at v2.6.27-rc2 2127 lines 57 kB view raw
1/* 2 * drivers/net/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * 12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc. 13 * Copyright (c) 2007 MontaVista Software, Inc. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * RA 11 31 24.2 22 * Dec +69 19 52 23 * V 3.84 24 * B-V +1.62 25 * 26 * Theory of operation 27 * 28 * The driver is initialized through platform_device. Structures which 29 * define the configuration needed by the board are defined in a 30 * board structure in arch/ppc/platforms (though I do not 31 * discount the possibility that other architectures could one 32 * day be supported. 33 * 34 * The Gianfar Ethernet Controller uses a ring of buffer 35 * descriptors. The beginning is indicated by a register 36 * pointing to the physical address of the start of the ring. 37 * The end is determined by a "wrap" bit being set in the 38 * last descriptor of the ring. 39 * 40 * When a packet is received, the RXF bit in the 41 * IEVENT register is set, triggering an interrupt when the 42 * corresponding bit in the IMASK register is also set (if 43 * interrupt coalescing is active, then the interrupt may not 44 * happen immediately, but will wait until either a set number 45 * of frames or amount of time have passed). In NAPI, the 46 * interrupt handler will signal there is work to be done, and 47 * exit. This method will start at the last known empty 48 * descriptor, and process every subsequent descriptor until there 49 * are none left with data (NAPI will stop after a set number of 50 * packets to give time to other tasks, but will eventually 51 * process all the packets). The data arrives inside a 52 * pre-allocated skb, and so after the skb is passed up to the 53 * stack, a new skb must be allocated, and the address field in 54 * the buffer descriptor must be updated to indicate this new 55 * skb. 56 * 57 * When the kernel requests that a packet be transmitted, the 58 * driver starts where it left off last time, and points the 59 * descriptor at the buffer which was passed in. The driver 60 * then informs the DMA engine that there are packets ready to 61 * be transmitted. Once the controller is finished transmitting 62 * the packet, an interrupt may be triggered (under the same 63 * conditions as for reception, but depending on the TXF bit). 64 * The driver then cleans up the buffer. 65 */ 66 67#include <linux/kernel.h> 68#include <linux/string.h> 69#include <linux/errno.h> 70#include <linux/unistd.h> 71#include <linux/slab.h> 72#include <linux/interrupt.h> 73#include <linux/init.h> 74#include <linux/delay.h> 75#include <linux/netdevice.h> 76#include <linux/etherdevice.h> 77#include <linux/skbuff.h> 78#include <linux/if_vlan.h> 79#include <linux/spinlock.h> 80#include <linux/mm.h> 81#include <linux/platform_device.h> 82#include <linux/ip.h> 83#include <linux/tcp.h> 84#include <linux/udp.h> 85#include <linux/in.h> 86 87#include <asm/io.h> 88#include <asm/irq.h> 89#include <asm/uaccess.h> 90#include <linux/module.h> 91#include <linux/dma-mapping.h> 92#include <linux/crc32.h> 93#include <linux/mii.h> 94#include <linux/phy.h> 95 96#include "gianfar.h" 97#include "gianfar_mii.h" 98 99#define TX_TIMEOUT (1*HZ) 100#undef BRIEF_GFAR_ERRORS 101#undef VERBOSE_GFAR_ERRORS 102 103const char gfar_driver_name[] = "Gianfar Ethernet"; 104const char gfar_driver_version[] = "1.3"; 105 106static int gfar_enet_open(struct net_device *dev); 107static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 108static void gfar_timeout(struct net_device *dev); 109static int gfar_close(struct net_device *dev); 110struct sk_buff *gfar_new_skb(struct net_device *dev); 111static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp, 112 struct sk_buff *skb); 113static int gfar_set_mac_address(struct net_device *dev); 114static int gfar_change_mtu(struct net_device *dev, int new_mtu); 115static irqreturn_t gfar_error(int irq, void *dev_id); 116static irqreturn_t gfar_transmit(int irq, void *dev_id); 117static irqreturn_t gfar_interrupt(int irq, void *dev_id); 118static void adjust_link(struct net_device *dev); 119static void init_registers(struct net_device *dev); 120static int init_phy(struct net_device *dev); 121static int gfar_probe(struct platform_device *pdev); 122static int gfar_remove(struct platform_device *pdev); 123static void free_skb_resources(struct gfar_private *priv); 124static