1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19 20/* Boot-time LSM user choice */ 21static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23/* things that live in capability.c */ 24extern struct security_operations default_security_ops; 25extern void security_fixup_ops(struct security_operations *ops); 26 27struct security_operations *security_ops; /* Initialized to NULL */ 28 29/* amount of vm to protect from userspace access */ 30unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32static inline int verify(struct security_operations *ops) 33{ 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39} 40 41static void __init do_security_initcalls(void) 42{ 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49} 50 51/** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56int __init security_init(void) 57{ 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65} 66 67/* Save user chosen LSM */ 68static int __init choose_lsm(char *str) 69{ 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72} 73__setup("security=", choose_lsm); 74 75/** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didsn't specify a specific LSM and we're the first to ask 86 * for registeration permissoin, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90int __init security_module_enable(struct security_operations *ops) 91{ 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98} 99 100/** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function is to allow a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise 0 is returned on success. 111 */ 112int register_security(struct security_operations *ops) 113{ 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126} 127 128/* Security operations */ 129 130int security_ptrace_may_access(struct task_struct *child, unsigned int mode) 131{ 132 return security_ops->ptrace_may_access(child, mode); 133} 134 135int security_ptrace_traceme(struct task_struct *parent) 136{ 137 return security_ops->ptrace_traceme(parent); 138} 139 140int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144{ 145 return security_ops->capget(target, effective, inheritable, permitted); 146} 147 148int security_capset_check(struct task_struct *target, 149 kernel_cap_t *effective, 150 kernel_cap_t *inheritable, 151 kernel_cap_t *permitted) 152{ 153 return security_ops->capset_check(target, effective, inheritable, permitted); 154} 155 156void security_capset_set(struct task_struct *target, 157 kernel_cap_t *effective, 158 kernel_cap_t *inheritable, 159 kernel_cap_t *permitted) 160{ 161 security_ops->capset_set(target, effective, inheritable, permitted); 162} 163 164int security_capable(struct task_struct *tsk, int cap) 165{ 166 return security_ops->capable(tsk, cap); 167} 168 169int security_acct(struct file *file) 170{ 171 return security_ops->acct(file); 172} 173 174int security_sysctl(struct ctl_table *table, int op) 175{ 176 return security_ops->sysctl(table, op); 177} 178 179int security_quotactl(int cmds, int type, int id, struct super_block *sb) 180{ 181 return security_ops->quotactl(cmds, type, id, sb); 182} 183 184int security_quota_on(struct dentry *dentry) 185{ 186 return security_ops->quota_on(dentry); 187} 188 189int security_syslog(int type) 190{ 191 return security_ops->syslog(type); 192} 193 194int security_settime(struct timespec *ts, struct timezone *tz) 195{ 196 return security_ops->settime(ts, tz); 197} 198 199int security_vm_enough_memory(long pages) 200{ 201 return security_ops->vm_enough_memory(current->mm, pages); 202} 203 204int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 205{ 206 return security_ops->vm_enough_memory(mm, pages); 207} 208 209int security_bprm_alloc(struct linux_binprm *bprm) 210{ 211 return security_ops->bprm_alloc_security(bprm); 212} 213 214void security_bprm_free(struct linux_binprm *bprm) 215{ 216 security_ops->bprm_free_security(bprm); 217} 218 219void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 220{ 221 security_ops->bprm_apply_creds(bprm, unsafe); 222} 223 224void security_bprm_post_apply_creds(struct linux_binprm *bprm) 225{ 226 security_ops->bprm_post_apply_creds(bprm); 227} 228 