1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19 20/* Boot-time LSM user choice */ 21static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23/* things that live in capability.c */ 24extern struct security_operations default_security_ops; 25extern void security_fixup_ops(struct security_operations *ops); 26 27struct security_operations *security_ops; /* Initialized to NULL */ 28 29/* amount of vm to protect from userspace access */ 30unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32static inline int verify(struct security_operations *ops) 33{ 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39} 40 41static void __init do_security_initcalls(void) 42{ 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49} 50 51/** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56int __init security_init(void) 57{ 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65} 66 67/* Save user chosen LSM */ 68static int __init choose_lsm(char *str) 69{ 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72} 73__setup("security=", choose_lsm); 74 75/** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didsn't specify a specific LSM and we're the first to ask 86 * for registeration permissoin, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90int __init security_module_enable(struct security_operations *ops) 91{ 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98} 99 100/** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function is to allow a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise 0 is returned on success. 111 */ 112int register_security(struct security_operations *ops) 113{ 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126} 127 128/* Security operations */ 129 130int security_ptrace(struct task_struct *parent, struct task_struct *child, 131 unsigned int mode) 132{ 133 return security_ops->ptrace(parent, child, mode); 134} 135 136int security_capget(struct task_struct *target, 137 kernel_cap_t *effective, 138 kernel_cap_t *inheritable, 139 kernel_cap_t *permitted) 140{ 141 return security_ops->capget(target, effective, inheritable, permitted); 142} 143 144int security_capset_check(struct task_struct *target, 145 kernel_cap_t *effective, 146 kernel_cap_t *inheritable, 147 kernel_cap_t *permitted) 148{ 149 return security_ops->capset_check(target, effective, inheritable, permitted); 150} 151 152void security_capset_set(struct task_struct *target, 153 kernel_cap_t *effective, 154 kernel_cap_t *inheritable, 155 kernel_cap_t *permitted) 156{ 157 security_ops->capset_set(target, effective, inheritable, permitted); 158} 159 160int security_capable(struct task_struct *tsk, int cap) 161{ 162 return security_ops->capable(tsk, cap); 163} 164 165int security_acct(struct file *file) 166{ 167 return security_ops->acct(file); 168} 169 170int security_sysctl(struct ctl_table *table, int op) 171{ 172 return security_ops->sysctl(table, op); 173} 174 175int security_quotactl(int cmds, int type, int id, struct super_block *sb) 176{ 177 return security_ops->quotactl(cmds, type, id, sb); 178} 179 180int security_quota_on(struct dentry *dentry) 181{ 182 return security_ops->quota_on(dentry); 183} 184 185int security_syslog(int type) 186{ 187 return security_ops->syslog(type); 188} 189 190int security_settime(struct timespec *ts, struct timezone *tz) 191{ 192 return security_ops->settime(ts, tz); 193} 194 195int security_vm_enough_memory(long pages) 196{ 197 return security_ops->vm_enough_memory(current->mm, pages); 198} 199 200int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 201{ 202 return security_ops->vm_enough_memory(mm, pages); 203} 204 205int security_bprm_alloc(struct linux_binprm *bprm) 206{ 207 return security_ops->bprm_alloc_security(bprm); 208} 209 210void security_bprm_free(struct linux_binprm *bprm) 211{ 212 security_ops->bprm_free_security(bprm); 213} 214 215void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 216{ 217 security_ops->bprm_apply_creds(bprm, unsafe); 218} 219 220void security_bprm_post_apply_creds(struct linux_binprm *bprm) 221{ 222 security_ops->bprm_post_apply_creds(bprm); 223} 224 225int security_bprm_set(struct