void gfar_set_multi(struct net_device *dev); 125static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 126static void gfar_configure_serdes(struct net_device *dev); 127static int gfar_poll(struct napi_struct *napi, int budget); 128#ifdef CONFIG_NET_POLL_CONTROLLER 129static void gfar_netpoll(struct net_device *dev); 130#endif 131int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit); 132static int gfar_clean_tx_ring(struct net_device *dev); 133static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length); 134static void gfar_vlan_rx_register(struct net_device *netdev, 135 struct vlan_group *grp); 136void gfar_halt(struct net_device *dev); 137#ifdef CONFIG_PM 138static void gfar_halt_nodisable(struct net_device *dev); 139#endif 140void gfar_start(struct net_device *dev); 141static void gfar_clear_exact_match(struct net_device *dev); 142static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr); 143 144extern const struct ethtool_ops gfar_ethtool_ops; 145 146MODULE_AUTHOR("Freescale Semiconductor, Inc"); 147MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 148MODULE_LICENSE("GPL"); 149 150/* Returns 1 if incoming frames use an FCB */ 151static inline int gfar_uses_fcb(struct gfar_private *priv) 152{ 153 return (priv->vlan_enable || priv->rx_csum_enable); 154} 155 156/* Set up the ethernet device structure, private data, 157 * and anything else we need before we start */ 158static int gfar_probe(struct platform_device *pdev) 159{ 160 u32 tempval; 161 struct net_device *dev = NULL; 162 struct gfar_private *priv = NULL; 163 struct gianfar_platform_data *einfo; 164 struct resource *r; 165 int err = 0; 166 DECLARE_MAC_BUF(mac); 167 168 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data; 169 170 if (NULL == einfo) { 171 printk(KERN_ERR "gfar %d: Missing additional data!\n", 172 pdev->id); 173 174 return -ENODEV; 175 } 176 177 /* Create an ethernet device instance */ 178 dev = alloc_etherdev(sizeof (*priv)); 179 180 if (NULL == dev) 181 return -ENOMEM; 182 183 priv = netdev_priv(dev); 184 priv->dev = dev; 185 186 /* Set the info in the priv to the current info */ 187 priv->einfo = einfo; 188 189 /* fill out IRQ fields */ 190 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 191 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx"); 192 priv->interruptReceive = platform_get_irq_byname(pdev, "rx"); 193 priv->interruptError = platform_get_irq_byname(pdev, "error"); 194 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0) 195 goto regs_fail; 196 } else { 197 priv->interruptTransmit = platform_get_irq(pdev, 0); 198 if (priv->interruptTransmit < 0) 199 goto regs_fail; 200 } 201 202 /* get a pointer to the register memory */ 203 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 204 priv->regs = ioremap(r->start, sizeof (struct gfar)); 205 206 if (NULL == priv->regs) { 207 err = -ENOMEM; 208 goto regs_fail; 209 } 210 211 spin_lock_init(&priv->txlock); 212 spin_lock_init(&priv->rxlock); 213 spin_lock_init(&priv->bflock); 214 215 platform_set_drvdata(pdev, dev); 216 217 /* Stop the DMA engine now, in case it was running before */ 218 /* (The firmware could have used it, and left it running). */ 219 /* To do this, we write Graceful Receive Stop and Graceful */ 220 /* Transmit Stop, and then wait until the corresponding bits */ 221 /* in IEVENT indicate the stops have completed. */ 222 tempval = gfar_read(&priv->regs->dmactrl); 223 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 224 gfar_write(&priv->regs->dmactrl, tempval); 225 226 tempval = gfar_read(&priv->regs->dmactrl); 227 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 228 gfar_write(&priv->regs->dmactrl, tempval); 229 230 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC))) 231 cpu_relax(); 232 233 /* Reset MAC layer */ 234 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); 235 236 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 237 gfar_write(&priv->regs->maccfg1, tempval); 238 239 /* Initialize MACCFG2. */ 240 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS); 241 242 /* Initialize ECNTRL */ 243 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS); 244 245 /* Copy the station address into the dev structure, */ 246 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN); 247 248 /* Set the dev->base_addr to the gfar reg region */ 249 dev->base_addr = (unsigned long) (priv->regs); 250 251 SET_NETDEV_DEV(dev, &pdev->dev); 