at v2.6.27-rc4 4889 lines 121 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/ethtool.h> 94#include <linux/notifier.h> 95#include <linux/skbuff.h> 96#include <net/net_namespace.h> 97#include <net/sock.h> 98#include <linux/rtnetlink.h> 99#include <linux/proc_fs.h> 100#include <linux/seq_file.h> 101#include <linux/stat.h> 102#include <linux/if_bridge.h> 103#include <linux/if_macvlan.h> 104#include <net/dst.h> 105#include <net/pkt_sched.h> 106#include <net/checksum.h> 107#include <linux/highmem.h> 108#include <linux/init.h> 109#include <linux/kmod.h> 110#include <linux/module.h> 111#include <linux/kallsyms.h> 112#include <linux/netpoll.h> 113#include <linux/rcupdate.h> 114#include <linux/delay.h> 115#include <net/wext.h> 116#include <net/iw_handler.h> 117#include <asm/current.h> 118#include <linux/audit.h> 119#include <linux/dmaengine.h> 120#include <linux/err.h> 121#include <linux/ctype.h> 122#include <linux/if_arp.h> 123#include <linux/if_vlan.h> 124#include <linux/ip.h> 125#include <linux/ipv6.h> 126#include <linux/in.h> 127#include <linux/jhash.h> 128#include <linux/random.h> 129 130#include "net-sysfs.h" 131 132/* 133 * The list of packet types we will receive (as opposed to discard) 134 * and the routines to invoke. 135 * 136 * Why 16. Because with 16 the only overlap we get on a hash of the 137 * low nibble of the protocol value is RARP/SNAP/X.25. 138 * 139 * NOTE: That is no longer true with the addition of VLAN tags. Not 140 * sure which should go first, but I bet it won't make much 141 * difference if we are running VLANs. The good news is that 142 * this protocol won't be in the list unless compiled in, so 143 * the average user (w/out VLANs) will not be adversely affected. 144 * --BLG 145 * 146 * 0800 IP 147 * 8100 802.1Q VLAN 148 * 0001 802.3 149 * 0002 AX.25 150 * 0004 802.2 151 * 8035 RARP 152 * 0005 SNAP 153 * 0805 X.25 154 * 0806 ARP 155 * 8137 IPX 156 * 0009 Localtalk 157 * 86DD IPv6 158 */ 159 160#define PTYPE_HASH_SIZE (16) 161#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 162 163static DEFINE_SPINLOCK(ptype_lock); 164static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 165static struct list_head ptype_all __read_mostly; /* Taps */ 166 167#ifdef CONFIG_NET_DMA 168struct net_dma { 169 struct dma_client client; 170 spinlock_t lock; 171 cpumask_t channel_mask; 172 struct dma_chan **channels; 173}; 174 175static enum dma_state_client 176netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 177 enum dma_state state); 178 179static struct net_dma net_dma = { 180 .client = { 181 .event_callback = netdev_dma_event, 182 }, 183}; 184#endif 185 186/* 187 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 188 * semaphore. 189 * 190 * Pure readers hold dev_base_lock for reading. 191 * 192 * Writers must hold the rtnl semaphore while they loop through the 193 * dev_base_head list, and hold dev_base_lock for writing when they do the 194 * actual updates. This allows pure readers to access the list even 195 * while a writer is preparing to update it. 196 * 197 * To put it another way, dev_base_lock is held for writing only to 198 * protect against pure readers; the rtnl semaphore provides the 199 * protection against other writers. 200 * 201 * See, for example usages, register_netdevice() and 202 * unregister_netdevice(), which must be called with the rtnl 203 * semaphore held. 204 */ 205DEFINE_RWLOCK(dev_base_lock); 206 207EXPORT_SYMBOL(dev_base_lock); 208 209#define NETDEV_HASHBITS 8 210#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 211 212static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 213{ 214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 215 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 216} 217 218static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 219{ 220 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 221} 222 223/* Device list insertion */ 224static int list_netdevice(struct net_device *dev) 225{ 226 struct net *net = dev_net(dev); 227 228 ASSERT_RTNL(); 229 230 write_lock_bh(&dev_base_lock); 231 list_add_tail(&dev->dev_list, &net->dev_base_head); 232 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 233 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 234 write_unlock_bh(&dev_base_lock); 235 return 0; 236} 237 238/* Device list removal */ 239static void unlist_netdevice(struct net_device *dev) 240{ 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del(&dev->dev_list); 246 hlist_del(&dev->name_hlist); 247 hlist_del(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249} 250 251/* 252 * Our notifier list 253 */ 254 255static RAW_NOTIFIER_HEAD(netdev_chain); 256 257/* 258 * Device drivers call our routines to queue packets here. We empty the 259 * queue in the local softnet handler. 260 */ 261 262DEFINE_PER_CPU(struct softnet_data, softnet_data); 263 264#ifdef CONFIG_LOCKDEP 265/* 266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 267 * according to dev->type 268 */ 269static const unsigned short netdev_lock_type[] = 270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 282 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 283 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 284 ARPHRD_NONE}; 285 286static const char *netdev_lock_name[] = 287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 299 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 300 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 301 "_xmit_NONE"}; 302 303static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 304static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 306static inline unsigned short netdev_lock_pos(unsigned short dev_type) 307{ 308 int i; 309 310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 311 if (netdev_lock_type[i] == dev_type) 312 return i; 313 /* the last key is used by default */ 314 return ARRAY_SIZE(netdev_lock_type) - 1; 315} 316 317static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 318 unsigned short dev_type) 319{ 320 int i; 321 322 i = netdev_lock_pos(dev_type); 323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 324 netdev_lock_name[i]); 325} 326 327static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 328{ 329 int i; 330 331 i = netdev_lock_pos(dev->type); 332 lockdep_set_class_and_name(&dev->addr_list_lock, 333 &netdev_addr_lock_key[i], 334 netdev_lock_name[i]); 335} 336#else 337static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 338 unsigned short dev_type) 339{ 340} 341static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 342{ 343} 344#endif 345 346/******************************************************************************* 347 348 Protocol management and registration routines 349 350*******************************************************************************/ 351 352/* 353 * Add a protocol ID to the list. Now that the input handler is 354 * smarter we can dispense with all the messy stuff that used to be 355 * here. 356 * 357 * BEWARE!!! Protocol handlers, mangling input packets, 358 * MUST BE last in hash buckets and checking protocol handlers 359 * MUST start from promiscuous ptype_all chain in net_bh. 360 * It is true now, do not change it. 361 * Explanation follows: if protocol handler, mangling packet, will 362 * be the first on list, it is not able to sense, that packet 363 * is cloned and should be copied-on-write, so that it will 364 * change it and subsequent readers will get broken packet. 365 * --ANK (980803) 366 */ 367 368/** 369 * dev_add_pack - add packet handler 370 * @pt: packet type declaration 371 * 372 * Add a protocol handler to the networking stack. The passed &packet_type 373 * is linked into kernel lists and may not be freed until it has been 374 * removed from the kernel lists. 375 * 376 * This call does not sleep therefore it can not 377 * guarantee all CPU's that are in middle of receiving packets 378 * will see the new packet type (until the next received packet). 379 */ 380 381void dev_add_pack(struct packet_type *pt) 382{ 383 int hash; 384 385 spin_lock_bh(&ptype_lock); 386 if (pt->type == htons(ETH_P_ALL)) 387 list_add_rcu(&pt->list, &ptype_all); 388 else { 389 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 390 list_add_rcu(&pt->list, &ptype_base[hash]); 391 } 392 spin_unlock_bh(&ptype_lock); 393} 394 395/** 396 * __dev_remove_pack - remove packet handler 397 * @pt: packet type declaration 398 * 399 * Remove a protocol handler that was previously added to the kernel 400 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 401 * from the kernel lists and can be freed or reused once this function 402 * returns. 403 * 404 * The packet type might still be in use by receivers 405 * and must not be freed until after all the CPU's have gone 406 * through a quiescent state. 407 */ 408void __dev_remove_pack(struct packet_type *pt) 409{ 410 struct list_head *head; 411 struct packet_type *pt1; 412 413 spin_lock_bh(&ptype_lock); 414 415 if (pt->type == htons(ETH_P_ALL)) 416 head = &ptype_all; 417 else 418 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 419 420 list_for_each_entry(pt1, head, list) { 421 if (pt == pt1) { 422 list_del_rcu(&pt->list); 423 goto out; 424 } 425 } 426 427 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 428out: 429 spin_unlock_bh(&ptype_lock); 430} 431/** 432 * dev_remove_pack - remove packet handler 433 * @pt: packet type declaration 434 * 435 * Remove a protocol handler that was previously added to the kernel 436 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 437 * from the kernel lists and can be freed or reused once this function 438 * returns. 439 * 440 * This call sleeps to guarantee that no CPU is looking at the packet 441 * type after return. 442 */ 443void dev_remove_pack(struct packet_type *pt) 444{ 445 __dev_remove_pack(pt); 446 447 synchronize_net(); 448} 449 450/****************************************************************************** 451 452 Device Boot-time Settings Routines 453 454*******************************************************************************/ 455 456/* Boot time configuration table */ 457static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 458 459/** 460 * netdev_boot_setup_add - add new setup entry 461 * @name: name of the device 462 * @map: configured settings for the device 463 * 464 * Adds new setup entry to the dev_boot_setup list. The function 465 * returns 0 on error and 1 on success. This is a generic routine to 466 * all netdevices. 467 */ 468static int netdev_boot_setup_add(char *name, struct ifmap *map) 469{ 470 struct netdev_boot_setup *s; 471 int i; 472 473 s = dev_boot_setup; 474 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 475 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 476 memset(s[i].name, 0, sizeof(s[i].name)); 477 strlcpy(s[i].name, name, IFNAMSIZ); 478 memcpy(&s[i].map, map, sizeof(s[i].map)); 479 break; 480 } 481 } 482 483 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 484} 485 486/** 487 * netdev_boot_setup_check - check boot time settings 488 * @dev: the netdevice 489 * 490 * Check boot time settings for the device. 491 * The found settings are set for the device to be used 492 * later in the device probing. 493 * Returns 0 if no settings found, 1 if they are. 494 */ 495int netdev_boot_setup_check(struct net_device *dev) 496{ 497 struct netdev_boot_setup *s = dev_boot_setup; 498 int i; 499 500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 501 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 502 !strcmp(dev->name, s[i].name)) { 503 dev->irq = s[i].map.irq; 504 dev->base_addr = s[i].map.base_addr; 505 dev->mem_start = s[i].map.mem_start; 506 dev->mem_end = s[i].map.mem_end; 507 return 1; 508 } 509 } 510 return 0; 511} 512 513 514/** 515 * netdev_boot_base - get address from boot time settings 516 * @prefix: prefix for network device 517 * @unit: id for network device 518 * 519 * Check boot time settings for the base address of device. 520 * The found settings are set for the device to be used 521 * later in the device probing. 522 * Returns 0 if no settings found. 523 */ 524unsigned long netdev_boot_base(const char *prefix, int unit) 525{ 526 const struct netdev_boot_setup *s = dev_boot_setup; 527 char name[IFNAMSIZ]; 528 int i; 529 530 sprintf(name, "%s%d", prefix, unit); 531 532 /* 533 * If device already registered then return base of 1 534 * to indicate not to probe for this interface 535 */ 536 if (__dev_get_by_name(&init_net, name)) 537 return 1; 538 539 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 540 if (!strcmp(name, s[i].name)) 541 return s[i].map.base_addr; 542 return 0; 543} 544 545/* 546 * Saves at boot time configured settings for any netdevice. 547 */ 548int __init netdev_boot_setup(char *str) 549{ 550 int ints[5]; 551 struct ifmap map; 552 553 str = get_options(str, ARRAY_SIZE(ints), ints); 554 if (!str || !*str) 555 return 0; 556 557 /* Save settings */ 558 memset(&map, 0, sizeof(map)); 559 if (ints[0] > 0) 560 map.irq = ints[1]; 561 if (ints[0] > 1) 562 map.base_addr = ints[2]; 563 if (ints[0] > 2) 564 map.mem_start = ints[3]; 565 if (ints[0] > 3) 566 map.mem_end = ints[4]; 567 568 /* Add new entry to the list */ 569 return netdev_boot_setup_add(str, &map); 570} 571 572__setup("netdev=", netdev_boot_setup); 573 574/******************************************************************************* 575 576 Device Interface Subroutines 577 578*******************************************************************************/ 579 580/** 581 * __dev_get_by_name - find a device by its name 582 * @net: the applicable net namespace 583 * @name: name to find 584 * 585 * Find an interface by name. Must be called under RTNL semaphore 586 * or @dev_base_lock. If the name is found a pointer to the device 587 * is returned. If the name is not found then %NULL is returned. The 588 * reference counters are not incremented so the caller must be 589 * careful with locks. 590 */ 591 592struct net_device *__dev_get_by_name(struct net *net, const char *name) 593{ 594 struct hlist_node *p; 595 596 hlist_for_each(p, dev_name_hash(net, name)) { 597 struct net_device *dev 598 = hlist_entry(p, struct net_device, name_hlist); 599 if (!strncmp(dev->name, name, IFNAMSIZ)) 600 return dev; 601 } 602 return NULL; 603} 604 605/** 606 * dev_get_by_name - find a device by its name 607 * @net: the applicable net namespace 608 * @name: name to find 609 * 610 * Find an interface by name. This can be called from any 611 * context and does its own locking. The returned handle has 612 * the usage count incremented and the caller must use dev_put() to 613 * release it when it is no longer needed. %NULL is returned if no 614 * matching device is found. 