229int security_bprm_set(struct linux_binprm *bprm) 230{ 231 return security_ops->bprm_set_security(bprm); 232} 233 234int security_bprm_check(struct linux_binprm *bprm) 235{ 236 return security_ops->bprm_check_security(bprm); 237} 238 239int security_bprm_secureexec(struct linux_binprm *bprm) 240{ 241 return security_ops->bprm_secureexec(bprm); 242} 243 244int security_sb_alloc(struct super_block *sb) 245{ 246 return security_ops->sb_alloc_security(sb); 247} 248 249void security_sb_free(struct super_block *sb) 250{ 251 security_ops->sb_free_security(sb); 252} 253 254int security_sb_copy_data(char *orig, char *copy) 255{ 256 return security_ops->sb_copy_data(orig, copy); 257} 258EXPORT_SYMBOL(security_sb_copy_data); 259 260int security_sb_kern_mount(struct super_block *sb, void *data) 261{ 262 return security_ops->sb_kern_mount(sb, data); 263} 264 265int security_sb_show_options(struct seq_file *m, struct super_block *sb) 266{ 267 return security_ops->sb_show_options(m, sb); 268} 269 270int security_sb_statfs(struct dentry *dentry) 271{ 272 return security_ops->sb_statfs(dentry); 273} 274 275int security_sb_mount(char *dev_name, struct path *path, 276 char *type, unsigned long flags, void *data) 277{ 278 return security_ops->sb_mount(dev_name, path, type, flags, data); 279} 280 281int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 282{ 283 return security_ops->sb_check_sb(mnt, path); 284} 285 286int security_sb_umount(struct vfsmount *mnt, int flags) 287{ 288 return security_ops->sb_umount(mnt, flags); 289} 290 291void security_sb_umount_close(struct vfsmount *mnt) 292{ 293 security_ops->sb_umount_close(mnt); 294} 295 296void security_sb_umount_busy(struct vfsmount *mnt) 297{ 298 security_ops->sb_umount_busy(mnt); 299} 300 301void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 302{ 303 security_ops->sb_post_remount(mnt, flags, data); 304} 305 306void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 307{ 308 security_ops->sb_post_addmount(mnt, mountpoint); 309} 310 311int security_sb_pivotroot(struct path *old_path, struct path *new_path) 312{ 313 return security_ops->sb_pivotroot(old_path, new_path); 314} 315 316void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 317{ 318 security_ops->sb_post_pivotroot(old_path, new_path); 319} 320 321int security_sb_set_mnt_opts(struct super_block *sb, 322 struct security_mnt_opts *opts) 323{ 324 return security_ops->sb_set_mnt_opts(sb, opts); 325} 326EXPORT_SYMBOL(security_sb_set_mnt_opts); 327 328void security_sb_clone_mnt_opts(const struct super_block *oldsb, 329 struct super_block *newsb) 330{ 331 security_ops->sb_clone_mnt_opts(oldsb, newsb); 332} 333EXPORT_SYMBOL(security_sb_clone_mnt_opts); 334 335int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 336{ 337 return security_ops->sb_parse_opts_str(options, opts); 338} 339EXPORT_SYMBOL(security_sb_parse_opts_str); 340 341int security_inode_alloc(struct inode *inode) 342{ 343 inode->i_security = NULL; 344 return security_ops->inode_alloc_security(inode); 345} 346 347void security_inode_free(struct inode *inode) 348{ 349 security_ops->inode_free_security(inode); 350} 351 352int security_inode_init_security(struct inode *inode, struct inode *dir, 353 char **name, void **value, size_t *len) 354{ 355 if (unlikely(IS_PRIVATE(inode))) 356 return -EOPNOTSUPP; 357 return security_ops->inode_init_security(inode, dir, name, value, len); 358} 359EXPORT_SYMBOL(security_inode_init_security); 360 361int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 362{ 363 if (unlikely(IS_PRIVATE(dir))) 364 return 0; 365 return security_ops->inode_create(dir, dentry, mode); 366} 367 368int security_inode_link(struct dentry *old_dentry, struct inode *dir, 369 struct dentry *new_dentry) 370{ 371 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 372 return 0; 373 return security_ops->inode_link(old_dentry, dir, new_dentry); 374} 375 376int security_inode_unlink(struct inode *dir, struct dentry *dentry) 377{ 378 if (unlikely(IS_PRIVATE(dentry->d_inode))) 379 return 0; 380 return security_ops->inode_unlink(dir, dentry); 381} 382 383int security_inode_symlink(struct inode *dir, struct