252 253 /* Fill in the dev structure */ 254 dev->open = gfar_enet_open; 255 dev->hard_start_xmit = gfar_start_xmit; 256 dev->tx_timeout = gfar_timeout; 257 dev->watchdog_timeo = TX_TIMEOUT; 258 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT); 259#ifdef CONFIG_NET_POLL_CONTROLLER 260 dev->poll_controller = gfar_netpoll; 261#endif 262 dev->stop = gfar_close; 263 dev->change_mtu = gfar_change_mtu; 264 dev->mtu = 1500; 265 dev->set_multicast_list = gfar_set_multi; 266 267 dev->ethtool_ops = &gfar_ethtool_ops; 268 269 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 270 priv->rx_csum_enable = 1; 271 dev->features |= NETIF_F_IP_CSUM; 272 } else 273 priv->rx_csum_enable = 0; 274 275 priv->vlgrp = NULL; 276 277 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 278 dev->vlan_rx_register = gfar_vlan_rx_register; 279 280 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 281 282 priv->vlan_enable = 1; 283 } 284 285 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 286 priv->extended_hash = 1; 287 priv->hash_width = 9; 288 289 priv->hash_regs[0] = &priv->regs->igaddr0; 290 priv->hash_regs[1] = &priv->regs->igaddr1; 291 priv->hash_regs[2] = &priv->regs->igaddr2; 292 priv->hash_regs[3] = &priv->regs->igaddr3; 293 priv->hash_regs[4] = &priv->regs->igaddr4; 294 priv->hash_regs[5] = &priv->regs->igaddr5; 295 priv->hash_regs[6] = &priv->regs->igaddr6; 296 priv->hash_regs[7] = &priv->regs->igaddr7; 297 priv->hash_regs[8] = &priv->regs->gaddr0; 298 priv->hash_regs[9] = &priv->regs->gaddr1; 299 priv->hash_regs[10] = &priv->regs->gaddr2; 300 priv->hash_regs[11] = &priv->regs->gaddr3; 301 priv->hash_regs[12] = &priv->regs->gaddr4; 302 priv->hash_regs[13] = &priv->regs->gaddr5; 303 priv->hash_regs[14] = &priv->regs->gaddr6; 304 priv->hash_regs[15] = &priv->regs->gaddr7; 305 306 } else { 307 priv->extended_hash = 0; 308 priv->hash_width = 8; 309 310 priv->hash_regs[0] = &priv->regs->gaddr0; 311 priv->hash_regs[1] = &priv->regs->gaddr1; 312 priv->hash_regs[2] = &priv->regs->gaddr2; 313 priv->hash_regs[3] = &priv->regs->gaddr3; 314 priv->hash_regs[4] = &priv->regs->gaddr4; 315 priv->hash_regs[5] = &priv->regs->gaddr5; 316 priv->hash_regs[6] = &priv->regs->gaddr6; 317 priv->hash_regs[7] = &priv->regs->gaddr7; 318 } 319 320 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING) 321 priv->padding = DEFAULT_PADDING; 322 else 323 priv->padding = 0; 324 325 if (dev->features & NETIF_F_IP_CSUM) 326 dev->hard_header_len += GMAC_FCB_LEN; 327 328 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 329 priv->tx_ring_size = DEFAULT_TX_RING_SIZE; 330 priv->rx_ring_size = DEFAULT_RX_RING_SIZE; 331 332 priv->txcoalescing = DEFAULT_TX_COALESCE; 333 priv->txcount = DEFAULT_TXCOUNT; 334 priv->txtime = DEFAULT_TXTIME; 335 priv->rxcoalescing = DEFAULT_RX_COALESCE; 336 priv->rxcount = DEFAULT_RXCOUNT; 337 priv->rxtime = DEFAULT_RXTIME; 338 339 /* Enable most messages by default */ 340 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 341 342 err = register_netdev(dev); 343 344 if (err) { 345 printk(KERN_ERR "%s: Cannot register net device, aborting.\n", 346 dev->name); 347 goto register_fail; 348 } 349 350 /* Create all the sysfs files */ 351 gfar_init_sysfs(dev); 352 353 /* Print out the device info */ 354 printk(KERN_INFO DEVICE_NAME "%s\n", 355 dev->name, print_mac(mac, dev->dev_addr)); 356 357 /* Even more device info helps when determining which kernel */ 358 /* provided which set of benchmarks. */ 359 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name); 360 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n", 361 dev->name, priv->rx_ring_size, priv->tx_ring_size); 362 363 return 0; 364 365register_fail: 366 iounmap(priv->regs); 367regs_fail: 368 free_netdev(dev); 369 return err; 370} 371 372static int gfar_remove(struct platform_device *pdev) 373{ 374 struct net_device *dev = platform_get_drvdata(pdev); 375 struct gfar_private *priv = netdev_priv(dev); 376 377 platform_set_drvdata(pdev, NULL); 378 379 iounmap(priv->regs); 380 free_netdev(dev); 381 382 return 0; 383} 384 385#ifdef CONFIG_PM 386static int gfar_suspend(struct platform_device *pdev, pm_message_t state) 387{ 388 struct net_device *dev = platform_get_drvdata(pdev); 389 struct gfar_private *priv = netdev_priv(dev); 390 unsigned long flags; 391 u32 tempval; 392 393 int magic_packet = priv->wol_en && 394 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 