linux_binprm *bprm) 226{ 227 return security_ops->bprm_set_security(bprm); 228} 229 230int security_bprm_check(struct linux_binprm *bprm) 231{ 232 return security_ops->bprm_check_security(bprm); 233} 234 235int security_bprm_secureexec(struct linux_binprm *bprm) 236{ 237 return security_ops->bprm_secureexec(bprm); 238} 239 240int security_sb_alloc(struct super_block *sb) 241{ 242 return security_ops->sb_alloc_security(sb); 243} 244 245void security_sb_free(struct super_block *sb) 246{ 247 security_ops->sb_free_security(sb); 248} 249 250int security_sb_copy_data(char *orig, char *copy) 251{ 252 return security_ops->sb_copy_data(orig, copy); 253} 254EXPORT_SYMBOL(security_sb_copy_data); 255 256int security_sb_kern_mount(struct super_block *sb, void *data) 257{ 258 return security_ops->sb_kern_mount(sb, data); 259} 260 261int security_sb_show_options(struct seq_file *m, struct super_block *sb) 262{ 263 return security_ops->sb_show_options(m, sb); 264} 265 266int security_sb_statfs(struct dentry *dentry) 267{ 268 return security_ops->sb_statfs(dentry); 269} 270 271int security_sb_mount(char *dev_name, struct path *path, 272 char *type, unsigned long flags, void *data) 273{ 274 return security_ops->sb_mount(dev_name, path, type, flags, data); 275} 276 277int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 278{ 279 return security_ops->sb_check_sb(mnt, path); 280} 281 282int security_sb_umount(struct vfsmount *mnt, int flags) 283{ 284 return security_ops->sb_umount(mnt, flags); 285} 286 287void security_sb_umount_close(struct vfsmount *mnt) 288{ 289 security_ops->sb_umount_close(mnt); 290} 291 292void security_sb_umount_busy(struct vfsmount *mnt) 293{ 294 security_ops->sb_umount_busy(mnt); 295} 296 297void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 298{ 299 security_ops->sb_post_remount(mnt, flags, data); 300} 301 302void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 303{ 304 security_ops->sb_post_addmount(mnt, mountpoint); 305} 306 307int security_sb_pivotroot(struct path *old_path, struct path *new_path) 308{ 309 return security_ops->sb_pivotroot(old_path, new_path); 310} 311 312void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 313{ 314 security_ops->sb_post_pivotroot(old_path, new_path); 315} 316 317int security_sb_set_mnt_opts(struct super_block *sb, 318 struct security_mnt_opts *opts) 319{ 320 return security_ops->sb_set_mnt_opts(sb, opts); 321} 322EXPORT_SYMBOL(security_sb_set_mnt_opts); 323 324void security_sb_clone_mnt_opts(const struct super_block *oldsb, 325 struct super_block *newsb) 326{ 327 security_ops->sb_clone_mnt_opts(oldsb, newsb); 328} 329EXPORT_SYMBOL(security_sb_clone_mnt_opts); 330 331int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 332{ 333 return security_ops->sb_parse_opts_str(options, opts); 334} 335EXPORT_SYMBOL(security_sb_parse_opts_str); 336 337int security_inode_alloc(struct inode *inode) 338{ 339 inode->i_security = NULL; 340 return security_ops->inode_alloc_security(inode); 341} 342 343void security_inode_free(struct inode *inode) 344{ 345 security_ops->inode_free_security(inode); 346} 347 348int security_inode_init_security(struct inode *inode, struct inode *dir, 349 char **name, void **value, size_t *len) 350{ 351 if (unlikely(IS_PRIVATE(inode))) 352 return -EOPNOTSUPP; 353 return security_ops->inode_init_security(inode, dir, name, value, len); 354} 355EXPORT_SYMBOL(security_inode_init_security); 356 357int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 358{ 359 if (unlikely(IS_PRIVATE(dir))) 360 return 0; 361 return security_ops->inode_create(dir, dentry, mode); 362} 363 364int security_inode_link(struct dentry *old_dentry, struct inode *dir, 365 struct dentry *new_dentry) 366{ 367 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 368 return 0; 369 return security_ops->inode_link(old_dentry, dir, new_dentry); 370} 371 372int security_inode_unlink(struct inode *dir, struct dentry *dentry) 373{ 374 if (unlikely(IS_PRIVATE(dentry->d_inode))) 375 return 0; 376 return security_ops->inode_unlink(dir, dentry); 377} 378 379int security_inode_symlink(struct inode *dir, struct dentry *dentry, 