at v2.6.27-rc4 1720 lines 65 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26struct wusb_dev; 27 28/*-------------------------------------------------------------------------*/ 29 30/* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * 40 * And there might be other descriptors mixed in with those. 41 * 42 * Devices may also have class-specific or vendor-specific descriptors. 43 */ 44 45struct ep_device; 46 47/** 48 * struct usb_host_endpoint - host-side endpoint descriptor and queue 49 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 50 * @urb_list: urbs queued to this endpoint; maintained by usbcore 51 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 52 * with one or more transfer descriptors (TDs) per urb 53 * @ep_dev: ep_device for sysfs info 54 * @extra: descriptors following this endpoint in the configuration 55 * @extralen: how many bytes of "extra" are valid 56 * @enabled: URBs may be submitted to this endpoint 57 * 58 * USB requests are always queued to a given endpoint, identified by a 59 * descriptor within an active interface in a given USB configuration. 60 */ 61struct usb_host_endpoint { 62 struct usb_endpoint_descriptor desc; 63 struct list_head urb_list; 64 void *hcpriv; 65 struct ep_device *ep_dev; /* For sysfs info */ 66 67 unsigned char *extra; /* Extra descriptors */ 68 int extralen; 69 int enabled; 70}; 71 72/* host-side wrapper for one interface setting's parsed descriptors */ 73struct usb_host_interface { 74 struct usb_interface_descriptor desc; 75 76 /* array of desc.bNumEndpoint endpoints associated with this 77 * interface setting. these will be in no particular order. 78 */ 79 struct usb_host_endpoint *endpoint; 80 81 char *string; /* iInterface string, if present */ 82 unsigned char *extra; /* Extra descriptors */ 83 int extralen; 84}; 85 86enum usb_interface_condition { 87 USB_INTERFACE_UNBOUND = 0, 88 USB_INTERFACE_BINDING, 89 USB_INTERFACE_BOUND, 90 USB_INTERFACE_UNBINDING, 91}; 92 93/** 94 * struct usb_interface - what usb device drivers talk to 95 * @altsetting: array of interface structures, one for each alternate 96 * setting that may be selected. Each one includes a set of 97 * endpoint configurations. They will be in no particular order. 98 * @cur_altsetting: the current altsetting. 99 * @num_altsetting: number of altsettings defined. 100 * @intf_assoc: interface association descriptor 101 * @minor: the minor number assigned to this interface, if this 102 * interface is bound to a driver that uses the USB major number. 103 * If this interface does not use the USB major, this field should 104 * be unused. The driver should set this value in the probe() 105 * function of the driver, after it has been assigned a minor 106 * number from the USB core by calling usb_register_dev(). 107 * @condition: binding state of the interface: not bound, binding 108 * (in probe()), bound to a driver, or unbinding (in disconnect()) 109 * @is_active: flag set when the interface is bound and not suspended. 110 * @sysfs_files_created: sysfs attributes exist 111 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 112 * capability during autosuspend. 113 * @needs_binding: flag set when the driver should be re-probed or unbound 114 * following a reset or suspend operation it doesn't support. 115 * @dev: driver model's view of this device 116 * @usb_dev: if an interface is bound to the USB major, this will point 117 * to the sysfs representation for that device. 118 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 119 * allowed unless the counter is 0. 120 * 121 * USB device drivers attach to interfaces on a physical device. Each 122 * interface encapsulates a single high level function, such as feeding 123 * an audio stream to a speaker or reporting a change in a volume control. 124 * Many USB devices only have one interface. The protocol used to talk to 125 * an interface's endpoints can be defined in a usb "class" specification, 126 * or by a product's vendor. The (default) control endpoint is part of 127 * every interface, but is never listed among the interface's descriptors. 128 * 129 * The driver that is bound to the interface can use standard driver model 130 * calls such as dev_get_drvdata() on the dev member of this structure. 131 * 132 * Each interface may have alternate settings. The initial configuration 133 * of a device sets altsetting 0, but the device driver can change 134 * that setting using usb_set_interface(). Alternate settings are often 135 * used to control the use of periodic endpoints, such as by having 136 * different endpoints use different amounts of reserved USB bandwidth. 137 * All standards-conformant USB devices that use isochronous endpoints 138 * will use them in non-default settings. 139 * 140 * The USB specification says that alternate setting numbers must run from 141 * 0 to one less than the total number of alternate settings. But some 142 * devices manage to mess this up, and the structures aren't necessarily 143 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 144 * look up an alternate setting in the altsetting array based on its number. 145 */ 146struct usb_interface { 147 /* array of alternate settings for this interface, 148 * stored in no particular order */ 149 struct usb_host_interface *altsetting; 150 151 struct usb_host_interface *cur_altsetting; /* the currently 152 * active alternate setting */ 153 unsigned num_altsetting; /* number of alternate settings */ 154 155 /* If there is an interface association descriptor then it will list 156 * the associated interfaces */ 157 struct usb_interface_assoc_descriptor *intf_assoc; 158 159 int minor; /* minor number this interface is 160 * bound to */ 161 enum usb_interface_condition condition; /* state of binding */ 162 unsigned is_active:1; /* the interface is not suspended */ 163 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 164 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 165 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 166 167 struct device dev; /* interface specific device info */ 168 struct device *usb_dev; 169 int pm_usage_cnt; /* usage counter for autosuspend */ 170}; 171#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 172#define interface_to_usbdev(intf) \ 173 container_of(intf->dev.parent, struct usb_device, dev) 174 175static inline void *usb_get_intfdata(struct usb_interface *intf) 176{ 177 return dev_get_drvdata(&intf->dev); 178} 179 180static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 181{ 182 dev_set_drvdata(&intf->dev, data); 183} 184 185struct usb_interface *usb_get_intf(struct usb_interface *intf); 186void usb_put_intf(struct usb_interface *intf); 187 188/* this maximum is arbitrary */ 189#define USB_MAXINTERFACES 32 190#define USB_MAXIADS USB_MAXINTERFACES/2 191 192/** 193 * struct usb_interface_cache - long-term representation of a device interface 194 * @num_altsetting: number of altsettings defined. 195 * @ref: reference counter. 196 * @altsetting: variable-length array of interface structures, one for 197 * each alternate setting that may be selected. Each one includes a 198 * set of endpoint configurations. They will be in no particular order. 199 * 200 * These structures persist for the lifetime of a usb_device, unlike 201 * struct usb_interface (which persists only as long as its configuration 202 * is installed). The altsetting arrays can be accessed through these 203 * structures at any time, permitting comparison of configurations and 204 * providing support for the /proc/bus/usb/devices pseudo-file. 205 */ 206struct usb_interface_cache { 207 unsigned num_altsetting; /* number of alternate settings */ 208 struct kref ref; /* reference counter */ 209 210 /* variable-length array of alternate settings for this interface, 211 * stored in no particular order */ 212 struct usb_host_interface altsetting[0]; 213}; 214#define ref_to_usb_interface_cache(r) \ 215 container_of(r, struct usb_interface_cache, ref) 216#define altsetting_to_usb_interface_cache(a) \ 217 container_of(a, struct usb_interface_cache, altsetting[0]) 218 219/** 220 * struct usb_host_config - representation of a device's configuration 221 * @desc: the device's configuration descriptor. 222 * @string: pointer to the cached version of the iConfiguration string, if 223 * present for this configuration. 