at v2.6.27-rc2 2821 lines 68 kB view raw
1/* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25#include <linux/module.h> 26#include <linux/kernel.h> 27#include <linux/kmod.h> 28#include <linux/init.h> 29#include <linux/list.h> 30#include <linux/netdevice.h> 31#include <linux/poll.h> 32#include <linux/ppp_defs.h> 33#include <linux/filter.h> 34#include <linux/if_ppp.h> 35#include <linux/ppp_channel.h> 36#include <linux/ppp-comp.h> 37#include <linux/skbuff.h> 38#include <linux/rtnetlink.h> 39#include <linux/if_arp.h> 40#include <linux/ip.h> 41#include <linux/tcp.h> 42#include <linux/smp_lock.h> 43#include <linux/spinlock.h> 44#include <linux/rwsem.h> 45#include <linux/stddef.h> 46#include <linux/device.h> 47#include <linux/mutex.h> 48#include <net/slhc_vj.h> 49#include <asm/atomic.h> 50 51#define PPP_VERSION "2.4.2" 52 53/* 54 * Network protocols we support. 55 */ 56#define NP_IP 0 /* Internet Protocol V4 */ 57#define NP_IPV6 1 /* Internet Protocol V6 */ 58#define NP_IPX 2 /* IPX protocol */ 59#define NP_AT 3 /* Appletalk protocol */ 60#define NP_MPLS_UC 4 /* MPLS unicast */ 61#define NP_MPLS_MC 5 /* MPLS multicast */ 62#define NUM_NP 6 /* Number of NPs. */ 63 64#define MPHDRLEN 6 /* multilink protocol header length */ 65#define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 66#define MIN_FRAG_SIZE 64 67 68/* 69 * An instance of /dev/ppp can be associated with either a ppp 70 * interface unit or a ppp channel. In both cases, file->private_data 71 * points to one of these. 72 */ 73struct ppp_file { 74 enum { 75 INTERFACE=1, CHANNEL 76 } kind; 77 struct sk_buff_head xq; /* pppd transmit queue */ 78 struct sk_buff_head rq; /* receive queue for pppd */ 79 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 80 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 81 int hdrlen; /* space to leave for headers */ 82 int index; /* interface unit / channel number */ 83 int dead; /* unit/channel has been shut down */ 84}; 85 86#define PF_TO_X(pf, X) container_of(pf, X, file) 87 88#define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 89#define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 90 91/* 92 * Data structure describing one ppp unit. 93 * A ppp unit corresponds to a ppp network interface device 94 * and represents a multilink bundle. 95 * It can have 0 or more ppp channels connected to it. 96 */ 97struct ppp { 98 struct ppp_file file; /* stuff for read/write/poll 0 */ 99 struct file *owner; /* file that owns this unit 48 */ 100 struct list_head channels; /* list of attached channels 4c */ 101 int n_channels; /* how many channels are attached 54 */ 102 spinlock_t rlock; /* lock for receive side 58 */ 103 spinlock_t wlock; /* lock for transmit side 5c */ 104 int mru; /* max receive unit 60 */ 105 unsigned int flags; /* control bits 64 */ 106 unsigned int xstate; /* transmit state bits 68 */ 107 unsigned int rstate; /* receive state bits 6c */ 108 int debug; /* debug flags 70 */ 109 struct slcompress *vj; /* state for VJ header compression */ 110 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 111 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 112 struct compressor *xcomp; /* transmit packet compressor 8c */ 113 void *xc_state; /* its internal state 90 */ 114 struct compressor *rcomp; /* receive decompressor 94 */ 115 void *rc_state; /* its internal state 98 */ 116 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 117 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 118 struct net_device *dev; /* network interface device a4 */ 119#ifdef CONFIG_PPP_MULTILINK 120 int nxchan; /* next channel to send something on */ 121 u32 nxseq; /* next sequence number to send */ 122 int mrru; /* MP: max reconst. receive unit */ 123 u32 nextseq; /* MP: seq no of next packet */ 124 u32 minseq; /* MP: min of most recent seqnos */ 125 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 126#endif /* CONFIG_PPP_MULTILINK */ 127#ifdef CONFIG_PPP_FILTER 128 struct sock_filter *pass_filter; /* filter for packets to pass */ 129 struct sock_filter *active_filter;/* filter for pkts to reset idle */ 130 unsigned pass_len, active_len; 131#endif /* CONFIG_PPP_FILTER */ 132}; 133 134/* 135 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 136 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, 137 * SC_MUST_COMP 138 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 139 * Bits in xstate: SC_COMP_RUN 140 */ 141#define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 142 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 143 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) 144 145/* 146 * Private data structure for each channel. 147 * This includes the data structure used for multilink. 148 */ 149struct channel { 150 struct ppp_file file; /* stuff for read/write/poll */ 151 struct list_head list; /* link in all/new_channels list */ 152 struct ppp_channel *chan; /* public channel data structure */ 153 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 154 spinlock_t downl; /* protects `chan', file.xq dequeue */ 155 struct ppp *ppp; /* ppp unit we're connected to */ 156 struct list_head clist; /* link in list of channels per unit */ 157 rwlock_t upl; /* protects `ppp' */ 158#ifdef CONFIG_PPP_MULTILINK 159 u8 avail; /* flag used in multilink stuff */ 160 u8 had_frag; /* >= 1 fragments have been sent */ 161 u32 lastseq; /* MP: last sequence # received */ 162#endif /* CONFIG_PPP_MULTILINK */ 163}; 164 165/* 166 * SMP locking issues: 167 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 168 * list and the ppp.n_channels field, you need to take both locks 169 * before you modify them. 170 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 171 * channel.downl. 172 */ 173 174/* 175 * A cardmap represents a mapping from unsigned integers to pointers, 176 * and provides a fast "find lowest unused number" operation. 177 * It uses a broad (32-way) tree with a bitmap at each level. 178 * It is designed to be space-efficient for small numbers of entries 179 * and time-efficient for large numbers of entries. 180 */ 181#define CARDMAP_ORDER 5 182#define CARDMAP_WIDTH (1U << CARDMAP_ORDER) 183#define CARDMAP_MASK (CARDMAP_WIDTH - 1) 184 185struct cardmap { 186 int shift; 187 unsigned long inuse; 188 struct cardmap *parent; 189 void *ptr[CARDMAP_WIDTH]; 190}; 191static void *cardmap_get(struct cardmap *map, unsigned int nr); 192static int cardmap_set(struct cardmap **map, unsigned int nr, void *ptr); 193static unsigned int cardmap_find_first_free(struct cardmap *map); 194static void cardmap_destroy(struct cardmap **map); 195 196/* 197 * all_ppp_mutex protects the all_ppp_units mapping. 198 * It also ensures that finding a ppp unit in the all_ppp_units map 199 * and updating its file.refcnt field is atomic. 200 */ 201static DEFINE_MUTEX(all_ppp_mutex); 202static struct cardmap *all_ppp_units; 203static atomic_t ppp_unit_count = ATOMIC_INIT(0); 204 205/* 206 * all_channels_lock protects all_channels and last_channel_index, 207 * and the atomicity of find a channel and updating its file.refcnt 208 * field. 209 */ 210static DEFINE_SPINLOCK(all_channels_lock); 211static LIST_HEAD(all_channels); 212static LIST_HEAD(new_channels); 213static int last_channel_index; 214static atomic_t channel_count = ATOMIC_INIT(0); 215 216/* Get the PPP protocol number from a skb */ 217#define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1]) 218 219/* We limit the length of ppp->file.rq to this (arbitrary) value */ 220#define PPP_MAX_RQLEN 32 221 222/* 223 * Maximum number of multilink fragments queued up. 224 * This has to be large enough to cope with the maximum latency of 225 * the slowest channel relative to the others. Strictly it should 226 * depend on the number of channels and their characteristics. 227 */ 228#define PPP_MP_MAX_QLEN 128 229 230/* Multilink header bits. */ 231#define B 0x80 /* this fragment begins a packet */ 232#define E 0x40 /* this fragment ends a packet */ 233 234/* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 235#define seq_before(a, b) ((s32)((a) - (b)) < 0) 236#define seq_after(a, b) ((s32)((a) - (b)) > 0) 237 238/* Prototypes. */ 239static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 240 unsigned int cmd, unsigned long arg); 241static void ppp_xmit_process(struct ppp *ppp); 242static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 243static void ppp_push(struct ppp *ppp); 244static void ppp_channel_push(struct channel *pch); 245static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 246 struct channel *pch); 247static void ppp_receive_error(struct ppp *ppp); 248static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 249static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 250 struct sk_buff *skb); 251#ifdef CONFIG_PPP_MULTILINK 252static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 253 struct channel *pch); 254static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 255static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 256static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 257#endif /* CONFIG_PPP_MULTILINK */ 258static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 259static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 260static void ppp_ccp_closed(struct ppp *ppp); 261static struct compressor *find_compressor(int type); 262static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 263static struct ppp *ppp_create_interface(int unit, int *retp); 264static void init_ppp_file(struct ppp_file *pf, int kind); 265static void ppp_shutdown_interface(struct ppp *ppp); 266static void ppp_destroy_interface(struct ppp *ppp); 267static struct ppp *ppp_find_unit(int unit); 268static struct channel *ppp_find_channel(int unit); 269static int ppp_connect_channel(struct channel *pch, int unit); 270static int ppp_disconnect_channel(struct channel *pch); 271static void ppp_destroy_channel(struct channel *pch); 272 273static struct class *ppp_class; 274 275/* Translates a PPP protocol number to a NP index (NP == network protocol) */ 276static inline int proto_to_npindex(int proto) 277{ 278 switch (proto) { 279 case PPP_IP: 280 return NP_IP; 281 case PPP_IPV6: 282 return NP_IPV6; 283 case PPP_IPX: 284 return NP_IPX; 285 case PPP_AT: 286 return NP_AT; 287 case PPP_MPLS_UC: 288 return NP_MPLS_UC; 289 case PPP_MPLS_MC: 290 return NP_MPLS_MC; 291 } 292 return -EINVAL; 293} 294 295/* Translates an NP index into a PPP protocol number */ 296static const int npindex_to_proto[NUM_NP] = { 297 PPP_IP, 298 PPP_IPV6, 299 PPP_IPX, 300 PPP_AT, 301 PPP_MPLS_UC, 302 PPP_MPLS_MC, 303}; 304 305/* Translates an ethertype into an NP index */ 306static inline int ethertype_to_npindex(int ethertype) 307{ 308 switch (ethertype) { 309 case ETH_P_IP: 310 return NP_IP; 311 case ETH_P_IPV6: 312 return NP_IPV6; 313 case ETH_P_IPX: 314 return NP_IPX; 315 case ETH_P_PPPTALK: 316 case ETH_P_ATALK: 317 return NP_AT; 318 case ETH_P_MPLS_UC: 319 return NP_MPLS_UC; 320 case ETH_P_MPLS_MC: 321 return NP_MPLS_MC; 322 } 323 return -1; 324} 325 326/* Translates an NP index into an ethertype */ 327static const int npindex_to_ethertype[NUM_NP] = { 328 ETH_P_IP, 329 ETH_P_IPV6, 330 ETH_P_IPX, 331 ETH_P_PPPTALK, 332 ETH_P_MPLS_UC, 333 ETH_P_MPLS_MC, 334}; 335 336/* 337 * Locking shorthand. 338 */ 339#define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 340#define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 341#define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 342#define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 343#define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 344 ppp_recv_lock(ppp); } while (0) 345#define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 346 ppp_xmit_unlock(ppp); } while (0) 347 348/* 349 * /dev/ppp device routines. 350 * The /dev/ppp device is used by pppd to control the ppp unit. 351 * It supports the read, write, ioctl and poll functions. 352 * Open instances of /dev/ppp can be in one of three states: 353 * unattached, attached to a ppp unit, or attached to a ppp channel. 354 */ 355static int ppp_open(struct inode *inode, struct file *file) 356{ 357 cycle_kernel_lock(); 358 /* 359 * This could (should?) be enforced by the permissions on /dev/ppp. 360 */ 361 if (!capable(CAP_NET_ADMIN)) 362 return -EPERM; 363 return 0; 364} 365 366static int ppp_release(struct inode *unused, struct file *file) 367{ 368 struct ppp_file *pf = file->private_data; 369 struct ppp *ppp; 370 371 if (pf) { 372 file->private_data = NULL; 373 if (pf->kind == INTERFACE) { 374 ppp = PF_TO_PPP(pf); 375 if (file == ppp->owner) 376 ppp_shutdown_interface(ppp); 377 } 378 if (atomic_dec_and_test(&pf->refcnt)) { 379 switch (pf->kind) { 380 case INTERFACE: 381 ppp_destroy_interface(PF_TO_PPP(pf)); 382 break; 383 case CHANNEL: 384 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 385 break; 386 } 387 } 388 } 389 return 0; 390} 391 392static ssize_t ppp_read(struct file *file, char __user *buf, 393 size_t count, loff_t *ppos) 394{ 395 struct ppp_file *pf = file->private_data; 396 DECLARE_WAITQUEUE(wait, current); 397 ssize_t ret; 398 struct sk_buff *skb = NULL; 399 400 ret = count; 401 402 if (!pf) 403 return -ENXIO; 404 add_wait_queue(&pf->rwait, &wait); 405 for (;;) { 406 set_current_state(TASK_INTERRUPTIBLE); 407 skb = skb_dequeue(&pf->rq); 408 if (skb) 409 break; 410 ret = 0; 411 if (pf->dead) 412 break; 413 if (pf->kind == INTERFACE) { 414 /* 415 * Return 0 (EOF) on an interface that has no 416 * channels connected, unless it is looping 417 * network traffic (demand mode). 418 */ 419 struct ppp *ppp = PF_TO_PPP(pf); 420 if (ppp->n_channels == 0 421 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 422 break; 423 } 424 ret = -EAGAIN; 425 if (file->f_flags & O_NONBLOCK) 426 break; 427 ret = -ERESTARTSYS; 428 if (signal_pending(current)) 429 break; 430 schedule(); 431 } 432 set_current_state(TASK_RUNNING); 433 remove_wait_queue(&pf->rwait, &wait); 434 435 if (!skb) 436 goto out; 437 438 ret = -EOVERFLOW; 439 if (skb->len > count) 440 goto outf; 441 ret = -EFAULT; 442 if (copy_to_user(buf, skb->data, skb->len)) 443 goto outf; 444 ret = skb->len; 445 446 outf: 447 kfree_skb(skb); 448 out: 449 return ret; 450} 451 452static ssize_t ppp_write(struct file *file, const char __user *buf, 453 size_t count, loff_t *ppos) 454{ 455 struct ppp_file *pf = file->private_data; 456 struct sk_buff *skb; 457 ssize_t ret; 458 459 if (!pf) 460 return -ENXIO; 461 ret = -ENOMEM; 462 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 463 if (!skb) 464 goto out; 465 skb_reserve(skb, pf->hdrlen); 466 ret = -EFAULT; 467 if (copy_from_user(skb_put(skb, count), buf, count)) { 468 kfree_skb(skb); 469 goto out; 470 } 471 472 skb_queue_tail(&pf->xq, skb); 473 474 switch (pf->kind) { 475 case INTERFACE: 476 ppp_xmit_process(PF_TO_PPP(pf)); 477 break; 478 case CHANNEL: 479 ppp_channel_push(PF_TO_CHANNEL(pf)); 480 break; 481 } 482 483 ret = count; 484 485 out: 486 return ret; 487} 488 489/* No kernel lock - fine */ 490static unsigned int ppp_poll(struct file *file, poll_table *wait) 491{ 492 struct ppp_file *pf = file->private_data; 493 unsigned int mask; 494 495 if (!pf) 496 return 0; 497 poll_wait(file, &pf->rwait, wait); 498 mask = POLLOUT | POLLWRNORM; 499 if (skb_peek(&pf->rq)) 500 mask |= POLLIN | POLLRDNORM; 501 if (pf->dead) 502 mask |= POLLHUP; 503 else if (pf->kind == INTERFACE) { 504 /* see comment in ppp_read */ 505 struct ppp *ppp = PF_TO_PPP(pf); 506 if (ppp->n_channels == 0 507 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 508 mask |= POLLIN | POLLRDNORM; 509 } 510 511 return mask; 512} 513 514#ifdef CONFIG_PPP_FILTER 515static int get_filter(void __user *arg, struct sock_filter **p) 516{ 517 struct sock_fprog uprog; 518 struct sock_filter *code = NULL; 519 int len, err; 520 521 if (copy_from_user(&uprog, arg, sizeof(uprog))) 522 return -EFAULT; 523 524 if (!uprog.len) { 525 *p = NULL; 526 return 0; 527 } 528 529 len = uprog.len * sizeof(struct sock_filter); 530 code = kmalloc(len, GFP_KERNEL); 531 if (code == NULL) 532 return -ENOMEM; 533 534 if (copy_from_user(code, uprog.filter, len)) { 535 kfree(code); 536 return -EFAULT; 537 } 538 539 err = sk_chk_filter(code, uprog.len); 540 if (err) { 541 kfree(code); 542 return err; 543 } 544 545 *p = code; 546 return uprog.len; 547} 548#endif /* CONFIG_PPP_FILTER */ 549 550static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 551{ 552 struct ppp_file *pf = file->private_data; 553 struct ppp *ppp; 554 int err = -EFAULT, val, val2, i; 555 struct ppp_idle idle; 556 struct npioctl npi; 557 int unit, cflags; 558 struct slcompress *vj; 559 void __user *argp = (void __user *)arg; 560 int __user *p = argp; 561 562 if (!pf) 563 return ppp_unattached_ioctl(pf, file, cmd, arg); 564 565 if (cmd == PPPIOCDETACH) { 566 /* 567 * We have to be careful here... if the file descriptor 568 * has been dup'd, we could have another process in the 569 * middle of a poll using the same file *, so we had 570 * better not free the interface data structures - 571 * instead we fail the ioctl. Even in this case, we 572 * shut down the interface if we are the owner of it. 573 * Actually, we should get rid of PPPIOCDETACH, userland 574 * (i.e. pppd) could achieve the same effect by closing 575 * this fd and reopening /dev/ppp. 576 */ 577 err = -EINVAL; 578 lock_kernel(); 579 if (pf->kind == INTERFACE) { 580 ppp = PF_TO_PPP(pf); 581 if (file == ppp->owner) 582 ppp_shutdown_interface(ppp); 583 } 584 if (atomic_long_read(&file->f_count) <= 2) { 585 ppp_release(NULL, file); 586 err = 0; 587 } else 588 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%ld\n", 589 atomic_long_read(&file->f_count)); 590 unlock_kernel(); 591 return err; 592 } 593 594 if (pf->kind == CHANNEL) { 595 struct channel *pch; 596 struct ppp_channel *chan; 597 598 lock_kernel(); 599 pch = PF_TO_CHANNEL(pf); 600 601 switch (cmd) { 602 case PPPIOCCONNECT: 603 if (get_user(unit, p)) 604 break; 605 err = ppp_connect_channel(pch, unit); 606 break; 607 608 case PPPIOCDISCONN: 609 err = ppp_disconnect_channel(pch); 610 break; 611 612 default: 613 down_read(&pch->chan_sem); 614 chan = pch->chan; 615 err = -ENOTTY; 616 if (chan && chan->ops->ioctl) 617 err = chan->ops->ioctl(chan, cmd, arg); 618 up_read(&pch->chan_sem); 619 } 620 unlock_kernel(); 621 return err; 622 } 623 624 if (pf->kind != INTERFACE) { 625 /* can't happen */ 626 printk(KERN_ERR "PPP: not interface or channel??