dentry *dentry, 384 const char *old_name) 385{ 386 if (unlikely(IS_PRIVATE(dir))) 387 return 0; 388 return security_ops->inode_symlink(dir, dentry, old_name); 389} 390 391int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 392{ 393 if (unlikely(IS_PRIVATE(dir))) 394 return 0; 395 return security_ops->inode_mkdir(dir, dentry, mode); 396} 397 398int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 399{ 400 if (unlikely(IS_PRIVATE(dentry->d_inode))) 401 return 0; 402 return security_ops->inode_rmdir(dir, dentry); 403} 404 405int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 406{ 407 if (unlikely(IS_PRIVATE(dir))) 408 return 0; 409 return security_ops->inode_mknod(dir, dentry, mode, dev); 410} 411 412int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 413 struct inode *new_dir, struct dentry *new_dentry) 414{ 415 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 416 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 417 return 0; 418 return security_ops->inode_rename(old_dir, old_dentry, 419 new_dir, new_dentry); 420} 421 422int security_inode_readlink(struct dentry *dentry) 423{ 424 if (unlikely(IS_PRIVATE(dentry->d_inode))) 425 return 0; 426 return security_ops->inode_readlink(dentry); 427} 428 429int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 430{ 431 if (unlikely(IS_PRIVATE(dentry->d_inode))) 432 return 0; 433 return security_ops->inode_follow_link(dentry, nd); 434} 435 436int security_inode_permission(struct inode *inode, int mask) 437{ 438 if (unlikely(IS_PRIVATE(inode))) 439 return 0; 440 return security_ops->inode_permission(inode, mask); 441} 442 443int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 444{ 445 if (unlikely(IS_PRIVATE(dentry->d_inode))) 446 return 0; 447 return security_ops->inode_setattr(dentry, attr); 448} 449EXPORT_SYMBOL_GPL(security_inode_setattr); 450 451int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 452{ 453 if (unlikely(IS_PRIVATE(dentry->d_inode))) 454 return 0; 455 return security_ops->inode_getattr(mnt, dentry); 456} 457 458void security_inode_delete(struct inode *inode) 459{ 460 if (unlikely(IS_PRIVATE(inode))) 461 return; 462 security_ops->inode_delete(inode); 463} 464 465int security_inode_setxattr(struct dentry *dentry, const char *name, 466 const void *value, size_t size, int flags) 467{ 468 if (unlikely(IS_PRIVATE(dentry->d_inode))) 469 return 0; 470 return security_ops->inode_setxattr(dentry, name, value, size, flags); 471} 472 473void security_inode_post_setxattr(struct dentry *dentry, const char *name, 474 const void *value, size_t size, int flags) 475{ 476 if (unlikely(IS_PRIVATE(dentry->d_inode))) 477 return; 478 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 479} 480 481int security_inode_getxattr(struct dentry *dentry, const char *name) 482{ 483 if (unlikely(IS_PRIVATE(dentry->d_inode))) 484 return 0; 485 return security_ops->inode_getxattr(dentry, name); 486} 487 488int security_inode_listxattr(struct dentry *dentry) 489{ 490 if (unlikely(IS_PRIVATE(dentry->d_inode))) 491 return 0; 492 return security_ops->inode_listxattr(dentry); 493} 494 495int security_inode_removexattr(struct dentry *dentry, const char *name) 496{ 497 if (unlikely(IS_PRIVATE(dentry->d_inode))) 498 return 0; 499 return security_ops->inode_removexattr(dentry, name); 500} 501 502int security_inode_need_killpriv(struct dentry *dentry) 503{ 504 return security_ops->inode_need_killpriv(dentry); 505} 506 507int security_inode_killpriv(struct dentry *dentry) 508{ 509 return security_ops->inode_killpriv(dentry); 510} 511 512int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 513{ 514 if (unlikely(IS_PRIVATE(inode))) 515 return 0; 516 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 517} 518 519int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 520{ 521 if (unlikely(IS_PRIVATE(inode))) 522 return 0; 523 return security_ops->inode_setsecurity(inode, name, value, size, flags); 524} 525 526int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 527{ 528 if (unlikely(IS_PRIVATE(inode))) 529 return 0; 530 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 531} 532 533void security_inode_getsecid(const