615 */ 616 617struct net_device *dev_get_by_name(struct net *net, const char *name) 618{ 619 struct net_device *dev; 620 621 read_lock(&dev_base_lock); 622 dev = __dev_get_by_name(net, name); 623 if (dev) 624 dev_hold(dev); 625 read_unlock(&dev_base_lock); 626 return dev; 627} 628 629/** 630 * __dev_get_by_index - find a device by its ifindex 631 * @net: the applicable net namespace 632 * @ifindex: index of device 633 * 634 * Search for an interface by index. Returns %NULL if the device 635 * is not found or a pointer to the device. The device has not 636 * had its reference counter increased so the caller must be careful 637 * about locking. The caller must hold either the RTNL semaphore 638 * or @dev_base_lock. 639 */ 640 641struct net_device *__dev_get_by_index(struct net *net, int ifindex) 642{ 643 struct hlist_node *p; 644 645 hlist_for_each(p, dev_index_hash(net, ifindex)) { 646 struct net_device *dev 647 = hlist_entry(p, struct net_device, index_hlist); 648 if (dev->ifindex == ifindex) 649 return dev; 650 } 651 return NULL; 652} 653 654 655/** 656 * dev_get_by_index - find a device by its ifindex 657 * @net: the applicable net namespace 658 * @ifindex: index of device 659 * 660 * Search for an interface by index. Returns NULL if the device 661 * is not found or a pointer to the device. The device returned has 662 * had a reference added and the pointer is safe until the user calls 663 * dev_put to indicate they have finished with it. 664 */ 665 666struct net_device *dev_get_by_index(struct net *net, int ifindex) 667{ 668 struct net_device *dev; 669 670 read_lock(&dev_base_lock); 671 dev = __dev_get_by_index(net, ifindex); 672 if (dev) 673 dev_hold(dev); 674 read_unlock(&dev_base_lock); 675 return dev; 676} 677 678/** 679 * dev_getbyhwaddr - find a device by its hardware address 680 * @net: the applicable net namespace 681 * @type: media type of device 682 * @ha: hardware address 683 * 684 * Search for an interface by MAC address. Returns NULL if the device 685 * is not found or a pointer to the device. The caller must hold the 686 * rtnl semaphore. The returned device has not had its ref count increased 687 * and the caller must therefore be careful about locking 688 * 689 * BUGS: 690 * If the API was consistent this would be __dev_get_by_hwaddr 691 */ 692 693struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 694{ 695 struct net_device *dev; 696 697 ASSERT_RTNL(); 698 699 for_each_netdev(net, dev) 700 if (dev->type == type && 701 !memcmp(dev->dev_addr, ha, dev->addr_len)) 702 return dev; 703 704 return NULL; 705} 706 707EXPORT_SYMBOL(dev_getbyhwaddr); 708 709struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 710{ 711 struct net_device *dev; 712 713 ASSERT_RTNL(); 714 for_each_netdev(net, dev) 715 if (dev->type == type) 716 return dev; 717 718 return NULL; 719} 720 721EXPORT_SYMBOL(__dev_getfirstbyhwtype); 722 723struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 724{ 725 struct net_device *dev; 726 727 rtnl_lock(); 728 dev = __dev_getfirstbyhwtype(net, type); 729 if (dev) 730 dev_hold(dev); 731 rtnl_unlock(); 732 return dev; 733} 734 735EXPORT_SYMBOL(dev_getfirstbyhwtype); 736 737/** 738 * dev_get_by_flags - find any device with given flags 739 * @net: the applicable net namespace 740 * @if_flags: IFF_* values 741 * @mask: bitmask of bits in if_flags to check 742 * 743 * Search for any interface with the given flags. Returns NULL if a device 744 * is not found or a pointer to the device. The device returned has 745 * had a reference added and the pointer is safe until the user calls 746 * dev_put to indicate they have finished with it. 747 */ 748 749struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 750{ 751 struct net_device *dev, *ret; 752 753 ret = NULL; 754 read_lock(&dev_base_lock); 755 for_each_netdev(net, dev) { 756 if (((dev->flags ^ if_flags) & mask) == 0) { 757 dev_hold(dev); 758 ret = dev; 759 break; 760 } 761 } 762 read_unlock(&dev_base_lock); 763 return ret; 764} 765 766/** 767 * dev_valid_name - check if name is okay for network device 768 * @name: name string 769 * 770 * Network device names need to be valid file names to 771 * to allow sysfs to work. We also disallow any kind of 772 * whitespace. 773 */ 774int dev_valid_name(const char *name) 775{ 776 if (*name == '\0') 777 return 0; 778 if (strlen(name) >= IFNAMSIZ) 779 return 0; 780 if (!strcmp(name, ".") || !strcmp(name, "..")) 781 return 0; 782 783 while (*name) { 784 if (*name == '/' || isspace(*name)) 785 return 0; 786 name++; 787 } 788 return 1; 789} 790 791/** 792 * __dev_alloc_name - allocate a name for a device 793 * @net: network namespace to allocate the device name in 794 * @name: name format string 795 * @buf: scratch buffer and result name string 796 * 797 * Passed a format string - eg "lt%d" it will try and find a suitable 798 * id. It scans list of devices to build up a free map, then chooses 799 * the first empty slot. The caller must hold the dev_base or rtnl lock 800 * while allocating the name and adding the device in order to avoid 801 * duplicates. 802 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 803 * Returns the number of the unit assigned or a negative errno code. 804 */ 805 806static int __dev_alloc_name(struct net *net, const char *name, char *buf) 807{ 808 int i = 0; 809 const char *p; 810 const int max_netdevices = 8*PAGE_SIZE; 811 unsigned long *inuse; 812 struct net_device *d; 813 814 p = strnchr(name, IFNAMSIZ-1, '%'); 815 if (p) { 816 /* 817 * Verify the string as this thing may have come from 818 * the user. There must be either one "%d" and no other "%" 819 * characters. 820 */ 821 if (p[1] != 'd' || strchr(p + 2, '%')) 822 return -EINVAL; 823 824 /* Use one page as a bit array of possible slots */ 825 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 826 if (!inuse) 827 return -ENOMEM; 828 829 for_each_netdev(net, d) { 830 if (!sscanf(d->name, name, &i)) 831 continue; 832 if (i < 0 || i >= max_netdevices) 833 continue; 834 835 /* avoid cases where sscanf is not exact inverse of printf */ 836 snprintf(buf, IFNAMSIZ, name, i); 837 if (!strncmp(buf, d->name, IFNAMSIZ)) 838 set_bit(i, inuse); 839 } 840 841 i = find_first_zero_bit(inuse, max_netdevices); 842 free_page((unsigned long) inuse); 843 } 844 845 snprintf(buf, IFNAMSIZ, name, i); 846 if (!__dev_get_by_name(net, buf)) 847 return i; 848 849 /* It is possible to run out of possible slots 850 * when the name is long and there isn't enough space left 851 * for the digits, or if all bits are used. 852 */ 853 return -ENFILE; 854} 855 856/** 857 * dev_alloc_name - allocate a name for a device 858 * @dev: device 859 * @name: name format string 860 * 861 * Passed a format string - eg "lt%d" it will try and find a suitable 862 * id. It scans list of devices to build up a free map, then chooses 863 * the first empty slot. The caller must hold the dev_base or rtnl lock 864 * while allocating the name and adding the device in order to avoid 865 * duplicates. 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 867 * Returns the number of the unit assigned or a negative errno code. 868 */ 869 870int dev_alloc_name(struct net_device *dev, const char *name) 871{ 872 char buf[IFNAMSIZ]; 873 struct net *net; 874 int ret; 875 876 BUG_ON(!dev_net(dev)); 877 net = dev_net(dev); 878 ret = __dev_alloc_name(net, name, buf); 879 if (ret >= 0) 880 strlcpy(dev->name, buf, IFNAMSIZ); 881 return ret; 882} 883 884 885/** 886 * dev_change_name - change name of a device 887 * @dev: device 888 * @newname: name (or format string) must be at least IFNAMSIZ 889 * 890 * Change name of a device, can pass format strings "eth%d". 891 * for wildcarding. 892 */ 893int dev_change_name(struct net_device *dev, char *newname) 894{ 895 char oldname[IFNAMSIZ]; 896 int err = 0; 897 int ret; 898 struct net *net; 899 900 ASSERT_RTNL(); 901 BUG_ON(!dev_net(dev)); 902 903 net = dev_net(dev); 904 if (dev->flags & IFF_UP) 905 return -EBUSY; 906 907 if (!dev_valid_name(newname)) 908 return -EINVAL; 909 910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 911 return 0; 912 913 memcpy(oldname, dev->name, IFNAMSIZ); 914 915 if (strchr(newname, '%')) { 916 err = dev_alloc_name(dev, newname); 917 if (err < 0) 918 return err; 919 strcpy(newname, dev->name); 920 } 921 else if (__dev_get_by_name(net, newname)) 922 return -EEXIST; 923 else 924 strlcpy(dev->name, newname, IFNAMSIZ); 925 926rollback: 927 err = device_rename(&dev->dev, dev->name); 928 if (err) { 929 memcpy(dev->name, oldname, IFNAMSIZ); 930 return err; 931 } 932 933 write_lock_bh(&dev_base_lock); 934 hlist_del(&dev->name_hlist); 935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 936 write_unlock_bh(&dev_base_lock); 937 938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 939 ret = notifier_to_errno(ret); 940 941 if (ret) { 942 if (err) { 943 printk(KERN_ERR 944 "%s: name change rollback failed: %d.\n", 945 dev->name, ret); 946 } else { 947 err = ret; 948 memcpy(dev->name, oldname, IFNAMSIZ); 949 goto rollback; 950 } 951 } 952 953 return err; 954} 955 956/** 957 * netdev_features_change - device changes features 958 * @dev: device to cause notification 959 * 960 * Called to indicate a device has changed features. 961 */ 962void netdev_features_change(struct net_device *dev) 963{ 964 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 965} 966EXPORT_SYMBOL(netdev_features_change); 967 968/** 969 * netdev_state_change - device changes state 970 * @dev: device to cause notification 971 * 972 * Called to indicate a device has changed state. This function calls 973 * the notifier chains for netdev_chain and sends a NEWLINK message 974 * to the routing socket. 975 */ 976void netdev_state_change(struct net_device *dev) 977{ 978 if (dev->flags & IFF_UP) { 979 call_netdevice_notifiers(NETDEV_CHANGE, dev); 980 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 981 } 982} 983 984void netdev_bonding_change(struct net_device *dev) 985{ 986 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 987} 988EXPORT_SYMBOL(netdev_bonding_change); 989 990/** 991 * dev_load - load a network module 992 * @net: the applicable net namespace 993 * @name: name of interface 994 * 995 * If a network interface is not present and the process has suitable 996 * privileges this function loads the module. If module loading is not 997 * available in this kernel then it becomes a nop. 998 */ 999 1000void dev_load(struct net *net, const char *name) 1001{ 1002 struct net_device *dev; 1003 1004 read_lock(&dev_base_lock); 1005 dev = __dev_get_by_name(net, name); 1006 read_unlock(&dev_base_lock); 1007 1008 if (!dev && capable(CAP_SYS_MODULE)) 1009 request_module("%s", name); 1010} 1011 1012/** 1013 * dev_open - prepare an interface for use. 1014 * @dev: device to open 1015 * 1016 * Takes a device from down to up state. The device's private open 1017 * function is invoked and then the multicast lists are loaded. Finally 1018 * the device is moved into the up state and a %NETDEV_UP message is 1019 * sent to the netdev notifier chain. 1020 * 1021 * Calling this function on an active interface is a nop. On a failure 1022 * a negative errno code is returned. 1023 */ 1024int dev_open(struct net_device *dev) 1025{ 1026 int ret = 0; 1027 1028 ASSERT_RTNL(); 1029 1030 /* 1031 * Is it already up? 1032 */ 1033 1034 if (dev->flags & IFF_UP) 1035 return 0; 1036 1037 /* 1038 * Is it even present? 1039 */ 1040 if (!netif_device_present(dev)) 1041 return -ENODEV; 1042 1043 /* 1044 * Call device private open method 1045 */ 1046 set_bit(__LINK_STATE_START, &dev->state); 1047 1048 if (dev->validate_addr) 1049 ret = dev->validate_addr(dev); 1050 1051 if (!ret && dev->open) 1052 ret = dev->open(dev); 1053 1054 /* 1055 * If it went open OK then: 1056 */ 1057 1058 if (ret) 1059 clear_bit(__LINK_STATE_START, &dev->state); 1060 else { 1061 /* 1062 * Set the flags. 1063 */ 1064 dev->flags |= IFF_UP; 1065 1066 /* 1067 * Initialize multicasting status 1068 */ 1069 dev_set_rx_mode(dev); 1070 1071 /* 1072 * Wakeup transmit queue engine 1073 */ 1074 dev_activate(dev); 1075 1076 /* 1077 * ... and announce new interface. 1078 */ 1079 call_netdevice_notifiers(NETDEV_UP, dev); 1080 } 1081 1082 return ret; 1083} 1084 1085/** 1086 * dev_close - shutdown an interface. 1087 * @dev: device to shutdown 1088 * 1089 * This function moves an active device into down state. A 1090 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1091 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1092 * chain. 1093 */ 1094int dev_close(struct net_device *dev) 1095{ 1096 ASSERT_RTNL(); 1097 1098 might_sleep(); 1099 1100 if (!(dev->flags & IFF_UP)) 1101 return 0; 1102 1103 /* 1104 * Tell people we are going down, so that they can 1105 * prepare to death, when device is still operating. 1106 */ 1107 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1108 1109 clear_bit(__LINK_STATE_START, &dev->state); 1110 1111 /* Synchronize to scheduled poll. We cannot touch poll list, 1112 * it can be even on different cpu. So just clear netif_running(). 1113 * 1114 * dev->stop() will invoke napi_disable() on all of it's 1115 * napi_struct instances on this device. 1116 */ 1117 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1118 1119 dev_deactivate(dev); 1120 1121 /* 1122 * Call the device specific close. This cannot fail. 1123 * Only if device is UP 1124 * 1125 * We allow it to be called even after a DETACH hot-plug 1126 * event. 1127 */ 1128 if (dev->stop) 1129 dev->stop(dev); 1130 1131 /* 1132 * Device is now down. 1133 */ 1134 1135 dev->flags &= ~IFF_UP; 1136 1137 /* 1138 * Tell people we are down 1139 */ 1140 call_netdevice_notifiers(NETDEV_DOWN, dev); 1141 1142 return 0; 1143} 1144 1145 1146/** 1147 * dev_disable_lro - disable Large Receive Offload on a device 1148 * @dev: device 1149 * 1150 * Disable Large Receive Offload (LRO) on a net device. Must be 1151 * called under RTNL. This is needed if received packets may be 1152 * forwarded to another interface. 1153 */ 1154void dev_disable_lro(struct net_device *dev) 1155{ 1156 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1157 dev->ethtool_ops->set_flags) { 1158 u32 flags = dev->ethtool_ops->get_flags(dev); 1159 if (flags & ETH_FLAG_LRO) { 1160 flags &= ~ETH_FLAG_LRO; 1161 dev->ethtool_ops->set_flags(dev, flags); 1162 } 1163 } 1164 WARN_ON(dev->features & NETIF_F_LRO); 1165} 1166EXPORT_SYMBOL(dev_disable_lro); 1167 1168 1169static int dev_boot_phase = 1; 1170 1171/* 1172 * Device change register/unregister. These are not inline or static 1173 * as we export them to the world. 1174 */ 1175 1176/** 1177 * register_netdevice_notifier - register a network notifier block 1178 * @nb: notifier 1179 * 1180 * Register a notifier to be called when network device events occur. 1181 * The notifier passed is linked into the kernel structures and must 1182 * not be reused until it has been unregistered. A negative errno code 1183 * is returned on a failure. 1184 * 1185 * When registered all registration and up events are replayed 1186 * to the new notifier to allow device to have a race free 1187 * view of the network device list. 1188 */ 1189 1190int register_netdevice_notifier(struct notifier_block *nb) 1191{ 1192 struct net_device *dev; 1193 struct net_device *last; 1194 struct net *net; 1195 int err; 1196 1197 rtnl_lock(); 1198 err = raw_notifier_chain_register(&netdev_chain, nb); 1199 if (err) 1200 goto unlock; 1201 if (dev_boot_phase) 1202 goto unlock; 1203 for_each_net(net) { 1204 for_each_netdev(net, dev) { 1205 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1206 err = notifier_to_errno(err); 1207 if (err) 1208 goto rollback; 1209 1210 if (!(dev->flags & IFF_UP)) 1211 continue; 1212 1213 nb->notifier_call(nb, NETDEV_UP, dev); 1214 } 1215 } 1216 1217unlock: 1218 rtnl_unlock(); 1219 return err; 1220 1221rollback: 1222 last = dev; 1223 for_each_net(net) { 1224 for_each_netdev(net, dev) { 1225 if (dev == last) 1226 break; 1227 1228 if (dev->flags & IFF_UP) { 1229 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1230 nb->notifier_call(nb, NETDEV_DOWN, dev); 1231 } 1232 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1233 } 1234 } 1235 1236 raw_notifier_chain_unregister(&netdev_chain, nb); 1237 goto unlock; 1238} 1239 1240/** 1241 * unregister_netdevice_notifier - unregister a network notifier block 1242 * @nb: notifier 1243 * 1244 * Unregister a notifier previously registered by 1245 * register_netdevice_notifier(). The notifier is unlinked into the 1246 * kernel structures and may then be reused. A negative errno code 1247 * is returned on a failure. 1248 */ 1249 1250int unregister_netdevice_notifier(struct notifier_block *nb) 1251{ 1252 int err; 1253 1254 rtnl_lock(); 1255 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1256 rtnl_unlock(); 1257 return err; 1258} 1259 1260/** 1261 * call_netdevice_notifiers - call all network notifier blocks 1262 * @val: value passed unmodified to notifier function 1263 * @dev: net_device pointer passed unmodified to notifier function 1264 * 1265 * Call all network notifier blocks. Parameters and return value 1266 * are as for raw_notifier_call_chain(). 