != NULL)
4695 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4696 INIT_HLIST_HEAD(&hash[i]);
4697
4698 return hash;
4699}
4700
4701/* Initialize per network namespace state */
4702static int __net_init netdev_init(struct net *net)
4703{
4704 INIT_LIST_HEAD(&net->dev_base_head);
4705
4706 net->dev_name_head = netdev_create_hash();
4707 if (net->dev_name_head == NULL)
4708 goto err_name;
4709
4710 net->dev_index_head = netdev_create_hash();
4711 if (net->dev_index_head == NULL)
4712 goto err_idx;
4713
4714 return 0;
4715
4716err_idx:
4717 kfree(net->dev_name_head);
4718err_name:
4719 return -ENOMEM;
4720}
4721
4722char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4723{
4724 struct device_driver *driver;
4725 struct device *parent;
4726
4727 if (len <= 0 || !buffer)
4728 return buffer;
4729 buffer[0] = 0;
4730
4731 parent = dev->dev.parent;
4732
4733 if (!parent)
4734 return buffer;
4735
4736 driver = parent->driver;
4737 if (driver && driver->name)
4738 strlcpy(buffer, driver->name, len);
4739 return buffer;
4740}
4741
4742static void __net_exit netdev_exit(struct net *net)
4743{
4744 kfree(net->dev_name_head);
4745 kfree(net->dev_index_head);
4746}
4747
4748static struct pernet_operations __net_initdata netdev_net_ops = {
4749 .init = netdev_init,
4750 .exit = netdev_exit,
4751};
4752
4753static void __net_exit default_device_exit(struct net *net)
4754{
4755 struct net_device *dev, *next;
4756 /*
4757 * Push all migratable of the network devices back to the
4758 * initial network namespace
4759 */
4760 rtnl_lock();
4761 for_each_netdev_safe(net, dev, next) {
4762 int err;
4763 char fb_name[IFNAMSIZ];
4764
4765 /* Ignore unmoveable devices (i.e. loopback) */
4766 if (dev->features & NETIF_F_NETNS_LOCAL)
4767 continue;
4768
4769 /* Push remaing network devices to init_net */
4770 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4771 err = dev_change_net_namespace(dev, &init_net, fb_name);
4772 if (err) {
4773 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4774 __func__, dev->name, err);
4775 BUG();
4776 }
4777 }
4778 rtnl_unlock();
4779}
4780
4781static struct pernet_operations __net_initdata default_device_ops = {
4782 .exit = default_device_exit,
4783};
4784
4785/*
4786 * Initialize the DEV module. At boot time this walks the device list and
4787 * unhooks any devices that fail to initialise (normally hardware not
4788 * present) and leaves us with a valid list of present and active devices.
4789 *
4790 */
4791
4792/*
4793 * This is called single threaded during boot, so no need
4794 * to take the rtnl semaphore.
4795 */
4796static int __init net_dev_init(void)
4797{
4798 int i, rc = -ENOMEM;
4799
4800 BUG_ON(!dev_boot_phase);
4801
4802 if (dev_proc_init())
4803 goto out;
4804
4805 if (netdev_kobject_init())
4806 goto out;
4807
4808 INIT_LIST_HEAD(&ptype_all);
4809 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4810 INIT_LIST_HEAD(&ptype_base[i]);
4811
4812 if (register_pernet_subsys(&netdev_net_ops))
4813 goto out;
4814
4815 if (register_pernet_device(&default_device_ops))
4816 goto out;
4817
4818 /*
4819 * Initialise the packet receive queues.
4820 */
4821
4822 for_each_possible_cpu(i) {
4823 struct softnet_data *queue;
4824
4825 queue = &per_cpu(softnet_data, i);
4826 skb_queue_head_init(&queue->input_pkt_queue);
4827 queue->completion_queue = NULL;
4828 INIT_LIST_HEAD(&queue->poll_list);
4829
4830 queue->backlog.poll = process_backlog;
4831 queue->backlog.weight = weight_p;
4832 }
4833
4834 netdev_dma_register();
4835
4836 dev_boot_phase = 0;
4837
4838 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4839 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4840
4841 hotcpu_notifier(dev_cpu_callback, 0);
4842 dst_init();
4843 dev_mcast_init();
4844 rc = 0;
4845out:
4846 return rc;
4847}
4848
4849subsys_initcall(net_dev_init);
4850
4851EXPORT_SYMBOL(__dev_get_by_index);
4852EXPORT_SYMBOL(__dev_get_by_name);
4853EXPORT_SYMBOL(__dev_remove_pack);
4854EXPORT_SYMBOL(dev_valid_name);
4855EXPORT_SYMBOL(dev_add_pack);
4856EXPORT_SYMBOL(dev_alloc_name);
4857EXPORT_SYMBOL(dev_close);
4858EXPORT_SYMBOL(dev_get_by_flags);
4859EXPORT_SYMBOL(dev_get_by_index);
4860EXPORT_SYMBOL(dev_get_by_name);
4861EXPORT_SYMBOL(dev_open);
4862EXPORT_SYMBOL(dev_queue_xmit);
4863EXPORT_SYMBOL(dev_remove_pack);
4864EXPORT_SYMBOL(dev_set_allmulti);
4865EXPORT_SYMBOL(dev_set_promiscuity);
4866EXPORT_SYMBOL(dev_change_flags);
4867EXPORT_SYMBOL(dev_set_mtu);
4868EXPORT_SYMBOL(dev_set_mac_address);
4869EXPORT_SYMBOL(free_netdev);
4870EXPORT_SYMBOL(netdev_boot_setup_check);
4871EXPORT_SYMBOL(netdev_set_master);
4872EXPORT_SYMBOL(netdev_state_change);
4873EXPORT_SYMBOL(netif_receive_skb);
4874EXPORT_SYMBOL(netif_rx);
4875EXPORT_SYMBOL(register_gifconf);
4876EXPORT_SYMBOL(register_netdevice);
4877EXPORT_SYMBOL(register_netdevice_notifier);
4878EXPORT_SYMBOL(skb_checksum_help);
4879EXPORT_SYMBOL(synchronize_net);
4880EXPORT_SYMBOL(unregister_netdevice);
4881EXPORT_SYMBOL(unregister_netdevice_notifier);
4882EXPORT_SYMBOL(net_enable_timestamp);
4883EXPORT_SYMBOL(net_disable_timestamp);
4884EXPORT_SYMBOL(dev_get_flags);
4885
4886#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4887EXPORT_SYMBOL(br_handle_frame_hook);
4888EXPORT_SYMBOL(br_fdb_get_hook);
4889EXPORT_SYMBOL(br_fdb_put_hook);
4890#endif
4891
4892#ifdef CONFIG_KMOD
4893EXPORT_SYMBOL(dev_load);
4894#endif
4895
4896EXPORT_PER_CPU_SYMBOL(softnet_data);