struct inode *inode, u32 *secid) 534{ 535 security_ops->inode_getsecid(inode, secid); 536} 537 538int security_file_permission(struct file *file, int mask) 539{ 540 return security_ops->file_permission(file, mask); 541} 542 543int security_file_alloc(struct file *file) 544{ 545 return security_ops->file_alloc_security(file); 546} 547 548void security_file_free(struct file *file) 549{ 550 security_ops->file_free_security(file); 551} 552 553int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 554{ 555 return security_ops->file_ioctl(file, cmd, arg); 556} 557 558int security_file_mmap(struct file *file, unsigned long reqprot, 559 unsigned long prot, unsigned long flags, 560 unsigned long addr, unsigned long addr_only) 561{ 562 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 563} 564 565int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 566 unsigned long prot) 567{ 568 return security_ops->file_mprotect(vma, reqprot, prot); 569} 570 571int security_file_lock(struct file *file, unsigned int cmd) 572{ 573 return security_ops->file_lock(file, cmd); 574} 575 576int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 577{ 578 return security_ops->file_fcntl(file, cmd, arg); 579} 580 581int security_file_set_fowner(struct file *file) 582{ 583 return security_ops->file_set_fowner(file); 584} 585 586int security_file_send_sigiotask(struct task_struct *tsk, 587 struct fown_struct *fown, int sig) 588{ 589 return security_ops->file_send_sigiotask(tsk, fown, sig); 590} 591 592int security_file_receive(struct file *file) 593{ 594 return security_ops->file_receive(file); 595} 596 597int security_dentry_open(struct file *file) 598{ 599 return security_ops->dentry_open(file); 600} 601 602int security_task_create(unsigned long clone_flags) 603{ 604 return security_ops->task_create(clone_flags); 605} 606 607int security_task_alloc(struct task_struct *p) 608{ 609 return security_ops->task_alloc_security(p); 610} 611 612void security_task_free(struct task_struct *p) 613{ 614 security_ops->task_free_security(p); 615} 616 617int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 618{ 619 return security_ops->task_setuid(id0, id1, id2, flags); 620} 621 622int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 623 uid_t old_suid, int flags) 624{ 625 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 626} 627 628int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 629{ 630 return security_ops->task_setgid(id0, id1, id2, flags); 631} 632 633int security_task_setpgid(struct task_struct *p, pid_t pgid) 634{ 635 return security_ops->task_setpgid(p, pgid); 636} 637 638int security_task_getpgid(struct task_struct *p) 639{ 640 return security_ops->task_getpgid(p); 641} 642 643int security_task_getsid(struct task_struct *p) 644{ 645 return security_ops->task_getsid(p); 646} 647 648void security_task_getsecid(struct task_struct *p, u32 *secid) 649{ 650 security_ops->task_getsecid(p, secid); 651} 652EXPORT_SYMBOL(security_task_getsecid); 653 654int security_task_setgroups(struct group_info *group_info) 655{ 656 return security_ops->task_setgroups(group_info); 657} 658 659int security_task_setnice(struct task_struct *p, int nice) 660{ 661 return security_ops->task_setnice(p, nice); 662} 663 664int security_task_setioprio(struct task_struct *p, int ioprio) 665{ 666 return security_ops->task_setioprio(p, ioprio); 667} 668 669int security_task_getioprio(struct task_struct *p) 670{ 671 return security_ops->task_getioprio(p); 672} 673 674int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 675{ 676 return security_ops->task_setrlimit(resource, new_rlim); 677} 678 679int security_task_setscheduler(struct task_struct *p, 680 int policy, struct sched_param *lp) 681{ 682 return security_ops->task_setscheduler(p, policy, lp); 683} 684 685int security_task_getscheduler(struct task_struct *p) 686{ 687 return security_ops->task_getscheduler(p); 688} 689 690int security_task_movememory(struct task_struct *p) 691{ 692 return security_ops->task_movememory(p); 693} 694 695int security_task_kill(struct task_struct *p, struct siginfo *info, 696 int sig, u32 secid) 697{ 698 return