\n"); 627 return -EINVAL; 628 } 629 630 lock_kernel(); 631 ppp = PF_TO_PPP(pf); 632 switch (cmd) { 633 case PPPIOCSMRU: 634 if (get_user(val, p)) 635 break; 636 ppp->mru = val; 637 err = 0; 638 break; 639 640 case PPPIOCSFLAGS: 641 if (get_user(val, p)) 642 break; 643 ppp_lock(ppp); 644 cflags = ppp->flags & ~val; 645 ppp->flags = val & SC_FLAG_BITS; 646 ppp_unlock(ppp); 647 if (cflags & SC_CCP_OPEN) 648 ppp_ccp_closed(ppp); 649 err = 0; 650 break; 651 652 case PPPIOCGFLAGS: 653 val = ppp->flags | ppp->xstate | ppp->rstate; 654 if (put_user(val, p)) 655 break; 656 err = 0; 657 break; 658 659 case PPPIOCSCOMPRESS: 660 err = ppp_set_compress(ppp, arg); 661 break; 662 663 case PPPIOCGUNIT: 664 if (put_user(ppp->file.index, p)) 665 break; 666 err = 0; 667 break; 668 669 case PPPIOCSDEBUG: 670 if (get_user(val, p)) 671 break; 672 ppp->debug = val; 673 err = 0; 674 break; 675 676 case PPPIOCGDEBUG: 677 if (put_user(ppp->debug, p)) 678 break; 679 err = 0; 680 break; 681 682 case PPPIOCGIDLE: 683 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 684 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 685 if (copy_to_user(argp, &idle, sizeof(idle))) 686 break; 687 err = 0; 688 break; 689 690 case PPPIOCSMAXCID: 691 if (get_user(val, p)) 692 break; 693 val2 = 15; 694 if ((val >> 16) != 0) { 695 val2 = val >> 16; 696 val &= 0xffff; 697 } 698 vj = slhc_init(val2+1, val+1); 699 if (!vj) { 700 printk(KERN_ERR "PPP: no memory (VJ compressor)\n"); 701 err = -ENOMEM; 702 break; 703 } 704 ppp_lock(ppp); 705 if (ppp->vj) 706 slhc_free(ppp->vj); 707 ppp->vj = vj; 708 ppp_unlock(ppp); 709 err = 0; 710 break; 711 712 case PPPIOCGNPMODE: 713 case PPPIOCSNPMODE: 714 if (copy_from_user(&npi, argp, sizeof(npi))) 715 break; 716 err = proto_to_npindex(npi.protocol); 717 if (err < 0) 718 break; 719 i = err; 720 if (cmd == PPPIOCGNPMODE) { 721 err = -EFAULT; 722 npi.mode = ppp->npmode[i]; 723 if (copy_to_user(argp, &npi, sizeof(npi))) 724 break; 725 } else { 726 ppp->npmode[i] = npi.mode; 727 /* we may be able to transmit more packets now (??) */ 728 netif_wake_queue(ppp->dev); 729 } 730 err = 0; 731 break; 732 733#ifdef CONFIG_PPP_FILTER 734 case PPPIOCSPASS: 735 { 736 struct sock_filter *code; 737 err = get_filter(argp, &code); 738 if (err >= 0) { 739 ppp_lock(ppp); 740 kfree(ppp->pass_filter); 741 ppp->pass_filter = code; 742 ppp->pass_len = err; 743 ppp_unlock(ppp); 744 err = 0; 745 } 746 break; 747 } 748 case PPPIOCSACTIVE: 749 { 750 struct sock_filter *code; 751 err = get_filter(argp, &code); 752 if (err >= 0) { 753 ppp_lock(ppp); 754 kfree(ppp->active_filter); 755 ppp->active_filter = code; 756 ppp->active_len = err; 757 ppp_unlock(ppp); 758 err = 0; 759 } 760 break; 761 } 762#endif /* CONFIG_PPP_FILTER */ 763 764#ifdef CONFIG_PPP_MULTILINK 765 case PPPIOCSMRRU: 766 if (get_user(val, p)) 767 break; 768 ppp_recv_lock(ppp); 769 ppp->mrru = val; 770 ppp_recv_unlock(ppp); 771 err = 0; 772 break; 773#endif /* CONFIG_PPP_MULTILINK */ 774 775 default: 776 err = -ENOTTY; 777 } 778 unlock_kernel(); 779 return err; 780} 781 782static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 783 unsigned int cmd, unsigned long arg) 784{ 785 int unit, err = -EFAULT; 786 struct ppp *ppp; 787 struct channel *chan; 788 int __user *p = (int __user *)arg; 789 790 lock_kernel(); 791 switch (cmd) { 792 case PPPIOCNEWUNIT: 793 /* Create a new ppp unit */ 794 if (get_user(unit, p)) 795 break; 796 ppp = ppp_create_interface(unit, &err); 797 if (!ppp) 798 break; 799 file->private_data = &ppp->file; 800 ppp->owner = file; 801 err = -EFAULT; 802 if (put_user(ppp->file.index, p)) 803 break; 804 err = 0; 805 break; 806 807 case PPPIOCATTACH: 808 /* Attach to an existing ppp unit */ 809 if (get_user(unit, p)) 810 break; 811 mutex_lock(&all_ppp_mutex); 812 err = -ENXIO; 813 ppp = ppp_find_unit(unit); 814 if (ppp) { 815 atomic_inc(&ppp->file.refcnt); 816 file->private_data = &ppp->file; 817 err = 0; 818 } 819 mutex_unlock(&all_ppp_mutex); 820 break; 821 822 case PPPIOCATTCHAN: 823 if (get_user(unit, p)) 824 break; 825 spin_lock_bh(&all_channels_lock); 826 err = -ENXIO; 827 chan = ppp_find_channel(unit); 828 if (chan) { 829 atomic_inc(&chan->file.refcnt); 830 file->private_data = &chan->file; 831 err = 0; 832 } 833 spin_unlock_bh(&all_channels_lock); 834 break; 835 836 default: 837 err = -ENOTTY; 838 } 839 unlock_kernel(); 840 return err; 841} 842 843static const struct file_operations ppp_device_fops = { 844 .owner = THIS_MODULE, 845 .read = ppp_read, 846 .write = ppp_write, 847 .poll = ppp_poll, 848 .unlocked_ioctl = ppp_ioctl, 849 .open = ppp_open, 850 .release = ppp_release 851}; 852 853#define PPP_MAJOR 108 854 855/* Called at boot time if ppp is compiled into the kernel, 856 or at module load time (from init_module) if compiled as a module. */ 857static int __init ppp_init(void) 858{ 859 int err; 860 861 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n"); 862 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 863 if (!err) { 864 ppp_class = class_create(THIS_MODULE, "ppp"); 865 if (IS_ERR(ppp_class)) { 866 err = PTR_ERR(ppp_class); 867 goto out_chrdev; 868 } 869 device_create_drvdata(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), 870 NULL, "ppp"); 871 } 872 873out: 874 if (err) 875 printk(KERN_ERR "failed to register PPP device (%d)\n", err); 876 return err; 877 878out_chrdev: 879 unregister_chrdev(PPP_MAJOR, "ppp"); 880 goto out; 881} 882 883/* 884 * Network interface unit routines. 885 */ 886static int 887ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 888{ 889 struct ppp *ppp = (struct ppp *) dev->priv; 890 int npi, proto; 891 unsigned char *pp; 892 893 npi = ethertype_to_npindex(ntohs(skb->protocol)); 894 if (npi < 0) 895 goto outf; 896 897 /* Drop, accept or reject the packet */ 898 switch (ppp->npmode[npi]) { 899 case NPMODE_PASS: 900 break; 901 case NPMODE_QUEUE: 902 /* it would be nice to have a way to tell the network 903 system to queue this one up for later. */ 904 goto outf; 905 case NPMODE_DROP: 906 case NPMODE_ERROR: 907 goto outf; 908 } 909 910 /* Put the 2-byte PPP protocol number on the front, 911 making sure there is room for the address and control fields. */ 912 if (skb_cow_head(skb, PPP_HDRLEN)) 913 goto outf; 914 915 pp = skb_push(skb, 2); 916 proto = npindex_to_proto[npi]; 917 pp[0] = proto >> 8; 918 pp[1] = proto; 919 920 netif_stop_queue(dev); 921 skb_queue_tail(&ppp->file.xq, skb); 922 ppp_xmit_process(ppp); 923 return 0; 924 925 outf: 926 kfree_skb(skb); 927 ++ppp->dev->stats.tx_dropped; 928 return 0; 929} 930 931static int 932ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 933{ 934 struct ppp *ppp = dev->priv; 935 int err = -EFAULT; 936 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 937 struct ppp_stats stats; 938 struct ppp_comp_stats cstats; 939 char *vers; 940 941 switch (cmd) { 942 case SIOCGPPPSTATS: 943 ppp_get_stats(ppp, &stats); 944 if (copy_to_user(addr, &stats, sizeof(stats))) 945 break; 946 err = 0; 947 break; 948 949 case SIOCGPPPCSTATS: 950 memset(&cstats, 0, sizeof(cstats)); 951 if (ppp->xc_state) 952 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 953 if (ppp->rc_state) 954 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 955 if (copy_to_user(addr, &cstats, sizeof(cstats))) 956 break; 957 err = 0; 958 break; 959 960 case SIOCGPPPVER: 961 vers = PPP_VERSION; 962 if (copy_to_user(addr, vers, strlen(vers) + 1)) 963 break; 964 err = 0; 965 break; 966 967 default: 968 err = -EINVAL; 969 } 970 971 return err; 972} 973 974static void ppp_setup(struct net_device *dev) 975{ 976 dev->hard_header_len = PPP_HDRLEN; 977 dev->mtu = PPP_MTU; 978 dev->addr_len = 0; 979 dev->tx_queue_len = 3; 980 dev->type = ARPHRD_PPP; 981 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 982} 983 984/* 985 * Transmit-side routines. 986 */ 987 988/* 989 * Called to do any work queued up on the transmit side 990 * that can now be done. 991 */ 992static void 993ppp_xmit_process(struct ppp *ppp) 994{ 995 struct sk_buff *skb; 996 997 ppp_xmit_lock(ppp); 998 if (ppp->dev) { 999 ppp_push(ppp); 1000 while (!ppp->xmit_pending 1001 && (skb = skb_dequeue(&ppp->file.xq))) 1002 ppp_send_frame(ppp, skb); 1003 /* If there's no work left to do, tell the core net 1004 code that we can accept some more. */ 1005 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq)) 1006 netif_wake_queue(ppp->dev); 1007 } 1008 ppp_xmit_unlock(ppp); 1009} 1010 1011static inline struct sk_buff * 1012pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) 1013{ 1014 struct sk_buff *new_skb; 1015 int len; 1016 int new_skb_size = ppp->dev->mtu + 1017 ppp->xcomp->comp_extra + ppp->dev->hard_header_len; 1018 int compressor_skb_size = ppp->dev->mtu + 1019 ppp->xcomp->comp_extra + PPP_HDRLEN; 1020 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); 1021 if (!new_skb) { 1022 if (net_ratelimit()) 1023 printk(KERN_ERR "PPP: no memory (comp pkt)\n"); 1024 return NULL; 1025 } 1026 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1027 skb_reserve(new_skb, 1028 ppp->dev->hard_header_len - PPP_HDRLEN); 1029 1030 /* compressor still expects A/C bytes in hdr */ 1031 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1032 new_skb->data, skb->len + 2, 1033 compressor_skb_size); 1034 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1035 kfree_skb(skb); 1036 skb = new_skb; 1037 skb_put(skb, len); 1038 skb_pull(skb, 2); /* pull off A/C bytes */ 1039 } else if (len == 0) { 1040 /* didn't compress, or CCP not up yet */ 1041 kfree_skb(new_skb); 1042 new_skb = skb; 1043 } else { 1044 /* 1045 * (len < 0) 1046 * MPPE requires that we do not send unencrypted 1047 * frames. The compressor will return -1 if we 1048 * should drop the frame. We cannot simply test 1049 * the compress_proto because MPPE and MPPC share 1050 * the same number. 