1267 */ 1268 1269int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1270{ 1271 return raw_notifier_call_chain(&netdev_chain, val, dev); 1272} 1273 1274/* When > 0 there are consumers of rx skb time stamps */ 1275static atomic_t netstamp_needed = ATOMIC_INIT(0); 1276 1277void net_enable_timestamp(void) 1278{ 1279 atomic_inc(&netstamp_needed); 1280} 1281 1282void net_disable_timestamp(void) 1283{ 1284 atomic_dec(&netstamp_needed); 1285} 1286 1287static inline void net_timestamp(struct sk_buff *skb) 1288{ 1289 if (atomic_read(&netstamp_needed)) 1290 __net_timestamp(skb); 1291 else 1292 skb->tstamp.tv64 = 0; 1293} 1294 1295/* 1296 * Support routine. Sends outgoing frames to any network 1297 * taps currently in use. 1298 */ 1299 1300static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1301{ 1302 struct packet_type *ptype; 1303 1304 net_timestamp(skb); 1305 1306 rcu_read_lock(); 1307 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1308 /* Never send packets back to the socket 1309 * they originated from - MvS (miquels@drinkel.ow.org) 1310 */ 1311 if ((ptype->dev == dev || !ptype->dev) && 1312 (ptype->af_packet_priv == NULL || 1313 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1314 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1315 if (!skb2) 1316 break; 1317 1318 /* skb->nh should be correctly 1319 set by sender, so that the second statement is 1320 just protection against buggy protocols. 1321 */ 1322 skb_reset_mac_header(skb2); 1323 1324 if (skb_network_header(skb2) < skb2->data || 1325 skb2->network_header > skb2->tail) { 1326 if (net_ratelimit()) 1327 printk(KERN_CRIT "protocol %04x is " 1328 "buggy, dev %s\n", 1329 skb2->protocol, dev->name); 1330 skb_reset_network_header(skb2); 1331 } 1332 1333 skb2->transport_header = skb2->network_header; 1334 skb2->pkt_type = PACKET_OUTGOING; 1335 ptype->func(skb2, skb->dev, ptype, skb->dev); 1336 } 1337 } 1338 rcu_read_unlock(); 1339} 1340 1341 1342static inline void __netif_reschedule(struct Qdisc *q) 1343{ 1344 struct softnet_data *sd; 1345 unsigned long flags; 1346 1347 local_irq_save(flags); 1348 sd = &__get_cpu_var(softnet_data); 1349 q->next_sched = sd->output_queue; 1350 sd->output_queue = q; 1351 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1352 local_irq_restore(flags); 1353} 1354 1355void __netif_schedule(struct Qdisc *q) 1356{ 1357 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1358 __netif_reschedule(q); 1359} 1360EXPORT_SYMBOL(__netif_schedule); 1361 1362void dev_kfree_skb_irq(struct sk_buff *skb) 1363{ 1364 if (atomic_dec_and_test(&skb->users)) { 1365 struct softnet_data *sd; 1366 unsigned long flags; 1367 1368 local_irq_save(flags); 1369 sd = &__get_cpu_var(softnet_data); 1370 skb->next = sd->completion_queue; 1371 sd->completion_queue = skb; 1372 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1373 local_irq_restore(flags); 1374 } 1375} 1376EXPORT_SYMBOL(dev_kfree_skb_irq); 1377 1378void dev_kfree_skb_any(struct sk_buff *skb) 1379{ 1380 if (in_irq() || irqs_disabled()) 1381 dev_kfree_skb_irq(skb); 1382 else 1383 dev_kfree_skb(skb); 1384} 1385EXPORT_SYMBOL(dev_kfree_skb_any); 1386 1387 1388/** 1389 * netif_device_detach - mark device as removed 1390 * @dev: network device 1391 * 1392 * Mark device as removed from system and therefore no longer available. 1393 */ 1394void netif_device_detach(struct net_device *dev) 1395{ 1396 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1397 netif_running(dev)) { 1398 netif_stop_queue(dev); 1399 } 1400} 1401EXPORT_SYMBOL(netif_device_detach); 1402 1403/** 1404 * netif_device_attach - mark device as attached 1405 * @dev: network device 1406 * 1407 * Mark device as attached from system and restart if needed. 1408 */ 1409void netif_device_attach(struct net_device *dev) 1410{ 1411 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1412 netif_running(dev)) { 1413 netif_wake_queue(dev); 1414 __netdev_watchdog_up(dev); 1415 } 1416} 1417EXPORT_SYMBOL(netif_device_attach); 1418 1419static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1420{ 1421 return ((features & NETIF_F_GEN_CSUM) || 1422 ((features & NETIF_F_IP_CSUM) && 1423 protocol == htons(ETH_P_IP)) || 1424 ((features & NETIF_F_IPV6_CSUM) && 1425 protocol == htons(ETH_P_IPV6))); 1426} 1427 1428static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1429{ 1430 if (can_checksum_protocol(dev->features, skb->protocol)) 1431 return true; 1432 1433 if (skb->protocol == htons(ETH_P_8021Q)) { 1434 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1435 if (can_checksum_protocol(dev->features & dev->vlan_features, 1436 veh->h_vlan_encapsulated_proto)) 1437 return true; 1438 } 1439 1440 return false; 1441} 1442 1443/* 1444 * Invalidate hardware checksum when packet is to be mangled, and 1445 * complete checksum manually on outgoing path. 1446 */ 1447int skb_checksum_help(struct sk_buff *skb) 1448{ 1449 __wsum csum; 1450 int ret = 0, offset; 1451 1452 if (skb->ip_summed == CHECKSUM_COMPLETE) 1453 goto out_set_summed; 1454 1455 if (unlikely(skb_shinfo(skb)->gso_size)) { 1456 /* Let GSO fix up the checksum. */ 1457 goto out_set_summed; 1458 } 1459 1460 offset = skb->csum_start - skb_headroom(skb); 1461 BUG_ON(offset >= skb_headlen(skb)); 1462 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1463 1464 offset += skb->csum_offset; 1465 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1466 1467 if (skb_cloned(skb) && 1468 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1469 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1470 if (ret) 1471 goto out; 1472 } 1473 1474 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1475out_set_summed: 1476 skb->ip_summed = CHECKSUM_NONE; 1477out: 1478 return ret; 1479} 1480 1481/** 1482 * skb_gso_segment - Perform segmentation on skb. 1483 * @skb: buffer to segment 1484 * @features: features for the output path (see dev->features) 1485 * 1486 * This function segments the given skb and returns a list of segments. 1487 * 1488 * It may return NULL if the skb requires no segmentation. This is 1489 * only possible when GSO is used for verifying header integrity. 1490 */ 1491struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1492{ 1493 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1494 struct packet_type *ptype; 1495 __be16 type = skb->protocol; 1496 int err; 1497 1498 BUG_ON(skb_shinfo(skb)->frag_list); 1499 1500 skb_reset_mac_header(skb); 1501 skb->mac_len = skb->network_header - skb->mac_header; 1502 __skb_pull(skb, skb->mac_len); 1503 1504 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1505 if (skb_header_cloned(skb) && 1506 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1507 return ERR_PTR(err); 1508 } 1509 1510 rcu_read_lock(); 1511 list_for_each_entry_rcu(ptype, 1512 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1513 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1514 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1515 err = ptype->gso_send_check(skb); 1516 segs = ERR_PTR(err); 1517 if (err || skb_gso_ok(skb, features)) 1518 break; 1519 __skb_push(skb, (skb->data - 1520 skb_network_header(skb))); 1521 } 1522 segs = ptype->gso_segment(skb, features); 1523 break; 1524 } 1525 } 1526 rcu_read_unlock(); 1527 1528 __skb_push(skb, skb->data - skb_mac_header(skb)); 1529 1530 return segs; 1531} 1532 1533EXPORT_SYMBOL(skb_gso_segment); 1534 1535/* Take action when hardware reception checksum errors are detected. */ 1536#ifdef CONFIG_BUG 1537void netdev_rx_csum_fault(struct net_device *dev) 1538{ 1539 if (net_ratelimit()) { 1540 printk(KERN_ERR "%s: hw csum failure.\n", 1541 dev ? dev->name : "<unknown>"); 1542 dump_stack(); 1543 } 1544} 1545EXPORT_SYMBOL(netdev_rx_csum_fault); 1546#endif 1547 1548/* Actually, we should eliminate this check as soon as we know, that: 1549 * 1. IOMMU is present and allows to map all the memory. 1550 * 2. No high memory really exists on this machine. 1551 */ 1552 1553static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1554{ 1555#ifdef CONFIG_HIGHMEM 1556 int i; 1557 1558 if (dev->features & NETIF_F_HIGHDMA) 1559 return 0; 1560 1561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1562 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1563 return 1; 1564 1565#endif 1566 return 0; 1567} 1568 1569struct dev_gso_cb { 1570 void (*destructor)(struct sk_buff *skb); 1571}; 1572 1573#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1574 1575static void dev_gso_skb_destructor(struct sk_buff *skb) 1576{ 1577 struct dev_gso_cb *cb; 1578 1579 do { 1580 struct sk_buff *nskb = skb->next; 1581 1582 skb->next = nskb->next; 1583 nskb->next = NULL; 1584 kfree_skb(nskb); 1585 } while (skb->next); 1586 1587 cb = DEV_GSO_CB(skb); 1588 if (cb->destructor) 1589 cb->destructor(skb); 1590} 1591 1592/** 1593 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1594 * @skb: buffer to segment 1595 * 1596 * This function segments the given skb and stores the list of segments 1597 * in skb->next. 1598 */ 1599static int dev_gso_segment(struct sk_buff *skb) 1600{ 1601 struct net_device *dev = skb->dev; 1602 struct sk_buff *segs; 1603 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1604 NETIF_F_SG : 0); 1605 1606 segs = skb_gso_segment(skb, features); 1607 1608 /* Verifying header integrity only. */ 1609 if (!segs) 1610 return 0; 1611 1612 if (IS_ERR(segs)) 1613 return PTR_ERR(segs); 1614 1615 skb->next = segs; 1616 DEV_GSO_CB(skb)->destructor = skb->destructor; 1617 skb->destructor = dev_gso_skb_destructor; 1618 1619 return 0; 1620} 1621 1622int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1623 struct netdev_queue *txq) 1624{ 1625 if (likely(!skb->next)) { 1626 if (!list_empty(&ptype_all)) 1627 dev_queue_xmit_nit(skb, dev); 1628 1629 if (netif_needs_gso(dev, skb)) { 1630 if (unlikely(dev_gso_segment(skb))) 1631 goto out_kfree_skb; 1632 if (skb->next) 1633 goto gso; 1634 } 1635 1636 return dev->hard_start_xmit(skb, dev); 1637 } 1638 1639gso: 1640 do { 1641 struct sk_buff *nskb = skb->next; 1642 int rc; 1643 1644 skb->next = nskb->next; 1645 nskb->next = NULL; 1646 rc = dev->hard_start_xmit(nskb, dev); 1647 if (unlikely(rc)) { 1648 nskb->next = skb->next; 1649 skb->next = nskb; 1650 return rc; 1651 } 1652 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1653 return NETDEV_TX_BUSY; 1654 } while (skb->next); 1655 1656 skb->destructor = DEV_GSO_CB(skb)->destructor; 1657 1658out_kfree_skb: 1659 kfree_skb(skb); 1660 return 0; 1661} 1662 1663static u32 simple_tx_hashrnd; 1664static int simple_tx_hashrnd_initialized = 0; 1665 1666static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1667{ 1668 u32 addr1, addr2, ports; 1669 u32 hash, ihl; 1670 u8 ip_proto; 1671 1672 if (unlikely(!simple_tx_hashrnd_initialized)) { 1673 get_random_bytes(&simple_tx_hashrnd, 4); 1674 simple_tx_hashrnd_initialized = 1; 1675 } 1676 1677 switch (skb->protocol) { 1678 case __constant_htons(ETH_P_IP): 1679 ip_proto = ip_hdr(skb)->protocol; 1680 addr1 = ip_hdr(skb)->saddr; 1681 addr2 = ip_hdr(skb)->daddr; 1682 ihl = ip_hdr(skb)->ihl; 1683 break; 1684 case __constant_htons(ETH_P_IPV6): 1685 ip_proto = ipv6_hdr(skb)->nexthdr; 1686 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1687 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1688 ihl = (40 >> 2); 1689 break; 1690 default: 1691 return 0; 1692 } 1693 1694 1695 switch (ip_proto) { 1696 case IPPROTO_TCP: 1697 case IPPROTO_UDP: 1698 case IPPROTO_DCCP: 1699 case IPPROTO_ESP: 1700 case IPPROTO_AH: 1701 case IPPROTO_SCTP: 1702 case IPPROTO_UDPLITE: 1703 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1704 break; 1705 1706 default: 1707 ports = 0; 1708 break; 1709 } 1710 1711 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1712 1713 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1714} 1715 1716static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1717 struct sk_buff *skb) 1718{ 1719 u16 queue_index = 0; 1720 1721 if (dev->select_queue) 1722 queue_index = dev->select_queue(dev, skb); 1723 else if (dev->real_num_tx_queues > 1) 1724 queue_index = simple_tx_hash(dev, skb); 1725 1726 skb_set_queue_mapping(skb, queue_index); 1727 return netdev_get_tx_queue(dev, queue_index); 1728} 1729 1730/** 1731 * dev_queue_xmit - transmit a buffer 1732 * @skb: buffer to transmit 1733 * 1734 * Queue a buffer for transmission to a network device. The caller must 1735 * have set the device and priority and built the buffer before calling 1736 * this function. The function can be called from an interrupt. 1737 * 1738 * A negative errno code is returned on a failure. A success does not 1739 * guarantee the frame will be transmitted as it may be dropped due 1740 * to congestion or traffic shaping. 1741 * 1742 * ----------------------------------------------------------------------------------- 1743 * I notice this method can also return errors from the queue disciplines, 1744 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1745 * be positive. 1746 * 1747 * Regardless of the return value, the skb is consumed, so it is currently 1748 * difficult to retry a send to this method. (You can bump the ref count 1749 * before sending to hold a reference for retry if you are careful.) 1750 * 1751 * When calling this method, interrupts MUST be enabled. This is because 1752 * the BH enable code must have IRQs enabled so that it will not deadlock. 1753 * --BLG 1754 */ 1755int dev_queue_xmit(struct sk_buff *skb) 1756{ 1757 struct net_device *dev = skb->dev; 1758 struct netdev_queue *txq; 1759 struct Qdisc *q; 1760 int rc = -ENOMEM; 1761 1762 /* GSO will handle the following emulations directly. */ 1763 if (netif_needs_gso(dev, skb)) 1764 goto gso; 1765 1766 if (skb_shinfo(skb)->frag_list && 1767 !(dev->features & NETIF_F_FRAGLIST) && 1768 __skb_linearize(skb)) 1769 goto out_kfree_skb; 1770 1771 /* Fragmented skb is linearized if device does not support SG, 1772 * or if at least one of fragments is in highmem and device 1773 * does not support DMA from it. 1774 */ 1775 if (skb_shinfo(skb)->nr_frags && 1776 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1777 __skb_linearize(skb)) 1778 goto out_kfree_skb; 1779 1780 /* If packet is not checksummed and device does not support 1781 * checksumming for this protocol, complete checksumming here. 1782 */ 1783 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1784 skb_set_transport_header(skb, skb->csum_start - 1785 skb_headroom(skb)); 1786 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1787 goto out_kfree_skb; 1788 } 1789 1790gso: 1791 /* Disable soft irqs for various locks below. Also 1792 * stops preemption for RCU. 1793 */ 1794 rcu_read_lock_bh(); 1795 1796 txq = dev_pick_tx(dev, skb); 1797 q = rcu_dereference(txq->qdisc); 1798 1799#ifdef CONFIG_NET_CLS_ACT 1800 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1801#endif 1802 if (q->enqueue) { 1803 spinlock_t *root_lock = qdisc_lock(q); 1804 1805 spin_lock(root_lock); 1806 1807 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1808 kfree_skb(skb); 1809 rc = NET_XMIT_DROP; 1810 } else { 1811 rc = qdisc_enqueue_root(skb, q); 1812 qdisc_run(q); 1813 } 1814 spin_unlock(root_lock); 1815 1816 goto out; 1817 } 1818 1819 /* The device has no queue. Common case for software devices: 1820 loopback, all the sorts of tunnels... 1821 1822 Really, it is unlikely that netif_tx_lock protection is necessary 1823 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1824 counters.) 1825 However, it is possible, that they rely on protection 1826 made by us here. 1827 1828 Check this and shot the lock. It is not prone from deadlocks. 1829 Either shot noqueue qdisc, it is even simpler 8) 1830 */ 1831 if (dev->flags & IFF_UP) { 1832 int cpu = smp_processor_id(); /* ok because BHs are off */ 1833 1834 if (txq->xmit_lock_owner != cpu) { 1835 1836 HARD_TX_LOCK(dev, txq, cpu); 1837 1838 if (!netif_tx_queue_stopped(txq)) { 1839 rc = 0; 1840 if (!dev_hard_start_xmit(skb, dev, txq)) { 1841 HARD_TX_UNLOCK(dev, txq); 1842 goto out; 1843 } 1844 } 1845 HARD_TX_UNLOCK(dev, txq); 1846 if (net_ratelimit()) 1847 printk(KERN_CRIT "Virtual device %s asks to " 1848 "queue packet!\n", dev->name); 1849 } else { 1850 /* Recursion is detected! It is possible, 1851 * unfortunately */ 1852 if (net_ratelimit()) 1853 printk(KERN_CRIT "Dead loop on virtual device " 1854 "%s, fix it urgently!