security_ops->task_kill(p, info, sig, secid); 699} 700 701int security_task_wait(struct task_struct *p) 702{ 703 return security_ops->task_wait(p); 704} 705 706int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 707 unsigned long arg4, unsigned long arg5, long *rc_p) 708{ 709 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 710} 711 712void security_task_reparent_to_init(struct task_struct *p) 713{ 714 security_ops->task_reparent_to_init(p); 715} 716 717void security_task_to_inode(struct task_struct *p, struct inode *inode) 718{ 719 security_ops->task_to_inode(p, inode); 720} 721 722int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 723{ 724 return security_ops->ipc_permission(ipcp, flag); 725} 726 727void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 728{ 729 security_ops->ipc_getsecid(ipcp, secid); 730} 731 732int security_msg_msg_alloc(struct msg_msg *msg) 733{ 734 return security_ops->msg_msg_alloc_security(msg); 735} 736 737void security_msg_msg_free(struct msg_msg *msg) 738{ 739 security_ops->msg_msg_free_security(msg); 740} 741 742int security_msg_queue_alloc(struct msg_queue *msq) 743{ 744 return security_ops->msg_queue_alloc_security(msq); 745} 746 747void security_msg_queue_free(struct msg_queue *msq) 748{ 749 security_ops->msg_queue_free_security(msq); 750} 751 752int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 753{ 754 return security_ops->msg_queue_associate(msq, msqflg); 755} 756 757int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 758{ 759 return security_ops->msg_queue_msgctl(msq, cmd); 760} 761 762int security_msg_queue_msgsnd(struct msg_queue *msq, 763 struct msg_msg *msg, int msqflg) 764{ 765 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 766} 767 768int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 769 struct task_struct *target, long type, int mode) 770{ 771 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 772} 773 774int security_shm_alloc(struct shmid_kernel *shp) 775{ 776 return security_ops->shm_alloc_security(shp); 777} 778 779void security_shm_free(struct shmid_kernel *shp) 780{ 781 security_ops->shm_free_security(shp); 782} 783 784int security_shm_associate(struct shmid_kernel *shp, int shmflg) 785{ 786 return security_ops->shm_associate(shp, shmflg); 787} 788 789int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 790{ 791 return security_ops->shm_shmctl(shp, cmd); 792} 793 794int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 795{ 796 return security_ops->shm_shmat(shp, shmaddr, shmflg); 797} 798 799int security_sem_alloc(struct sem_array *sma) 800{ 801 return security_ops->sem_alloc_security(sma); 802} 803 804void security_sem_free(struct sem_array *sma) 805{ 806 security_ops->sem_free_security(sma); 807} 808 809int security_sem_associate(struct sem_array *sma, int semflg) 810{ 811 return security_ops->sem_associate(sma, semflg); 812} 813 814int security_sem_semctl(struct sem_array *sma, int cmd) 815{ 816 return security_ops->sem_semctl(sma, cmd); 817} 818 819int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 820 unsigned nsops, int alter) 821{ 822 return security_ops->sem_semop(sma, sops, nsops, alter); 823} 824 825void security_d_instantiate(struct dentry *dentry, struct inode *inode) 826{ 827 if (unlikely(inode && IS_PRIVATE(inode))) 828 return; 829 security_ops->d_instantiate(dentry, inode); 830} 831EXPORT_SYMBOL(security_d_instantiate); 832 833int security_getprocattr(struct task_struct *p, char *name, char **value) 834{ 835 return security_ops->getprocattr(p, name, value); 836} 837 838int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 839{ 840 return security_ops->setprocattr(p, name, value, size); 841} 842 843int security_netlink_send(struct sock *sk, struct sk_buff *skb) 844{ 845 return security_ops->netlink_send(sk, skb); 846} 847 848int security_netlink_recv(struct sk_buff *skb, int cap) 849{ 850 return security_ops->netlink_recv(skb, cap); 851} 852EXPORT_SYMBOL(security_netlink_recv); 853 854int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 855{ 856 return security_ops->secid_to_secctx(secid, secdata, seclen); 857} 858EXPORT_SYMBOL(security_secid_to_secctx); 