224 * @intf_assoc: list of any interface association descriptors in this config 225 * @interface: array of pointers to usb_interface structures, one for each 226 * interface in the configuration. The number of interfaces is stored 227 * in desc.bNumInterfaces. These pointers are valid only while the 228 * the configuration is active. 229 * @intf_cache: array of pointers to usb_interface_cache structures, one 230 * for each interface in the configuration. These structures exist 231 * for the entire life of the device. 232 * @extra: pointer to buffer containing all extra descriptors associated 233 * with this configuration (those preceding the first interface 234 * descriptor). 235 * @extralen: length of the extra descriptors buffer. 236 * 237 * USB devices may have multiple configurations, but only one can be active 238 * at any time. Each encapsulates a different operational environment; 239 * for example, a dual-speed device would have separate configurations for 240 * full-speed and high-speed operation. The number of configurations 241 * available is stored in the device descriptor as bNumConfigurations. 242 * 243 * A configuration can contain multiple interfaces. Each corresponds to 244 * a different function of the USB device, and all are available whenever 245 * the configuration is active. The USB standard says that interfaces 246 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 247 * of devices get this wrong. In addition, the interface array is not 248 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 249 * look up an interface entry based on its number. 250 * 251 * Device drivers should not attempt to activate configurations. The choice 252 * of which configuration to install is a policy decision based on such 253 * considerations as available power, functionality provided, and the user's 254 * desires (expressed through userspace tools). However, drivers can call 255 * usb_reset_configuration() to reinitialize the current configuration and 256 * all its interfaces. 257 */ 258struct usb_host_config { 259 struct usb_config_descriptor desc; 260 261 char *string; /* iConfiguration string, if present */ 262 263 /* List of any Interface Association Descriptors in this 264 * configuration. */ 265 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 266 267 /* the interfaces associated with this configuration, 268 * stored in no particular order */ 269 struct usb_interface *interface[USB_MAXINTERFACES]; 270 271 /* Interface information available even when this is not the 272 * active configuration */ 273 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 274 275 unsigned char *extra; /* Extra descriptors */ 276 int extralen; 277}; 278 279int __usb_get_extra_descriptor(char *buffer, unsigned size, 280 unsigned char type, void **ptr); 281#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 282 __usb_get_extra_descriptor((ifpoint)->extra, \ 283 (ifpoint)->extralen, \ 284 type, (void **)ptr) 285 286/* ----------------------------------------------------------------------- */ 287 288/* USB device number allocation bitmap */ 289struct usb_devmap { 290 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 291}; 292 293/* 294 * Allocated per bus (tree of devices) we have: 295 */ 296struct usb_bus { 297 struct device *controller; /* host/master side hardware */ 298 int busnum; /* Bus number (in order of reg) */ 299 const char *bus_name; /* stable id (PCI slot_name etc) */ 300 u8 uses_dma; /* Does the host controller use DMA? */ 301 u8 otg_port; /* 0, or number of OTG/HNP port */ 302 unsigned is_b_host:1; /* true during some HNP roleswitches */ 303 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 304 305 int devnum_next; /* Next open device number in 306 * round-robin allocation */ 307 308 struct usb_devmap devmap; /* device address allocation map */ 309 struct usb_device *root_hub; /* Root hub */ 310 struct list_head bus_list; /* list of busses */ 311 312 int bandwidth_allocated; /* on this bus: how much of the time 313 * reserved for periodic (intr/iso) 314 * requests is used, on average? 315 * Units: microseconds/frame. 316 * Limits: Full/low speed reserve 90%, 317 * while high speed reserves 80%. 318 */ 319 int bandwidth_int_reqs; /* number of Interrupt requests */ 320 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 321 322#ifdef CONFIG_USB_DEVICEFS 323 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 324#endif 325 struct device *dev; /* device for this bus */ 326 327#if defined(CONFIG_USB_MON) 328 struct mon_bus *mon_bus; /* non-null when associated */ 329 int monitored; /* non-zero when monitored */ 330#endif 331}; 332 333/* ----------------------------------------------------------------------- */ 334 335/* This is arbitrary. 336 * From USB 2.0 spec Table 11-13, offset 7, a hub can 337 * have up to 255 ports. The most yet reported is 10. 338 * 339 * Current Wireless USB host hardware (Intel i1480 for example) allows 340 * up to 22 devices to connect. Upcoming hardware might raise that 341 * limit. Because the arrays need to add a bit for hub status data, we 342 * do 31, so plus one evens out to four bytes. 343 */ 344#define USB_MAXCHILDREN (31) 345 346struct usb_tt; 347 348/** 349 * struct usb_device - kernel's representation of a USB device 350 * @devnum: device number; address on a USB bus 351 * @devpath: device ID string for use in messages (e.g., /port/...) 352 * @state: device state: configured, not attached, etc. 353 * @speed: device speed: high/full/low (or error) 354 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 355 * @ttport: device port on that tt hub 356 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 357 * @parent: our hub, unless we're the root 358 * @bus: bus we're part of 359 * @ep0: endpoint 0 data (default control pipe) 360 * @dev: generic device interface 361 * @descriptor: USB device descriptor 362 * @config: all of the device's configs 363 * @actconfig: the active configuration 364 * @ep_in: array of IN endpoints 365 * @ep_out: array of OUT endpoints 366 * @rawdescriptors: raw descriptors for each config 367 * @bus_mA: Current available from the bus 368 * @portnum: parent port number (origin 1) 369 * @level: number of USB hub ancestors 370 * @can_submit: URBs may be submitted 371 * @discon_suspended: disconnected while suspended 372 * @persist_enabled: USB_PERSIST enabled for this device 373 * @have_langid: whether string_langid is valid 374 * @authorized: policy has said we can use it; 375 * (user space) policy determines if we authorize this device to be 376 * used or not. By default, wired USB devices are authorized. 377 * WUSB devices are not, until we authorize them from user space. 378 * FIXME -- complete doc 379 * @authenticated: Crypto authentication passed 380 * @wusb: device is Wireless USB 381 * @string_langid: language ID for strings 382 * @product: iProduct string, if present (static) 383 * @manufacturer: iManufacturer string, if present (static) 384 * @serial: iSerialNumber string, if present (static) 385 * @filelist: usbfs files that are open to this device 386 * @usb_classdev: USB class device that was created for usbfs device 387 * access from userspace 388 * @usbfs_dentry: usbfs dentry entry for the device 389 * @maxchild: number of ports if hub 390 * @children: child devices - USB devices that are attached to this hub 391 * @pm_usage_cnt: usage counter for autosuspend 392 * @quirks: quirks of the whole device 393 * @urbnum: number of URBs submitted for the whole device 394 * @active_duration: total time device is not suspended 395 * @autosuspend: for delayed autosuspends 396 * @pm_mutex: protects PM operations 397 * @last_busy: time of last use 398 * @autosuspend_delay: in jiffies 399 * @connect_time: time device was first connected 400 * @auto_pm: autosuspend/resume in progress 401 * @do_remote_wakeup: remote wakeup should be enabled 402 * @reset_resume: needs reset instead of resume 403 * @autosuspend_disabled: autosuspend disabled by the user 404 * @autoresume_disabled: autoresume disabled by the user 405 * @skip_sys_resume: skip the next system resume 406 * 407 * Notes: 408 * Usbcore drivers should not set usbdev->state directly. Instead use 409 * usb_set_device_state(). 