1051 */ 1052 if (net_ratelimit()) 1053 printk(KERN_ERR "ppp: compressor dropped pkt\n"); 1054 kfree_skb(skb); 1055 kfree_skb(new_skb); 1056 new_skb = NULL; 1057 } 1058 return new_skb; 1059} 1060 1061/* 1062 * Compress and send a frame. 1063 * The caller should have locked the xmit path, 1064 * and xmit_pending should be 0. 1065 */ 1066static void 1067ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1068{ 1069 int proto = PPP_PROTO(skb); 1070 struct sk_buff *new_skb; 1071 int len; 1072 unsigned char *cp; 1073 1074 if (proto < 0x8000) { 1075#ifdef CONFIG_PPP_FILTER 1076 /* check if we should pass this packet */ 1077 /* the filter instructions are constructed assuming 1078 a four-byte PPP header on each packet */ 1079 *skb_push(skb, 2) = 1; 1080 if (ppp->pass_filter 1081 && sk_run_filter(skb, ppp->pass_filter, 1082 ppp->pass_len) == 0) { 1083 if (ppp->debug & 1) 1084 printk(KERN_DEBUG "PPP: outbound frame not passed\n"); 1085 kfree_skb(skb); 1086 return; 1087 } 1088 /* if this packet passes the active filter, record the time */ 1089 if (!(ppp->active_filter 1090 && sk_run_filter(skb, ppp->active_filter, 1091 ppp->active_len) == 0)) 1092 ppp->last_xmit = jiffies; 1093 skb_pull(skb, 2); 1094#else 1095 /* for data packets, record the time */ 1096 ppp->last_xmit = jiffies; 1097#endif /* CONFIG_PPP_FILTER */ 1098 } 1099 1100 ++ppp->dev->stats.tx_packets; 1101 ppp->dev->stats.tx_bytes += skb->len - 2; 1102 1103 switch (proto) { 1104 case PPP_IP: 1105 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0) 1106 break; 1107 /* try to do VJ TCP header compression */ 1108 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1109 GFP_ATOMIC); 1110 if (!new_skb) { 1111 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n"); 1112 goto drop; 1113 } 1114 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1115 cp = skb->data + 2; 1116 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1117 new_skb->data + 2, &cp, 1118 !(ppp->flags & SC_NO_TCP_CCID)); 1119 if (cp == skb->data + 2) { 1120 /* didn't compress */ 1121 kfree_skb(new_skb); 1122 } else { 1123 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1124 proto = PPP_VJC_COMP; 1125 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1126 } else { 1127 proto = PPP_VJC_UNCOMP; 1128 cp[0] = skb->data[2]; 1129 } 1130 kfree_skb(skb); 1131 skb = new_skb; 1132 cp = skb_put(skb, len + 2); 1133 cp[0] = 0; 1134 cp[1] = proto; 1135 } 1136 break; 1137 1138 case PPP_CCP: 1139 /* peek at outbound CCP frames */ 1140 ppp_ccp_peek(ppp, skb, 0); 1141 break; 1142 } 1143 1144 /* try to do packet compression */ 1145 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state 1146 && proto != PPP_LCP && proto != PPP_CCP) { 1147 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { 1148 if (net_ratelimit()) 1149 printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n"); 1150 goto drop; 1151 } 1152 skb = pad_compress_skb(ppp, skb); 1153 if (!skb) 1154 goto drop; 1155 } 1156 1157 /* 1158 * If we are waiting for traffic (demand dialling), 1159 * queue it up for pppd to receive. 1160 */ 1161 if (ppp->flags & SC_LOOP_TRAFFIC) { 1162 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1163 goto drop; 1164 skb_queue_tail(&ppp->file.rq, skb); 1165 wake_up_interruptible(&ppp->file.rwait); 1166 return; 1167 } 1168 1169 ppp->xmit_pending = skb; 1170 ppp_push(ppp); 1171 return; 1172 1173 drop: 1174 if (skb) 1175 kfree_skb(skb); 1176 ++ppp->dev->stats.tx_errors; 1177} 1178 1179/* 1180 * Try to send the frame in xmit_pending. 1181 * The caller should have the xmit path locked. 1182 */ 1183static void 1184ppp_push(struct ppp *ppp) 1185{ 1186 struct list_head *list; 1187 struct channel *pch; 1188 struct sk_buff *skb = ppp->xmit_pending; 1189 1190 if (!skb) 1191 return; 1192 1193 list = &ppp->channels; 1194 if (list_empty(list)) { 1195 /* nowhere to send the packet, just drop it */ 1196 ppp->xmit_pending = NULL; 1197 kfree_skb(skb); 1198 return; 1199 } 1200 1201 if ((ppp->flags & SC_MULTILINK) == 0) { 1202 /* not doing multilink: send it down the first channel */ 1203 list = list->next; 1204 pch = list_entry(list, struct channel, clist); 1205 1206 spin_lock_bh(&pch->downl); 1207 if (pch->chan) { 1208 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1209 ppp->xmit_pending = NULL; 1210 } else { 1211 /* channel got unregistered */ 1212 kfree_skb(skb); 1213 ppp->xmit_pending = NULL; 1214 } 1215 spin_unlock_bh(&pch->downl); 1216 return; 1217 } 1218 1219#ifdef CONFIG_PPP_MULTILINK 1220 /* Multilink: fragment the packet over as many links 1221 as can take the packet at the moment. */ 1222 if (!ppp_mp_explode(ppp, skb)) 1223 return; 1224#endif /* CONFIG_PPP_MULTILINK */ 1225 1226 ppp->xmit_pending = NULL; 1227 kfree_skb(skb); 1228} 1229 1230#ifdef CONFIG_PPP_MULTILINK 1231/* 1232 * Divide a packet to be transmitted into fragments and 1233 * send them out the individual links. 1234 */ 1235static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1236{ 1237 int len, fragsize; 1238 int i, bits, hdrlen, mtu; 1239 int flen; 1240 int navail, nfree; 1241 int nbigger; 1242 unsigned char *p, *q; 1243 struct list_head *list; 1244 struct channel *pch; 1245 struct sk_buff *frag; 1246 struct ppp_channel *chan; 1247 1248 nfree = 0; /* # channels which have no packet already queued */ 1249 navail = 0; /* total # of usable channels (not deregistered) */ 1250 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1251 i = 0; 1252 list_for_each_entry(pch, &ppp->channels, clist) { 1253 navail += pch->avail = (pch->chan != NULL); 1254 if (pch->avail) { 1255 if (skb_queue_empty(&pch->file.xq) || 1256 !pch->had_frag) { 1257 pch->avail = 2; 1258 ++nfree; 1259 } 1260 if (!pch->had_frag && i < ppp->nxchan) 1261 ppp->nxchan = i; 1262 } 1263 ++i; 1264 } 1265 1266 /* 1267 * Don't start sending this packet unless at least half of 1268 * the channels are free. This gives much better TCP 1269 * performance if we have a lot of channels. 1270 */ 1271 if (nfree == 0 || nfree < navail / 2) 1272 return 0; /* can't take now, leave it in xmit_pending */ 1273 1274 /* Do protocol field compression (XXX this should be optional) */ 1275 p = skb->data; 1276 len = skb->len; 1277 if (*p == 0) { 1278 ++p; 1279 --len; 1280 } 1281 1282 /* 1283 * Decide on fragment size. 1284 * We create a fragment for each free channel regardless of 1285 * how small they are (i.e. even 0 length) in order to minimize 1286 * the time that it will take to detect when a channel drops 1287 * a fragment. 1288 */ 1289 fragsize = len; 1290 if (nfree > 1) 1291 fragsize = DIV_ROUND_UP(fragsize, nfree); 1292 /* nbigger channels get fragsize bytes, the rest get fragsize-1, 1293 except if nbigger==0, then they all get fragsize. */ 1294 nbigger = len % nfree; 1295 1296 /* skip to the channel after the one we last used 1297 and start at that one */ 1298 list = &ppp->channels; 1299 for (i = 0; i < ppp->nxchan; ++i) { 1300 list = list->next; 1301 if (list == &ppp->channels) { 1302 i = 0; 1303 break; 1304 } 1305 } 1306 1307 /* create a fragment for each channel */ 1308 bits = B; 1309 while (nfree > 0 || len > 0) { 1310 list = list->next; 1311 if (list == &ppp->channels) { 1312 i = 0; 1313 continue; 1314 } 1315 pch = list_entry(list, struct channel, clist); 1316 ++i; 1317 if (!pch->avail) 1318 continue; 1319 1320 /* 1321 * Skip this channel if it has a fragment pending already and 1322 * we haven't given a fragment to all of the free channels. 1323 */ 1324 if (pch->avail == 1) { 1325 if (nfree > 0) 1326 continue; 1327 } else { 1328 --nfree; 1329 pch->avail = 1; 1330 } 1331 1332 /* check the channel's mtu and whether it is still attached. */ 1333 spin_lock_bh(&pch->downl); 1334 if (pch->chan == NULL) { 1335 /* can't use this channel, it's being deregistered */ 1336 spin_unlock_bh(&pch->downl); 1337 pch->avail = 0; 1338 if (--navail == 0) 1339 break; 1340 continue; 1341 } 1342 1343 /* 1344 * Create a fragment for this channel of 1345 * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes. 1346 * If mtu+2-hdrlen < 4, that is a ridiculously small 1347 * MTU, so we use mtu = 2 + hdrlen. 1348 */ 1349 if (fragsize > len) 1350 fragsize = len; 1351 flen = fragsize; 1352 mtu = pch->chan->mtu + 2 - hdrlen; 1353 if (mtu < 4) 1354 mtu = 4; 1355 if (flen > mtu) 1356 flen = mtu; 1357 if (flen == len && nfree == 0) 1358 bits |= E; 1359 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); 1360 if (!frag) 1361 goto noskb; 1362 q = skb_put(frag, flen + hdrlen); 1363 1364 /* make the MP header */ 1365 q[0] = PPP_MP >> 8; 1366 q[1] = PPP_MP; 1367 if (ppp->flags & SC_MP_XSHORTSEQ) { 1368 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1369 q[3] = ppp->nxseq; 1370 } else { 1371 q[2] = bits; 1372 q[3] = ppp->nxseq >> 16; 1373 q[4] = ppp->nxseq >> 8; 1374 q[5] = ppp->nxseq; 1375 } 1376 1377 /* 1378 * Copy the data in. 1379 * Unfortunately there is a bug in older versions of 1380 * the Linux PPP multilink reconstruction code where it 1381 * drops 0-length fragments. Therefore we make sure the 1382 * fragment has at least one byte of data. Any bytes 1383 * we add in this situation will end up as padding on the 1384 * end of the reconstructed packet. 