\n", dev->name); 1855 } 1856 } 1857 1858 rc = -ENETDOWN; 1859 rcu_read_unlock_bh(); 1860 1861out_kfree_skb: 1862 kfree_skb(skb); 1863 return rc; 1864out: 1865 rcu_read_unlock_bh(); 1866 return rc; 1867} 1868 1869 1870/*======================================================================= 1871 Receiver routines 1872 =======================================================================*/ 1873 1874int netdev_max_backlog __read_mostly = 1000; 1875int netdev_budget __read_mostly = 300; 1876int weight_p __read_mostly = 64; /* old backlog weight */ 1877 1878DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1879 1880 1881/** 1882 * netif_rx - post buffer to the network code 1883 * @skb: buffer to post 1884 * 1885 * This function receives a packet from a device driver and queues it for 1886 * the upper (protocol) levels to process. It always succeeds. The buffer 1887 * may be dropped during processing for congestion control or by the 1888 * protocol layers. 1889 * 1890 * return values: 1891 * NET_RX_SUCCESS (no congestion) 1892 * NET_RX_DROP (packet was dropped) 1893 * 1894 */ 1895 1896int netif_rx(struct sk_buff *skb) 1897{ 1898 struct softnet_data *queue; 1899 unsigned long flags; 1900 1901 /* if netpoll wants it, pretend we never saw it */ 1902 if (netpoll_rx(skb)) 1903 return NET_RX_DROP; 1904 1905 if (!skb->tstamp.tv64) 1906 net_timestamp(skb); 1907 1908 /* 1909 * The code is rearranged so that the path is the most 1910 * short when CPU is congested, but is still operating. 1911 */ 1912 local_irq_save(flags); 1913 queue = &__get_cpu_var(softnet_data); 1914 1915 __get_cpu_var(netdev_rx_stat).total++; 1916 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1917 if (queue->input_pkt_queue.qlen) { 1918enqueue: 1919 __skb_queue_tail(&queue->input_pkt_queue, skb); 1920 local_irq_restore(flags); 1921 return NET_RX_SUCCESS; 1922 } 1923 1924 napi_schedule(&queue->backlog); 1925 goto enqueue; 1926 } 1927 1928 __get_cpu_var(netdev_rx_stat).dropped++; 1929 local_irq_restore(flags); 1930 1931 kfree_skb(skb); 1932 return NET_RX_DROP; 1933} 1934 1935int netif_rx_ni(struct sk_buff *skb) 1936{ 1937 int err; 1938 1939 preempt_disable(); 1940 err = netif_rx(skb); 1941 if (local_softirq_pending()) 1942 do_softirq(); 1943 preempt_enable(); 1944 1945 return err; 1946} 1947 1948EXPORT_SYMBOL(netif_rx_ni); 1949 1950static void net_tx_action(struct softirq_action *h) 1951{ 1952 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1953 1954 if (sd->completion_queue) { 1955 struct sk_buff *clist; 1956 1957 local_irq_disable(); 1958 clist = sd->completion_queue; 1959 sd->completion_queue = NULL; 1960 local_irq_enable(); 1961 1962 while (clist) { 1963 struct sk_buff *skb = clist; 1964 clist = clist->next; 1965 1966 WARN_ON(atomic_read(&skb->users)); 1967 __kfree_skb(skb); 1968 } 1969 } 1970 1971 if (sd->output_queue) { 1972 struct Qdisc *head; 1973 1974 local_irq_disable(); 1975 head = sd->output_queue; 1976 sd->output_queue = NULL; 1977 local_irq_enable(); 1978 1979 while (head) { 1980 struct Qdisc *q = head; 1981 spinlock_t *root_lock; 1982 1983 head = head->next_sched; 1984 1985 root_lock = qdisc_lock(q); 1986 if (spin_trylock(root_lock)) { 1987 smp_mb__before_clear_bit(); 1988 clear_bit(__QDISC_STATE_SCHED, 1989 &q->state); 1990 qdisc_run(q); 1991 spin_unlock(root_lock); 1992 } else { 1993 if (!test_bit(__QDISC_STATE_DEACTIVATED, 1994 &q->state)) 1995 __netif_reschedule(q); 1996 } 1997 } 1998 } 1999} 2000 2001static inline int deliver_skb(struct sk_buff *skb, 2002 struct packet_type *pt_prev, 2003 struct net_device *orig_dev) 2004{ 2005 atomic_inc(&skb->users); 2006 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2007} 2008 2009#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2010/* These hooks defined here for ATM */ 2011struct net_bridge; 2012struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2013 unsigned char *addr); 2014void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2015 2016/* 2017 * If bridge module is loaded call bridging hook. 2018 * returns NULL if packet was consumed. 2019 */ 2020struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2021 struct sk_buff *skb) __read_mostly; 2022static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2023 struct packet_type **pt_prev, int *ret, 2024 struct net_device *orig_dev) 2025{ 2026 struct net_bridge_port *port; 2027 2028 if (skb->pkt_type == PACKET_LOOPBACK || 2029 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2030 return skb; 2031 2032 if (*pt_prev) { 2033 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2034 *pt_prev = NULL; 2035 } 2036 2037 return br_handle_frame_hook(port, skb); 2038} 2039#else 2040#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2041#endif 2042 2043#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2044struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2045EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2046 2047static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2048 struct packet_type **pt_prev, 2049 int *ret, 2050 struct net_device *orig_dev) 2051{ 2052 if (skb->dev->macvlan_port == NULL) 2053 return skb; 2054 2055 if (*pt_prev) { 2056 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2057 *pt_prev = NULL; 2058 } 2059 return macvlan_handle_frame_hook(skb); 2060} 2061#else 2062#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2063#endif 2064 2065#ifdef CONFIG_NET_CLS_ACT 2066/* TODO: Maybe we should just force sch_ingress to be compiled in 2067 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2068 * a compare and 2 stores extra right now if we dont have it on 2069 * but have CONFIG_NET_CLS_ACT 2070 * NOTE: This doesnt stop any functionality; if you dont have 2071 * the ingress scheduler, you just cant add policies on ingress. 2072 * 2073 */ 2074static int ing_filter(struct sk_buff *skb) 2075{ 2076 struct net_device *dev = skb->dev; 2077 u32 ttl = G_TC_RTTL(skb->tc_verd); 2078 struct netdev_queue *rxq; 2079 int result = TC_ACT_OK; 2080 struct Qdisc *q; 2081 2082 if (MAX_RED_LOOP < ttl++) { 2083 printk(KERN_WARNING 2084 "Redir loop detected Dropping packet (%d->%d)\n", 2085 skb->iif, dev->ifindex); 2086 return TC_ACT_SHOT; 2087 } 2088 2089 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2090 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2091 2092 rxq = &dev->rx_queue; 2093 2094 q = rxq->qdisc; 2095 if (q != &noop_qdisc) { 2096 spin_lock(qdisc_lock(q)); 2097 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2098 result = qdisc_enqueue_root(skb, q); 2099 spin_unlock(qdisc_lock(q)); 2100 } 2101 2102 return result; 2103} 2104 2105static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2106 struct packet_type **pt_prev, 2107 int *ret, struct net_device *orig_dev) 2108{ 2109 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2110 goto out; 2111 2112 if (*pt_prev) { 2113 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2114 *pt_prev = NULL; 2115 } else { 2116 /* Huh? Why does turning on AF_PACKET affect this? */ 2117 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2118 } 2119 2120 switch (ing_filter(skb)) { 2121 case TC_ACT_SHOT: 2122 case TC_ACT_STOLEN: 2123 kfree_skb(skb); 2124 return NULL; 2125 } 2126 2127out: 2128 skb->tc_verd = 0; 2129 return skb; 2130} 2131#endif 2132 2133/* 2134 * netif_nit_deliver - deliver received packets to network taps 2135 * @skb: buffer 2136 * 2137 * This function is used to deliver incoming packets to network 2138 * taps. It should be used when the normal netif_receive_skb path 2139 * is bypassed, for example because of VLAN acceleration. 2140 */ 2141void netif_nit_deliver(struct sk_buff *skb) 2142{ 2143 struct packet_type *ptype; 2144 2145 if (list_empty(&ptype_all)) 2146 return; 2147 2148 skb_reset_network_header(skb); 2149 skb_reset_transport_header(skb); 2150 skb->mac_len = skb->network_header - skb->mac_header; 2151 2152 rcu_read_lock(); 2153 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2154 if (!ptype->dev || ptype->dev == skb->dev) 2155 deliver_skb(skb, ptype, skb->dev); 2156 } 2157 rcu_read_unlock(); 2158} 2159 2160/** 2161 * netif_receive_skb - process receive buffer from network 2162 * @skb: buffer to process 2163 * 2164 * netif_receive_skb() is the main receive data processing function. 2165 * It always succeeds. The buffer may be dropped during processing 2166 * for congestion control or by the protocol layers. 2167 * 2168 * This function may only be called from softirq context and interrupts 2169 * should be enabled. 2170 * 2171 * Return values (usually ignored): 2172 * NET_RX_SUCCESS: no congestion 2173 * NET_RX_DROP: packet was dropped 2174 */ 2175int netif_receive_skb(struct sk_buff *skb) 2176{ 2177 struct packet_type *ptype, *pt_prev; 2178 struct net_device *orig_dev; 2179 struct net_device *null_or_orig; 2180 int ret = NET_RX_DROP; 2181 __be16 type; 2182 2183 /* if we've gotten here through NAPI, check netpoll */ 2184 if (netpoll_receive_skb(skb)) 2185 return NET_RX_DROP; 2186 2187 if (!skb->tstamp.tv64) 2188 net_timestamp(skb); 2189 2190 if (!skb->iif) 2191 skb->iif = skb->dev->ifindex; 2192 2193 null_or_orig = NULL; 2194 orig_dev = skb->dev; 2195 if (orig_dev->master) { 2196 if (skb_bond_should_drop(skb)) 2197 null_or_orig = orig_dev; /* deliver only exact match */ 2198 else 2199 skb->dev = orig_dev->master; 2200 } 2201 2202 __get_cpu_var(netdev_rx_stat).total++; 2203 2204 skb_reset_network_header(skb); 2205 skb_reset_transport_header(skb); 2206 skb->mac_len = skb->network_header - skb->mac_header; 2207 2208 pt_prev = NULL; 2209 2210 rcu_read_lock(); 2211 2212 /* Don't receive packets in an exiting network namespace */ 2213 if (!net_alive(dev_net(skb->dev))) 2214 goto out; 2215 2216#ifdef CONFIG_NET_CLS_ACT 2217 if (skb->tc_verd & TC_NCLS) { 2218 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2219 goto ncls; 2220 } 2221#endif 2222 2223 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2224 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2225 ptype->dev == orig_dev) { 2226 if (pt_prev) 2227 ret = deliver_skb(skb, pt_prev, orig_dev); 2228 pt_prev = ptype; 2229 } 2230 } 2231 2232#ifdef CONFIG_NET_CLS_ACT 2233 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2234 if (!skb) 2235 goto out; 2236ncls: 2237#endif 2238 2239 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2240 if (!skb) 2241 goto out; 2242 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2243 if (!skb) 2244 goto out; 2245 2246 type = skb->protocol; 2247 list_for_each_entry_rcu(ptype, 2248 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2249 if (ptype->type == type && 2250 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2251 ptype->dev == orig_dev)) { 2252 if (pt_prev) 2253 ret = deliver_skb(skb, pt_prev, orig_dev); 2254 pt_prev = ptype; 2255 } 2256 } 2257 2258 if (pt_prev) { 2259 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2260 } else { 2261 kfree_skb(skb); 2262 /* Jamal, now you will not able to escape explaining 2263 * me how you were going to use this. :-) 2264 */ 2265 ret = NET_RX_DROP; 2266 } 2267 2268out: 2269 rcu_read_unlock(); 2270 return ret; 2271} 2272 2273/* Network device is going away, flush any packets still pending */ 2274static void flush_backlog(void *arg) 2275{ 2276 struct net_device *dev = arg; 2277 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2278 struct sk_buff *skb, *tmp; 2279 2280 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2281 if (skb->dev == dev) { 2282 __skb_unlink(skb, &queue->input_pkt_queue); 2283 kfree_skb(skb); 2284 } 2285} 2286 2287static int process_backlog(struct napi_struct *napi, int quota) 2288{ 2289 int work = 0; 2290 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2291 unsigned long start_time = jiffies; 2292 2293 napi->weight = weight_p; 2294 do { 2295 struct sk_buff *skb; 2296 2297 local_irq_disable(); 2298 skb = __skb_dequeue(&queue->input_pkt_queue); 2299 if (!skb) { 2300 __napi_complete(napi); 2301 local_irq_enable(); 2302 break; 2303 } 2304 local_irq_enable(); 2305 2306 netif_receive_skb(skb); 2307 } while (++work < quota && jiffies == start_time); 2308 2309 return work; 2310} 2311 2312/** 2313 * __napi_schedule - schedule for receive 2314 * @n: entry to schedule 2315 * 2316 * The entry's receive function will be scheduled to run 2317 */ 2318void __napi_schedule(struct napi_struct *n) 2319{ 2320 unsigned long flags; 2321 2322 local_irq_save(flags); 2323 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2324 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2325 local_irq_restore(flags); 2326} 2327EXPORT_SYMBOL(__napi_schedule); 2328 2329 2330static void net_rx_action(struct softirq_action *h) 2331{ 2332 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2333 unsigned long start_time = jiffies; 2334 int budget = netdev_budget; 2335 void *have; 2336 2337 local_irq_disable(); 2338 2339 while (!list_empty(list)) { 2340 struct napi_struct *n; 2341 int work, weight; 2342 2343 /* If softirq window is exhuasted then punt. 2344 * 2345 * Note that this is a slight policy change from the 2346 * previous NAPI code, which would allow up to 2 2347 * jiffies to pass before breaking out. The test 2348 * used to be "jiffies - start_time > 1". 2349 */ 2350 if (unlikely(budget <= 0 || jiffies != start_time)) 2351 goto softnet_break; 2352 2353 local_irq_enable(); 2354 2355 /* Even though interrupts have been re-enabled, this 2356 * access is safe because interrupts can only add new 2357 * entries to the tail of this list, and only ->poll() 2358 * calls can remove this head entry from the list. 2359 */ 2360 n = list_entry(list->next, struct napi_struct, poll_list); 2361 2362 have = netpoll_poll_lock(n); 2363 2364 weight = n->weight; 2365 2366 /* This NAPI_STATE_SCHED test is for avoiding a race 2367 * with netpoll's poll_napi(). Only the entity which 2368 * obtains the lock and sees NAPI_STATE_SCHED set will 2369 * actually make the ->poll() call. Therefore we avoid 2370 * accidently calling ->poll() when NAPI is not scheduled. 2371 */ 2372 work = 0; 2373 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2374 work = n->poll(n, weight); 2375 2376 WARN_ON_ONCE(work > weight); 2377 2378 budget -= work; 2379 2380 local_irq_disable(); 2381 2382 /* Drivers must not modify the NAPI state if they 2383 * consume the entire weight. In such cases this code 2384 * still "owns" the NAPI instance and therefore can 2385 * move the instance around on the list at-will. 2386 */ 2387 if (unlikely(work == weight)) { 2388 if (unlikely(napi_disable_pending(n))) 2389 __napi_complete(n); 2390 else 2391 list_move_tail(&n->poll_list, list); 2392 } 2393 2394 netpoll_poll_unlock(have); 2395 } 2396out: 2397 local_irq_enable(); 2398 2399#ifdef CONFIG_NET_DMA 2400 /* 2401 * There may not be any more sk_buffs coming right now, so push 2402 * any pending DMA copies to hardware 2403 */ 2404 if (!cpus_empty(net_dma.channel_mask)) { 2405 int chan_idx; 2406 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) { 2407 struct dma_chan *chan = net_dma.channels[chan_idx]; 2408 if (chan) 2409 dma_async_memcpy_issue_pending(chan); 2410 } 2411 } 2412#endif 2413 2414 return; 2415 2416softnet_break: 2417 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2418 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2419 goto out; 2420} 2421 2422static gifconf_func_t * gifconf_list [NPROTO]; 2423 2424/** 2425 * register_gifconf - register a SIOCGIF handler 2426 * @family: Address family 2427 * @gifconf: Function handler 2428 * 2429 * Register protocol dependent address dumping routines. The handler 2430 * that is passed must not be freed or reused until it has been replaced 2431 * by another handler. 2432 */ 2433int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2434{ 2435 if (family >= NPROTO) 2436 return -EINVAL; 2437 gifconf_list[family] = gifconf; 2438 return 0; 2439} 2440 2441 2442/* 2443 * Map an interface index to its name (SIOCGIFNAME) 2444 */ 2445 2446/* 2447 * We need this ioctl for efficient implementation of the 2448 * if_indextoname() function required by the IPv6 API. Without 2449 * it, we would have to search all the interfaces to find a 2450 * match. --pb 2451 */ 2452 2453static int dev_ifname(struct net *net, struct ifreq __user *arg) 2454{ 2455 struct net_device *dev; 2456 struct ifreq ifr; 2457 2458 /* 2459 * Fetch the caller's info block. 