410 */ 411struct usb_device { 412 int devnum; 413 char devpath [16]; 414 enum usb_device_state state; 415 enum usb_device_speed speed; 416 417 struct usb_tt *tt; 418 int ttport; 419 420 unsigned int toggle[2]; 421 422 struct usb_device *parent; 423 struct usb_bus *bus; 424 struct usb_host_endpoint ep0; 425 426 struct device dev; 427 428 struct usb_device_descriptor descriptor; 429 struct usb_host_config *config; 430 431 struct usb_host_config *actconfig; 432 struct usb_host_endpoint *ep_in[16]; 433 struct usb_host_endpoint *ep_out[16]; 434 435 char **rawdescriptors; 436 437 unsigned short bus_mA; 438 u8 portnum; 439 u8 level; 440 441 unsigned can_submit:1; 442 unsigned discon_suspended:1; 443 unsigned persist_enabled:1; 444 unsigned have_langid:1; 445 unsigned authorized:1; 446 unsigned authenticated:1; 447 unsigned wusb:1; 448 int string_langid; 449 450 /* static strings from the device */ 451 char *product; 452 char *manufacturer; 453 char *serial; 454 455 struct list_head filelist; 456#ifdef CONFIG_USB_DEVICE_CLASS 457 struct device *usb_classdev; 458#endif 459#ifdef CONFIG_USB_DEVICEFS 460 struct dentry *usbfs_dentry; 461#endif 462 463 int maxchild; 464 struct usb_device *children[USB_MAXCHILDREN]; 465 466 int pm_usage_cnt; 467 u32 quirks; 468 atomic_t urbnum; 469 470 unsigned long active_duration; 471 472#ifdef CONFIG_PM 473 struct delayed_work autosuspend; 474 struct mutex pm_mutex; 475 476 unsigned long last_busy; 477 int autosuspend_delay; 478 unsigned long connect_time; 479 480 unsigned auto_pm:1; 481 unsigned do_remote_wakeup:1; 482 unsigned reset_resume:1; 483 unsigned autosuspend_disabled:1; 484 unsigned autoresume_disabled:1; 485 unsigned skip_sys_resume:1; 486#endif 487 struct wusb_dev *wusb_dev; 488}; 489#define to_usb_device(d) container_of(d, struct usb_device, dev) 490 491extern struct usb_device *usb_get_dev(struct usb_device *dev); 492extern void usb_put_dev(struct usb_device *dev); 493 494/* USB device locking */ 495#define usb_lock_device(udev) down(&(udev)->dev.sem) 496#define usb_unlock_device(udev) up(&(udev)->dev.sem) 497#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 498extern int usb_lock_device_for_reset(struct usb_device *udev, 499 const struct usb_interface *iface); 500 501/* USB port reset for device reinitialization */ 502extern int usb_reset_device(struct usb_device *dev); 503 504extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 505 506/* USB autosuspend and autoresume */ 507#ifdef CONFIG_USB_SUSPEND 508extern int usb_autopm_set_interface(struct usb_interface *intf); 509extern int usb_autopm_get_interface(struct usb_interface *intf); 510extern void usb_autopm_put_interface(struct usb_interface *intf); 511 512static inline void usb_autopm_enable(struct usb_interface *intf) 513{ 514 intf->pm_usage_cnt = 0; 515 usb_autopm_set_interface(intf); 516} 517 518static inline void usb_autopm_disable(struct usb_interface *intf) 519{ 520 intf->pm_usage_cnt = 1; 521 usb_autopm_set_interface(intf); 522} 523 524static inline void usb_mark_last_busy(struct usb_device *udev) 525{ 526 udev->last_busy = jiffies; 527} 528 529#else 530 531static inline int usb_autopm_set_interface(struct usb_interface *intf) 532{ return 0; } 533 534static inline int usb_autopm_get_interface(struct usb_interface *intf) 535{ return 0; } 536 537static inline void usb_autopm_put_interface(struct usb_interface *intf) 538{ } 539static inline void usb_autopm_enable(struct usb_interface *intf) 540{ } 541static inline void usb_autopm_disable(struct usb_interface *intf) 542{ } 543static inline void usb_mark_last_busy(struct usb_device *udev) 544{ } 545#endif 546 547/*-------------------------------------------------------------------------*/ 548 549/* for drivers using iso endpoints */ 550extern int usb_get_current_frame_number(struct usb_device *usb_dev); 551 552/* used these for multi-interface device registration */ 553extern int usb_driver_claim_interface(struct usb_driver *driver, 554 struct usb_interface *iface, void *priv); 555 556/** 557 * usb_interface_claimed - returns true iff an interface is claimed 558 * @iface: the interface being checked 559 * 560 * Returns true (nonzero) iff the interface is claimed, else false (zero). 561 * Callers must own the driver model's usb bus readlock. So driver 562 * probe() entries don't need extra locking, but other call contexts 563 * may need to explicitly claim that lock. 564 * 565 */ 566static inline int usb_interface_claimed(struct usb_interface *iface) 567{ 568 return (iface->dev.driver != NULL); 569} 570 571extern void usb_driver_release_interface(struct usb_driver *driver, 572 struct usb_interface *iface); 573const struct usb_device_id *usb_match_id(struct usb_interface *interface, 574 const struct usb_device_id *id); 575extern int usb_match_one_id(struct usb_interface *interface, 576 const struct usb_device_id *id); 577 578extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 579 int minor); 580extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 581 unsigned ifnum); 582extern struct usb_host_interface *usb_altnum_to_altsetting( 583 const struct usb_interface *intf, unsigned int altnum); 584 585 586/** 587 * usb_make_path - returns stable device path in the usb tree 588 * @dev: the device whose path is being constructed 589 * @buf: where to put the string 590 * @size: how big is "buf"? 591 * 592 * Returns length of the string (> 0) or negative if size was too small. 593 * 594 * This identifier is intended to be "stable", reflecting physical paths in 595 * hardware such as physical bus addresses for host controllers or ports on 596 * USB hubs. That makes it stay the same until systems are physically 597 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 598 * controllers. Adding and removing devices, including virtual root hubs 599 * in host controller driver modules, does not change these path identifers; 600 * neither does rebooting or re-enumerating. These are more useful identifiers 601 * than changeable ("unstable") ones like bus numbers or device addresses. 602 * 603 * With a partial exception for devices connected to USB 2.0 root hubs, these 604 * identifiers are also predictable. So long as the device tree isn't changed, 605 * plugging any USB device into a given hub port always gives it the same path. 606 * Because of the use of "companion" controllers, devices connected to ports on 607 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 608 * high speed, and a different one if they are full or low speed. 609 */ 610static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 611{ 612 int actual; 613 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 614 dev->devpath); 615 return (actual >= (int)size) ? -1 : actual; 616} 617 618/*-------------------------------------------------------------------------*/ 619 620/** 621 * usb_endpoint_num - get the endpoint's number 622 * @epd: endpoint to be checked 623 * 624 * Returns @epd's number: 0 to 15. 625 */ 626static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) 627{ 628 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 629} 630 631/** 632 * usb_endpoint_type - get the endpoint's transfer type 633 * @epd: endpoint to be checked 634 * 635 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according 636 * to @epd's transfer type. 637 */ 638static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) 639{ 640 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 641} 642 643/** 644 * usb_endpoint_dir_in - check if the endpoint has IN direction 645 * @epd: endpoint to be checked 646 * 647 * Returns true if the endpoint is of type IN, otherwise it returns false. 648 */ 649static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 650{ 651 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 652} 653 654/** 655 * usb_endpoint_dir_out - check if the endpoint has OUT direction 656 * @epd: endpoint to be checked 657 * 658 * Returns true if the endpoint is of type OUT, otherwise it returns false. 659 */ 660static inline int usb_endpoint_dir_out( 661 const struct usb_endpoint_descriptor *epd) 662{ 663 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 664} 665 666/** 667 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 668 * @epd: endpoint to be checked 669 * 670 * Returns true if the endpoint is of type bulk, otherwise it returns false. 