380 const char *old_name) 381{ 382 if (unlikely(IS_PRIVATE(dir))) 383 return 0; 384 return security_ops->inode_symlink(dir, dentry, old_name); 385} 386 387int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 388{ 389 if (unlikely(IS_PRIVATE(dir))) 390 return 0; 391 return security_ops->inode_mkdir(dir, dentry, mode); 392} 393 394int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 395{ 396 if (unlikely(IS_PRIVATE(dentry->d_inode))) 397 return 0; 398 return security_ops->inode_rmdir(dir, dentry); 399} 400 401int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 402{ 403 if (unlikely(IS_PRIVATE(dir))) 404 return 0; 405 return security_ops->inode_mknod(dir, dentry, mode, dev); 406} 407 408int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 409 struct inode *new_dir, struct dentry *new_dentry) 410{ 411 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 412 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 413 return 0; 414 return security_ops->inode_rename(old_dir, old_dentry, 415 new_dir, new_dentry); 416} 417 418int security_inode_readlink(struct dentry *dentry) 419{ 420 if (unlikely(IS_PRIVATE(dentry->d_inode))) 421 return 0; 422 return security_ops->inode_readlink(dentry); 423} 424 425int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 426{ 427 if (unlikely(IS_PRIVATE(dentry->d_inode))) 428 return 0; 429 return security_ops->inode_follow_link(dentry, nd); 430} 431 432int security_inode_permission(struct inode *inode, int mask) 433{ 434 if (unlikely(IS_PRIVATE(inode))) 435 return 0; 436 return security_ops->inode_permission(inode, mask); 437} 438 439int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 440{ 441 if (unlikely(IS_PRIVATE(dentry->d_inode))) 442 return 0; 443 return security_ops->inode_setattr(dentry, attr); 444} 445EXPORT_SYMBOL_GPL(security_inode_setattr); 446 447int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 448{ 449 if (unlikely(IS_PRIVATE(dentry->d_inode))) 450 return 0; 451 return security_ops->inode_getattr(mnt, dentry); 452} 453 454void security_inode_delete(struct inode *inode) 455{ 456 if (unlikely(IS_PRIVATE(inode))) 457 return; 458 security_ops->inode_delete(inode); 459} 460 461int security_inode_setxattr(struct dentry *dentry, const char *name, 462 const void *value, size_t size, int flags) 463{ 464 if (unlikely(IS_PRIVATE(dentry->d_inode))) 465 return 0; 466 return security_ops->inode_setxattr(dentry, name, value, size, flags); 467} 468 469void security_inode_post_setxattr(struct dentry *dentry, const char *name, 470 const void *value, size_t size, int flags) 471{ 472 if (unlikely(IS_PRIVATE(dentry->d_inode))) 473 return; 474 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 475} 476 477int security_inode_getxattr(struct dentry *dentry, const char *name) 478{ 479 if (unlikely(IS_PRIVATE(dentry->d_inode))) 480 return 0; 481 return security_ops->inode_getxattr(dentry, name); 482} 483 484int security_inode_listxattr(struct dentry *dentry) 485{ 486 if (unlikely(IS_PRIVATE(dentry->d_inode))) 487 return 0; 488 return security_ops->inode_listxattr(dentry); 489} 490 491int security_inode_removexattr(struct dentry *dentry, const char *name) 492{ 493 if (unlikely(IS_PRIVATE(dentry->d_inode))) 494 return 0; 495 return security_ops->inode_removexattr(dentry, name); 496} 497 498int security_inode_need_killpriv(struct dentry *dentry) 499{ 500 return security_ops->inode_need_killpriv(dentry); 501} 502 503int security_inode_killpriv(struct dentry *dentry) 504{ 505 return security_ops->inode_killpriv(dentry); 506} 507 508int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 509{ 510 if (unlikely(IS_PRIVATE(inode))) 511 return 0; 512 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 513} 514 515int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 516{ 517 if (unlikely(IS_PRIVATE(inode))) 518 return 0; 519 return security_ops->inode_setsecurity(inode, name, value, size, flags); 520} 521 522int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 523{ 524 if (unlikely(IS_PRIVATE(inode))) 525 return 0; 526 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 527} 528 529void security_inode_getsecid(const