395 396 netif_device_detach(dev); 397 398 if (netif_running(dev)) { 399 spin_lock_irqsave(&priv->txlock, flags); 400 spin_lock(&priv->rxlock); 401 402 gfar_halt_nodisable(dev); 403 404 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 405 tempval = gfar_read(&priv->regs->maccfg1); 406 407 tempval &= ~MACCFG1_TX_EN; 408 409 if (!magic_packet) 410 tempval &= ~MACCFG1_RX_EN; 411 412 gfar_write(&priv->regs->maccfg1, tempval); 413 414 spin_unlock(&priv->rxlock); 415 spin_unlock_irqrestore(&priv->txlock, flags); 416 417#ifdef CONFIG_GFAR_NAPI 418 napi_disable(&priv->napi); 419#endif 420 421 if (magic_packet) { 422 /* Enable interrupt on Magic Packet */ 423 gfar_write(&priv->regs->imask, IMASK_MAG); 424 425 /* Enable Magic Packet mode */ 426 tempval = gfar_read(&priv->regs->maccfg2); 427 tempval |= MACCFG2_MPEN; 428 gfar_write(&priv->regs->maccfg2, tempval); 429 } else { 430 phy_stop(priv->phydev); 431 } 432 } 433 434 return 0; 435} 436 437static int gfar_resume(struct platform_device *pdev) 438{ 439 struct net_device *dev = platform_get_drvdata(pdev); 440 struct gfar_private *priv = netdev_priv(dev); 441 unsigned long flags; 442 u32 tempval; 443 int magic_packet = priv->wol_en && 444 (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 445 446 if (!netif_running(dev)) { 447 netif_device_attach(dev); 448 return 0; 449 } 450 451 if (!magic_packet && priv->phydev) 452 phy_start(priv->phydev); 453 454 /* Disable Magic Packet mode, in case something 455 * else woke us up. 456 */ 457 458 spin_lock_irqsave(&priv->txlock, flags); 459 spin_lock(&priv->rxlock); 460 461 tempval = gfar_read(&priv->regs->maccfg2); 462 tempval &= ~MACCFG2_MPEN; 463 gfar_write(&priv->regs->maccfg2, tempval); 464 465 gfar_start(dev); 466 467 spin_unlock(&priv->rxlock); 468 spin_unlock_irqrestore(&priv->txlock, flags); 469 470 netif_device_attach(dev); 471 472#ifdef CONFIG_GFAR_NAPI 473 napi_enable(&priv->napi); 474#endif 475 476 return 0; 477} 478#else 479#define gfar_suspend NULL 480#define gfar_resume NULL 481#endif 482 483/* Reads the controller's registers to determine what interface 484 * connects it to the PHY. 485 */ 486static phy_interface_t gfar_get_interface(struct net_device *dev) 487{ 488 struct gfar_private *priv = netdev_priv(dev); 489 u32 ecntrl = gfar_read(&priv->regs->ecntrl); 490 491 if (ecntrl & ECNTRL_SGMII_MODE) 492 return PHY_INTERFACE_MODE_SGMII; 493 494 if (ecntrl & ECNTRL_TBI_MODE) { 495 if (ecntrl & ECNTRL_REDUCED_MODE) 496 return PHY_INTERFACE_MODE_RTBI; 497 else 498 return PHY_INTERFACE_MODE_TBI; 499 } 500 501 if (ecntrl & ECNTRL_REDUCED_MODE) { 502 if (ecntrl & ECNTRL_REDUCED_MII_MODE) 503 return PHY_INTERFACE_MODE_RMII; 504 else { 505 phy_interface_t interface = priv->einfo->interface; 506 507 /* 508 * This isn't autodetected right now, so it must 509 * be set by the device tree or platform code. 510 */ 511 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 512 return PHY_INTERFACE_MODE_RGMII_ID; 513 514 return PHY_INTERFACE_MODE_RGMII; 515 } 516 } 517 518 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 519 return PHY_INTERFACE_MODE_GMII; 520 521 return PHY_INTERFACE_MODE_MII; 522} 523 524 525/* Initializes driver's PHY state, and attaches to the PHY. 526 * Returns 0 on success. 527 */ 528static int init_phy(struct net_device *dev) 529{ 530 struct gfar_private *priv = netdev_priv(dev); 531 uint gigabit_support = 532 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 533 SUPPORTED_1000baseT_Full : 0; 534 struct phy_device *phydev; 535 char phy_id[BUS_ID_SIZE]; 536 phy_interface_t interface; 537 538 priv->oldlink = 0; 539 priv->oldspeed = 0; 540 priv->oldduplex = -1; 541 542 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id); 543 544 interface = gfar_get_interface(dev); 545 546 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface); 547 548 if (interface == PHY_INTERFACE_MODE_SGMII) 549 gfar_configure_serdes(dev); 550 551 if (IS_ERR(phydev)) { 552 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); 553 return PTR_ERR(phydev); 554 } 555 556 /* Remove any features not supported by the controller */ 557 phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 558 phydev->advertising = phydev->supported; 559 560 priv->phydev = phydev; 561 562 return 0; 563} 564 565/* 566 * Initialize TBI PHY interface for communicating with the 567 * SERDES lynx PHY on the chip. We communicate with this PHY 568 * through