2460 */ 2461 2462 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2463 return -EFAULT; 2464 2465 read_lock(&dev_base_lock); 2466 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2467 if (!dev) { 2468 read_unlock(&dev_base_lock); 2469 return -ENODEV; 2470 } 2471 2472 strcpy(ifr.ifr_name, dev->name); 2473 read_unlock(&dev_base_lock); 2474 2475 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2476 return -EFAULT; 2477 return 0; 2478} 2479 2480/* 2481 * Perform a SIOCGIFCONF call. This structure will change 2482 * size eventually, and there is nothing I can do about it. 2483 * Thus we will need a 'compatibility mode'. 2484 */ 2485 2486static int dev_ifconf(struct net *net, char __user *arg) 2487{ 2488 struct ifconf ifc; 2489 struct net_device *dev; 2490 char __user *pos; 2491 int len; 2492 int total; 2493 int i; 2494 2495 /* 2496 * Fetch the caller's info block. 2497 */ 2498 2499 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2500 return -EFAULT; 2501 2502 pos = ifc.ifc_buf; 2503 len = ifc.ifc_len; 2504 2505 /* 2506 * Loop over the interfaces, and write an info block for each. 2507 */ 2508 2509 total = 0; 2510 for_each_netdev(net, dev) { 2511 for (i = 0; i < NPROTO; i++) { 2512 if (gifconf_list[i]) { 2513 int done; 2514 if (!pos) 2515 done = gifconf_list[i](dev, NULL, 0); 2516 else 2517 done = gifconf_list[i](dev, pos + total, 2518 len - total); 2519 if (done < 0) 2520 return -EFAULT; 2521 total += done; 2522 } 2523 } 2524 } 2525 2526 /* 2527 * All done. Write the updated control block back to the caller. 2528 */ 2529 ifc.ifc_len = total; 2530 2531 /* 2532 * Both BSD and Solaris return 0 here, so we do too. 2533 */ 2534 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2535} 2536 2537#ifdef CONFIG_PROC_FS 2538/* 2539 * This is invoked by the /proc filesystem handler to display a device 2540 * in detail. 2541 */ 2542void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2543 __acquires(dev_base_lock) 2544{ 2545 struct net *net = seq_file_net(seq); 2546 loff_t off; 2547 struct net_device *dev; 2548 2549 read_lock(&dev_base_lock); 2550 if (!*pos) 2551 return SEQ_START_TOKEN; 2552 2553 off = 1; 2554 for_each_netdev(net, dev) 2555 if (off++ == *pos) 2556 return dev; 2557 2558 return NULL; 2559} 2560 2561void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2562{ 2563 struct net *net = seq_file_net(seq); 2564 ++*pos; 2565 return v == SEQ_START_TOKEN ? 2566 first_net_device(net) : next_net_device((struct net_device *)v); 2567} 2568 2569void dev_seq_stop(struct seq_file *seq, void *v) 2570 __releases(dev_base_lock) 2571{ 2572 read_unlock(&dev_base_lock); 2573} 2574 2575static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2576{ 2577 struct net_device_stats *stats = dev->get_stats(dev); 2578 2579 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2580 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2581 dev->name, stats->rx_bytes, stats->rx_packets, 2582 stats->rx_errors, 2583 stats->rx_dropped + stats->rx_missed_errors, 2584 stats->rx_fifo_errors, 2585 stats->rx_length_errors + stats->rx_over_errors + 2586 stats->rx_crc_errors + stats->rx_frame_errors, 2587 stats->rx_compressed, stats->multicast, 2588 stats->tx_bytes, stats->tx_packets, 2589 stats->tx_errors, stats->tx_dropped, 2590 stats->tx_fifo_errors, stats->collisions, 2591 stats->tx_carrier_errors + 2592 stats->tx_aborted_errors + 2593 stats->tx_window_errors + 2594 stats->tx_heartbeat_errors, 2595 stats->tx_compressed); 2596} 2597 2598/* 2599 * Called from the PROCfs module. This now uses the new arbitrary sized 2600 * /proc/net interface to create /proc/net/dev 2601 */ 2602static int dev_seq_show(struct seq_file *seq, void *v) 2603{ 2604 if (v == SEQ_START_TOKEN) 2605 seq_puts(seq, "Inter-| Receive " 2606 " | Transmit\n" 2607 " face |bytes packets errs drop fifo frame " 2608 "compressed multicast|bytes packets errs " 2609 "drop fifo colls carrier compressed\n"); 2610 else 2611 dev_seq_printf_stats(seq, v); 2612 return 0; 2613} 2614 2615static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2616{ 2617 struct netif_rx_stats *rc = NULL; 2618 2619 while (*pos < nr_cpu_ids) 2620 if (cpu_online(*pos)) { 2621 rc = &per_cpu(netdev_rx_stat, *pos); 2622 break; 2623 } else 2624 ++*pos; 2625 return rc; 2626} 2627 2628static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2629{ 2630 return softnet_get_online(pos); 2631} 2632 2633static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2634{ 2635 ++*pos; 2636 return softnet_get_online(pos); 2637} 2638 2639static void softnet_seq_stop(struct seq_file *seq, void *v) 2640{ 2641} 2642 2643static int softnet_seq_show(struct seq_file *seq, void *v) 2644{ 2645 struct netif_rx_stats *s = v; 2646 2647 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2648 s->total, s->dropped, s->time_squeeze, 0, 2649 0, 0, 0, 0, /* was fastroute */ 2650 s->cpu_collision ); 2651 return 0; 2652} 2653 2654static const struct seq_operations dev_seq_ops = { 2655 .start = dev_seq_start, 2656 .next = dev_seq_next, 2657 .stop = dev_seq_stop, 2658 .show = dev_seq_show, 2659}; 2660 2661static int dev_seq_open(struct inode *inode, struct file *file) 2662{ 2663 return seq_open_net(inode, file, &dev_seq_ops, 2664 sizeof(struct seq_net_private)); 2665} 2666 2667static const struct file_operations dev_seq_fops = { 2668 .owner = THIS_MODULE, 2669 .open = dev_seq_open, 2670 .read = seq_read, 2671 .llseek = seq_lseek, 2672 .release = seq_release_net, 2673}; 2674 2675static const struct seq_operations softnet_seq_ops = { 2676 .start = softnet_seq_start, 2677 .next = softnet_seq_next, 2678 .stop = softnet_seq_stop, 2679 .show = softnet_seq_show, 2680}; 2681 2682static int softnet_seq_open(struct inode *inode, struct file *file) 2683{ 2684 return seq_open(file, &softnet_seq_ops); 2685} 2686 2687static const struct file_operations softnet_seq_fops = { 2688 .owner = THIS_MODULE, 2689 .open = softnet_seq_open, 2690 .read = seq_read, 2691 .llseek = seq_lseek, 2692 .release = seq_release, 2693}; 2694 2695static void *ptype_get_idx(loff_t pos) 2696{ 2697 struct packet_type *pt = NULL; 2698 loff_t i = 0; 2699 int t; 2700 2701 list_for_each_entry_rcu(pt, &ptype_all, list) { 2702 if (i == pos) 2703 return pt; 2704 ++i; 2705 } 2706 2707 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2708 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2709 if (i == pos) 2710 return pt; 2711 ++i; 2712 } 2713 } 2714 return NULL; 2715} 2716 2717static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2718 __acquires(RCU) 2719{ 2720 rcu_read_lock(); 2721 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2722} 2723 2724static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2725{ 2726 struct packet_type *pt; 2727 struct list_head *nxt; 2728 int hash; 2729 2730 ++*pos; 2731 if (v == SEQ_START_TOKEN) 2732 return ptype_get_idx(0); 2733 2734 pt = v; 2735 nxt = pt->list.next; 2736 if (pt->type == htons(ETH_P_ALL)) { 2737 if (nxt != &ptype_all) 2738 goto found; 2739 hash = 0; 2740 nxt = ptype_base[0].next; 2741 } else 2742 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2743 2744 while (nxt == &ptype_base[hash]) { 2745 if (++hash >= PTYPE_HASH_SIZE) 2746 return NULL; 2747 nxt = ptype_base[hash].next; 2748 } 2749found: 2750 return list_entry(nxt, struct packet_type, list); 2751} 2752 2753static void ptype_seq_stop(struct seq_file *seq, void *v) 2754 __releases(RCU) 2755{ 2756 rcu_read_unlock(); 2757} 2758 2759static void ptype_seq_decode(struct seq_file *seq, void *sym) 2760{ 2761#ifdef CONFIG_KALLSYMS 2762 unsigned long offset = 0, symsize; 2763 const char *symname; 2764 char *modname; 2765 char namebuf[128]; 2766 2767 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2768 &modname, namebuf); 2769 2770 if (symname) { 2771 char *delim = ":"; 2772 2773 if (!modname) 2774 modname = delim = ""; 2775 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2776 symname, offset); 2777 return; 2778 } 2779#endif 2780 2781 seq_printf(seq, "[%p]", sym); 2782} 2783 2784static int ptype_seq_show(struct seq_file *seq, void *v) 2785{ 2786 struct packet_type *pt = v; 2787 2788 if (v == SEQ_START_TOKEN) 2789 seq_puts(seq, "Type Device Function\n"); 2790 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2791 if (pt->type == htons(ETH_P_ALL)) 2792 seq_puts(seq, "ALL "); 2793 else 2794 seq_printf(seq, "%04x", ntohs(pt->type)); 2795 2796 seq_printf(seq, " %-8s ", 2797 pt->dev ? pt->dev->name : ""); 2798 ptype_seq_decode(seq, pt->func); 2799 seq_putc(seq, '\n'); 2800 } 2801 2802 return 0; 2803} 2804 2805static const struct seq_operations ptype_seq_ops = { 2806 .start = ptype_seq_start, 2807 .next = ptype_seq_next, 2808 .stop = ptype_seq_stop, 2809 .show = ptype_seq_show, 2810}; 2811 2812static int ptype_seq_open(struct inode *inode, struct file *file) 2813{ 2814 return seq_open_net(inode, file, &ptype_seq_ops, 2815 sizeof(struct seq_net_private)); 2816} 2817 2818static const struct file_operations ptype_seq_fops = { 2819 .owner = THIS_MODULE, 2820 .open = ptype_seq_open, 2821 .read = seq_read, 2822 .llseek = seq_lseek, 2823 .release = seq_release_net, 2824}; 2825 2826 2827static int __net_init dev_proc_net_init(struct net *net) 2828{ 2829 int rc = -ENOMEM; 2830 2831 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2832 goto out; 2833 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2834 goto out_dev; 2835 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2836 goto out_softnet; 2837 2838 if (wext_proc_init(net)) 2839 goto out_ptype; 2840 rc = 0; 2841out: 2842 return rc; 2843out_ptype: 2844 proc_net_remove(net, "ptype"); 2845out_softnet: 2846 proc_net_remove(net, "softnet_stat"); 2847out_dev: 2848 proc_net_remove(net, "dev"); 2849 goto out; 2850} 2851 2852static void __net_exit dev_proc_net_exit(struct net *net) 2853{ 2854 wext_proc_exit(net); 2855 2856 proc_net_remove(net, "ptype"); 2857 proc_net_remove(net, "softnet_stat"); 2858 proc_net_remove(net, "dev"); 2859} 2860 2861static struct pernet_operations __net_initdata dev_proc_ops = { 2862 .init = dev_proc_net_init, 2863 .exit = dev_proc_net_exit, 2864}; 2865 2866static int __init dev_proc_init(void) 2867{ 2868 return register_pernet_subsys(&dev_proc_ops); 2869} 2870#else 2871#define dev_proc_init() 0 2872#endif /* CONFIG_PROC_FS */ 2873 2874 2875/** 2876 * netdev_set_master - set up master/slave pair 2877 * @slave: slave device 2878 * @master: new master device 2879 * 2880 * Changes the master device of the slave. Pass %NULL to break the 2881 * bonding. The caller must hold the RTNL semaphore. On a failure 2882 * a negative errno code is returned. On success the reference counts 2883 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2884 * function returns zero. 2885 */ 2886int netdev_set_master(struct net_device *slave, struct net_device *master) 2887{ 2888 struct net_device *old = slave->master; 2889 2890 ASSERT_RTNL(); 2891 2892 if (master) { 2893 if (old) 2894 return -EBUSY; 2895 dev_hold(master); 2896 } 2897 2898 slave->master = master; 2899 2900 synchronize_net(); 2901 2902 if (old) 2903 dev_put(old); 2904 2905 if (master) 2906 slave->flags |= IFF_SLAVE; 2907 else 2908 slave->flags &= ~IFF_SLAVE; 2909 2910 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2911 return 0; 2912} 2913 2914static int __dev_set_promiscuity(struct net_device *dev, int inc) 2915{ 2916 unsigned short old_flags = dev->flags; 2917 2918 ASSERT_RTNL(); 2919 2920 dev->flags |= IFF_PROMISC; 2921 dev->promiscuity += inc; 2922 if (dev->promiscuity == 0) { 2923 /* 2924 * Avoid overflow. 2925 * If inc causes overflow, untouch promisc and return error. 2926 */ 2927 if (inc < 0) 2928 dev->flags &= ~IFF_PROMISC; 2929 else { 2930 dev->promiscuity -= inc; 2931 printk(KERN_WARNING "%s: promiscuity touches roof, " 2932 "set promiscuity failed, promiscuity feature " 2933 "of device might be broken.\n", dev->name); 2934 return -EOVERFLOW; 2935 } 2936 } 2937 if (dev->flags != old_flags) { 2938 printk(KERN_INFO "device %s %s promiscuous mode\n", 2939 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2940 "left"); 2941 if (audit_enabled) 2942 audit_log(current->audit_context, GFP_ATOMIC, 2943 AUDIT_ANOM_PROMISCUOUS, 2944 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2945 dev->name, (dev->flags & IFF_PROMISC), 2946 (old_flags & IFF_PROMISC), 2947 audit_get_loginuid(current), 2948 current->uid, current->gid, 2949 audit_get_sessionid(current)); 2950 2951 if (dev->change_rx_flags) 2952 dev->change_rx_flags(dev, IFF_PROMISC); 2953 } 2954 return 0; 2955} 2956 2957/** 2958 * dev_set_promiscuity - update promiscuity count on a device 2959 * @dev: device 2960 * @inc: modifier 2961 * 2962 * Add or remove promiscuity from a device. While the count in the device 2963 * remains above zero the interface remains promiscuous. Once it hits zero 2964 * the device reverts back to normal filtering operation. A negative inc 2965 * value is used to drop promiscuity on the device. 2966 * Return 0 if successful or a negative errno code on error. 2967 */ 2968int dev_set_promiscuity(struct net_device *dev, int inc) 2969{ 2970 unsigned short old_flags = dev->flags; 2971 int err; 2972 2973 err = __dev_set_promiscuity(dev, inc); 2974 if (err < 0) 2975 return err; 2976 if (dev->flags != old_flags) 2977 dev_set_rx_mode(dev); 2978 return err; 2979} 2980 2981/** 2982 * dev_set_allmulti - update allmulti count on a device 2983 * @dev: device 2984 * @inc: modifier 2985 * 2986 * Add or remove reception of all multicast frames to a device. While the 2987 * count in the device remains above zero the interface remains listening 2988 * to all interfaces. Once it hits zero the device reverts back to normal 2989 * filtering operation. A negative @inc value is used to drop the counter 2990 * when releasing a resource needing all multicasts. 2991 * Return 0 if successful or a negative errno code on error. 2992 */ 2993 2994int dev_set_allmulti(struct net_device *dev, int inc) 2995{ 2996 unsigned short old_flags = dev->flags; 2997 2998 ASSERT_RTNL(); 2999 3000 dev->flags |= IFF_ALLMULTI; 3001 dev->allmulti += inc; 3002 if (dev->allmulti == 0) { 3003 /* 3004 * Avoid overflow. 3005 * If inc causes overflow, untouch allmulti and return error. 3006 */ 3007 if (inc < 0) 3008 dev->flags &= ~IFF_ALLMULTI; 3009 else { 3010 dev->allmulti -= inc; 3011 printk(KERN_WARNING "%s: allmulti touches roof, " 3012 "set allmulti failed, allmulti feature of " 3013 "device might be broken.\n", dev->name); 3014 return -EOVERFLOW; 3015 } 3016 } 3017 if (dev->flags ^ old_flags) { 3018 if (dev->change_rx_flags) 3019 dev->change_rx_flags(dev, IFF_ALLMULTI); 3020 dev_set_rx_mode(dev); 3021 } 3022 return 0; 3023} 3024 3025/* 3026 * Upload unicast and multicast address lists to device and 3027 * configure RX filtering. When the device doesn't support unicast 3028 * filtering it is put in promiscuous mode while unicast addresses 3029 * are present. 3030 */ 3031void __dev_set_rx_mode(struct net_device *dev) 3032{ 3033 /* dev_open will call this function so the list will stay sane. */ 3034 if (!(dev->flags&IFF_UP)) 3035 return; 3036 3037 if (!netif_device_present(dev)) 3038 return; 3039 3040 if (dev->set_rx_mode) 3041 dev->set_rx_mode(dev); 3042 else { 3043 /* Unicast addresses changes may only happen under the rtnl, 3044 * therefore calling __dev_set_promiscuity here is safe. 3045 */ 3046 if (dev->uc_count > 0 && !dev->uc_promisc) { 3047 __dev_set_promiscuity(dev, 1); 3048 dev->uc_promisc = 1; 3049 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3050 __dev_set_promiscuity(dev, -1); 3051 dev->uc_promisc = 0; 3052 } 3053 3054 if (dev->set_multicast_list) 3055 dev->set_multicast_list(dev); 3056 } 3057} 3058 3059void dev_set_rx_mode(struct net_device *dev) 3060{ 3061 netif_addr_lock_bh(dev); 3062 __dev_set_rx_mode(dev); 3063 netif_addr_unlock_bh(dev); 3064} 3065 3066int __dev_addr_delete(struct dev_addr_list **list, int *count, 3067 void *addr, int alen, int glbl) 3068{ 3069 struct dev_addr_list *da; 3070 3071 for (; (da = *list) != NULL; list = &da->next) { 3072 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3073 alen == da->da_addrlen) { 3074 if (glbl) { 3075 int old_glbl = da->da_gusers; 3076 da->da_gusers = 0; 3077 if (old_glbl == 0) 3078 break; 3079 } 3080 if (--da->da_users) 3081 return 0; 3082 3083 *list = da->next; 3084 kfree(da); 3085 (*count)--; 3086 return 0; 3087 } 3088 } 3089 return -ENOENT; 3090} 3091 3092int __dev_addr_add(struct dev_addr_list **list, int *count, 3093 void *addr, int alen, int glbl) 3094{ 3095 struct dev_addr_list *da; 3096 3097 for (da = *list; da != NULL; da = da->next) { 3098 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3099 da->da_addrlen == alen) { 3100 if (glbl) { 3101 int old_glbl = da->da_gusers; 3102 da->da_gusers = 1; 3103 if (old_glbl) 3104 return 0; 3105 } 3106 da->da_users++; 3107 return 0; 3108 } 3109 } 3110 3111 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3112 if (da == NULL) 3113 return -ENOMEM; 3114 memcpy(da->da_addr, addr, alen); 3115 da->da_addrlen = alen; 3116 da->da_users = 1; 3117 da->da_gusers = glbl ? 