struct inode *inode, u32 *secid) 530{ 531 security_ops->inode_getsecid(inode, secid); 532} 533 534int security_file_permission(struct file *file, int mask) 535{ 536 return security_ops->file_permission(file, mask); 537} 538 539int security_file_alloc(struct file *file) 540{ 541 return security_ops->file_alloc_security(file); 542} 543 544void security_file_free(struct file *file) 545{ 546 security_ops->file_free_security(file); 547} 548 549int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 550{ 551 return security_ops->file_ioctl(file, cmd, arg); 552} 553 554int security_file_mmap(struct file *file, unsigned long reqprot, 555 unsigned long prot, unsigned long flags, 556 unsigned long addr, unsigned long addr_only) 557{ 558 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 559} 560 561int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 562 unsigned long prot) 563{ 564 return security_ops->file_mprotect(vma, reqprot, prot); 565} 566 567int security_file_lock(struct file *file, unsigned int cmd) 568{ 569 return security_ops->file_lock(file, cmd); 570} 571 572int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 573{ 574 return security_ops->file_fcntl(file, cmd, arg); 575} 576 577int security_file_set_fowner(struct file *file) 578{ 579 return security_ops->file_set_fowner(file); 580} 581 582int security_file_send_sigiotask(struct task_struct *tsk, 583 struct fown_struct *fown, int sig) 584{ 585 return security_ops->file_send_sigiotask(tsk, fown, sig); 586} 587 588int security_file_receive(struct file *file) 589{ 590 return security_ops->file_receive(file); 591} 592 593int security_dentry_open(struct file *file) 594{ 595 return security_ops->dentry_open(file); 596} 597 598int security_task_create(unsigned long clone_flags) 599{ 600 return security_ops->task_create(clone_flags); 601} 602 603int security_task_alloc(struct task_struct *p) 604{ 605 return security_ops->task_alloc_security(p); 606} 607 608void security_task_free(struct task_struct *p) 609{ 610 security_ops->task_free_security(p); 611} 612 613int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 614{ 615 return security_ops->task_setuid(id0, id1, id2, flags); 616} 617 618int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 619 uid_t old_suid, int flags) 620{ 621 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 622} 623 624int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 625{ 626 return security_ops->task_setgid(id0, id1, id2, flags); 627} 628 629int security_task_setpgid(struct task_struct *p, pid_t pgid) 630{ 631 return security_ops->task_setpgid(p, pgid); 632} 633 634int security_task_getpgid(struct task_struct *p) 635{ 636 return security_ops->task_getpgid(p); 637} 638 639int security_task_getsid(struct task_struct *p) 640{ 641 return security_ops->task_getsid(p); 642} 643 644void security_task_getsecid(struct task_struct *p, u32 *secid) 645{ 646 security_ops->task_getsecid(p, secid); 647} 648EXPORT_SYMBOL(security_task_getsecid); 649 650int security_task_setgroups(struct group_info *group_info) 651{ 652 return security_ops->task_setgroups(group_info); 653} 654 655int security_task_setnice(struct task_struct *p, int nice) 656{ 657 return security_ops->task_setnice(p, nice); 658} 659 660int security_task_setioprio(struct task_struct *p, int ioprio) 661{ 662 return security_ops->task_setioprio(p, ioprio); 663} 664 665int security_task_getioprio(struct task_struct *p) 666{ 667 return security_ops->task_getioprio(p); 668} 669 670int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 671{ 672 return security_ops->task_setrlimit(resource, new_rlim); 673} 674 675int security_task_setscheduler(struct task_struct *p, 676 int policy, struct sched_param *lp) 677{ 678 return security_ops->task_setscheduler(p, policy, lp); 679} 680 681int security_task_getscheduler(struct task_struct *p) 682{ 683 return security_ops->task_getscheduler(p); 684} 685 686int security_task_movememory(struct task_struct *p) 687{ 688 return security_ops->task_movememory(p); 689} 690 691int security_task_kill(struct task_struct *p, struct siginfo *info, 692 int sig, u32 secid) 693{ 694 return