859 860int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 861{ 862 return security_ops->secctx_to_secid(secdata, seclen, secid); 863} 864EXPORT_SYMBOL(security_secctx_to_secid); 865 866void security_release_secctx(char *secdata, u32 seclen) 867{ 868 security_ops->release_secctx(secdata, seclen); 869} 870EXPORT_SYMBOL(security_release_secctx); 871 872#ifdef CONFIG_SECURITY_NETWORK 873 874int security_unix_stream_connect(struct socket *sock, struct socket *other, 875 struct sock *newsk) 876{ 877 return security_ops->unix_stream_connect(sock, other, newsk); 878} 879EXPORT_SYMBOL(security_unix_stream_connect); 880 881int security_unix_may_send(struct socket *sock, struct socket *other) 882{ 883 return security_ops->unix_may_send(sock, other); 884} 885EXPORT_SYMBOL(security_unix_may_send); 886 887int security_socket_create(int family, int type, int protocol, int kern) 888{ 889 return security_ops->socket_create(family, type, protocol, kern); 890} 891 892int security_socket_post_create(struct socket *sock, int family, 893 int type, int protocol, int kern) 894{ 895 return security_ops->socket_post_create(sock, family, type, 896 protocol, kern); 897} 898 899int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 900{ 901 return security_ops->socket_bind(sock, address, addrlen); 902} 903 904int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 905{ 906 return security_ops->socket_connect(sock, address, addrlen); 907} 908 909int security_socket_listen(struct socket *sock, int backlog) 910{ 911 return security_ops->socket_listen(sock, backlog); 912} 913 914int security_socket_accept(struct socket *sock, struct socket *newsock) 915{ 916 return security_ops->socket_accept(sock, newsock); 917} 918 919void security_socket_post_accept(struct socket *sock, struct socket *newsock) 920{ 921 security_ops->socket_post_accept(sock, newsock); 922} 923 924int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 925{ 926 return security_ops->socket_sendmsg(sock, msg, size); 927} 928 929int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 930 int size, int flags) 931{ 932 return security_ops->socket_recvmsg(sock, msg, size, flags); 933} 934 935int security_socket_getsockname(struct socket *sock) 936{ 937 return security_ops->socket_getsockname(sock); 938} 939 940int security_socket_getpeername(struct socket *sock) 941{ 942 return security_ops->socket_getpeername(sock); 943} 944 945int security_socket_getsockopt(struct socket *sock, int level, int optname) 946{ 947 return security_ops->socket_getsockopt(sock, level, optname); 948} 949 950int security_socket_setsockopt(struct socket *sock, int level, int optname) 951{ 952 return security_ops->socket_setsockopt(sock, level, optname); 953} 954 955int security_socket_shutdown(struct socket *sock, int how) 956{ 957 return security_ops->socket_shutdown(sock, how); 958} 959 960int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 961{ 962 return security_ops->socket_sock_rcv_skb(sk, skb); 963} 964EXPORT_SYMBOL(security_sock_rcv_skb); 965 966int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 967 int __user *optlen, unsigned len) 968{ 969 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 970} 971 972int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 973{ 974 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 975} 976EXPORT_SYMBOL(security_socket_getpeersec_dgram); 977 978int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 979{ 980 return security_ops->sk_alloc_security(sk, family, priority); 981} 982 983void security_sk_free(struct sock *sk) 984{ 985 security_ops->sk_free_security(sk); 986} 987 988void security_sk_clone(const struct sock *sk, struct sock *newsk) 989{ 990 security_ops->sk_clone_security(sk, newsk); 991} 992 993void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 994{ 995 security_ops->sk_getsecid(sk, &fl->secid); 996} 997EXPORT_SYMBOL(security_sk_classify_flow); 998 999void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1000{ 1001 security_ops->req_classify_flow(req, fl); 1002} 1003EXPORT_SYMBOL(security_req_classify_flow); 1004 1005void security_sock_graft(struct sock *sk, struct