the MDIO bus on each controller, treating it as a 569 * "normal" PHY at the address found in the TBIPA register. We assume 570 * that the TBIPA register is valid. Either the MDIO bus code will set 571 * it to a value that doesn't conflict with other PHYs on the bus, or the 572 * value doesn't matter, as there are no other PHYs on the bus. 573 */ 574static void gfar_configure_serdes(struct net_device *dev) 575{ 576 struct gfar_private *priv = netdev_priv(dev); 577 struct gfar_mii __iomem *regs = 578 (void __iomem *)&priv->regs->gfar_mii_regs; 579 int tbipa = gfar_read(&priv->regs->tbipa); 580 581 /* Single clk mode, mii mode off(for serdes communication) */ 582 gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT); 583 584 gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE, 585 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 586 ADVERTISE_1000XPSE_ASYM); 587 588 gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE | 589 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); 590} 591 592static void init_registers(struct net_device *dev) 593{ 594 struct gfar_private *priv = netdev_priv(dev); 595 596 /* Clear IEVENT */ 597 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR); 598 599 /* Initialize IMASK */ 600 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR); 601 602 /* Init hash registers to zero */ 603 gfar_write(&priv->regs->igaddr0, 0); 604 gfar_write(&priv->regs->igaddr1, 0); 605 gfar_write(&priv->regs->igaddr2, 0); 606 gfar_write(&priv->regs->igaddr3, 0); 607 gfar_write(&priv->regs->igaddr4, 0); 608 gfar_write(&priv->regs->igaddr5, 0); 609 gfar_write(&priv->regs->igaddr6, 0); 610 gfar_write(&priv->regs->igaddr7, 0); 611 612 gfar_write(&priv->regs->gaddr0, 0); 613 gfar_write(&priv->regs->gaddr1, 0); 614 gfar_write(&priv->regs->gaddr2, 0); 615 gfar_write(&priv->regs->gaddr3, 0); 616 gfar_write(&priv->regs->gaddr4, 0); 617 gfar_write(&priv->regs->gaddr5, 0); 618 gfar_write(&priv->regs->gaddr6, 0); 619 gfar_write(&priv->regs->gaddr7, 0); 620 621 /* Zero out the rmon mib registers if it has them */ 622 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 623 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib)); 624 625 /* Mask off the CAM interrupts */ 626 gfar_write(&priv->regs->rmon.cam1, 0xffffffff); 627 gfar_write(&priv->regs->rmon.cam2, 0xffffffff); 628 } 629 630 /* Initialize the max receive buffer length */ 631 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); 632 633 /* Initialize the Minimum Frame Length Register */ 634 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS); 635} 636 637 638#ifdef CONFIG_PM 639/* Halt the receive and transmit queues */ 640static void gfar_halt_nodisable(struct net_device *dev) 641{ 642 struct gfar_private *priv = netdev_priv(dev); 643 struct gfar __iomem *regs = priv->regs; 644 u32 tempval; 645 646 /* Mask all interrupts */ 647 gfar_write(&regs->imask, IMASK_INIT_CLEAR); 648 649 /* Clear all interrupts */ 650 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR); 651 652 /* Stop the DMA, and wait for it to stop */ 653 tempval = gfar_read(&priv->regs->dmactrl); 654 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) 655 != (DMACTRL_GRS | DMACTRL_GTS)) { 656 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 657 gfar_write(&priv->regs->dmactrl, tempval); 658 659 while (!(gfar_read(&priv->regs->ievent) & 660 (IEVENT_GRSC | IEVENT_GTSC))) 661 cpu_relax(); 662 } 663} 664#endif 665 666/* Halt the receive and transmit queues */ 667void gfar_halt(struct net_device *dev) 668{ 669 struct gfar_private *priv = netdev_priv(dev); 670 struct gfar __iomem *regs = priv->regs; 671 u32 tempval; 672 673 /* Disable Rx and Tx */ 674 tempval = gfar_read(&regs->maccfg1); 675 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 676 gfar_write(&regs->maccfg1, tempval); 677} 678 679void stop_gfar(struct net_device *dev) 680{ 681 struct gfar_private *priv = netdev_priv(dev); 682 struct gfar __iomem *regs = priv->regs; 683 unsigned long flags; 684 685 phy_stop(priv->phydev); 686 687 /* Lock it down */ 688 spin_lock_irqsave(&priv->txlock, flags); 689 spin_lock(&priv->rxlock); 690 691 gfar_halt(dev); 692 693 spin_unlock(&priv->rxlock); 694 spin_unlock_irqrestore(&priv->txlock, flags); 695 696 /* Free the IRQs */ 697 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 698 free_irq(priv->interruptError, dev); 699 free_irq(priv->interruptTransmit, dev); 700 