security_ops->task_kill(p, info, sig, secid); 695} 696 697int security_task_wait(struct task_struct *p) 698{ 699 return security_ops->task_wait(p); 700} 701 702int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 703 unsigned long arg4, unsigned long arg5, long *rc_p) 704{ 705 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 706} 707 708void security_task_reparent_to_init(struct task_struct *p) 709{ 710 security_ops->task_reparent_to_init(p); 711} 712 713void security_task_to_inode(struct task_struct *p, struct inode *inode) 714{ 715 security_ops->task_to_inode(p, inode); 716} 717 718int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 719{ 720 return security_ops->ipc_permission(ipcp, flag); 721} 722 723void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 724{ 725 security_ops->ipc_getsecid(ipcp, secid); 726} 727 728int security_msg_msg_alloc(struct msg_msg *msg) 729{ 730 return security_ops->msg_msg_alloc_security(msg); 731} 732 733void security_msg_msg_free(struct msg_msg *msg) 734{ 735 security_ops->msg_msg_free_security(msg); 736} 737 738int security_msg_queue_alloc(struct msg_queue *msq) 739{ 740 return security_ops->msg_queue_alloc_security(msq); 741} 742 743void security_msg_queue_free(struct msg_queue *msq) 744{ 745 security_ops->msg_queue_free_security(msq); 746} 747 748int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 749{ 750 return security_ops->msg_queue_associate(msq, msqflg); 751} 752 753int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 754{ 755 return security_ops->msg_queue_msgctl(msq, cmd); 756} 757 758int security_msg_queue_msgsnd(struct msg_queue *msq, 759 struct msg_msg *msg, int msqflg) 760{ 761 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 762} 763 764int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 765 struct task_struct *target, long type, int mode) 766{ 767 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 768} 769 770int security_shm_alloc(struct shmid_kernel *shp) 771{ 772 return security_ops->shm_alloc_security(shp); 773} 774 775void security_shm_free(struct shmid_kernel *shp) 776{ 777 security_ops->shm_free_security(shp); 778} 779 780int security_shm_associate(struct shmid_kernel *shp, int shmflg) 781{ 782 return security_ops->shm_associate(shp, shmflg); 783} 784 785int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 786{ 787 return security_ops->shm_shmctl(shp, cmd); 788} 789 790int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 791{ 792 return security_ops->shm_shmat(shp, shmaddr, shmflg); 793} 794 795int security_sem_alloc(struct sem_array *sma) 796{ 797 return security_ops->sem_alloc_security(sma); 798} 799 800void security_sem_free(struct sem_array *sma) 801{ 802 security_ops->sem_free_security(sma); 803} 804 805int security_sem_associate(struct sem_array *sma, int semflg) 806{ 807 return security_ops->sem_associate(sma, semflg); 808} 809 810int security_sem_semctl(struct sem_array *sma, int cmd) 811{ 812 return security_ops->sem_semctl(sma, cmd); 813} 814 815int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 816 unsigned nsops, int alter) 817{ 818 return security_ops->sem_semop(sma, sops, nsops, alter); 819} 820 821void security_d_instantiate(struct dentry *dentry, struct inode *inode) 822{ 823 if (unlikely(inode && IS_PRIVATE(inode))) 824 return; 825 security_ops->d_instantiate(dentry, inode); 826} 827EXPORT_SYMBOL(security_d_instantiate); 828 829int security_getprocattr(struct task_struct *p, char *name, char **value) 830{ 831 return security_ops->getprocattr(p, name, value); 832} 833 834int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 835{ 836 return security_ops->setprocattr(p, name, value, size); 837} 838 839int security_netlink_send(struct sock *sk, struct sk_buff *skb) 840{ 841 return security_ops->netlink_send(sk, skb); 842} 843 844int security_netlink_recv(struct sk_buff *skb, int cap) 845{ 846 return security_ops->netlink_recv(skb, cap); 847} 848EXPORT_SYMBOL(security_netlink_recv); 849 850int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 851{ 852 return security_ops->secid_to_secctx(secid, secdata, seclen); 853} 854EXPORT_SYMBOL(security_secid_to_secctx); 