1385 */ 1386 if (flen == 0) 1387 *skb_put(frag, 1) = 0; 1388 else 1389 memcpy(q + hdrlen, p, flen); 1390 1391 /* try to send it down the channel */ 1392 chan = pch->chan; 1393 if (!skb_queue_empty(&pch->file.xq) || 1394 !chan->ops->start_xmit(chan, frag)) 1395 skb_queue_tail(&pch->file.xq, frag); 1396 pch->had_frag = 1; 1397 p += flen; 1398 len -= flen; 1399 ++ppp->nxseq; 1400 bits = 0; 1401 spin_unlock_bh(&pch->downl); 1402 1403 if (--nbigger == 0 && fragsize > 0) 1404 --fragsize; 1405 } 1406 ppp->nxchan = i; 1407 1408 return 1; 1409 1410 noskb: 1411 spin_unlock_bh(&pch->downl); 1412 if (ppp->debug & 1) 1413 printk(KERN_ERR "PPP: no memory (fragment)\n"); 1414 ++ppp->dev->stats.tx_errors; 1415 ++ppp->nxseq; 1416 return 1; /* abandon the frame */ 1417} 1418#endif /* CONFIG_PPP_MULTILINK */ 1419 1420/* 1421 * Try to send data out on a channel. 1422 */ 1423static void 1424ppp_channel_push(struct channel *pch) 1425{ 1426 struct sk_buff *skb; 1427 struct ppp *ppp; 1428 1429 spin_lock_bh(&pch->downl); 1430 if (pch->chan) { 1431 while (!skb_queue_empty(&pch->file.xq)) { 1432 skb = skb_dequeue(&pch->file.xq); 1433 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1434 /* put the packet back and try again later */ 1435 skb_queue_head(&pch->file.xq, skb); 1436 break; 1437 } 1438 } 1439 } else { 1440 /* channel got deregistered */ 1441 skb_queue_purge(&pch->file.xq); 1442 } 1443 spin_unlock_bh(&pch->downl); 1444 /* see if there is anything from the attached unit to be sent */ 1445 if (skb_queue_empty(&pch->file.xq)) { 1446 read_lock_bh(&pch->upl); 1447 ppp = pch->ppp; 1448 if (ppp) 1449 ppp_xmit_process(ppp); 1450 read_unlock_bh(&pch->upl); 1451 } 1452} 1453 1454/* 1455 * Receive-side routines. 1456 */ 1457 1458/* misuse a few fields of the skb for MP reconstruction */ 1459#define sequence priority 1460#define BEbits cb[0] 1461 1462static inline void 1463ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1464{ 1465 ppp_recv_lock(ppp); 1466 /* ppp->dev == 0 means interface is closing down */ 1467 if (ppp->dev) 1468 ppp_receive_frame(ppp, skb, pch); 1469 else 1470 kfree_skb(skb); 1471 ppp_recv_unlock(ppp); 1472} 1473 1474void 1475ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1476{ 1477 struct channel *pch = chan->ppp; 1478 int proto; 1479 1480 if (!pch || skb->len == 0) { 1481 kfree_skb(skb); 1482 return; 1483 } 1484 1485 proto = PPP_PROTO(skb); 1486 read_lock_bh(&pch->upl); 1487 if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) { 1488 /* put it on the channel queue */ 1489 skb_queue_tail(&pch->file.rq, skb); 1490 /* drop old frames if queue too long */ 1491 while (pch->file.rq.qlen > PPP_MAX_RQLEN 1492 && (skb = skb_dequeue(&pch->file.rq))) 1493 kfree_skb(skb); 1494 wake_up_interruptible(&pch->file.rwait); 1495 } else { 1496 ppp_do_recv(pch->ppp, skb, pch); 1497 } 1498 read_unlock_bh(&pch->upl); 1499} 1500 1501/* Put a 0-length skb in the receive queue as an error indication */ 1502void 1503ppp_input_error(struct ppp_channel *chan, int code) 1504{ 1505 struct channel *pch = chan->ppp; 1506 struct sk_buff *skb; 1507 1508 if (!pch) 1509 return; 1510 1511 read_lock_bh(&pch->upl); 1512 if (pch->ppp) { 1513 skb = alloc_skb(0, GFP_ATOMIC); 1514 if (skb) { 1515 skb->len = 0; /* probably unnecessary */ 1516 skb->cb[0] = code; 1517 ppp_do_recv(pch->ppp, skb, pch); 1518 } 1519 } 1520 read_unlock_bh(&pch->upl); 1521} 1522 1523/* 1524 * We come in here to process a received frame. 1525 * The receive side of the ppp unit is locked. 1526 */ 1527static void 1528ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1529{ 1530 if (pskb_may_pull(skb, 2)) { 1531#ifdef CONFIG_PPP_MULTILINK 1532 /* XXX do channel-level decompression here */ 1533 if (PPP_PROTO(skb) == PPP_MP) 1534 ppp_receive_mp_frame(ppp, skb, pch); 1535 else 1536#endif /* CONFIG_PPP_MULTILINK */ 1537 ppp_receive_nonmp_frame(ppp, skb); 1538 return; 1539 } 1540 1541 if (skb->len > 0) 1542 /* note: a 0-length skb is used as an error indication */ 1543 ++ppp->dev->stats.rx_length_errors; 1544 1545 kfree_skb(skb); 1546 ppp_receive_error(ppp); 1547} 1548 1549static void 1550ppp_receive_error(struct ppp *ppp) 1551{ 1552 ++ppp->dev->stats.rx_errors; 1553 if (ppp->vj) 1554 slhc_toss(ppp->vj); 1555} 1556 1557static void 1558ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 1559{ 1560 struct sk_buff *ns; 1561 int proto, len, npi; 1562 1563 /* 1564 * Decompress the frame, if compressed. 1565 * Note that some decompressors need to see uncompressed frames 1566 * that come in as well as compressed frames. 1567 */ 1568 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) 1569 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 1570 skb = ppp_decompress_frame(ppp, skb); 1571 1572 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) 1573 goto err; 1574 1575 proto = PPP_PROTO(skb); 1576 switch (proto) { 1577 case PPP_VJC_COMP: 1578 /* decompress VJ compressed packets */ 1579 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) 1580 goto err; 1581 1582 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) { 1583 /* copy to a new sk_buff with more tailroom */ 1584 ns = dev_alloc_skb(skb->len + 128); 1585 if (!ns) { 1586 printk(KERN_ERR"PPP: no memory (VJ decomp)\n"); 1587 goto err; 1588 } 1589 skb_reserve(ns, 2); 1590 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 1591 kfree_skb(skb); 1592 skb = ns; 1593 } 1594 else 1595 skb->ip_summed = CHECKSUM_NONE; 1596 1597 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 1598 if (len <= 0) { 1599 printk(KERN_DEBUG "PPP: VJ decompression error\n"); 1600 goto err; 1601 } 1602 len += 2; 1603 if (len > skb->len) 1604 skb_put(skb, len - skb->len); 1605 else if (len < skb->len) 1606 skb_trim(skb, len); 1607 proto = PPP_IP; 1608 break; 1609 1610 case PPP_VJC_UNCOMP: 1611 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) 1612 goto err; 1613 1614 /* Until we fix the decompressor need to make sure 1615 * data portion is linear. 1616 */ 1617 if (!pskb_may_pull(skb, skb->len)) 1618 goto err; 1619 1620 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 1621 printk(KERN_ERR "PPP: VJ uncompressed error\n"); 1622 goto err; 1623 } 1624 proto = PPP_IP; 1625 break; 1626 1627 case PPP_CCP: 1628 ppp_ccp_peek(ppp, skb, 1); 1629 break; 1630 } 1631 1632 ++ppp->dev->stats.rx_packets; 1633 ppp->dev->stats.rx_bytes += skb->len - 2; 1634 1635 npi = proto_to_npindex(proto); 1636 if (npi < 0) { 1637 /* control or unknown frame - pass it to pppd */ 1638 skb_queue_tail(&ppp->file.rq, skb); 1639 /* limit queue length by dropping old frames */ 1640 while (ppp->file.rq.qlen > PPP_MAX_RQLEN 1641 && (skb = skb_dequeue(&ppp->file.rq))) 1642 kfree_skb(skb); 1643 /* wake up any process polling or blocking on read */ 1644 wake_up_interruptible(&ppp->file.rwait); 1645 1646 } else { 1647 /* network protocol frame - give it to the kernel */ 1648 1649#ifdef CONFIG_PPP_FILTER 1650 /* check if the packet passes the pass and active filters */ 1651 /* the filter instructions are constructed assuming 1652 a four-byte PPP header on each packet */ 1653 if (ppp->pass_filter || ppp->active_filter) { 1654 if (skb_cloned(skb) && 1655 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1656 goto err; 1657 1658 *skb_push(skb, 2) = 0; 1659 if (ppp->pass_filter 1660 && sk_run_filter(skb, ppp->pass_filter, 1661 ppp->pass_len) == 0) { 1662 if (ppp->debug & 1) 1663 printk(KERN_DEBUG "PPP: inbound frame " 1664 "not passed\n"); 1665 kfree_skb(skb); 1666 return; 1667 } 1668 if (!(ppp->active_filter 1669 && sk_run_filter(skb, ppp->active_filter, 1670 ppp->active_len) == 0)) 1671 ppp->last_recv = jiffies; 1672 __skb_pull(skb, 2); 1673 } else 1674#endif /* CONFIG_PPP_FILTER */ 1675 ppp->last_recv = jiffies; 1676 1677 if ((ppp->dev->flags & IFF_UP) == 0 1678 || ppp->npmode[npi] != NPMODE_PASS) { 1679 kfree_skb(skb); 1680 } else { 1681 /* chop off protocol */ 1682 skb_pull_rcsum(skb, 2); 1683 skb->dev = ppp->dev; 1684 skb->protocol = htons(npindex_to_ethertype[npi]); 1685 skb_reset_mac_header(skb); 1686 netif_rx(skb); 1687 ppp->dev->last_rx = jiffies; 1688 } 1689 } 1690 return; 1691 1692 err: 1693 kfree_skb(skb); 1694 ppp_receive_error(ppp); 1695} 1696 1697static struct sk_buff * 1698ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 1699{ 1700 int proto = PPP_PROTO(skb); 1701 struct sk_buff *ns; 1702 int len; 1703 1704 /* Until we fix all the decompressor's need to make sure 1705 * data portion is linear. 1706 */ 1707 if (!pskb_may_pull(skb, skb->len)) 1708 goto err; 1709 1710 if (proto == PPP_COMP) { 1711 int obuff_size; 1712 1713 switch(ppp->rcomp->compress_proto) { 1714 case CI_MPPE: 1715 obuff_size = ppp->mru + PPP_HDRLEN + 1; 1716 break; 1717 default: 1718 obuff_size = ppp->mru + PPP_HDRLEN; 1719 break; 1720 } 1721 1722 ns = dev_alloc_skb(obuff_size); 1723 if (!ns) { 1724 printk(KERN_ERR "ppp_decompress_frame: no memory\n"); 1725 goto err; 1726 } 1727 /* the decompressor still expects the A/C bytes in the hdr */ 1728 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 1729 skb->len + 2, ns->data, obuff_size); 1730 if (len < 0) { 1731 /* Pass the compressed frame to pppd as an 1732 error indication. */ 1733 if (len == DECOMP_FATALERROR) 1734 ppp->rstate |= SC_DC_FERROR; 1735 kfree_skb(ns); 1736 goto err; 1737 } 1738 1739 kfree_skb(skb); 1740 skb = ns; 1741 skb_put(skb, len); 1742 skb_pull(skb, 2); /* pull off the A/C bytes */ 1743 1744 } else { 1745 /* Uncompressed frame - pass to decompressor so it 1746 can update its dictionary if necessary. */ 1747 if (ppp->rcomp->incomp) 1748 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 1749 skb->len + 2); 1750 } 1751 1752 return skb; 1753 1754 err: 1755 ppp->rstate |= SC_DC_ERROR; 1756 ppp_receive_error(ppp); 1757 return skb; 1758} 1759 1760#ifdef CONFIG_PPP_MULTILINK 1761/* 1762 * Receive a multilink frame. 