1 : 0; 3118 da->next = *list; 3119 *list = da; 3120 (*count)++; 3121 return 0; 3122} 3123 3124/** 3125 * dev_unicast_delete - Release secondary unicast address. 3126 * @dev: device 3127 * @addr: address to delete 3128 * @alen: length of @addr 3129 * 3130 * Release reference to a secondary unicast address and remove it 3131 * from the device if the reference count drops to zero. 3132 * 3133 * The caller must hold the rtnl_mutex. 3134 */ 3135int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3136{ 3137 int err; 3138 3139 ASSERT_RTNL(); 3140 3141 netif_addr_lock_bh(dev); 3142 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3143 if (!err) 3144 __dev_set_rx_mode(dev); 3145 netif_addr_unlock_bh(dev); 3146 return err; 3147} 3148EXPORT_SYMBOL(dev_unicast_delete); 3149 3150/** 3151 * dev_unicast_add - add a secondary unicast address 3152 * @dev: device 3153 * @addr: address to add 3154 * @alen: length of @addr 3155 * 3156 * Add a secondary unicast address to the device or increase 3157 * the reference count if it already exists. 3158 * 3159 * The caller must hold the rtnl_mutex. 3160 */ 3161int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3162{ 3163 int err; 3164 3165 ASSERT_RTNL(); 3166 3167 netif_addr_lock_bh(dev); 3168 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3169 if (!err) 3170 __dev_set_rx_mode(dev); 3171 netif_addr_unlock_bh(dev); 3172 return err; 3173} 3174EXPORT_SYMBOL(dev_unicast_add); 3175 3176int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3177 struct dev_addr_list **from, int *from_count) 3178{ 3179 struct dev_addr_list *da, *next; 3180 int err = 0; 3181 3182 da = *from; 3183 while (da != NULL) { 3184 next = da->next; 3185 if (!da->da_synced) { 3186 err = __dev_addr_add(to, to_count, 3187 da->da_addr, da->da_addrlen, 0); 3188 if (err < 0) 3189 break; 3190 da->da_synced = 1; 3191 da->da_users++; 3192 } else if (da->da_users == 1) { 3193 __dev_addr_delete(to, to_count, 3194 da->da_addr, da->da_addrlen, 0); 3195 __dev_addr_delete(from, from_count, 3196 da->da_addr, da->da_addrlen, 0); 3197 } 3198 da = next; 3199 } 3200 return err; 3201} 3202 3203void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3204 struct dev_addr_list **from, int *from_count) 3205{ 3206 struct dev_addr_list *da, *next; 3207 3208 da = *from; 3209 while (da != NULL) { 3210 next = da->next; 3211 if (da->da_synced) { 3212 __dev_addr_delete(to, to_count, 3213 da->da_addr, da->da_addrlen, 0); 3214 da->da_synced = 0; 3215 __dev_addr_delete(from, from_count, 3216 da->da_addr, da->da_addrlen, 0); 3217 } 3218 da = next; 3219 } 3220} 3221 3222/** 3223 * dev_unicast_sync - Synchronize device's unicast list to another device 3224 * @to: destination device 3225 * @from: source device 3226 * 3227 * Add newly added addresses to the destination device and release 3228 * addresses that have no users left. The source device must be 3229 * locked by netif_tx_lock_bh. 3230 * 3231 * This function is intended to be called from the dev->set_rx_mode 3232 * function of layered software devices. 3233 */ 3234int dev_unicast_sync(struct net_device *to, struct net_device *from) 3235{ 3236 int err = 0; 3237 3238 netif_addr_lock_bh(to); 3239 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3240 &from->uc_list, &from->uc_count); 3241 if (!err) 3242 __dev_set_rx_mode(to); 3243 netif_addr_unlock_bh(to); 3244 return err; 3245} 3246EXPORT_SYMBOL(dev_unicast_sync); 3247 3248/** 3249 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3250 * @to: destination device 3251 * @from: source device 3252 * 3253 * Remove all addresses that were added to the destination device by 3254 * dev_unicast_sync(). This function is intended to be called from the 3255 * dev->stop function of layered software devices. 3256 */ 3257void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3258{ 3259 netif_addr_lock_bh(from); 3260 netif_addr_lock(to); 3261 3262 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3263 &from->uc_list, &from->uc_count); 3264 __dev_set_rx_mode(to); 3265 3266 netif_addr_unlock(to); 3267 netif_addr_unlock_bh(from); 3268} 3269EXPORT_SYMBOL(dev_unicast_unsync); 3270 3271static void __dev_addr_discard(struct dev_addr_list **list) 3272{ 3273 struct dev_addr_list *tmp; 3274 3275 while (*list != NULL) { 3276 tmp = *list; 3277 *list = tmp->next; 3278 if (tmp->da_users > tmp->da_gusers) 3279 printk("__dev_addr_discard: address leakage! " 3280 "da_users=%d\n", tmp->da_users); 3281 kfree(tmp); 3282 } 3283} 3284 3285static void dev_addr_discard(struct net_device *dev) 3286{ 3287 netif_addr_lock_bh(dev); 3288 3289 __dev_addr_discard(&dev->uc_list); 3290 dev->uc_count = 0; 3291 3292 __dev_addr_discard(&dev->mc_list); 3293 dev->mc_count = 0; 3294 3295 netif_addr_unlock_bh(dev); 3296} 3297 3298unsigned dev_get_flags(const struct net_device *dev) 3299{ 3300 unsigned flags; 3301 3302 flags = (dev->flags & ~(IFF_PROMISC | 3303 IFF_ALLMULTI | 3304 IFF_RUNNING | 3305 IFF_LOWER_UP | 3306 IFF_DORMANT)) | 3307 (dev->gflags & (IFF_PROMISC | 3308 IFF_ALLMULTI)); 3309 3310 if (netif_running(dev)) { 3311 if (netif_oper_up(dev)) 3312 flags |= IFF_RUNNING; 3313 if (netif_carrier_ok(dev)) 3314 flags |= IFF_LOWER_UP; 3315 if (netif_dormant(dev)) 3316 flags |= IFF_DORMANT; 3317 } 3318 3319 return flags; 3320} 3321 3322int dev_change_flags(struct net_device *dev, unsigned flags) 3323{ 3324 int ret, changes; 3325 int old_flags = dev->flags; 3326 3327 ASSERT_RTNL(); 3328 3329 /* 3330 * Set the flags on our device. 3331 */ 3332 3333 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3334 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3335 IFF_AUTOMEDIA)) | 3336 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3337 IFF_ALLMULTI)); 3338 3339 /* 3340 * Load in the correct multicast list now the flags have changed. 3341 */ 3342 3343 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST) 3344 dev->change_rx_flags(dev, IFF_MULTICAST); 3345 3346 dev_set_rx_mode(dev); 3347 3348 /* 3349 * Have we downed the interface. We handle IFF_UP ourselves 3350 * according to user attempts to set it, rather than blindly 3351 * setting it. 3352 */ 3353 3354 ret = 0; 3355 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3356 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3357 3358 if (!ret) 3359 dev_set_rx_mode(dev); 3360 } 3361 3362 if (dev->flags & IFF_UP && 3363 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3364 IFF_VOLATILE))) 3365 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3366 3367 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3368 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3369 dev->gflags ^= IFF_PROMISC; 3370 dev_set_promiscuity(dev, inc); 3371 } 3372 3373 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3374 is important. Some (broken) drivers set IFF_PROMISC, when 3375 IFF_ALLMULTI is requested not asking us and not reporting. 3376 */ 3377 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3378 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3379 dev->gflags ^= IFF_ALLMULTI; 3380 dev_set_allmulti(dev, inc); 3381 } 3382 3383 /* Exclude state transition flags, already notified */ 3384 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3385 if (changes) 3386 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3387 3388 return ret; 3389} 3390 3391int dev_set_mtu(struct net_device *dev, int new_mtu) 3392{ 3393 int err; 3394 3395 if (new_mtu == dev->mtu) 3396 return 0; 3397 3398 /* MTU must be positive. */ 3399 if (new_mtu < 0) 3400 return -EINVAL; 3401 3402 if (!netif_device_present(dev)) 3403 return -ENODEV; 3404 3405 err = 0; 3406 if (dev->change_mtu) 3407 err = dev->change_mtu(dev, new_mtu); 3408 else 3409 dev->mtu = new_mtu; 3410 if (!err && dev->flags & IFF_UP) 3411 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3412 return err; 3413} 3414 3415int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3416{ 3417 int err; 3418 3419 if (!dev->set_mac_address) 3420 return -EOPNOTSUPP; 3421 if (sa->sa_family != dev->type) 3422 return -EINVAL; 3423 if (!netif_device_present(dev)) 3424 return -ENODEV; 3425 err = dev->set_mac_address(dev, sa); 3426 if (!err) 3427 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3428 return err; 3429} 3430 3431/* 3432 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3433 */ 3434static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3435{ 3436 int err; 3437 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3438 3439 if (!dev) 3440 return -ENODEV; 3441 3442 switch (cmd) { 3443 case SIOCGIFFLAGS: /* Get interface flags */ 3444 ifr->ifr_flags = dev_get_flags(dev); 3445 return 0; 3446 3447 case SIOCGIFMETRIC: /* Get the metric on the interface 3448 (currently unused) */ 3449 ifr->ifr_metric = 0; 3450 return 0; 3451 3452 case SIOCGIFMTU: /* Get the MTU of a device */ 3453 ifr->ifr_mtu = dev->mtu; 3454 return 0; 3455 3456 case SIOCGIFHWADDR: 3457 if (!dev->addr_len) 3458 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3459 else 3460 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3461 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3462 ifr->ifr_hwaddr.sa_family = dev->type; 3463 return 0; 3464 3465 case SIOCGIFSLAVE: 3466 err = -EINVAL; 3467 break; 3468 3469 case SIOCGIFMAP: 3470 ifr->ifr_map.mem_start = dev->mem_start; 3471 ifr->ifr_map.mem_end = dev->mem_end; 3472 ifr->ifr_map.base_addr = dev->base_addr; 3473 ifr->ifr_map.irq = dev->irq; 3474 ifr->ifr_map.dma = dev->dma; 3475 ifr->ifr_map.port = dev->if_port; 3476 return 0; 3477 3478 case SIOCGIFINDEX: 3479 ifr->ifr_ifindex = dev->ifindex; 3480 return 0; 3481 3482 case SIOCGIFTXQLEN: 3483 ifr->ifr_qlen = dev->tx_queue_len; 3484 return 0; 3485 3486 default: 3487 /* dev_ioctl() should ensure this case 3488 * is never reached 3489 */ 3490 WARN_ON(1); 3491 err = -EINVAL; 3492 break; 3493 3494 } 3495 return err; 3496} 3497 3498/* 3499 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3500 */ 3501static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3502{ 3503 int err; 3504 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3505 3506 if (!dev) 3507 return -ENODEV; 3508 3509 switch (cmd) { 3510 case SIOCSIFFLAGS: /* Set interface flags */ 3511 return dev_change_flags(dev, ifr->ifr_flags); 3512 3513 case SIOCSIFMETRIC: /* Set the metric on the interface 3514 (currently unused) */ 3515 return -EOPNOTSUPP; 3516 3517 case SIOCSIFMTU: /* Set the MTU of a device */ 3518 return dev_set_mtu(dev, ifr->ifr_mtu); 3519 3520 case SIOCSIFHWADDR: 3521 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3522 3523 case SIOCSIFHWBROADCAST: 3524 if (ifr->ifr_hwaddr.sa_family != dev->type) 3525 return -EINVAL; 3526 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3527 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3528 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3529 return 0; 3530 3531 case SIOCSIFMAP: 3532 if (dev->set_config) { 3533 if (!netif_device_present(dev)) 3534 return -ENODEV; 3535 return dev->set_config(dev, &ifr->ifr_map); 3536 } 3537 return -EOPNOTSUPP; 3538 3539 case SIOCADDMULTI: 3540 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3541 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3542 return -EINVAL; 3543 if (!netif_device_present(dev)) 3544 return -ENODEV; 3545 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3546 dev->addr_len, 1); 3547 3548 case SIOCDELMULTI: 3549 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3550 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3551 return -EINVAL; 3552 if (!netif_device_present(dev)) 3553 return -ENODEV; 3554 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3555 dev->addr_len, 1); 3556 3557 case SIOCSIFTXQLEN: 3558 if (ifr->ifr_qlen < 0) 3559 return -EINVAL; 3560 dev->tx_queue_len = ifr->ifr_qlen; 3561 return 0; 3562 3563 case SIOCSIFNAME: 3564 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3565 return dev_change_name(dev, ifr->ifr_newname); 3566 3567 /* 3568 * Unknown or private ioctl 3569 */ 3570 3571 default: 3572 if ((cmd >= SIOCDEVPRIVATE && 3573 cmd <= SIOCDEVPRIVATE + 15) || 3574 cmd == SIOCBONDENSLAVE || 3575 cmd == SIOCBONDRELEASE || 3576 cmd == SIOCBONDSETHWADDR || 3577 cmd == SIOCBONDSLAVEINFOQUERY || 3578 cmd == SIOCBONDINFOQUERY || 3579 cmd == SIOCBONDCHANGEACTIVE || 3580 cmd == SIOCGMIIPHY || 3581 cmd == SIOCGMIIREG || 3582 cmd == SIOCSMIIREG || 3583 cmd == SIOCBRADDIF || 3584 cmd == SIOCBRDELIF || 3585 cmd == SIOCWANDEV) { 3586 err = -EOPNOTSUPP; 3587 if (dev->do_ioctl) { 3588 if (netif_device_present(dev)) 3589 err = dev->do_ioctl(dev, ifr, 3590 cmd); 3591 else 3592 err = -ENODEV; 3593 } 3594 } else 3595 err = -EINVAL; 3596 3597 } 3598 return err; 3599} 3600 3601/* 3602 * This function handles all "interface"-type I/O control requests. The actual 3603 * 'doing' part of this is dev_ifsioc above. 3604 */ 3605 3606/** 3607 * dev_ioctl - network device ioctl 3608 * @net: the applicable net namespace 3609 * @cmd: command to issue 3610 * @arg: pointer to a struct ifreq in user space 3611 * 3612 * Issue ioctl functions to devices. This is normally called by the 3613 * user space syscall interfaces but can sometimes be useful for 3614 * other purposes. The return value is the return from the syscall if 3615 * positive or a negative errno code on error. 3616 */ 3617 3618int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3619{ 3620 struct ifreq ifr; 3621 int ret; 3622 char *colon; 3623 3624 /* One special case: SIOCGIFCONF takes ifconf argument 3625 and requires shared lock, because it sleeps writing 3626 to user space. 3627 */ 3628 3629 if (cmd == SIOCGIFCONF) { 3630 rtnl_lock(); 3631 ret = dev_ifconf(net, (char __user *) arg); 3632 rtnl_unlock(); 3633 return ret; 3634 } 3635 if (cmd == SIOCGIFNAME) 3636 return dev_ifname(net, (struct ifreq __user *)arg); 3637 3638 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3639 return -EFAULT; 3640 3641 ifr.ifr_name[IFNAMSIZ-1] = 0; 3642 3643 colon = strchr(ifr.ifr_name, ':'); 3644 if (colon) 3645 *colon = 0; 3646 3647 /* 3648 * See which interface the caller is talking about. 3649 */ 3650 3651 switch (cmd) { 3652 /* 3653 * These ioctl calls: 3654 * - can be done by all. 3655 * - atomic and do not require locking. 3656 * - return a value 3657 */ 3658 case SIOCGIFFLAGS: 3659 case SIOCGIFMETRIC: 3660 case SIOCGIFMTU: 3661 case SIOCGIFHWADDR: 3662 case SIOCGIFSLAVE: 3663 case SIOCGIFMAP: 3664 case SIOCGIFINDEX: 3665 case SIOCGIFTXQLEN: 3666 dev_load(net, ifr.ifr_name); 3667 read_lock(&dev_base_lock); 3668 ret = dev_ifsioc_locked(net, &ifr, cmd); 3669 read_unlock(&dev_base_lock); 3670 if (!ret) { 3671 if (colon) 3672 *colon = ':'; 3673 if (copy_to_user(arg, &ifr, 3674 sizeof(struct ifreq))) 3675 ret = -EFAULT; 3676 } 3677 return ret; 3678 3679 case SIOCETHTOOL: 3680 dev_load(net, ifr.ifr_name); 3681 rtnl_lock(); 3682 ret = dev_ethtool(net, &ifr); 3683 rtnl_unlock(); 3684 if (!ret) { 3685 if (colon) 3686 *colon = ':'; 3687 if (copy_to_user(arg, &ifr, 3688 sizeof(struct ifreq))) 3689 ret = -EFAULT; 3690 } 3691 return ret; 3692 3693 /* 3694 * These ioctl calls: 3695 * - require superuser power. 3696 * - require strict serialization. 3697 * - return a value 3698 */ 3699 case SIOCGMIIPHY: 3700 case SIOCGMIIREG: 3701 case SIOCSIFNAME: 3702 if (!capable(CAP_NET_ADMIN)) 3703 return -EPERM; 3704 dev_load(net, ifr.ifr_name); 3705 rtnl_lock(); 3706 ret = dev_ifsioc(net, &ifr, cmd); 3707 rtnl_unlock(); 3708 if (!ret) { 3709 if (colon) 3710 *colon = ':'; 3711 if (copy_to_user(arg, &ifr, 3712 sizeof(struct ifreq))) 3713 ret = -EFAULT; 3714 } 3715 return ret; 3716 3717 /* 3718 * These ioctl calls: 3719 * - require superuser power. 3720 * - require strict serialization. 