671 */ 672static inline int usb_endpoint_xfer_bulk( 673 const struct usb_endpoint_descriptor *epd) 674{ 675 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 676 USB_ENDPOINT_XFER_BULK); 677} 678 679/** 680 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 681 * @epd: endpoint to be checked 682 * 683 * Returns true if the endpoint is of type control, otherwise it returns false. 684 */ 685static inline int usb_endpoint_xfer_control( 686 const struct usb_endpoint_descriptor *epd) 687{ 688 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 689 USB_ENDPOINT_XFER_CONTROL); 690} 691 692/** 693 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 694 * @epd: endpoint to be checked 695 * 696 * Returns true if the endpoint is of type interrupt, otherwise it returns 697 * false. 698 */ 699static inline int usb_endpoint_xfer_int( 700 const struct usb_endpoint_descriptor *epd) 701{ 702 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 703 USB_ENDPOINT_XFER_INT); 704} 705 706/** 707 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 708 * @epd: endpoint to be checked 709 * 710 * Returns true if the endpoint is of type isochronous, otherwise it returns 711 * false. 712 */ 713static inline int usb_endpoint_xfer_isoc( 714 const struct usb_endpoint_descriptor *epd) 715{ 716 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 717 USB_ENDPOINT_XFER_ISOC); 718} 719 720/** 721 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 722 * @epd: endpoint to be checked 723 * 724 * Returns true if the endpoint has bulk transfer type and IN direction, 725 * otherwise it returns false. 726 */ 727static inline int usb_endpoint_is_bulk_in( 728 const struct usb_endpoint_descriptor *epd) 729{ 730 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 731} 732 733/** 734 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 735 * @epd: endpoint to be checked 736 * 737 * Returns true if the endpoint has bulk transfer type and OUT direction, 738 * otherwise it returns false. 739 */ 740static inline int usb_endpoint_is_bulk_out( 741 const struct usb_endpoint_descriptor *epd) 742{ 743 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 744} 745 746/** 747 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 748 * @epd: endpoint to be checked 749 * 750 * Returns true if the endpoint has interrupt transfer type and IN direction, 751 * otherwise it returns false. 752 */ 753static inline int usb_endpoint_is_int_in( 754 const struct usb_endpoint_descriptor *epd) 755{ 756 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 757} 758 759/** 760 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 761 * @epd: endpoint to be checked 762 * 763 * Returns true if the endpoint has interrupt transfer type and OUT direction, 764 * otherwise it returns false. 765 */ 766static inline int usb_endpoint_is_int_out( 767 const struct usb_endpoint_descriptor *epd) 768{ 769 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 770} 771 772/** 773 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 774 * @epd: endpoint to be checked 775 * 776 * Returns true if the endpoint has isochronous transfer type and IN direction, 777 * otherwise it returns false. 778 */ 779static inline int usb_endpoint_is_isoc_in( 780 const struct usb_endpoint_descriptor *epd) 781{ 782 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 783} 784 785/** 786 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 787 * @epd: endpoint to be checked 788 * 789 * Returns true if the endpoint has isochronous transfer type and OUT direction, 790 * otherwise it returns false. 791 */ 792static inline int usb_endpoint_is_isoc_out( 793 const struct usb_endpoint_descriptor *epd) 794{ 795 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 796} 797 798/*-------------------------------------------------------------------------*/ 799 800#define USB_DEVICE_ID_MATCH_DEVICE \ 801 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 802#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 803 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 804#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 805 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 806#define USB_DEVICE_ID_MATCH_DEV_INFO \ 807 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 808 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 809 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 810#define USB_DEVICE_ID_MATCH_INT_INFO \ 811 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 812 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 813 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 814 815/** 816 * USB_DEVICE - macro used to describe a specific usb device 817 * @vend: the 16 bit USB Vendor ID 818 * @prod: the 16 bit USB Product ID 819 * 820 * This macro is used to create a struct usb_device_id that matches a 821 * specific device. 822 */ 823#define USB_DEVICE(vend,prod) \ 824 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 825 .idVendor = (vend), \ 826 .idProduct = (prod) 827/** 828 * USB_DEVICE_VER - describe a specific usb device with a version range 829 * @vend: the 16 bit USB Vendor ID 830 * @prod: the 16 bit USB Product ID 831 * @lo: the bcdDevice_lo value 832 * @hi: the bcdDevice_hi value 833 * 834 * This macro is used to create a struct usb_device_id that matches a 835 * specific device, with a version range. 836 */ 837#define USB_DEVICE_VER(vend, prod, lo, hi) \ 838 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 839 .idVendor = (vend), \ 840 .idProduct = (prod), \ 841 .bcdDevice_lo = (lo), \ 842 .bcdDevice_hi = (hi) 843 844/** 845 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 846 * @vend: the 16 bit USB Vendor ID 847 * @prod: the 16 bit USB Product ID 848 * @pr: bInterfaceProtocol value 849 * 850 * This macro is used to create a struct usb_device_id that matches a 851 * specific interface protocol of devices. 852 */ 853#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 854 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 855 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 856 .idVendor = (vend), \ 857 .idProduct = (prod), \ 858 .bInterfaceProtocol = (pr) 859 860/** 861 * USB_DEVICE_INFO - macro used to describe a class of usb devices 862 * @cl: bDeviceClass value 863 * @sc: bDeviceSubClass value 864 * @pr: bDeviceProtocol value 865 * 866 * This macro is used to create a struct usb_device_id that matches a 867 * specific class of devices. 868 */ 869#define USB_DEVICE_INFO(cl, sc, pr) \ 870 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 871 .bDeviceClass = (cl), \ 872 .bDeviceSubClass = (sc), \ 873 .bDeviceProtocol = (pr) 874 875/** 876 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 877 * @cl: bInterfaceClass value 878 * @sc: bInterfaceSubClass value 879 * @pr: bInterfaceProtocol value 880 * 881 * This macro is used to create a struct usb_device_id that matches a 882 * specific class of interfaces. 883 */ 884#define USB_INTERFACE_INFO(cl, sc, pr) \ 885 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 886 .bInterfaceClass = (cl), \ 887 .bInterfaceSubClass = (sc), \ 888 .bInterfaceProtocol = (pr) 889 890/** 891 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 892 * @vend: the 16 bit USB Vendor ID 893 * @prod: the 16 bit USB Product ID 894 * @cl: bInterfaceClass value 895 * @sc: bInterfaceSubClass value 896 * @pr: bInterfaceProtocol value 897 * 898 * This macro is used to create a struct usb_device_id that matches a 899 * specific device with a specific class of interfaces. 900 * 901 * This is especially useful when explicitly matching devices that have 902 * vendor specific bDeviceClass values, but standards-compliant interfaces. 903 */ 904#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 905 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 906 | USB_DEVICE_ID_MATCH_DEVICE, \ 907 .idVendor = (vend), \ 908 .idProduct = (prod), \ 909 .bInterfaceClass = (cl), \ 910 .bInterfaceSubClass = (sc), \ 911 .bInterfaceProtocol = (pr) 912 913/* ----------------------------------------------------------------------- */ 914 915/* Stuff for dynamic usb ids */ 916struct usb_dynids { 917 spinlock_t lock; 918 struct list_head list; 919}; 920 921struct usb_dynid { 922 struct list_head node; 923 struct usb_device_id id; 924}; 925 926extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 927 struct device_driver *driver, 928 const char *buf, size_t count); 929 930/** 931 * struct usbdrv_wrap - wrapper for driver-model structure 932 * @driver: The driver-model core driver structure. 