free_irq(priv->interruptReceive, dev); 701 } else { 702 free_irq(priv->interruptTransmit, dev); 703 } 704 705 free_skb_resources(priv); 706 707 dma_free_coherent(&dev->dev, 708 sizeof(struct txbd8)*priv->tx_ring_size 709 + sizeof(struct rxbd8)*priv->rx_ring_size, 710 priv->tx_bd_base, 711 gfar_read(&regs->tbase0)); 712} 713 714/* If there are any tx skbs or rx skbs still around, free them. 715 * Then free tx_skbuff and rx_skbuff */ 716static void free_skb_resources(struct gfar_private *priv) 717{ 718 struct rxbd8 *rxbdp; 719 struct txbd8 *txbdp; 720 int i; 721 722 /* Go through all the buffer descriptors and free their data buffers */ 723 txbdp = priv->tx_bd_base; 724 725 for (i = 0; i < priv->tx_ring_size; i++) { 726 727 if (priv->tx_skbuff[i]) { 728 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr, 729 txbdp->length, 730 DMA_TO_DEVICE); 731 dev_kfree_skb_any(priv->tx_skbuff[i]); 732 priv->tx_skbuff[i] = NULL; 733 } 734 735 txbdp++; 736 } 737 738 kfree(priv->tx_skbuff); 739 740 rxbdp = priv->rx_bd_base; 741 742 /* rx_skbuff is not guaranteed to be allocated, so only 743 * free it and its contents if it is allocated */ 744 if(priv->rx_skbuff != NULL) { 745 for (i = 0; i < priv->rx_ring_size; i++) { 746 if (priv->rx_skbuff[i]) { 747 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr, 748 priv->rx_buffer_size, 749 DMA_FROM_DEVICE); 750 751 dev_kfree_skb_any(priv->rx_skbuff[i]); 752 priv->rx_skbuff[i] = NULL; 753 } 754 755 rxbdp->status = 0; 756 rxbdp->length = 0; 757 rxbdp->bufPtr = 0; 758 759 rxbdp++; 760 } 761 762 kfree(priv->rx_skbuff); 763 } 764} 765 766void gfar_start(struct net_device *dev) 767{ 768 struct gfar_private *priv = netdev_priv(dev); 769 struct gfar __iomem *regs = priv->regs; 770 u32 tempval; 771 772 /* Enable Rx and Tx in MACCFG1 */ 773 tempval = gfar_read(&regs->maccfg1); 774 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 775 gfar_write(&regs->maccfg1, tempval); 776 777 /* Initialize DMACTRL to have WWR and WOP */ 778 tempval = gfar_read(&priv->regs->dmactrl); 779 tempval |= DMACTRL_INIT_SETTINGS; 780 gfar_write(&priv->regs->dmactrl, tempval); 781 782 /* Make sure we aren't stopped */ 783 tempval = gfar_read(&priv->regs->dmactrl); 784 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 785 gfar_write(&priv->regs->dmactrl, tempval); 786 787 /* Clear THLT/RHLT, so that the DMA starts polling now */ 788 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT); 789 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT); 790 791 /* Unmask the interrupts we look for */ 792 gfar_write(&regs->imask, IMASK_DEFAULT); 793} 794 795/* Bring the controller up and running */ 796int startup_gfar(struct net_device *dev) 797{ 798 struct txbd8 *txbdp; 799 struct rxbd8 *rxbdp; 800 dma_addr_t addr = 0; 801 unsigned long vaddr; 802 int i; 803 struct gfar_private *priv = netdev_priv(dev); 804 struct gfar __iomem *regs = priv->regs; 805 int err = 0; 806 u32 rctrl = 0; 807 u32 attrs = 0; 808 809 gfar_write(&regs->imask, IMASK_INIT_CLEAR); 810 811 /* Allocate memory for the buffer descriptors */ 812 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev, 813 sizeof (struct txbd8) * priv->tx_ring_size + 814 sizeof (struct rxbd8) * priv->rx_ring_size, 815 &addr, GFP_KERNEL); 816 817 if (vaddr == 0) { 818 if (netif_msg_ifup(priv)) 819 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n", 820 dev->name); 821 return -ENOMEM; 822 } 823 824 priv->tx_bd_base = (struct txbd8 *) vaddr; 825 826 /* enet DMA only understands physical addresses */ 827 gfar_write(&regs->tbase0, addr); 828 829 /* Start the rx descriptor ring where the tx ring leaves off */ 830 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size; 831 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size; 832 priv->rx_bd_base = (struct rxbd8 *) vaddr; 833 gfar_write(&regs->rbase0, addr); 834 835 /* Setup the skbuff rings */ 836 priv->tx_skbuff = 837 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * 838 priv->tx_ring_size, GFP_KERNEL); 839 840 if (NULL == priv->tx_skbuff) { 841 if (netif_msg_ifup(priv)) 842 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n", 843 dev->name); 844 err = -ENOMEM; 845 goto tx_skb_fail; 846 } 847 848 for (i = 0; i < priv->tx_ring_size; i++) 849 priv->tx_skbuff[i] = NULL; 850 851 priv->rx_skbuff = 852 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * 853 priv->rx_ring_size, GFP_KERNEL); 854 855 if (NULL == priv->rx_skbuff) { 