3721 * - do not return a value 3722 */ 3723 case SIOCSIFFLAGS: 3724 case SIOCSIFMETRIC: 3725 case SIOCSIFMTU: 3726 case SIOCSIFMAP: 3727 case SIOCSIFHWADDR: 3728 case SIOCSIFSLAVE: 3729 case SIOCADDMULTI: 3730 case SIOCDELMULTI: 3731 case SIOCSIFHWBROADCAST: 3732 case SIOCSIFTXQLEN: 3733 case SIOCSMIIREG: 3734 case SIOCBONDENSLAVE: 3735 case SIOCBONDRELEASE: 3736 case SIOCBONDSETHWADDR: 3737 case SIOCBONDCHANGEACTIVE: 3738 case SIOCBRADDIF: 3739 case SIOCBRDELIF: 3740 if (!capable(CAP_NET_ADMIN)) 3741 return -EPERM; 3742 /* fall through */ 3743 case SIOCBONDSLAVEINFOQUERY: 3744 case SIOCBONDINFOQUERY: 3745 dev_load(net, ifr.ifr_name); 3746 rtnl_lock(); 3747 ret = dev_ifsioc(net, &ifr, cmd); 3748 rtnl_unlock(); 3749 return ret; 3750 3751 case SIOCGIFMEM: 3752 /* Get the per device memory space. We can add this but 3753 * currently do not support it */ 3754 case SIOCSIFMEM: 3755 /* Set the per device memory buffer space. 3756 * Not applicable in our case */ 3757 case SIOCSIFLINK: 3758 return -EINVAL; 3759 3760 /* 3761 * Unknown or private ioctl. 3762 */ 3763 default: 3764 if (cmd == SIOCWANDEV || 3765 (cmd >= SIOCDEVPRIVATE && 3766 cmd <= SIOCDEVPRIVATE + 15)) { 3767 dev_load(net, ifr.ifr_name); 3768 rtnl_lock(); 3769 ret = dev_ifsioc(net, &ifr, cmd); 3770 rtnl_unlock(); 3771 if (!ret && copy_to_user(arg, &ifr, 3772 sizeof(struct ifreq))) 3773 ret = -EFAULT; 3774 return ret; 3775 } 3776 /* Take care of Wireless Extensions */ 3777 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3778 return wext_handle_ioctl(net, &ifr, cmd, arg); 3779 return -EINVAL; 3780 } 3781} 3782 3783 3784/** 3785 * dev_new_index - allocate an ifindex 3786 * @net: the applicable net namespace 3787 * 3788 * Returns a suitable unique value for a new device interface 3789 * number. The caller must hold the rtnl semaphore or the 3790 * dev_base_lock to be sure it remains unique. 3791 */ 3792static int dev_new_index(struct net *net) 3793{ 3794 static int ifindex; 3795 for (;;) { 3796 if (++ifindex <= 0) 3797 ifindex = 1; 3798 if (!__dev_get_by_index(net, ifindex)) 3799 return ifindex; 3800 } 3801} 3802 3803/* Delayed registration/unregisteration */ 3804static DEFINE_SPINLOCK(net_todo_list_lock); 3805static LIST_HEAD(net_todo_list); 3806 3807static void net_set_todo(struct net_device *dev) 3808{ 3809 spin_lock(&net_todo_list_lock); 3810 list_add_tail(&dev->todo_list, &net_todo_list); 3811 spin_unlock(&net_todo_list_lock); 3812} 3813 3814static void rollback_registered(struct net_device *dev) 3815{ 3816 BUG_ON(dev_boot_phase); 3817 ASSERT_RTNL(); 3818 3819 /* Some devices call without registering for initialization unwind. */ 3820 if (dev->reg_state == NETREG_UNINITIALIZED) { 3821 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3822 "was registered\n", dev->name, dev); 3823 3824 WARN_ON(1); 3825 return; 3826 } 3827 3828 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3829 3830 /* If device is running, close it first. */ 3831 dev_close(dev); 3832 3833 /* And unlink it from device chain. */ 3834 unlist_netdevice(dev); 3835 3836 dev->reg_state = NETREG_UNREGISTERING; 3837 3838 synchronize_net(); 3839 3840 /* Shutdown queueing discipline. */ 3841 dev_shutdown(dev); 3842 3843 3844 /* Notify protocols, that we are about to destroy 3845 this device. They should clean all the things. 3846 */ 3847 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3848 3849 /* 3850 * Flush the unicast and multicast chains 3851 */ 3852 dev_addr_discard(dev); 3853 3854 if (dev->uninit) 3855 dev->uninit(dev); 3856 3857 /* Notifier chain MUST detach us from master device. */ 3858 WARN_ON(dev->master); 3859 3860 /* Remove entries from kobject tree */ 3861 netdev_unregister_kobject(dev); 3862 3863 synchronize_net(); 3864 3865 dev_put(dev); 3866} 3867 3868static void __netdev_init_queue_locks_one(struct net_device *dev, 3869 struct netdev_queue *dev_queue, 3870 void *_unused) 3871{ 3872 spin_lock_init(&dev_queue->_xmit_lock); 3873 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 3874 dev_queue->xmit_lock_owner = -1; 3875} 3876 3877static void netdev_init_queue_locks(struct net_device *dev) 3878{ 3879 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 3880 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 3881} 3882 3883/** 3884 * register_netdevice - register a network device 3885 * @dev: device to register 3886 * 3887 * Take a completed network device structure and add it to the kernel 3888 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3889 * chain. 0 is returned on success. A negative errno code is returned 3890 * on a failure to set up the device, or if the name is a duplicate. 3891 * 3892 * Callers must hold the rtnl semaphore. You may want 3893 * register_netdev() instead of this. 3894 * 3895 * BUGS: 3896 * The locking appears insufficient to guarantee two parallel registers 3897 * will not get the same name. 3898 */ 3899 3900int register_netdevice(struct net_device *dev) 3901{ 3902 struct hlist_head *head; 3903 struct hlist_node *p; 3904 int ret; 3905 struct net *net; 3906 3907 BUG_ON(dev_boot_phase); 3908 ASSERT_RTNL(); 3909 3910 might_sleep(); 3911 3912 /* When net_device's are persistent, this will be fatal. */ 3913 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3914 BUG_ON(!dev_net(dev)); 3915 net = dev_net(dev); 3916 3917 spin_lock_init(&dev->addr_list_lock); 3918 netdev_set_addr_lockdep_class(dev); 3919 netdev_init_queue_locks(dev); 3920 3921 dev->iflink = -1; 3922 3923 /* Init, if this function is available */ 3924 if (dev->init) { 3925 ret = dev->init(dev); 3926 if (ret) { 3927 if (ret > 0) 3928 ret = -EIO; 3929 goto out; 3930 } 3931 } 3932 3933 if (!dev_valid_name(dev->name)) { 3934 ret = -EINVAL; 3935 goto err_uninit; 3936 } 3937 3938 dev->ifindex = dev_new_index(net); 3939 if (dev->iflink == -1) 3940 dev->iflink = dev->ifindex; 3941 3942 /* Check for existence of name */ 3943 head = dev_name_hash(net, dev->name); 3944 hlist_for_each(p, head) { 3945 struct net_device *d 3946 = hlist_entry(p, struct net_device, name_hlist); 3947 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3948 ret = -EEXIST; 3949 goto err_uninit; 3950 } 3951 } 3952 3953 /* Fix illegal checksum combinations */ 3954 if ((dev->features & NETIF_F_HW_CSUM) && 3955 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3956 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3957 dev->name); 3958 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3959 } 3960 3961 if ((dev->features & NETIF_F_NO_CSUM) && 3962 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3963 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3964 dev->name); 3965 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3966 } 3967 3968 3969 /* Fix illegal SG+CSUM combinations. */ 3970 if ((dev->features & NETIF_F_SG) && 3971 !(dev->features & NETIF_F_ALL_CSUM)) { 3972 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3973 dev->name); 3974 dev->features &= ~NETIF_F_SG; 3975 } 3976 3977 /* TSO requires that SG is present as well. */ 3978 if ((dev->features & NETIF_F_TSO) && 3979 !(dev->features & NETIF_F_SG)) { 3980 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3981 dev->name); 3982 dev->features &= ~NETIF_F_TSO; 3983 } 3984 if (dev->features & NETIF_F_UFO) { 3985 if (!(dev->features & NETIF_F_HW_CSUM)) { 3986 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3987 "NETIF_F_HW_CSUM feature.\n", 3988 dev->name); 3989 dev->features &= ~NETIF_F_UFO; 3990 } 3991 if (!(dev->features & NETIF_F_SG)) { 3992 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3993 "NETIF_F_SG feature.\n", 3994 dev->name); 3995 dev->features &= ~NETIF_F_UFO; 3996 } 3997 } 3998 3999 /* Enable software GSO if SG is supported. */ 4000 if (dev->features & NETIF_F_SG) 4001 dev->features |= NETIF_F_GSO; 4002 4003 netdev_initialize_kobject(dev); 4004 ret = netdev_register_kobject(dev); 4005 if (ret) 4006 goto err_uninit; 4007 dev->reg_state = NETREG_REGISTERED; 4008 4009 /* 4010 * Default initial state at registry is that the 4011 * device is present. 4012 */ 4013 4014 set_bit(__LINK_STATE_PRESENT, &dev->state); 4015 4016 dev_init_scheduler(dev); 4017 dev_hold(dev); 4018 list_netdevice(dev); 4019 4020 /* Notify protocols, that a new device appeared. */ 4021 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4022 ret = notifier_to_errno(ret); 4023 if (ret) { 4024 rollback_registered(dev); 4025 dev->reg_state = NETREG_UNREGISTERED; 4026 } 4027 4028out: 4029 return ret; 4030 4031err_uninit: 4032 if (dev->uninit) 4033 dev->uninit(dev); 4034 goto out; 4035} 4036 4037/** 4038 * register_netdev - register a network device 4039 * @dev: device to register 4040 * 4041 * Take a completed network device structure and add it to the kernel 4042 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4043 * chain. 0 is returned on success. A negative errno code is returned 4044 * on a failure to set up the device, or if the name is a duplicate. 4045 * 4046 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4047 * and expands the device name if you passed a format string to 4048 * alloc_netdev. 4049 */ 4050int register_netdev(struct net_device *dev) 4051{ 4052 int err; 4053 4054 rtnl_lock(); 4055 4056 /* 4057 * If the name is a format string the caller wants us to do a 4058 * name allocation. 4059 */ 4060 if (strchr(dev->name, '%')) { 4061 err = dev_alloc_name(dev, dev->name); 4062 if (err < 0) 4063 goto out; 4064 } 4065 4066 err = register_netdevice(dev); 4067out: 4068 rtnl_unlock(); 4069 return err; 4070} 4071EXPORT_SYMBOL(register_netdev); 4072 4073/* 4074 * netdev_wait_allrefs - wait until all references are gone. 4075 * 4076 * This is called when unregistering network devices. 4077 * 4078 * Any protocol or device that holds a reference should register 4079 * for netdevice notification, and cleanup and put back the 4080 * reference if they receive an UNREGISTER event. 4081 * We can get stuck here if buggy protocols don't correctly 4082 * call dev_put. 4083 */ 4084static void netdev_wait_allrefs(struct net_device *dev) 4085{ 4086 unsigned long rebroadcast_time, warning_time; 4087 4088 rebroadcast_time = warning_time = jiffies; 4089 while (atomic_read(&dev->refcnt) != 0) { 4090 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4091 rtnl_lock(); 4092 4093 /* Rebroadcast unregister notification */ 4094 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4095 4096 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4097 &dev->state)) { 4098 /* We must not have linkwatch events 4099 * pending on unregister. If this 4100 * happens, we simply run the queue 4101 * unscheduled, resulting in a noop 4102 * for this device. 4103 */ 4104 linkwatch_run_queue(); 4105 } 4106 4107 __rtnl_unlock(); 4108 4109 rebroadcast_time = jiffies; 4110 } 4111 4112 msleep(250); 4113 4114 if (time_after(jiffies, warning_time + 10 * HZ)) { 4115 printk(KERN_EMERG "unregister_netdevice: " 4116 "waiting for %s to become free. Usage " 4117 "count = %d\n", 4118 dev->name, atomic_read(&dev->refcnt)); 4119 warning_time = jiffies; 4120 } 4121 } 4122} 4123 4124/* The sequence is: 4125 * 4126 * rtnl_lock(); 4127 * ... 4128 * register_netdevice(x1); 4129 * register_netdevice(x2); 4130 * ... 4131 * unregister_netdevice(y1); 4132 * unregister_netdevice(y2); 4133 * ... 4134 * rtnl_unlock(); 4135 * free_netdev(y1); 4136 * free_netdev(y2); 4137 * 4138 * We are invoked by rtnl_unlock() after it drops the semaphore. 4139 * This allows us to deal with problems: 4140 * 1) We can delete sysfs objects which invoke hotplug 4141 * without deadlocking with linkwatch via keventd. 4142 * 2) Since we run with the RTNL semaphore not held, we can sleep 4143 * safely in order to wait for the netdev refcnt to drop to zero. 4144 */ 4145static DEFINE_MUTEX(net_todo_run_mutex); 4146void netdev_run_todo(void) 4147{ 4148 struct list_head list; 4149 4150 /* Need to guard against multiple cpu's getting out of order. */ 4151 mutex_lock(&net_todo_run_mutex); 4152 4153 /* Not safe to do outside the semaphore. We must not return 4154 * until all unregister events invoked by the local processor 4155 * have been completed (either by this todo run, or one on 4156 * another cpu). 4157 */ 4158 if (list_empty(&net_todo_list)) 4159 goto out; 4160 4161 /* Snapshot list, allow later requests */ 4162 spin_lock(&net_todo_list_lock); 4163 list_replace_init(&net_todo_list, &list); 4164 spin_unlock(&net_todo_list_lock); 4165 4166 while (!list_empty(&list)) { 4167 struct net_device *dev 4168 = list_entry(list.next, struct net_device, todo_list); 4169 list_del(&dev->todo_list); 4170 4171 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4172 printk(KERN_ERR "network todo '%s' but state %d\n", 4173 dev->name, dev->reg_state); 4174 dump_stack(); 4175 continue; 4176 } 4177 4178 dev->reg_state = NETREG_UNREGISTERED; 4179 4180 on_each_cpu(flush_backlog, dev, 1); 4181 4182 netdev_wait_allrefs(dev); 4183 4184 /* paranoia */ 4185 BUG_ON(atomic_read(&dev->refcnt)); 4186 WARN_ON(dev->ip_ptr); 4187 WARN_ON(dev->ip6_ptr); 4188 WARN_ON(dev->dn_ptr); 4189 4190 if (dev->destructor) 4191 dev->destructor(dev); 4192 4193 /* Free network device */ 4194 kobject_put(&dev->dev.kobj); 4195 } 4196 4197out: 4198 mutex_unlock(&net_todo_run_mutex); 4199} 4200 4201static struct net_device_stats *internal_stats(struct net_device *dev) 4202{ 4203 return &dev->stats; 4204} 4205 4206static void netdev_init_one_queue(struct net_device *dev, 4207 struct netdev_queue *queue, 4208 void *_unused) 4209{ 4210 queue->dev = dev; 4211} 4212 4213static void netdev_init_queues(struct net_device *dev) 4214{ 4215 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4216 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4217 spin_lock_init(&dev->tx_global_lock); 4218} 4219 4220/** 4221 * alloc_netdev_mq - allocate network device 4222 * @sizeof_priv: size of private data to allocate space for 4223 * @name: device name format string 4224 * @setup: callback to initialize device 4225 * @queue_count: the number of subqueues to allocate 4226 * 4227 * Allocates a struct net_device with private data area for driver use 4228 * and performs basic initialization. Also allocates subquue structs 4229 * for each queue on the device at the end of the netdevice. 4230 */ 4231struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4232 void (*setup)(struct net_device *), unsigned int queue_count) 4233{ 4234 struct netdev_queue *tx; 4235 struct net_device *dev; 4236 size_t alloc_size; 4237 void *p; 4238 4239 BUG_ON(strlen(name) >= sizeof(dev->name)); 4240 4241 alloc_size = sizeof(struct net_device); 4242 if (sizeof_priv) { 4243 /* ensure 32-byte alignment of private area */ 4244 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4245 alloc_size += sizeof_priv; 4246 } 4247 /* ensure 32-byte alignment of whole construct */ 4248 alloc_size += NETDEV_ALIGN_CONST; 4249 4250 p = kzalloc(alloc_size, GFP_KERNEL); 4251 if (!p) { 4252 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4253 return NULL; 4254 } 4255 4256 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4257 if (!tx) { 4258 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4259 "tx qdiscs.\n"); 4260 kfree(p); 4261 return NULL; 4262 } 4263 4264 dev = (struct net_device *) 4265 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4266 dev->padded = (char *)dev - (char *)p; 4267 dev_net_set(dev, &init_net); 4268 4269 dev->_tx = tx; 4270 dev->num_tx_queues = queue_count; 4271 dev->real_num_tx_queues = queue_count; 4272 4273 if (sizeof_priv) { 4274 dev->priv = ((char *)dev + 4275 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST) 4276 & ~NETDEV_ALIGN_CONST)); 4277 } 4278 4279 dev->gso_max_size = GSO_MAX_SIZE; 4280 4281 netdev_init_queues(dev); 4282 4283 dev->get_stats = internal_stats; 4284 netpoll_netdev_init(dev); 4285 setup(dev); 4286 strcpy(dev->name, name); 4287 return dev; 4288} 4289EXPORT_SYMBOL(alloc_netdev_mq); 4290 4291/** 4292 * free_netdev - free network device 4293 * @dev: device 4294 * 4295 * This function does the last stage of destroying an allocated device 4296 * interface. The reference to the device object is released. 4297 * If this is the last reference then it will be freed. 