933 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 934 */ 935struct usbdrv_wrap { 936 struct device_driver driver; 937 int for_devices; 938}; 939 940/** 941 * struct usb_driver - identifies USB interface driver to usbcore 942 * @name: The driver name should be unique among USB drivers, 943 * and should normally be the same as the module name. 944 * @probe: Called to see if the driver is willing to manage a particular 945 * interface on a device. If it is, probe returns zero and uses 946 * usb_set_intfdata() to associate driver-specific data with the 947 * interface. It may also use usb_set_interface() to specify the 948 * appropriate altsetting. If unwilling to manage the interface, 949 * return -ENODEV, if genuine IO errors occured, an appropriate 950 * negative errno value. 951 * @disconnect: Called when the interface is no longer accessible, usually 952 * because its device has been (or is being) disconnected or the 953 * driver module is being unloaded. 954 * @ioctl: Used for drivers that want to talk to userspace through 955 * the "usbfs" filesystem. This lets devices provide ways to 956 * expose information to user space regardless of where they 957 * do (or don't) show up otherwise in the filesystem. 958 * @suspend: Called when the device is going to be suspended by the system. 959 * @resume: Called when the device is being resumed by the system. 960 * @reset_resume: Called when the suspended device has been reset instead 961 * of being resumed. 962 * @pre_reset: Called by usb_reset_device() when the device 963 * is about to be reset. 964 * @post_reset: Called by usb_reset_device() after the device 965 * has been reset 966 * @id_table: USB drivers use ID table to support hotplugging. 967 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 968 * or your driver's probe function will never get called. 969 * @dynids: used internally to hold the list of dynamically added device 970 * ids for this driver. 971 * @drvwrap: Driver-model core structure wrapper. 972 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 973 * added to this driver by preventing the sysfs file from being created. 974 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 975 * for interfaces bound to this driver. 976 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 977 * endpoints before calling the driver's disconnect method. 978 * 979 * USB interface drivers must provide a name, probe() and disconnect() 980 * methods, and an id_table. Other driver fields are optional. 981 * 982 * The id_table is used in hotplugging. It holds a set of descriptors, 983 * and specialized data may be associated with each entry. That table 984 * is used by both user and kernel mode hotplugging support. 985 * 986 * The probe() and disconnect() methods are called in a context where 987 * they can sleep, but they should avoid abusing the privilege. Most 988 * work to connect to a device should be done when the device is opened, 989 * and undone at the last close. The disconnect code needs to address 990 * concurrency issues with respect to open() and close() methods, as 991 * well as forcing all pending I/O requests to complete (by unlinking 992 * them as necessary, and blocking until the unlinks complete). 993 */ 994struct usb_driver { 995 const char *name; 996 997 int (*probe) (struct usb_interface *intf, 998 const struct usb_device_id *id); 999 1000 void (*disconnect) (struct usb_interface *intf); 1001 1002 int (*ioctl) (struct usb_interface *intf, unsigned int code, 1003 void *buf); 1004 1005 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1006 int (*resume) (struct usb_interface *intf); 1007 int (*reset_resume)(struct usb_interface *intf); 1008 1009 int (*pre_reset)(struct usb_interface *intf); 1010 int (*post_reset)(struct usb_interface *intf); 1011 1012 const struct usb_device_id *id_table; 1013 1014 struct usb_dynids dynids; 1015 struct usbdrv_wrap drvwrap; 1016 unsigned int no_dynamic_id:1; 1017 unsigned int supports_autosuspend:1; 1018 unsigned int soft_unbind:1; 1019}; 1020#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1021 1022/** 1023 * struct usb_device_driver - identifies USB device driver to usbcore 1024 * @name: The driver name should be unique among USB drivers, 1025 * and should normally be the same as the module name. 1026 * @probe: Called to see if the driver is willing to manage a particular 1027 * device. If it is, probe returns zero and uses dev_set_drvdata() 1028 * to associate driver-specific data with the device. If unwilling 1029 * to manage the device, return a negative errno value. 1030 * @disconnect: Called when the device is no longer accessible, usually 1031 * because it has been (or is being) disconnected or the driver's 1032 * module is being unloaded. 1033 * @suspend: Called when the device is going to be suspended by the system. 1034 * @resume: Called when the device is being resumed by the system. 1035 * @drvwrap: Driver-model core structure wrapper. 1036 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1037 * for devices bound to this driver. 1038 * 1039 * USB drivers must provide all the fields listed above except drvwrap. 1040 */ 1041struct usb_device_driver { 1042 const char *name; 1043 1044 int (*probe) (struct usb_device *udev); 1045 void (*disconnect) (struct usb_device *udev); 1046 1047 int (*suspend) (struct usb_device *udev, pm_message_t message); 1048 int (*resume) (struct usb_device *udev); 1049 struct usbdrv_wrap drvwrap; 1050 unsigned int supports_autosuspend:1; 1051}; 1052#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1053 drvwrap.driver) 1054 1055extern struct bus_type usb_bus_type; 1056 1057/** 1058 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1059 * @name: the usb class device name for this driver. Will show up in sysfs. 1060 * @fops: pointer to the struct file_operations of this driver. 1061 * @minor_base: the start of the minor range for this driver. 1062 * 1063 * This structure is used for the usb_register_dev() and 1064 * usb_unregister_dev() functions, to consolidate a number of the 1065 * parameters used for them. 1066 */ 1067struct usb_class_driver { 1068 char *name; 1069 const struct file_operations *fops; 1070 int minor_base; 1071}; 1072 1073/* 1074 * use these in module_init()/module_exit() 1075 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1076 */ 1077extern int usb_register_driver(struct usb_driver *, struct module *, 1078 const char *); 1079static inline int usb_register(struct usb_driver *driver) 1080{ 1081 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 1082} 1083extern void usb_deregister(struct usb_driver *); 1084 1085extern int usb_register_device_driver(struct usb_device_driver *, 1086 struct module *); 1087extern void usb_deregister_device_driver(struct usb_device_driver *); 1088 1089extern int usb_register_dev(struct usb_interface *intf, 1090 struct usb_class_driver *class_driver); 1091extern void usb_deregister_dev(struct usb_interface *intf, 1092 struct usb_class_driver *class_driver); 1093 1094extern int usb_disabled(void); 1095 1096/* ----------------------------------------------------------------------- */ 1097 1098/* 1099 * URB support, for asynchronous request completions 1100 */ 1101 1102/* 1103 * urb->transfer_flags: 1104 * 1105 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1106 */ 1107#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1108#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1109 * ignored */ 1110#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1111#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1112#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1113#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1114#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1115 * needed */ 1116#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1117 1118#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1119#define URB_DIR_OUT 0 1120#define URB_DIR_MASK URB_DIR_IN 1121 1122struct usb_iso_packet_descriptor { 1123 unsigned int offset; 1124 unsigned int length; /* expected length */ 1125 unsigned int actual_length; 1126 int status; 1127}; 1128 1129struct urb; 1130 1131struct usb_anchor { 1132 struct list_head urb_list; 1133 wait_queue_head_t wait; 1134 spinlock_t lock; 1135}; 1136 1137static inline void init_usb_anchor(struct usb_anchor *anchor) 1138{ 1139 INIT_LIST_HEAD(&anchor->urb_list); 1140 init_waitqueue_head(&anchor->wait); 1141 spin_lock_init(&anchor->lock); 1142} 1143 1144typedef void (*usb_complete_t)(struct urb *); 1145 1146/** 1147 * struct urb - USB Request Block 1148 * @urb_list: For use by current owner of the URB. 1149 * @anchor_list: membership in the list of an anchor 1150 * @anchor: to anchor URBs to a common mooring 1151 * @ep: Points to the endpoint's data structure. Will eventually 1152 * replace @pipe. 1153 * @pipe: Holds endpoint number, direction, type, and more. 1154 * Create these values with the eight macros available; 1155 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1156 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1157 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1158 * numbers range from zero to fifteen. Note that "in" endpoint two 1159 * is a different endpoint (and pipe) from "out" endpoint two. 1160 * The current configuration controls the existence, type, and 1161 * maximum packet size of any given endpoint. 