1763 * We put it on the reconstruction queue and then pull off 1764 * as many completed frames as we can. 1765 */ 1766static void 1767ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1768{ 1769 u32 mask, seq; 1770 struct channel *ch; 1771 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1772 1773 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0) 1774 goto err; /* no good, throw it away */ 1775 1776 /* Decode sequence number and begin/end bits */ 1777 if (ppp->flags & SC_MP_SHORTSEQ) { 1778 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 1779 mask = 0xfff; 1780 } else { 1781 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 1782 mask = 0xffffff; 1783 } 1784 skb->BEbits = skb->data[2]; 1785 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 1786 1787 /* 1788 * Do protocol ID decompression on the first fragment of each packet. 1789 */ 1790 if ((skb->BEbits & B) && (skb->data[0] & 1)) 1791 *skb_push(skb, 1) = 0; 1792 1793 /* 1794 * Expand sequence number to 32 bits, making it as close 1795 * as possible to ppp->minseq. 1796 */ 1797 seq |= ppp->minseq & ~mask; 1798 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 1799 seq += mask + 1; 1800 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 1801 seq -= mask + 1; /* should never happen */ 1802 skb->sequence = seq; 1803 pch->lastseq = seq; 1804 1805 /* 1806 * If this packet comes before the next one we were expecting, 1807 * drop it. 1808 */ 1809 if (seq_before(seq, ppp->nextseq)) { 1810 kfree_skb(skb); 1811 ++ppp->dev->stats.rx_dropped; 1812 ppp_receive_error(ppp); 1813 return; 1814 } 1815 1816 /* 1817 * Reevaluate minseq, the minimum over all channels of the 1818 * last sequence number received on each channel. Because of 1819 * the increasing sequence number rule, we know that any fragment 1820 * before `minseq' which hasn't arrived is never going to arrive. 1821 * The list of channels can't change because we have the receive 1822 * side of the ppp unit locked. 1823 */ 1824 list_for_each_entry(ch, &ppp->channels, clist) { 1825 if (seq_before(ch->lastseq, seq)) 1826 seq = ch->lastseq; 1827 } 1828 if (seq_before(ppp->minseq, seq)) 1829 ppp->minseq = seq; 1830 1831 /* Put the fragment on the reconstruction queue */ 1832 ppp_mp_insert(ppp, skb); 1833 1834 /* If the queue is getting long, don't wait any longer for packets 1835 before the start of the queue. */ 1836 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN 1837 && seq_before(ppp->minseq, ppp->mrq.next->sequence)) 1838 ppp->minseq = ppp->mrq.next->sequence; 1839 1840 /* Pull completed packets off the queue and receive them. */ 1841 while ((skb = ppp_mp_reconstruct(ppp))) 1842 ppp_receive_nonmp_frame(ppp, skb); 1843 1844 return; 1845 1846 err: 1847 kfree_skb(skb); 1848 ppp_receive_error(ppp); 1849} 1850 1851/* 1852 * Insert a fragment on the MP reconstruction queue. 1853 * The queue is ordered by increasing sequence number. 1854 */ 1855static void 1856ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 1857{ 1858 struct sk_buff *p; 1859 struct sk_buff_head *list = &ppp->mrq; 1860 u32 seq = skb->sequence; 1861 1862 /* N.B. we don't need to lock the list lock because we have the 1863 ppp unit receive-side lock. */ 1864 for (p = list->next; p != (struct sk_buff *)list; p = p->next) 1865 if (seq_before(seq, p->sequence)) 1866 break; 1867 __skb_insert(skb, p->prev, p, list); 1868} 1869 1870/* 1871 * Reconstruct a packet from the MP fragment queue. 1872 * We go through increasing sequence numbers until we find a 1873 * complete packet, or we get to the sequence number for a fragment 1874 * which hasn't arrived but might still do so. 1875 */ 1876static struct sk_buff * 1877ppp_mp_reconstruct(struct ppp *ppp) 1878{ 1879 u32 seq = ppp->nextseq; 1880 u32 minseq = ppp->minseq; 1881 struct sk_buff_head *list = &ppp->mrq; 1882 struct sk_buff *p, *next; 1883 struct sk_buff *head, *tail; 1884 struct sk_buff *skb = NULL; 1885 int lost = 0, len = 0; 1886 1887 if (ppp->mrru == 0) /* do nothing until mrru is set */ 1888 return NULL; 1889 head = list->next; 1890 tail = NULL; 1891 for (p = head; p != (struct sk_buff *) list; p = next) { 1892 next = p->next; 1893 if (seq_before(p->sequence, seq)) { 1894 /* this can't happen, anyway ignore the skb */ 1895 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n", 1896 p->sequence, seq); 1897 head = next; 1898 continue; 1899 } 1900 if (p->sequence != seq) { 1901 /* Fragment `seq' is missing. If it is after 1902 minseq, it might arrive later, so stop here. */ 1903 if (seq_after(seq, minseq)) 1904 break; 1905 /* Fragment `seq' is lost, keep going. */ 1906 lost = 1; 1907 seq = seq_before(minseq, p->sequence)? 1908 minseq + 1: p->sequence; 1909 next = p; 1910 continue; 1911 } 1912 1913 /* 1914 * At this point we know that all the fragments from 1915 * ppp->nextseq to seq are either present or lost. 1916 * Also, there are no complete packets in the queue 1917 * that have no missing fragments and end before this 1918 * fragment. 1919 */ 1920 1921 /* B bit set indicates this fragment starts a packet */ 1922 if (p->BEbits & B) { 1923 head = p; 1924 lost = 0; 1925 len = 0; 1926 } 1927 1928 len += p->len; 1929 1930 /* Got a complete packet yet? */ 1931 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) { 1932 if (len > ppp->mrru + 2) { 1933 ++ppp->dev->stats.rx_length_errors; 1934 printk(KERN_DEBUG "PPP: reconstructed packet" 1935 " is too long (%d)\n", len); 1936 } else if (p == head) { 1937 /* fragment is complete packet - reuse skb */ 1938 tail = p; 1939 skb = skb_get(p); 1940 break; 1941 } else if ((skb = dev_alloc_skb(len)) == NULL) { 1942 ++ppp->dev->stats.rx_missed_errors; 1943 printk(KERN_DEBUG "PPP: no memory for " 1944 "reconstructed packet"); 1945 } else { 1946 tail = p; 1947 break; 1948 } 1949 ppp->nextseq = seq + 1; 1950 } 1951 1952 /* 1953 * If this is the ending fragment of a packet, 1954 * and we haven't found a complete valid packet yet, 1955 * we can discard up to and including this fragment. 1956 */ 1957 if (p->BEbits & E) 1958 head = next; 1959 1960 ++seq; 1961 } 1962 1963 /* If we have a complete packet, copy it all into one skb. */ 1964 if (tail != NULL) { 1965 /* If we have discarded any fragments, 1966 signal a receive error. */ 1967 if (head->sequence != ppp->nextseq) { 1968 if (ppp->debug & 1) 1969 printk(KERN_DEBUG " missed pkts %u..%u\n", 1970 ppp->nextseq, head->sequence-1); 1971 ++ppp->dev->stats.rx_dropped; 1972 ppp_receive_error(ppp); 1973 } 1974 1975 if (head != tail) 1976 /* copy to a single skb */ 1977 for (p = head; p != tail->next; p = p->next) 1978 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len); 1979 ppp->nextseq = tail->sequence + 1; 1980 head = tail->next; 1981 } 1982 1983 /* Discard all the skbuffs that we have copied the data out of 1984 or that we can't use. */ 1985 while ((p = list->next) != head) { 1986 __skb_unlink(p, list); 1987 kfree_skb(p); 1988 } 1989 1990 return skb; 1991} 1992#endif /* CONFIG_PPP_MULTILINK */ 1993 1994/* 1995 * Channel interface. 1996 */ 1997 1998/* 1999 * Create a new, unattached ppp channel. 2000 */ 2001int 2002ppp_register_channel(struct ppp_channel *chan) 2003{ 2004 struct channel *pch; 2005 2006 pch = kzalloc(sizeof(struct channel), GFP_KERNEL); 2007 if (!pch) 2008 return -ENOMEM; 2009 pch->ppp = NULL; 2010 pch->chan = chan; 2011 chan->ppp = pch; 2012 init_ppp_file(&pch->file, CHANNEL); 2013 pch->file.hdrlen = chan->hdrlen; 2014#ifdef CONFIG_PPP_MULTILINK 2015 pch->lastseq = -1; 2016#endif /* CONFIG_PPP_MULTILINK */ 2017 init_rwsem(&pch->chan_sem); 2018 spin_lock_init(&pch->downl); 2019 rwlock_init(&pch->upl); 2020 spin_lock_bh(&all_channels_lock); 2021 pch->file.index = ++last_channel_index; 2022 list_add(&pch->list, &new_channels); 2023 atomic_inc(&channel_count); 2024 spin_unlock_bh(&all_channels_lock); 2025 return 0; 2026} 2027 2028/* 2029 * Return the index of a channel. 2030 */ 2031int ppp_channel_index(struct ppp_channel *chan) 2032{ 2033 struct channel *pch = chan->ppp; 2034 2035 if (pch) 2036 return pch->file.index; 2037 return -1; 2038} 2039 2040/* 2041 * Return the PPP unit number to which a channel is connected. 2042 */ 2043int ppp_unit_number(struct ppp_channel *chan) 2044{ 2045 struct channel *pch = chan->ppp; 2046 int unit = -1; 2047 2048 if (pch) { 2049 read_lock_bh(&pch->upl); 2050 if (pch->ppp) 2051 unit = pch->ppp->file.index; 2052 read_unlock_bh(&pch->upl); 2053 } 2054 return unit; 2055} 2056 2057/* 2058 * Disconnect a channel from the generic layer. 2059 * This must be called in process context. 2060 */ 2061void 2062ppp_unregister_channel(struct ppp_channel *chan) 2063{ 2064 struct channel *pch = chan->ppp; 2065 2066 if (!pch) 2067 return; /* should never happen */ 2068 chan->ppp = NULL; 2069 2070 /* 2071 * This ensures that we have returned from any calls into the 2072 * the channel's start_xmit or ioctl routine before we proceed. 2073 */ 2074 down_write(&pch->chan_sem); 2075 spin_lock_bh(&pch->downl); 2076 pch->chan = NULL; 2077 spin_unlock_bh(&pch->downl); 2078 up_write(&pch->chan_sem); 2079 ppp_disconnect_channel(pch); 2080 spin_lock_bh(&all_channels_lock); 2081 list_del(&pch->list); 2082 spin_unlock_bh(&all_channels_lock); 2083 pch->file.dead = 1; 2084 wake_up_interruptible(&pch->file.rwait); 2085 if (atomic_dec_and_test(&pch->file.refcnt)) 2086 ppp_destroy_channel(pch); 2087} 2088 2089/* 2090 * Callback from a channel when it can accept more to transmit. 