4298 */ 4299void free_netdev(struct net_device *dev) 4300{ 4301 release_net(dev_net(dev)); 4302 4303 kfree(dev->_tx); 4304 4305 /* Compatibility with error handling in drivers */ 4306 if (dev->reg_state == NETREG_UNINITIALIZED) { 4307 kfree((char *)dev - dev->padded); 4308 return; 4309 } 4310 4311 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4312 dev->reg_state = NETREG_RELEASED; 4313 4314 /* will free via device release */ 4315 put_device(&dev->dev); 4316} 4317 4318/* Synchronize with packet receive processing. */ 4319void synchronize_net(void) 4320{ 4321 might_sleep(); 4322 synchronize_rcu(); 4323} 4324 4325/** 4326 * unregister_netdevice - remove device from the kernel 4327 * @dev: device 4328 * 4329 * This function shuts down a device interface and removes it 4330 * from the kernel tables. 4331 * 4332 * Callers must hold the rtnl semaphore. You may want 4333 * unregister_netdev() instead of this. 4334 */ 4335 4336void unregister_netdevice(struct net_device *dev) 4337{ 4338 ASSERT_RTNL(); 4339 4340 rollback_registered(dev); 4341 /* Finish processing unregister after unlock */ 4342 net_set_todo(dev); 4343} 4344 4345/** 4346 * unregister_netdev - remove device from the kernel 4347 * @dev: device 4348 * 4349 * This function shuts down a device interface and removes it 4350 * from the kernel tables. 4351 * 4352 * This is just a wrapper for unregister_netdevice that takes 4353 * the rtnl semaphore. In general you want to use this and not 4354 * unregister_netdevice. 4355 */ 4356void unregister_netdev(struct net_device *dev) 4357{ 4358 rtnl_lock(); 4359 unregister_netdevice(dev); 4360 rtnl_unlock(); 4361} 4362 4363EXPORT_SYMBOL(unregister_netdev); 4364 4365/** 4366 * dev_change_net_namespace - move device to different nethost namespace 4367 * @dev: device 4368 * @net: network namespace 4369 * @pat: If not NULL name pattern to try if the current device name 4370 * is already taken in the destination network namespace. 4371 * 4372 * This function shuts down a device interface and moves it 4373 * to a new network namespace. On success 0 is returned, on 4374 * a failure a netagive errno code is returned. 4375 * 4376 * Callers must hold the rtnl semaphore. 4377 */ 4378 4379int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4380{ 4381 char buf[IFNAMSIZ]; 4382 const char *destname; 4383 int err; 4384 4385 ASSERT_RTNL(); 4386 4387 /* Don't allow namespace local devices to be moved. */ 4388 err = -EINVAL; 4389 if (dev->features & NETIF_F_NETNS_LOCAL) 4390 goto out; 4391 4392 /* Ensure the device has been registrered */ 4393 err = -EINVAL; 4394 if (dev->reg_state != NETREG_REGISTERED) 4395 goto out; 4396 4397 /* Get out if there is nothing todo */ 4398 err = 0; 4399 if (net_eq(dev_net(dev), net)) 4400 goto out; 4401 4402 /* Pick the destination device name, and ensure 4403 * we can use it in the destination network namespace. 4404 */ 4405 err = -EEXIST; 4406 destname = dev->name; 4407 if (__dev_get_by_name(net, destname)) { 4408 /* We get here if we can't use the current device name */ 4409 if (!pat) 4410 goto out; 4411 if (!dev_valid_name(pat)) 4412 goto out; 4413 if (strchr(pat, '%')) { 4414 if (__dev_alloc_name(net, pat, buf) < 0) 4415 goto out; 4416 destname = buf; 4417 } else 4418 destname = pat; 4419 if (__dev_get_by_name(net, destname)) 4420 goto out; 4421 } 4422 4423 /* 4424 * And now a mini version of register_netdevice unregister_netdevice. 4425 */ 4426 4427 /* If device is running close it first. */ 4428 dev_close(dev); 4429 4430 /* And unlink it from device chain */ 4431 err = -ENODEV; 4432 unlist_netdevice(dev); 4433 4434 synchronize_net(); 4435 4436 /* Shutdown queueing discipline. */ 4437 dev_shutdown(dev); 4438 4439 /* Notify protocols, that we are about to destroy 4440 this device. They should clean all the things. 4441 */ 4442 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4443 4444 /* 4445 * Flush the unicast and multicast chains 4446 */ 4447 dev_addr_discard(dev); 4448 4449 /* Actually switch the network namespace */ 4450 dev_net_set(dev, net); 4451 4452 /* Assign the new device name */ 4453 if (destname != dev->name) 4454 strcpy(dev->name, destname); 4455 4456 /* If there is an ifindex conflict assign a new one */ 4457 if (__dev_get_by_index(net, dev->ifindex)) { 4458 int iflink = (dev->iflink == dev->ifindex); 4459 dev->ifindex = dev_new_index(net); 4460 if (iflink) 4461 dev->iflink = dev->ifindex; 4462 } 4463 4464 /* Fixup kobjects */ 4465 netdev_unregister_kobject(dev); 4466 err = netdev_register_kobject(dev); 4467 WARN_ON(err); 4468 4469 /* Add the device back in the hashes */ 4470 list_netdevice(dev); 4471 4472 /* Notify protocols, that a new device appeared. */ 4473 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4474 4475 synchronize_net(); 4476 err = 0; 4477out: 4478 return err; 4479} 4480 4481static int dev_cpu_callback(struct notifier_block *nfb, 4482 unsigned long action, 4483 void *ocpu) 4484{ 4485 struct sk_buff **list_skb; 4486 struct Qdisc **list_net; 4487 struct sk_buff *skb; 4488 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4489 struct softnet_data *sd, *oldsd; 4490 4491 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4492 return NOTIFY_OK; 4493 4494 local_irq_disable(); 4495 cpu = smp_processor_id(); 4496 sd = &per_cpu(softnet_data, cpu); 4497 oldsd = &per_cpu(softnet_data, oldcpu); 4498 4499 /* Find end of our completion_queue. */ 4500 list_skb = &sd->completion_queue; 4501 while (*list_skb) 4502 list_skb = &(*list_skb)->next; 4503 /* Append completion queue from offline CPU. */ 4504 *list_skb = oldsd->completion_queue; 4505 oldsd->completion_queue = NULL; 4506 4507 /* Find end of our output_queue. */ 4508 list_net = &sd->output_queue; 4509 while (*list_net) 4510 list_net = &(*list_net)->next_sched; 4511 /* Append output queue from offline CPU. */ 4512 *list_net = oldsd->output_queue; 4513 oldsd->output_queue = NULL; 4514 4515 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4516 local_irq_enable(); 4517 4518 /* Process offline CPU's input_pkt_queue */ 4519 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4520 netif_rx(skb); 4521 4522 return NOTIFY_OK; 4523} 4524 4525#ifdef CONFIG_NET_DMA 4526/** 4527 * net_dma_rebalance - try to maintain one DMA channel per CPU 4528 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4529 * 4530 * This is called when the number of channels allocated to the net_dma client 4531 * changes. The net_dma client tries to have one DMA channel per CPU. 4532 */ 4533 4534static void net_dma_rebalance(struct net_dma *net_dma) 4535{ 4536 unsigned int cpu, i, n, chan_idx; 4537 struct dma_chan *chan; 4538 4539 if (cpus_empty(net_dma->channel_mask)) { 4540 for_each_online_cpu(cpu) 4541 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4542 return; 4543 } 4544 4545 i = 0; 4546 cpu = first_cpu(cpu_online_map); 4547 4548 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) { 4549 chan = net_dma->channels[chan_idx]; 4550 4551 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4552 + (i < (num_online_cpus() % 4553 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4554 4555 while(n) { 4556 per_cpu(softnet_data, cpu).net_dma = chan; 4557 cpu = next_cpu(cpu, cpu_online_map); 4558 n--; 4559 } 4560 i++; 4561 } 4562} 4563 4564/** 4565 * netdev_dma_event - event callback for the net_dma_client 4566 * @client: should always be net_dma_client 4567 * @chan: DMA channel for the event 4568 * @state: DMA state to be handled 4569 */ 4570static enum dma_state_client 4571netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4572 enum dma_state state) 4573{ 4574 int i, found = 0, pos = -1; 4575 struct net_dma *net_dma = 4576 container_of(client, struct net_dma, client); 4577 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4578 4579 spin_lock(&net_dma->lock); 4580 switch (state) { 4581 case DMA_RESOURCE_AVAILABLE: 4582 for (i = 0; i < nr_cpu_ids; i++) 4583 if (net_dma->channels[i] == chan) { 4584 found = 1; 4585 break; 4586 } else if (net_dma->channels[i] == NULL && pos < 0) 4587 pos = i; 4588 4589 if (!found && pos >= 0) { 4590 ack = DMA_ACK; 4591 net_dma->channels[pos] = chan; 4592 cpu_set(pos, net_dma->channel_mask); 4593 net_dma_rebalance(net_dma); 4594 } 4595 break; 4596 case DMA_RESOURCE_REMOVED: 4597 for (i = 0; i < nr_cpu_ids; i++) 4598 if (net_dma->channels[i] == chan) { 4599 found = 1; 4600 pos = i; 4601 break; 4602 } 4603 4604 if (found) { 4605 ack = DMA_ACK; 4606 cpu_clear(pos, net_dma->channel_mask); 4607 net_dma->channels[i] = NULL; 4608 net_dma_rebalance(net_dma); 4609 } 4610 break; 4611 default: 4612 break; 4613 } 4614 spin_unlock(&net_dma->lock); 4615 4616 return ack; 4617} 4618 4619/** 4620 * netdev_dma_regiser - register the networking subsystem as a DMA client 4621 */ 4622static int __init netdev_dma_register(void) 4623{ 4624 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4625 GFP_KERNEL); 4626 if (unlikely(!net_dma.channels)) { 4627 printk(KERN_NOTICE 4628 "netdev_dma: no memory for net_dma.channels\n"); 4629 return -ENOMEM; 4630 } 4631 spin_lock_init(&net_dma.lock); 4632 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4633 dma_async_client_register(&net_dma.client); 4634 dma_async_client_chan_request(&net_dma.client); 4635 return 0; 4636} 4637 4638#else 4639static int __init netdev_dma_register(void) { return -ENODEV; } 4640#endif /* CONFIG_NET_DMA */ 4641 4642/** 4643 * netdev_compute_feature - compute conjunction of two feature sets 4644 * @all: first feature set 4645 * @one: second feature set 4646 * 4647 * Computes a new feature set after adding a device with feature set 4648 * @one to the master device with current feature set @all. Returns 4649 * the new feature set. 4650 */ 4651int netdev_compute_features(unsigned long all, unsigned long one) 4652{ 4653 /* if device needs checksumming, downgrade to hw checksumming */ 4654 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4655 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4656 4657 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4658 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4659 all ^= NETIF_F_HW_CSUM 4660 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4661 4662 if (one & NETIF_F_GSO) 4663 one |= NETIF_F_GSO_SOFTWARE; 4664 one |= NETIF_F_GSO; 4665 4666 /* If even one device supports robust GSO, enable it for all. */ 4667 if (one & NETIF_F_GSO_ROBUST) 4668 all |= NETIF_F_GSO_ROBUST; 4669 4670 all &= one | NETIF_F_LLTX; 4671 4672 if (!(all & NETIF_F_ALL_CSUM)) 4673 all &= ~NETIF_F_SG; 4674 if (!(all & NETIF_F_SG)) 4675 all &= ~NETIF_F_GSO_MASK; 4676 4677 return all; 4678} 4679EXPORT_SYMBOL(netdev_compute_features); 4680 4681static struct hlist_head *netdev_create_hash(void) 4682{ 4683 int i; 4684 struct hlist_head *hash; 4685 4686 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4687 if (hash != NULL) 4688 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4689 INIT_HLIST_HEAD(&hash[i]); 4690 4691 return hash; 4692} 4693 4694/* Initialize per network namespace state */ 4695static int __net_init netdev_init(struct net *net) 4696{ 4697 INIT_LIST_HEAD(&net->dev_base_head); 4698 4699 net->dev_name_head = netdev_create_hash(); 4700 if (net->dev_name_head == NULL) 4701 goto err_name; 4702 4703 net->dev_index_head = netdev_create_hash(); 4704 if (net->dev_index_head == NULL) 4705 goto err_idx; 4706 4707 return 0; 4708 4709err_idx: 4710 kfree(net->dev_name_head); 4711err_name: 4712 return -ENOMEM; 4713} 4714 4715char *netdev_drivername(struct net_device *dev, char *buffer, int len) 4716{ 4717 struct device_driver *driver; 4718 struct device *parent; 4719 4720 if (len <= 0 || !buffer) 4721 return buffer; 4722 buffer[0] = 0; 4723 4724 parent = dev->dev.parent; 4725 4726 if (!parent) 4727 return buffer; 4728 4729 driver = parent->driver; 4730 if (driver && driver->name) 4731 strlcpy(buffer, driver->name, len); 4732 return buffer; 4733} 4734 4735static void __net_exit netdev_exit(struct net *net) 4736{ 4737 kfree(net->dev_name_head); 4738 kfree(net->dev_index_head); 4739} 4740 4741static struct pernet_operations __net_initdata netdev_net_ops = { 4742 .init = netdev_init, 4743 .exit = netdev_exit, 4744}; 4745 4746static void __net_exit default_device_exit(struct net *net) 4747{ 4748 struct net_device *dev, *next; 4749 /* 4750 * Push all migratable of the network devices back to the 4751 * initial network namespace 4752 */ 4753 rtnl_lock(); 4754 for_each_netdev_safe(net, dev, next) { 4755 int err; 4756 char fb_name[IFNAMSIZ]; 4757 4758 /* Ignore unmoveable devices (i.e. loopback) */ 4759 if (dev->features & NETIF_F_NETNS_LOCAL) 4760 continue; 4761 4762 /* Push remaing network devices to init_net */ 4763 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4764 err = dev_change_net_namespace(dev, &init_net, fb_name); 4765 if (err) { 4766 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4767 __func__, dev->name, err); 4768 BUG(); 4769 } 4770 } 4771 rtnl_unlock(); 4772} 4773 4774static struct pernet_operations __net_initdata default_device_ops = { 4775 .exit = default_device_exit, 4776}; 4777 4778/* 4779 * Initialize the DEV module. At boot time this walks the device list and 4780 * unhooks any devices that fail to initialise (normally hardware not 4781 * present) and leaves us with a valid list of present and active devices. 4782 * 4783 */ 4784 4785/* 4786 * This is called single threaded during boot, so no need 4787 * to take the rtnl semaphore. 4788 */ 4789static int __init net_dev_init(void) 4790{ 4791 int i, rc = -ENOMEM; 4792 4793 BUG_ON(!dev_boot_phase); 4794 4795 if (dev_proc_init()) 4796 goto out; 4797 4798 if (netdev_kobject_init()) 4799 goto out; 4800 4801 INIT_LIST_HEAD(&ptype_all); 4802 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4803 INIT_LIST_HEAD(&ptype_base[i]); 4804 4805 if (register_pernet_subsys(&netdev_net_ops)) 4806 goto out; 4807 4808 if (register_pernet_device(&default_device_ops)) 4809 goto out; 4810 4811 /* 4812 * Initialise the packet receive queues. 4813 */ 4814 4815 for_each_possible_cpu(i) { 4816 struct softnet_data *queue; 4817 4818 queue = &per_cpu(softnet_data, i); 4819 skb_queue_head_init(&queue->input_pkt_queue); 4820 queue->completion_queue = NULL; 4821 INIT_LIST_HEAD(&queue->poll_list); 4822 4823 queue->backlog.poll = process_backlog; 4824 queue->backlog.weight = weight_p; 4825 } 4826 4827 netdev_dma_register(); 4828 4829 dev_boot_phase = 0; 4830 4831 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 4832 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 4833 4834 hotcpu_notifier(dev_cpu_callback, 0); 4835 dst_init(); 4836 dev_mcast_init(); 4837 rc = 0; 4838out: 4839 return rc; 4840} 4841 4842subsys_initcall(net_dev_init); 4843 4844EXPORT_SYMBOL(__dev_get_by_index); 4845EXPORT_SYMBOL(__dev_get_by_name); 4846EXPORT_SYMBOL(__dev_remove_pack); 4847EXPORT_SYMBOL(dev_valid_name); 4848EXPORT_SYMBOL(dev_add_pack); 4849EXPORT_SYMBOL(dev_alloc_name); 4850EXPORT_SYMBOL(dev_close); 4851EXPORT_SYMBOL(dev_get_by_flags); 4852EXPORT_SYMBOL(dev_get_by_index); 4853EXPORT_SYMBOL(dev_get_by_name); 4854EXPORT_SYMBOL(dev_open); 4855EXPORT_SYMBOL(dev_queue_xmit); 4856EXPORT_SYMBOL(dev_remove_pack); 4857EXPORT_SYMBOL(dev_set_allmulti); 4858EXPORT_SYMBOL(dev_set_promiscuity); 4859EXPORT_SYMBOL(dev_change_flags); 4860EXPORT_SYMBOL(dev_set_mtu); 4861EXPORT_SYMBOL(dev_set_mac_address); 4862EXPORT_SYMBOL(free_netdev); 4863EXPORT_SYMBOL(netdev_boot_setup_check); 4864EXPORT_SYMBOL(netdev_set_master); 4865EXPORT_SYMBOL(netdev_state_change); 4866EXPORT_SYMBOL(netif_receive_skb); 4867EXPORT_SYMBOL(netif_rx); 4868EXPORT_SYMBOL(register_gifconf); 4869EXPORT_SYMBOL(register_netdevice); 4870EXPORT_SYMBOL(register_netdevice_notifier); 4871EXPORT_SYMBOL(skb_checksum_help); 4872EXPORT_SYMBOL(synchronize_net); 4873EXPORT_SYMBOL(unregister_netdevice); 4874EXPORT_SYMBOL(unregister_netdevice_notifier); 4875EXPORT_SYMBOL(net_enable_timestamp); 4876EXPORT_SYMBOL(net_disable_timestamp); 4877EXPORT_SYMBOL(dev_get_flags); 4878 4879#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4880EXPORT_SYMBOL(br_handle_frame_hook); 4881EXPORT_SYMBOL(br_fdb_get_hook); 4882EXPORT_SYMBOL(br_fdb_put_hook); 4883#endif 4884 4885#ifdef CONFIG_KMOD 4886EXPORT_SYMBOL(dev_load); 4887#endif 4888 4889EXPORT_PER_CPU_SYMBOL(softnet_data);