855 856int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 857{ 858 return security_ops->secctx_to_secid(secdata, seclen, secid); 859} 860EXPORT_SYMBOL(security_secctx_to_secid); 861 862void security_release_secctx(char *secdata, u32 seclen) 863{ 864 security_ops->release_secctx(secdata, seclen); 865} 866EXPORT_SYMBOL(security_release_secctx); 867 868#ifdef CONFIG_SECURITY_NETWORK 869 870int security_unix_stream_connect(struct socket *sock, struct socket *other, 871 struct sock *newsk) 872{ 873 return security_ops->unix_stream_connect(sock, other, newsk); 874} 875EXPORT_SYMBOL(security_unix_stream_connect); 876 877int security_unix_may_send(struct socket *sock, struct socket *other) 878{ 879 return security_ops->unix_may_send(sock, other); 880} 881EXPORT_SYMBOL(security_unix_may_send); 882 883int security_socket_create(int family, int type, int protocol, int kern) 884{ 885 return security_ops->socket_create(family, type, protocol, kern); 886} 887 888int security_socket_post_create(struct socket *sock, int family, 889 int type, int protocol, int kern) 890{ 891 return security_ops->socket_post_create(sock, family, type, 892 protocol, kern); 893} 894 895int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 896{ 897 return security_ops->socket_bind(sock, address, addrlen); 898} 899 900int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 901{ 902 return security_ops->socket_connect(sock, address, addrlen); 903} 904 905int security_socket_listen(struct socket *sock, int backlog) 906{ 907 return security_ops->socket_listen(sock, backlog); 908} 909 910int security_socket_accept(struct socket *sock, struct socket *newsock) 911{ 912 return security_ops->socket_accept(sock, newsock); 913} 914 915void security_socket_post_accept(struct socket *sock, struct socket *newsock) 916{ 917 security_ops->socket_post_accept(sock, newsock); 918} 919 920int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 921{ 922 return security_ops->socket_sendmsg(sock, msg, size); 923} 924 925int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 926 int size, int flags) 927{ 928 return security_ops->socket_recvmsg(sock, msg, size, flags); 929} 930 931int security_socket_getsockname(struct socket *sock) 932{ 933 return security_ops->socket_getsockname(sock); 934} 935 936int security_socket_getpeername(struct socket *sock) 937{ 938 return security_ops->socket_getpeername(sock); 939} 940 941int security_socket_getsockopt(struct socket *sock, int level, int optname) 942{ 943 return security_ops->socket_getsockopt(sock, level, optname); 944} 945 946int security_socket_setsockopt(struct socket *sock, int level, int optname) 947{ 948 return security_ops->socket_setsockopt(sock, level, optname); 949} 950 951int security_socket_shutdown(struct socket *sock, int how) 952{ 953 return security_ops->socket_shutdown(sock, how); 954} 955 956int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 957{ 958 return security_ops->socket_sock_rcv_skb(sk, skb); 959} 960EXPORT_SYMBOL(security_sock_rcv_skb); 961 962int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 963 int __user *optlen, unsigned len) 964{ 965 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 966} 967 968int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 969{ 970 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 971} 972EXPORT_SYMBOL(security_socket_getpeersec_dgram); 973 974int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 975{ 976 return security_ops->sk_alloc_security(sk, family, priority); 977} 978 979void security_sk_free(struct sock *sk) 980{ 981 security_ops->sk_free_security(sk); 982} 983 984void security_sk_clone(const struct sock *sk, struct sock *newsk) 985{ 986 security_ops->sk_clone_security(sk, newsk); 987} 988 989void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 990{ 991 security_ops->sk_getsecid(sk, &fl->secid); 992} 993EXPORT_SYMBOL(security_sk_classify_flow); 994 995void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 996{ 997 security_ops->req_classify_flow(req, fl); 998} 999EXPORT_SYMBOL(security_req_classify_flow); 1000 1001void security_sock_graft(struct sock *sk, struct