1162 * @dev: Identifies the USB device to perform the request. 1163 * @status: This is read in non-iso completion functions to get the 1164 * status of the particular request. ISO requests only use it 1165 * to tell whether the URB was unlinked; detailed status for 1166 * each frame is in the fields of the iso_frame-desc. 1167 * @transfer_flags: A variety of flags may be used to affect how URB 1168 * submission, unlinking, or operation are handled. Different 1169 * kinds of URB can use different flags. 1170 * @transfer_buffer: This identifies the buffer to (or from) which 1171 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1172 * is set). This buffer must be suitable for DMA; allocate it with 1173 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1174 * of this buffer will be modified. This buffer is used for the data 1175 * stage of control transfers. 1176 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1177 * the device driver is saying that it provided this DMA address, 1178 * which the host controller driver should use in preference to the 1179 * transfer_buffer. 1180 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1181 * be broken up into chunks according to the current maximum packet 1182 * size for the endpoint, which is a function of the configuration 1183 * and is encoded in the pipe. When the length is zero, neither 1184 * transfer_buffer nor transfer_dma is used. 1185 * @actual_length: This is read in non-iso completion functions, and 1186 * it tells how many bytes (out of transfer_buffer_length) were 1187 * transferred. It will normally be the same as requested, unless 1188 * either an error was reported or a short read was performed. 1189 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1190 * short reads be reported as errors. 1191 * @setup_packet: Only used for control transfers, this points to eight bytes 1192 * of setup data. Control transfers always start by sending this data 1193 * to the device. Then transfer_buffer is read or written, if needed. 1194 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1195 * device driver has provided this DMA address for the setup packet. 1196 * The host controller driver should use this in preference to 1197 * setup_packet. 1198 * @start_frame: Returns the initial frame for isochronous transfers. 1199 * @number_of_packets: Lists the number of ISO transfer buffers. 1200 * @interval: Specifies the polling interval for interrupt or isochronous 1201 * transfers. The units are frames (milliseconds) for for full and low 1202 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1203 * @error_count: Returns the number of ISO transfers that reported errors. 1204 * @context: For use in completion functions. This normally points to 1205 * request-specific driver context. 1206 * @complete: Completion handler. This URB is passed as the parameter to the 1207 * completion function. The completion function may then do what 1208 * it likes with the URB, including resubmitting or freeing it. 1209 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1210 * collect the transfer status for each buffer. 1211 * 1212 * This structure identifies USB transfer requests. URBs must be allocated by 1213 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1214 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1215 * are submitted using usb_submit_urb(), and pending requests may be canceled 1216 * using usb_unlink_urb() or usb_kill_urb(). 1217 * 1218 * Data Transfer Buffers: 1219 * 1220 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1221 * taken from the general page pool. That is provided by transfer_buffer 1222 * (control requests also use setup_packet), and host controller drivers 1223 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1224 * mapping operations can be expensive on some platforms (perhaps using a dma 1225 * bounce buffer or talking to an IOMMU), 1226 * although they're cheap on commodity x86 and ppc hardware. 1227 * 1228 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1229 * which tell the host controller driver that no such mapping is needed since 1230 * the device driver is DMA-aware. For example, a device driver might 1231 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1232 * When these transfer flags are provided, host controller drivers will 1233 * attempt to use the dma addresses found in the transfer_dma and/or 1234 * setup_dma fields rather than determining a dma address themselves. (Note 1235 * that transfer_buffer and setup_packet must still be set because not all 1236 * host controllers use DMA, nor do virtual root hubs). 1237 * 1238 * Initialization: 1239 * 1240 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1241 * zero), and complete fields. All URBs must also initialize 1242 * transfer_buffer and transfer_buffer_length. They may provide the 1243 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1244 * to be treated as errors; that flag is invalid for write requests. 1245 * 1246 * Bulk URBs may 1247 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1248 * should always terminate with a short packet, even if it means adding an 1249 * extra zero length packet. 1250 * 1251 * Control URBs must provide a setup_packet. The setup_packet and 1252 * transfer_buffer may each be mapped for DMA or not, independently of 1253 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1254 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1255 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1256 * 1257 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1258 * or, for highspeed devices, 125 microsecond units) 1259 * to poll for transfers. After the URB has been submitted, the interval 1260 * field reflects how the transfer was actually scheduled. 1261 * The polling interval may be more frequent than requested. 1262 * For example, some controllers have a maximum interval of 32 milliseconds, 1263 * while others support intervals of up to 1024 milliseconds. 1264 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1265 * endpoints, as well as high speed interrupt endpoints, the encoding of 1266 * the transfer interval in the endpoint descriptor is logarithmic. 1267 * Device drivers must convert that value to linear units themselves.) 1268 * 1269 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1270 * the host controller to schedule the transfer as soon as bandwidth 1271 * utilization allows, and then set start_frame to reflect the actual frame 1272 * selected during submission. Otherwise drivers must specify the start_frame 1273 * and handle the case where the transfer can't begin then. However, drivers 1274 * won't know how bandwidth is currently allocated, and while they can 1275 * find the current frame using usb_get_current_frame_number () they can't 1276 * know the range for that frame number. (Ranges for frame counter values 1277 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1278 * 1279 * Isochronous URBs have a different data transfer model, in part because 1280 * the quality of service is only "best effort". Callers provide specially 1281 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1282 * at the end. Each such packet is an individual ISO transfer. Isochronous 1283 * URBs are normally queued, submitted by drivers to arrange that 1284 * transfers are at least double buffered, and then explicitly resubmitted 1285 * in completion handlers, so 1286 * that data (such as audio or video) streams at as constant a rate as the 1287 * host controller scheduler can support. 