socket *parent) 1006{ 1007 security_ops->sock_graft(sk, parent); 1008} 1009EXPORT_SYMBOL(security_sock_graft); 1010 1011int security_inet_conn_request(struct sock *sk, 1012 struct sk_buff *skb, struct request_sock *req) 1013{ 1014 return security_ops->inet_conn_request(sk, skb, req); 1015} 1016EXPORT_SYMBOL(security_inet_conn_request); 1017 1018void security_inet_csk_clone(struct sock *newsk, 1019 const struct request_sock *req) 1020{ 1021 security_ops->inet_csk_clone(newsk, req); 1022} 1023 1024void security_inet_conn_established(struct sock *sk, 1025 struct sk_buff *skb) 1026{ 1027 security_ops->inet_conn_established(sk, skb); 1028} 1029 1030#endif /* CONFIG_SECURITY_NETWORK */ 1031 1032#ifdef CONFIG_SECURITY_NETWORK_XFRM 1033 1034int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1035{ 1036 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1037} 1038EXPORT_SYMBOL(security_xfrm_policy_alloc); 1039 1040int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1041 struct xfrm_sec_ctx **new_ctxp) 1042{ 1043 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1044} 1045 1046void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1047{ 1048 security_ops->xfrm_policy_free_security(ctx); 1049} 1050EXPORT_SYMBOL(security_xfrm_policy_free); 1051 1052int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1053{ 1054 return security_ops->xfrm_policy_delete_security(ctx); 1055} 1056 1057int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1058{ 1059 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1060} 1061EXPORT_SYMBOL(security_xfrm_state_alloc); 1062 1063int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1064 struct xfrm_sec_ctx *polsec, u32 secid) 1065{ 1066 if (!polsec) 1067 return 0; 1068 /* 1069 * We want the context to be taken from secid which is usually 1070 * from the sock. 1071 */ 1072 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1073} 1074 1075int security_xfrm_state_delete(struct xfrm_state *x) 1076{ 1077 return security_ops->xfrm_state_delete_security(x); 1078} 1079EXPORT_SYMBOL(security_xfrm_state_delete); 1080 1081void security_xfrm_state_free(struct xfrm_state *x) 1082{ 1083 security_ops->xfrm_state_free_security(x); 1084} 1085 1086int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1087{ 1088 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1089} 1090 1091int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1092 struct xfrm_policy *xp, struct flowi *fl) 1093{ 1094 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1095} 1096 1097int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1098{ 1099 return security_ops->xfrm_decode_session(skb, secid, 1); 1100} 1101 1102void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1103{ 1104 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1105 1106 BUG_ON(rc); 1107} 1108EXPORT_SYMBOL(security_skb_classify_flow); 1109 1110#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1111 1112#ifdef CONFIG_KEYS 1113 1114int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1115{ 1116 return security_ops->key_alloc(key, tsk, flags); 1117} 1118 1119void security_key_free(struct key *key) 1120{ 1121 security_ops->key_free(key); 1122} 1123 1124int security_key_permission(key_ref_t key_ref, 1125 struct task_struct *context, key_perm_t perm) 1126{ 1127 return security_ops->key_permission(key_ref, context, perm); 1128} 1129 1130int security_key_getsecurity(struct key *key, char **_buffer) 1131{ 1132 return security_ops->key_getsecurity(key, _buffer); 1133} 1134 1135#endif /* CONFIG_KEYS */ 1136 1137#ifdef CONFIG_AUDIT 1138 1139int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1140{ 1141 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1142} 1143 1144int security_audit_rule_known(struct audit_krule *krule) 1145{ 1146 return security_ops->audit_rule_known(krule); 1147} 1148 1149void security_audit_rule_free(void *lsmrule) 1150{ 1151 security_ops->audit_rule_free(lsmrule); 1152} 1153 1154int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1155 struct audit_context *actx) 1156{ 1157 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1158} 1159 1160#endif /* CONFIG_AUDIT */