856 if (netif_msg_ifup(priv)) 857 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n", 858 dev->name); 859 err = -ENOMEM; 860 goto rx_skb_fail; 861 } 862 863 for (i = 0; i < priv->rx_ring_size; i++) 864 priv->rx_skbuff[i] = NULL; 865 866 /* Initialize some variables in our dev structure */ 867 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base; 868 priv->cur_rx = priv->rx_bd_base; 869 priv->skb_curtx = priv->skb_dirtytx = 0; 870 priv->skb_currx = 0; 871 872 /* Initialize Transmit Descriptor Ring */ 873 txbdp = priv->tx_bd_base; 874 for (i = 0; i < priv->tx_ring_size; i++) { 875 txbdp->status = 0; 876 txbdp->length = 0; 877 txbdp->bufPtr = 0; 878 txbdp++; 879 } 880 881 /* Set the last descriptor in the ring to indicate wrap */ 882 txbdp--; 883 txbdp->status |= TXBD_WRAP; 884 885 rxbdp = priv->rx_bd_base; 886 for (i = 0; i < priv->rx_ring_size; i++) { 887 struct sk_buff *skb; 888 889 skb = gfar_new_skb(dev); 890 891 if (!skb) { 892 printk(KERN_ERR "%s: Can't allocate RX buffers\n", 893 dev->name); 894 895 goto err_rxalloc_fail; 896 } 897 898 priv->rx_skbuff[i] = skb; 899 900 gfar_new_rxbdp(dev, rxbdp, skb); 901 902 rxbdp++; 903 } 904 905 /* Set the last descriptor in the ring to wrap */ 906 rxbdp--; 907 rxbdp->status |= RXBD_WRAP; 908 909 /* If the device has multiple interrupts, register for 910 * them. Otherwise, only register for the one */ 911 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 912 /* Install our interrupt handlers for Error, 913 * Transmit, and Receive */ 914 if (request_irq(priv->interruptError, gfar_error, 915 0, "enet_error", dev) < 0) { 916 if (netif_msg_intr(priv)) 917 printk(KERN_ERR "%s: Can't get IRQ %d\n", 918 dev->name, priv->interruptError); 919 920 err = -1; 921 goto err_irq_fail; 922 } 923 924 if (request_irq(priv->interruptTransmit, gfar_transmit, 925 0, "enet_tx", dev) < 0) { 926 if (netif_msg_intr(priv)) 927 printk(KERN_ERR "%s: Can't get IRQ %d\n", 928 dev->name, priv->interruptTransmit); 929 930 err = -1; 931 932 goto tx_irq_fail; 933 } 934 935 if (request_irq(priv->interruptReceive, gfar_receive, 936 0, "enet_rx", dev) < 0) { 937 if (netif_msg_intr(priv)) 938 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n", 939 dev->name, priv->interruptReceive); 940 941 err = -1; 942 goto rx_irq_fail; 943 } 944 } else { 945 if (request_irq(priv->interruptTransmit, gfar_interrupt, 946 0, "gfar_interrupt", dev) < 0) { 947 if (netif_msg_intr(priv)) 948 printk(KERN_ERR "%s: Can't get IRQ %d\n", 949 dev->name, priv->interruptError); 950 951 err = -1; 952 goto err_irq_fail; 953 } 954 } 955 956 phy_start(priv->phydev); 957 958 /* Configure the coalescing support */ 959 if (priv->txcoalescing) 960 gfar_write(&regs->txic, 961 mk_ic_value(priv->txcount, priv->txtime)); 962 else 963 gfar_write(&regs->txic, 0); 964 965 if (priv->rxcoalescing) 966 gfar_write(&regs->rxic, 967 mk_ic_value(priv->rxcount, priv->rxtime)); 968 else 969 gfar_write(&regs->rxic, 0); 970 971 if (priv->rx_csum_enable) 972 rctrl |= RCTRL_CHECKSUMMING; 973 974 if (priv->extended_hash) { 975 rctrl |= RCTRL_EXTHASH; 976 977 gfar_clear_exact_match(dev); 978 rctrl |= RCTRL_EMEN; 979 } 980 981 if (priv->vlan_enable) 982 rctrl |= RCTRL_VLAN; 983 984 if (priv->padding) { 985 rctrl &= ~RCTRL_PAL_MASK; 986 rctrl |= RCTRL_PADDING(priv->padding); 987 } 988 989 /* Init rctrl based on our settings */ 990 gfar_write(&priv->regs->rctrl, rctrl); 991 992 if (dev->features & NETIF_F_IP_CSUM) 993 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM); 994 995 /* Set the extraction length and index */ 996 attrs = ATTRELI_EL(priv->rx_stash_size) | 997 ATTRELI_EI(priv->rx_stash_index); 998 999 gfar_write(&priv->regs->attreli, attrs); 1000 1001 /* Start with defaults, and add stashing or locking 1002 * depending on the approprate variables */ 1003 attrs = ATTR_INIT_SETTINGS; 1004 1005 if (priv->bd_stash_en) 1006 attrs |= ATTR_BDSTASH; 1007 1008 if (priv->rx_stash_size != 0) 1009 attrs |= ATTR_BUFSTASH; 1010 1011 gfar_write(&priv->regs->attr, attrs); 1012 1013 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold); 1014 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve); 1015 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off); 1016 1017 /* Start the controller */ 1018 gfar_start(dev); 1019 1020 return 0; 1021 1022rx_irq_fail: 1023 free_irq(priv->interruptTransmit, dev); 1024tx_irq_fail: 1025 free_irq(priv->interruptError, dev); 