socket *parent) 1002{ 1003 security_ops->sock_graft(sk, parent); 1004} 1005EXPORT_SYMBOL(security_sock_graft); 1006 1007int security_inet_conn_request(struct sock *sk, 1008 struct sk_buff *skb, struct request_sock *req) 1009{ 1010 return security_ops->inet_conn_request(sk, skb, req); 1011} 1012EXPORT_SYMBOL(security_inet_conn_request); 1013 1014void security_inet_csk_clone(struct sock *newsk, 1015 const struct request_sock *req) 1016{ 1017 security_ops->inet_csk_clone(newsk, req); 1018} 1019 1020void security_inet_conn_established(struct sock *sk, 1021 struct sk_buff *skb) 1022{ 1023 security_ops->inet_conn_established(sk, skb); 1024} 1025 1026#endif /* CONFIG_SECURITY_NETWORK */ 1027 1028#ifdef CONFIG_SECURITY_NETWORK_XFRM 1029 1030int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1031{ 1032 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1033} 1034EXPORT_SYMBOL(security_xfrm_policy_alloc); 1035 1036int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1037 struct xfrm_sec_ctx **new_ctxp) 1038{ 1039 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1040} 1041 1042void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1043{ 1044 security_ops->xfrm_policy_free_security(ctx); 1045} 1046EXPORT_SYMBOL(security_xfrm_policy_free); 1047 1048int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1049{ 1050 return security_ops->xfrm_policy_delete_security(ctx); 1051} 1052 1053int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1054{ 1055 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1056} 1057EXPORT_SYMBOL(security_xfrm_state_alloc); 1058 1059int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1060 struct xfrm_sec_ctx *polsec, u32 secid) 1061{ 1062 if (!polsec) 1063 return 0; 1064 /* 1065 * We want the context to be taken from secid which is usually 1066 * from the sock. 1067 */ 1068 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1069} 1070 1071int security_xfrm_state_delete(struct xfrm_state *x) 1072{ 1073 return security_ops->xfrm_state_delete_security(x); 1074} 1075EXPORT_SYMBOL(security_xfrm_state_delete); 1076 1077void security_xfrm_state_free(struct xfrm_state *x) 1078{ 1079 security_ops->xfrm_state_free_security(x); 1080} 1081 1082int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1083{ 1084 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1085} 1086 1087int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1088 struct xfrm_policy *xp, struct flowi *fl) 1089{ 1090 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1091} 1092 1093int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1094{ 1095 return security_ops->xfrm_decode_session(skb, secid, 1); 1096} 1097 1098void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1099{ 1100 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1101 1102 BUG_ON(rc); 1103} 1104EXPORT_SYMBOL(security_skb_classify_flow); 1105 1106#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1107 1108#ifdef CONFIG_KEYS 1109 1110int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1111{ 1112 return security_ops->key_alloc(key, tsk, flags); 1113} 1114 1115void security_key_free(struct key *key) 1116{ 1117 security_ops->key_free(key); 1118} 1119 1120int security_key_permission(key_ref_t key_ref, 1121 struct task_struct *context, key_perm_t perm) 1122{ 1123 return security_ops->key_permission(key_ref, context, perm); 1124} 1125 1126int security_key_getsecurity(struct key *key, char **_buffer) 1127{ 1128 return security_ops->key_getsecurity(key, _buffer); 1129} 1130 1131#endif /* CONFIG_KEYS */ 1132 1133#ifdef CONFIG_AUDIT 1134 1135int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1136{ 1137 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1138} 1139 1140int security_audit_rule_known(struct audit_krule *krule) 1141{ 1142 return security_ops->audit_rule_known(krule); 1143} 1144 1145void security_audit_rule_free(void *lsmrule) 1146{ 1147 security_ops->audit_rule_free(lsmrule); 1148} 1149 1150int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1151 struct audit_context *actx) 1152{ 1153 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1154} 1155 1156#endif /* CONFIG_AUDIT */