2091 * This should be called at BH/softirq level, not interrupt level. 2092 */ 2093void 2094ppp_output_wakeup(struct ppp_channel *chan) 2095{ 2096 struct channel *pch = chan->ppp; 2097 2098 if (!pch) 2099 return; 2100 ppp_channel_push(pch); 2101} 2102 2103/* 2104 * Compression control. 2105 */ 2106 2107/* Process the PPPIOCSCOMPRESS ioctl. */ 2108static int 2109ppp_set_compress(struct ppp *ppp, unsigned long arg) 2110{ 2111 int err; 2112 struct compressor *cp, *ocomp; 2113 struct ppp_option_data data; 2114 void *state, *ostate; 2115 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2116 2117 err = -EFAULT; 2118 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) 2119 || (data.length <= CCP_MAX_OPTION_LENGTH 2120 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length))) 2121 goto out; 2122 err = -EINVAL; 2123 if (data.length > CCP_MAX_OPTION_LENGTH 2124 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2125 goto out; 2126 2127 cp = find_compressor(ccp_option[0]); 2128#ifdef CONFIG_KMOD 2129 if (!cp) { 2130 request_module("ppp-compress-%d", ccp_option[0]); 2131 cp = find_compressor(ccp_option[0]); 2132 } 2133#endif /* CONFIG_KMOD */ 2134 if (!cp) 2135 goto out; 2136 2137 err = -ENOBUFS; 2138 if (data.transmit) { 2139 state = cp->comp_alloc(ccp_option, data.length); 2140 if (state) { 2141 ppp_xmit_lock(ppp); 2142 ppp->xstate &= ~SC_COMP_RUN; 2143 ocomp = ppp->xcomp; 2144 ostate = ppp->xc_state; 2145 ppp->xcomp = cp; 2146 ppp->xc_state = state; 2147 ppp_xmit_unlock(ppp); 2148 if (ostate) { 2149 ocomp->comp_free(ostate); 2150 module_put(ocomp->owner); 2151 } 2152 err = 0; 2153 } else 2154 module_put(cp->owner); 2155 2156 } else { 2157 state = cp->decomp_alloc(ccp_option, data.length); 2158 if (state) { 2159 ppp_recv_lock(ppp); 2160 ppp->rstate &= ~SC_DECOMP_RUN; 2161 ocomp = ppp->rcomp; 2162 ostate = ppp->rc_state; 2163 ppp->rcomp = cp; 2164 ppp->rc_state = state; 2165 ppp_recv_unlock(ppp); 2166 if (ostate) { 2167 ocomp->decomp_free(ostate); 2168 module_put(ocomp->owner); 2169 } 2170 err = 0; 2171 } else 2172 module_put(cp->owner); 2173 } 2174 2175 out: 2176 return err; 2177} 2178 2179/* 2180 * Look at a CCP packet and update our state accordingly. 2181 * We assume the caller has the xmit or recv path locked. 2182 */ 2183static void 2184ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2185{ 2186 unsigned char *dp; 2187 int len; 2188 2189 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2190 return; /* no header */ 2191 dp = skb->data + 2; 2192 2193 switch (CCP_CODE(dp)) { 2194 case CCP_CONFREQ: 2195 2196 /* A ConfReq starts negotiation of compression 2197 * in one direction of transmission, 2198 * and hence brings it down...but which way? 2199 * 2200 * Remember: 2201 * A ConfReq indicates what the sender would like to receive 2202 */ 2203 if(inbound) 2204 /* He is proposing what I should send */ 2205 ppp->xstate &= ~SC_COMP_RUN; 2206 else 2207 /* I am proposing to what he should send */ 2208 ppp->rstate &= ~SC_DECOMP_RUN; 2209 2210 break; 2211 2212 case CCP_TERMREQ: 2213 case CCP_TERMACK: 2214 /* 2215 * CCP is going down, both directions of transmission 2216 */ 2217 ppp->rstate &= ~SC_DECOMP_RUN; 2218 ppp->xstate &= ~SC_COMP_RUN; 2219 break; 2220 2221 case CCP_CONFACK: 2222 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2223 break; 2224 len = CCP_LENGTH(dp); 2225 if (!pskb_may_pull(skb, len + 2)) 2226 return; /* too short */ 2227 dp += CCP_HDRLEN; 2228 len -= CCP_HDRLEN; 2229 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2230 break; 2231 if (inbound) { 2232 /* we will start receiving compressed packets */ 2233 if (!ppp->rc_state) 2234 break; 2235 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2236 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2237 ppp->rstate |= SC_DECOMP_RUN; 2238 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2239 } 2240 } else { 2241 /* we will soon start sending compressed packets */ 2242 if (!ppp->xc_state) 2243 break; 2244 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2245 ppp->file.index, 0, ppp->debug)) 2246 ppp->xstate |= SC_COMP_RUN; 2247 } 2248 break; 2249 2250 case CCP_RESETACK: 2251 /* reset the [de]compressor */ 2252 if ((ppp->flags & SC_CCP_UP) == 0) 2253 break; 2254 if (inbound) { 2255 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2256 ppp->rcomp->decomp_reset(ppp->rc_state); 2257 ppp->rstate &= ~SC_DC_ERROR; 2258 } 2259 } else { 2260 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2261 ppp->xcomp->comp_reset(ppp->xc_state); 2262 } 2263 break; 2264 } 2265} 2266 2267/* Free up compression resources. */ 2268static void 2269ppp_ccp_closed(struct ppp *ppp) 2270{ 2271 void *xstate, *rstate; 2272 struct compressor *xcomp, *rcomp; 2273 2274 ppp_lock(ppp); 2275 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2276 ppp->xstate = 0; 2277 xcomp = ppp->xcomp; 2278 xstate = ppp->xc_state; 2279 ppp->xc_state = NULL; 2280 ppp->rstate = 0; 2281 rcomp = ppp->rcomp; 2282 rstate = ppp->rc_state; 2283 ppp->rc_state = NULL; 2284 ppp_unlock(ppp); 2285 2286 if (xstate) { 2287 xcomp->comp_free(xstate); 2288 module_put(xcomp->owner); 2289 } 2290 if (rstate) { 2291 rcomp->decomp_free(rstate); 2292 module_put(rcomp->owner); 2293 } 2294} 2295 2296/* List of compressors. */ 2297static LIST_HEAD(compressor_list); 2298static DEFINE_SPINLOCK(compressor_list_lock); 2299 2300struct compressor_entry { 2301 struct list_head list; 2302 struct compressor *comp; 2303}; 2304 2305static struct compressor_entry * 2306find_comp_entry(int proto) 2307{ 2308 struct compressor_entry *ce; 2309 2310 list_for_each_entry(ce, &compressor_list, list) { 2311 if (ce->comp->compress_proto == proto) 2312 return ce; 2313 } 2314 return NULL; 2315} 2316 2317/* Register a compressor */ 2318int 2319ppp_register_compressor(struct compressor *cp) 2320{ 2321 struct compressor_entry *ce; 2322 int ret; 2323 spin_lock(&compressor_list_lock); 2324 ret = -EEXIST; 2325 if (find_comp_entry(cp->compress_proto)) 2326 goto out; 2327 ret = -ENOMEM; 2328 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2329 if (!ce) 2330 goto out; 2331 ret = 0; 2332 ce->comp = cp; 2333 list_add(&ce->list, &compressor_list); 2334 out: 2335 spin_unlock(&compressor_list_lock); 2336 return ret; 2337} 2338 2339/* Unregister a compressor */ 2340void 2341ppp_unregister_compressor(struct compressor *cp) 2342{ 2343 struct compressor_entry *ce; 2344 2345 spin_lock(&compressor_list_lock); 2346 ce = find_comp_entry(cp->compress_proto); 2347 if (ce && ce->comp == cp) { 2348 list_del(&ce->list); 2349 kfree(ce); 2350 } 2351 spin_unlock(&compressor_list_lock); 2352} 2353 2354/* Find a compressor. */ 2355static struct compressor * 2356find_compressor(int type) 2357{ 2358 struct compressor_entry *ce; 2359 struct compressor *cp = NULL; 2360 2361 spin_lock(&compressor_list_lock); 2362 ce = find_comp_entry(type); 2363 if (ce) { 2364 cp = ce->comp; 2365 if (!try_module_get(cp->owner)) 2366 cp = NULL; 2367 } 2368 spin_unlock(&compressor_list_lock); 2369 return cp; 2370} 2371 2372/* 2373 * Miscelleneous stuff. 2374 */ 2375 2376static void 2377ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2378{ 2379 struct slcompress *vj = ppp->vj; 2380 2381 memset(st, 0, sizeof(*st)); 2382 st->p.ppp_ipackets = ppp->dev->stats.rx_packets; 2383 st->p.ppp_ierrors = ppp->dev->stats.rx_errors; 2384 st->p.ppp_ibytes = ppp->dev->stats.rx_bytes; 2385 st->p.ppp_opackets = ppp->dev->stats.tx_packets; 2386 st->p.ppp_oerrors = ppp->dev->stats.tx_errors; 2387 st->p.ppp_obytes = ppp->dev->stats.tx_bytes; 2388 if (!vj) 2389 return; 2390 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2391 st->vj.vjs_compressed = vj->sls_o_compressed; 2392 st->vj.vjs_searches = vj->sls_o_searches; 2393 st->vj.vjs_misses = vj->sls_o_misses; 2394 st->vj.vjs_errorin = vj->sls_i_error; 2395 st->vj.vjs_tossed = vj->sls_i_tossed; 2396 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2397 st->vj.vjs_compressedin = vj->sls_i_compressed; 2398} 2399 2400/* 2401 * Stuff for handling the lists of ppp units and channels 2402 * and for initialization. 2403 */ 2404 2405/* 2406 * Create a new ppp interface unit. Fails if it can't allocate memory 2407 * or if there is already a unit with the requested number. 2408 * unit == -1 means allocate a new number. 2409 */ 2410static struct ppp * 2411ppp_create_interface(int unit, int *retp) 2412{ 2413 struct ppp *ppp; 2414 struct net_device *dev = NULL; 2415 int ret = -ENOMEM; 2416 int i; 2417 2418 ppp = kzalloc(sizeof(struct ppp), GFP_KERNEL); 2419 if (!ppp) 2420 goto out; 2421 dev = alloc_netdev(0, "", ppp_setup); 2422 if (!dev) 2423 goto out1; 2424 2425 ppp->mru = PPP_MRU; 2426 init_ppp_file(&ppp->file, INTERFACE); 2427 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 2428 for (i = 0; i < NUM_NP; ++i) 2429 ppp->npmode[i] = NPMODE_PASS; 2430 INIT_LIST_HEAD(&ppp->channels); 2431 spin_lock_init(&ppp->rlock); 2432 spin_lock_init(&ppp->wlock); 2433#ifdef CONFIG_PPP_MULTILINK 2434 ppp->minseq = -1; 2435 skb_queue_head_init(&ppp->mrq); 2436#endif /* CONFIG_PPP_MULTILINK */ 2437 ppp->dev = dev; 2438 dev->priv = ppp; 2439 2440 dev->hard_start_xmit = ppp_start_xmit; 2441 dev->do_ioctl = ppp_net_ioctl; 2442 2443 ret = -EEXIST; 2444 mutex_lock(&all_ppp_mutex); 2445 if (unit < 0) 2446 unit = cardmap_find_first_free(all_ppp_units); 2447 else if (cardmap_get(all_ppp_units, unit) != NULL) 2448 goto out2; /* unit already exists */ 2449 2450 /* Initialize the new ppp unit */ 2451 ppp->file.index = unit; 2452 sprintf(dev->name, "ppp%d", unit); 2453 2454 ret = register_netdev(dev); 2455 if (ret != 0) { 2456 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n", 2457 dev->name, ret); 2458 goto out2; 2459 } 2460 2461 atomic_inc(&ppp_unit_count); 2462 ret = cardmap_set(&all_ppp_units, unit, ppp); 2463 if (ret != 0) 2464 goto out3; 2465 2466 mutex_unlock(&all_ppp_mutex); 2467 *retp = 0; 2468 return ppp; 2469 2470out3: 2471 atomic_dec(&ppp_unit_count); 2472 unregister_netdev(dev); 2473out2: 2474 mutex_unlock(&all_ppp_mutex); 2475 free_netdev(dev); 2476out1: 2477 kfree(ppp); 2478out: 2479 *retp = ret; 2480 return NULL; 2481} 2482 2483/* 2484 * Initialize a ppp_file structure. 