1288 * 1289 * Completion Callbacks: 1290 * 1291 * The completion callback is made in_interrupt(), and one of the first 1292 * things that a completion handler should do is check the status field. 1293 * The status field is provided for all URBs. It is used to report 1294 * unlinked URBs, and status for all non-ISO transfers. It should not 1295 * be examined before the URB is returned to the completion handler. 1296 * 1297 * The context field is normally used to link URBs back to the relevant 1298 * driver or request state. 1299 * 1300 * When the completion callback is invoked for non-isochronous URBs, the 1301 * actual_length field tells how many bytes were transferred. This field 1302 * is updated even when the URB terminated with an error or was unlinked. 1303 * 1304 * ISO transfer status is reported in the status and actual_length fields 1305 * of the iso_frame_desc array, and the number of errors is reported in 1306 * error_count. Completion callbacks for ISO transfers will normally 1307 * (re)submit URBs to ensure a constant transfer rate. 1308 * 1309 * Note that even fields marked "public" should not be touched by the driver 1310 * when the urb is owned by the hcd, that is, since the call to 1311 * usb_submit_urb() till the entry into the completion routine. 1312 */ 1313struct urb { 1314 /* private: usb core and host controller only fields in the urb */ 1315 struct kref kref; /* reference count of the URB */ 1316 void *hcpriv; /* private data for host controller */ 1317 atomic_t use_count; /* concurrent submissions counter */ 1318 u8 reject; /* submissions will fail */ 1319 int unlinked; /* unlink error code */ 1320 1321 /* public: documented fields in the urb that can be used by drivers */ 1322 struct list_head urb_list; /* list head for use by the urb's 1323 * current owner */ 1324 struct list_head anchor_list; /* the URB may be anchored */ 1325 struct usb_anchor *anchor; 1326 struct usb_device *dev; /* (in) pointer to associated device */ 1327 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1328 unsigned int pipe; /* (in) pipe information */ 1329 int status; /* (return) non-ISO status */ 1330 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1331 void *transfer_buffer; /* (in) associated data buffer */ 1332 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1333 int transfer_buffer_length; /* (in) data buffer length */ 1334 int actual_length; /* (return) actual transfer length */ 1335 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1336 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1337 int start_frame; /* (modify) start frame (ISO) */ 1338 int number_of_packets; /* (in) number of ISO packets */ 1339 int interval; /* (modify) transfer interval 1340 * (INT/ISO) */ 1341 int error_count; /* (return) number of ISO errors */ 1342 void *context; /* (in) context for completion */ 1343 usb_complete_t complete; /* (in) completion routine */ 1344 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1345 /* (in) ISO ONLY */ 1346}; 1347 1348/* ----------------------------------------------------------------------- */ 1349 1350/** 1351 * usb_fill_control_urb - initializes a control urb 1352 * @urb: pointer to the urb to initialize. 1353 * @dev: pointer to the struct usb_device for this urb. 1354 * @pipe: the endpoint pipe 1355 * @setup_packet: pointer to the setup_packet buffer 1356 * @transfer_buffer: pointer to the transfer buffer 1357 * @buffer_length: length of the transfer buffer 1358 * @complete_fn: pointer to the usb_complete_t function 1359 * @context: what to set the urb context to. 1360 * 1361 * Initializes a control urb with the proper information needed to submit 1362 * it to a device. 1363 */ 1364static inline void usb_fill_control_urb(struct urb *urb, 1365 struct usb_device *dev, 1366 unsigned int pipe, 1367 unsigned char *setup_packet, 1368 void *transfer_buffer, 1369 int buffer_length, 1370 usb_complete_t complete_fn, 1371 void *context) 1372{ 1373 urb->dev = dev; 1374 urb->pipe = pipe; 1375 urb->setup_packet = setup_packet; 1376 urb->transfer_buffer = transfer_buffer; 1377 urb->transfer_buffer_length = buffer_length; 1378 urb->complete = complete_fn; 1379 urb->context = context; 1380} 1381 1382/** 1383 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1384 * @urb: pointer to the urb to initialize. 1385 * @dev: pointer to the struct usb_device for this urb. 1386 * @pipe: the endpoint pipe 1387 * @transfer_buffer: pointer to the transfer buffer 1388 * @buffer_length: length of the transfer buffer 1389 * @complete_fn: pointer to the usb_complete_t function 1390 * @context: what to set the urb context to. 1391 * 1392 * Initializes a bulk urb with the proper information needed to submit it 1393 * to a device. 1394 */ 1395static inline void usb_fill_bulk_urb(struct urb *urb, 1396 struct usb_device *dev, 1397 unsigned int pipe, 1398 void *transfer_buffer, 1399 int buffer_length, 1400 usb_complete_t complete_fn, 1401 void *context) 1402{ 1403 urb->dev = dev; 1404 urb->pipe = pipe; 1405 urb->transfer_buffer = transfer_buffer; 1406 urb->transfer_buffer_length = buffer_length; 1407 urb->complete = complete_fn; 1408 urb->context = context; 1409} 1410 1411/** 1412 * usb_fill_int_urb - macro to help initialize a interrupt urb 1413 * @urb: pointer to the urb to initialize. 1414 * @dev: pointer to the struct usb_device for this urb. 1415 * @pipe: the endpoint pipe 1416 * @transfer_buffer: pointer to the transfer buffer 1417 * @buffer_length: length of the transfer buffer 1418 * @complete_fn: pointer to the usb_complete_t function 1419 * @context: what to set the urb context to. 1420 * @interval: what to set the urb interval to, encoded like 1421 * the endpoint descriptor's bInterval value. 1422 * 1423 * Initializes a interrupt urb with the proper information needed to submit 1424 * it to a device. 1425 * Note that high speed interrupt endpoints use a logarithmic encoding of 1426 * the endpoint interval, and express polling intervals in microframes 1427 * (eight per millisecond) rather than in frames (one per millisecond). 1428 */ 1429static inline void usb_fill_int_urb(struct urb *urb, 1430 struct usb_device *dev, 1431 unsigned int pipe, 1432 void *transfer_buffer, 1433 int buffer_length, 1434 usb_complete_t complete_fn, 1435 void *context, 1436 int interval) 1437{ 1438 urb->dev = dev; 1439 urb->pipe = pipe; 1440 urb->transfer_buffer = transfer_buffer; 1441 urb->transfer_buffer_length = buffer_length; 1442 urb->complete = complete_fn; 1443 urb->context = context; 1444 if (dev->speed == USB_SPEED_HIGH) 1445 urb->interval = 1 << (interval - 1); 1446 else 1447 urb->interval = interval; 1448 urb->start_frame = -1; 1449} 1450 1451extern void usb_init_urb(struct urb *urb); 1452extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1453extern void usb_free_urb(struct urb *urb); 1454#define usb_put_urb usb_free_urb 1455extern struct urb *usb_get_urb(struct urb *urb); 1456extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1457extern int usb_unlink_urb(struct urb *urb); 1458extern void usb_kill_urb(struct urb *urb); 1459extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1460extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1461extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1462extern void usb_unanchor_urb(struct urb *urb); 1463extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1464 unsigned int timeout); 1465 1466/** 1467 * usb_urb_dir_in - check if an URB describes an IN transfer 1468 * @urb: URB to be checked 1469 * 1470 * Returns 1 if @urb describes an IN transfer (device-to-host), 1471 * otherwise 0. 1472 */ 1473static inline int usb_urb_dir_in(struct urb *urb) 1474{ 1475 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1476} 1477 1478/** 1479 * usb_urb_dir_out - check if an URB describes an OUT transfer 1480 * @urb: URB to be checked 1481 * 1482 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1483 * otherwise 0. 