2485 */ 2486static void 2487init_ppp_file(struct ppp_file *pf, int kind) 2488{ 2489 pf->kind = kind; 2490 skb_queue_head_init(&pf->xq); 2491 skb_queue_head_init(&pf->rq); 2492 atomic_set(&pf->refcnt, 1); 2493 init_waitqueue_head(&pf->rwait); 2494} 2495 2496/* 2497 * Take down a ppp interface unit - called when the owning file 2498 * (the one that created the unit) is closed or detached. 2499 */ 2500static void ppp_shutdown_interface(struct ppp *ppp) 2501{ 2502 struct net_device *dev; 2503 2504 mutex_lock(&all_ppp_mutex); 2505 ppp_lock(ppp); 2506 dev = ppp->dev; 2507 ppp->dev = NULL; 2508 ppp_unlock(ppp); 2509 /* This will call dev_close() for us. */ 2510 if (dev) { 2511 unregister_netdev(dev); 2512 free_netdev(dev); 2513 } 2514 cardmap_set(&all_ppp_units, ppp->file.index, NULL); 2515 ppp->file.dead = 1; 2516 ppp->owner = NULL; 2517 wake_up_interruptible(&ppp->file.rwait); 2518 mutex_unlock(&all_ppp_mutex); 2519} 2520 2521/* 2522 * Free the memory used by a ppp unit. This is only called once 2523 * there are no channels connected to the unit and no file structs 2524 * that reference the unit. 2525 */ 2526static void ppp_destroy_interface(struct ppp *ppp) 2527{ 2528 atomic_dec(&ppp_unit_count); 2529 2530 if (!ppp->file.dead || ppp->n_channels) { 2531 /* "can't happen" */ 2532 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d " 2533 "n_channels=%d !\n", ppp, ppp->file.dead, 2534 ppp->n_channels); 2535 return; 2536 } 2537 2538 ppp_ccp_closed(ppp); 2539 if (ppp->vj) { 2540 slhc_free(ppp->vj); 2541 ppp->vj = NULL; 2542 } 2543 skb_queue_purge(&ppp->file.xq); 2544 skb_queue_purge(&ppp->file.rq); 2545#ifdef CONFIG_PPP_MULTILINK 2546 skb_queue_purge(&ppp->mrq); 2547#endif /* CONFIG_PPP_MULTILINK */ 2548#ifdef CONFIG_PPP_FILTER 2549 kfree(ppp->pass_filter); 2550 ppp->pass_filter = NULL; 2551 kfree(ppp->active_filter); 2552 ppp->active_filter = NULL; 2553#endif /* CONFIG_PPP_FILTER */ 2554 2555 if (ppp->xmit_pending) 2556 kfree_skb(ppp->xmit_pending); 2557 2558 kfree(ppp); 2559} 2560 2561/* 2562 * Locate an existing ppp unit. 2563 * The caller should have locked the all_ppp_mutex. 2564 */ 2565static struct ppp * 2566ppp_find_unit(int unit) 2567{ 2568 return cardmap_get(all_ppp_units, unit); 2569} 2570 2571/* 2572 * Locate an existing ppp channel. 2573 * The caller should have locked the all_channels_lock. 2574 * First we look in the new_channels list, then in the 2575 * all_channels list. If found in the new_channels list, 2576 * we move it to the all_channels list. This is for speed 2577 * when we have a lot of channels in use. 2578 */ 2579static struct channel * 2580ppp_find_channel(int unit) 2581{ 2582 struct channel *pch; 2583 2584 list_for_each_entry(pch, &new_channels, list) { 2585 if (pch->file.index == unit) { 2586 list_move(&pch->list, &all_channels); 2587 return pch; 2588 } 2589 } 2590 list_for_each_entry(pch, &all_channels, list) { 2591 if (pch->file.index == unit) 2592 return pch; 2593 } 2594 return NULL; 2595} 2596 2597/* 2598 * Connect a PPP channel to a PPP interface unit. 2599 */ 2600static int 2601ppp_connect_channel(struct channel *pch, int unit) 2602{ 2603 struct ppp *ppp; 2604 int ret = -ENXIO; 2605 int hdrlen; 2606 2607 mutex_lock(&all_ppp_mutex); 2608 ppp = ppp_find_unit(unit); 2609 if (!ppp) 2610 goto out; 2611 write_lock_bh(&pch->upl); 2612 ret = -EINVAL; 2613 if (pch->ppp) 2614 goto outl; 2615 2616 ppp_lock(ppp); 2617 if (pch->file.hdrlen > ppp->file.hdrlen) 2618 ppp->file.hdrlen = pch->file.hdrlen; 2619 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 2620 if (ppp->dev && hdrlen > ppp->dev->hard_header_len) 2621 ppp->dev->hard_header_len = hdrlen; 2622 list_add_tail(&pch->clist, &ppp->channels); 2623 ++ppp->n_channels; 2624 pch->ppp = ppp; 2625 atomic_inc(&ppp->file.refcnt); 2626 ppp_unlock(ppp); 2627 ret = 0; 2628 2629 outl: 2630 write_unlock_bh(&pch->upl); 2631 out: 2632 mutex_unlock(&all_ppp_mutex); 2633 return ret; 2634} 2635 2636/* 2637 * Disconnect a channel from its ppp unit. 2638 */ 2639static int 2640ppp_disconnect_channel(struct channel *pch) 2641{ 2642 struct ppp *ppp; 2643 int err = -EINVAL; 2644 2645 write_lock_bh(&pch->upl); 2646 ppp = pch->ppp; 2647 pch->ppp = NULL; 2648 write_unlock_bh(&pch->upl); 2649 if (ppp) { 2650 /* remove it from the ppp unit's list */ 2651 ppp_lock(ppp); 2652 list_del(&pch->clist); 2653 if (--ppp->n_channels == 0) 2654 wake_up_interruptible(&ppp->file.rwait); 2655 ppp_unlock(ppp); 2656 if (atomic_dec_and_test(&ppp->file.refcnt)) 2657 ppp_destroy_interface(ppp); 2658 err = 0; 2659 } 2660 return err; 2661} 2662 2663/* 2664 * Free up the resources used by a ppp channel. 2665 */ 2666static void ppp_destroy_channel(struct channel *pch) 2667{ 2668 atomic_dec(&channel_count); 2669 2670 if (!pch->file.dead) { 2671 /* "can't happen" */ 2672 printk(KERN_ERR "ppp: destroying undead channel %p !\n", 2673 pch); 2674 return; 2675 } 2676 skb_queue_purge(&pch->file.xq); 2677 skb_queue_purge(&pch->file.rq); 2678 kfree(pch); 2679} 2680 2681static void __exit ppp_cleanup(void) 2682{ 2683 /* should never happen */ 2684 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 2685 printk(KERN_ERR "PPP: removing module but units remain!\n"); 2686 cardmap_destroy(&all_ppp_units); 2687 unregister_chrdev(PPP_MAJOR, "ppp"); 2688 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); 2689 class_destroy(ppp_class); 2690} 2691 2692/* 2693 * Cardmap implementation. 2694 */ 2695static void *cardmap_get(struct cardmap *map, unsigned int nr) 2696{ 2697 struct cardmap *p; 2698 int i; 2699 2700 for (p = map; p != NULL; ) { 2701 if ((i = nr >> p->shift) >= CARDMAP_WIDTH) 2702 return NULL; 2703 if (p->shift == 0) 2704 return p->ptr[i]; 2705 nr &= ~(CARDMAP_MASK << p->shift); 2706 p = p->ptr[i]; 2707 } 2708 return NULL; 2709} 2710 2711static int cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr) 2712{ 2713 struct cardmap *p; 2714 int i; 2715 2716 p = *pmap; 2717 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) { 2718 do { 2719 /* need a new top level */ 2720 struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL); 2721 if (!np) 2722 goto enomem; 2723 np->ptr[0] = p; 2724 if (p != NULL) { 2725 np->shift = p->shift + CARDMAP_ORDER; 2726 p->parent = np; 2727 } else 2728 np->shift = 0; 2729 p = np; 2730 } while ((nr >> p->shift) >= CARDMAP_WIDTH); 2731 *pmap = p; 2732 } 2733 while (p->shift > 0) { 2734 i = (nr >> p->shift) & CARDMAP_MASK; 2735 if (p->ptr[i] == NULL) { 2736 struct cardmap *np = kzalloc(sizeof(*np), GFP_KERNEL); 2737 if (!np) 2738 goto enomem; 2739 np->shift = p->shift - CARDMAP_ORDER; 2740 np->parent = p; 2741 p->ptr[i] = np; 2742 } 2743 if (ptr == NULL) 2744 clear_bit(i, &p->inuse); 2745 p = p->ptr[i]; 2746 } 2747 i = nr & CARDMAP_MASK; 2748 p->ptr[i] = ptr; 2749 if (ptr != NULL) 2750 set_bit(i, &p->inuse); 2751 else 2752 clear_bit(i, &p->inuse); 2753 return 0; 2754 enomem: 2755 return -ENOMEM; 2756} 2757 2758static unsigned int cardmap_find_first_free(struct cardmap *map) 2759{ 2760 struct cardmap *p; 2761 unsigned int nr = 0; 2762 int i; 2763 2764 if ((p = map) == NULL) 2765 return 0; 2766 for (;;) { 2767 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH); 2768 if (i >= CARDMAP_WIDTH) { 2769 if (p->parent == NULL) 2770 return CARDMAP_WIDTH << p->shift; 2771 p = p->parent; 2772 i = (nr >> p->shift) & CARDMAP_MASK; 2773 set_bit(i, &p->inuse); 2774 continue; 2775 } 2776 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift); 2777 if (p->shift == 0 || p->ptr[i] == NULL) 2778 return nr; 2779 p = p->ptr[i]; 2780 } 2781} 2782 2783static void cardmap_destroy(struct cardmap **pmap) 2784{ 2785 struct cardmap *p, *np; 2786 int i; 2787 2788 for (p = *pmap; p != NULL; p = np) { 2789 if (p->shift != 0) { 2790 for (i = 0; i < CARDMAP_WIDTH; ++i) 2791 if (p->ptr[i] != NULL) 2792 break; 2793 if (i < CARDMAP_WIDTH) { 2794 np = p->ptr[i]; 2795 p->ptr[i] = NULL; 2796 continue; 2797 } 2798 } 2799 np = p->parent; 2800 kfree(p); 2801 } 2802 *pmap = NULL; 2803} 2804 2805/* Module/initialization stuff */ 2806 2807module_init(ppp_init); 2808module_exit(ppp_cleanup); 2809 2810EXPORT_SYMBOL(ppp_register_channel); 2811EXPORT_SYMBOL(ppp_unregister_channel); 2812EXPORT_SYMBOL(ppp_channel_index); 2813EXPORT_SYMBOL(ppp_unit_number); 2814EXPORT_SYMBOL(ppp_input); 2815EXPORT_SYMBOL(ppp_input_error); 2816EXPORT_SYMBOL(ppp_output_wakeup); 2817EXPORT_SYMBOL(ppp_register_compressor); 2818EXPORT_SYMBOL(ppp_unregister_compressor); 2819MODULE_LICENSE("GPL"); 2820MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR); 2821MODULE_ALIAS("/dev/ppp");