1484 */ 1485static inline int usb_urb_dir_out(struct urb *urb) 1486{ 1487 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1488} 1489 1490void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1491 gfp_t mem_flags, dma_addr_t *dma); 1492void usb_buffer_free(struct usb_device *dev, size_t size, 1493 void *addr, dma_addr_t dma); 1494 1495#if 0 1496struct urb *usb_buffer_map(struct urb *urb); 1497void usb_buffer_dmasync(struct urb *urb); 1498void usb_buffer_unmap(struct urb *urb); 1499#endif 1500 1501struct scatterlist; 1502int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1503 struct scatterlist *sg, int nents); 1504#if 0 1505void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1506 struct scatterlist *sg, int n_hw_ents); 1507#endif 1508void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1509 struct scatterlist *sg, int n_hw_ents); 1510 1511/*-------------------------------------------------------------------* 1512 * SYNCHRONOUS CALL SUPPORT * 1513 *-------------------------------------------------------------------*/ 1514 1515extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1516 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1517 void *data, __u16 size, int timeout); 1518extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1519 void *data, int len, int *actual_length, int timeout); 1520extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1521 void *data, int len, int *actual_length, 1522 int timeout); 1523 1524/* wrappers around usb_control_msg() for the most common standard requests */ 1525extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1526 unsigned char descindex, void *buf, int size); 1527extern int usb_get_status(struct usb_device *dev, 1528 int type, int target, void *data); 1529extern int usb_string(struct usb_device *dev, int index, 1530 char *buf, size_t size); 1531 1532/* wrappers that also update important state inside usbcore */ 1533extern int usb_clear_halt(struct usb_device *dev, int pipe); 1534extern int usb_reset_configuration(struct usb_device *dev); 1535extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1536 1537/* this request isn't really synchronous, but it belongs with the others */ 1538extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1539 1540/* 1541 * timeouts, in milliseconds, used for sending/receiving control messages 1542 * they typically complete within a few frames (msec) after they're issued 1543 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1544 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1545 */ 1546#define USB_CTRL_GET_TIMEOUT 5000 1547#define USB_CTRL_SET_TIMEOUT 5000 1548 1549 1550/** 1551 * struct usb_sg_request - support for scatter/gather I/O 1552 * @status: zero indicates success, else negative errno 1553 * @bytes: counts bytes transferred. 1554 * 1555 * These requests are initialized using usb_sg_init(), and then are used 1556 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1557 * members of the request object aren't for driver access. 1558 * 1559 * The status and bytecount values are valid only after usb_sg_wait() 1560 * returns. If the status is zero, then the bytecount matches the total 1561 * from the request. 1562 * 1563 * After an error completion, drivers may need to clear a halt condition 1564 * on the endpoint. 1565 */ 1566struct usb_sg_request { 1567 int status; 1568 size_t bytes; 1569 1570 /* 1571 * members below are private: to usbcore, 1572 * and are not provided for driver access! 1573 */ 1574 spinlock_t lock; 1575 1576 struct usb_device *dev; 1577 int pipe; 1578 struct scatterlist *sg; 1579 int nents; 1580 1581 int entries; 1582 struct urb **urbs; 1583 1584 int count; 1585 struct completion complete; 1586}; 1587 1588int usb_sg_init( 1589 struct usb_sg_request *io, 1590 struct usb_device *dev, 1591 unsigned pipe, 1592 unsigned period, 1593 struct scatterlist *sg, 1594 int nents, 1595 size_t length, 1596 gfp_t mem_flags 1597); 1598void usb_sg_cancel(struct usb_sg_request *io); 1599void usb_sg_wait(struct usb_sg_request *io); 1600 1601 1602/* ----------------------------------------------------------------------- */ 1603 1604/* 1605 * For various legacy reasons, Linux has a small cookie that's paired with 1606 * a struct usb_device to identify an endpoint queue. Queue characteristics 1607 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1608 * an unsigned int encoded as: 1609 * 1610 * - direction: bit 7 (0 = Host-to-Device [Out], 1611 * 1 = Device-to-Host [In] ... 1612 * like endpoint bEndpointAddress) 1613 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1614 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1615 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1616 * 10 = control, 11 = bulk) 1617 * 1618 * Given the device address and endpoint descriptor, pipes are redundant. 1619 */ 1620 1621/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1622/* (yet ... they're the values used by usbfs) */ 1623#define PIPE_ISOCHRONOUS 0 1624#define PIPE_INTERRUPT 1 1625#define PIPE_CONTROL 2 1626#define PIPE_BULK 3 1627 1628#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1629#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1630 1631#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1632#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1633 1634#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1635#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1636#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1637#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1638#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1639 1640/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1641#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1642#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1643#define usb_settoggle(dev, ep, out, bit) \ 1644 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1645 ((bit) << (ep))) 1646 1647 1648static inline unsigned int __create_pipe(struct usb_device *dev, 1649 unsigned int endpoint) 1650{ 1651 return (dev->devnum << 8) | (endpoint << 15); 1652} 1653 1654/* Create various pipes... */ 1655#define usb_sndctrlpipe(dev,endpoint) \ 1656 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1657#define usb_rcvctrlpipe(dev,endpoint) \ 1658 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1659#define usb_sndisocpipe(dev,endpoint) \ 1660 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1661#define usb_rcvisocpipe(dev,endpoint) \ 1662 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1663#define usb_sndbulkpipe(dev,endpoint) \ 1664 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1665#define usb_rcvbulkpipe(dev,endpoint) \ 1666 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1667#define usb_sndintpipe(dev,endpoint) \ 1668 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1669#define usb_rcvintpipe(dev,endpoint) \ 1670 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1671 1672/*-------------------------------------------------------------------------*/ 1673 1674static inline __u16 1675usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1676{ 1677 struct usb_host_endpoint *ep; 1678 unsigned epnum = usb_pipeendpoint(pipe); 1679 1680 if (is_out) { 1681 WARN_ON(usb_pipein(pipe)); 1682 ep = udev->ep_out[epnum]; 1683 } else { 1684 WARN_ON(usb_pipeout(pipe)); 1685 ep = udev->ep_in[epnum]; 1686 } 1687 if (!ep) 1688 return 0; 1689 1690 /* NOTE: only 0x07ff bits are for packet size... */ 1691 return le16_to_cpu(ep->desc.wMaxPacketSize); 1692} 1693 1694/* ----------------------------------------------------------------------- */ 1695 1696/* Events from the usb core */ 1697#define USB_DEVICE_ADD 0x0001 1698#define USB_DEVICE_REMOVE 0x0002 1699#define USB_BUS_ADD 0x0003 1700#define USB_BUS_REMOVE 0x0004 1701extern void usb_register_notify(struct notifier_block *nb); 1702extern void usb_unregister_notify(struct notifier_block *nb); 1703 1704#ifdef DEBUG 1705#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1706 __FILE__ , ## arg) 1707#else 1708#define dbg(format, arg...) do {} while (0) 1709#endif 1710 1711#define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \ 1712 format "\n" , ## arg) 1713#define info(format, arg...) printk(KERN_INFO KBUILD_MODNAME ": " \ 1714 format "\n" , ## arg) 1715#define warn(format, arg...) printk(KERN_WARNING KBUILD_MODNAME ": " \ 1716 format "\n" , ## arg) 1717 1718#endif /* __KERNEL__ */ 1719 1720#endif