1026err_irq_fail: 1027err_rxalloc_fail: 1028rx_skb_fail: 1029 free_skb_resources(priv); 1030tx_skb_fail: 1031 dma_free_coherent(&dev->dev, 1032 sizeof(struct txbd8)*priv->tx_ring_size 1033 + sizeof(struct rxbd8)*priv->rx_ring_size, 1034 priv->tx_bd_base, 1035 gfar_read(&regs->tbase0)); 1036 1037 return err; 1038} 1039 1040/* Called when something needs to use the ethernet device */ 1041/* Returns 0 for success. */ 1042static int gfar_enet_open(struct net_device *dev) 1043{ 1044 struct gfar_private *priv = netdev_priv(dev); 1045 int err; 1046 1047 napi_enable(&priv->napi); 1048 1049 /* Initialize a bunch of registers */ 1050 init_registers(dev); 1051 1052 gfar_set_mac_address(dev); 1053 1054 err = init_phy(dev); 1055 1056 if(err) { 1057 napi_disable(&priv->napi); 1058 return err; 1059 } 1060 1061 err = startup_gfar(dev); 1062 if (err) { 1063 napi_disable(&priv->napi); 1064 return err; 1065 } 1066 1067 netif_start_queue(dev); 1068 1069 return err; 1070} 1071 1072static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp) 1073{ 1074 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN); 1075 1076 memset(fcb, 0, GMAC_FCB_LEN); 1077 1078 return fcb; 1079} 1080 1081static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb) 1082{ 1083 u8 flags = 0; 1084 1085 /* If we're here, it's a IP packet with a TCP or UDP 1086 * payload. We set it to checksum, using a pseudo-header 1087 * we provide 1088 */ 1089 flags = TXFCB_DEFAULT; 1090 1091 /* Tell the controller what the protocol is */ 1092 /* And provide the already calculated phcs */ 1093 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1094 flags |= TXFCB_UDP; 1095 fcb->phcs = udp_hdr(skb)->check; 1096 } else 1097 fcb->phcs = tcp_hdr(skb)->check; 1098 1099 /* l3os is the distance between the start of the 1100 * frame (skb->data) and the start of the IP hdr. 1101 * l4os is the distance between the start of the 1102 * l3 hdr and the l4 hdr */ 1103 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN); 1104 fcb->l4os = skb_network_header_len(skb); 1105 1106 fcb->flags = flags; 1107} 1108 1109void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1110{ 1111 fcb->flags |= TXFCB_VLN; 1112 fcb->vlctl = vlan_tx_tag_get(skb); 1113} 1114 1115/* This is called by the kernel when a frame is ready for transmission. */ 1116/* It is pointed to by the dev->hard_start_xmit function pointer */ 1117static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1118{ 1119 struct gfar_private *priv = netdev_priv(dev); 1120 struct txfcb *fcb = NULL; 1121 struct txbd8 *txbdp; 1122 u16 status; 1123 unsigned long flags; 1124 1125 /* Update transmit stats */ 1126 dev->stats.tx_bytes += skb->len; 1127 1128 /* Lock priv now */ 1129 spin_lock_irqsave(&priv->txlock, flags); 1130 1131 /* Point at the first free tx descriptor */ 1132 txbdp = priv->cur_tx; 1133 1134 /* Clear all but the WRAP status flags */ 1135 status = txbdp->status & TXBD_WRAP; 1136 1137 /* Set up checksumming */ 1138 if (likely((dev->features & NETIF_F_IP_CSUM) 1139 && (CHECKSUM_PARTIAL == skb->ip_summed))) { 1140 fcb = gfar_add_fcb(skb, txbdp); 1141 status |= TXBD_TOE; 1142 gfar_tx_checksum(skb, fcb); 1143 } 1144 1145 if (priv->vlan_enable && 1146 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) { 1147 if (unlikely(NULL == fcb)) { 1148 fcb = gfar_add_fcb(skb, txbdp); 1149 status |= TXBD_TOE; 1150 } 1151 1152 gfar_tx_vlan(skb, fcb); 1153 } 1154 1155 /* Set buffer length and pointer */ 1156 txbdp->length = skb->len; 1157 txbdp->bufPtr = dma_map_single(&dev->dev, skb->data, 1158 skb->len, DMA_TO_DEVICE); 1159 1160 /* Save the skb pointer so we can free it later */ 1161 priv->tx_skbuff[priv->skb_curtx] = skb; 1162 1163 /* Update the current skb pointer (wrapping if this was the last) */ 1164 priv->skb_curtx = 1165 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size); 1166 1167 /* Flag the BD as interrupt-causing */ 1168 status |= TXBD_INTERRUPT; 1169 1170 /* Flag the BD as ready to go, last in frame, and */ 1171 /* in need of CRC */ 1172 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC); 1173 1174 dev->trans_start = jiffies; 1175 1176 /* The powerpc-specific eieio() is used, as wmb() has too strong 1177 * semantics (it requires synchronization between cacheable and 1178 * uncacheable mappings, which eieio doesn't provide and which we 1179 * don't need), thus requiring a more expensive sync instruction. At 1180 * some point, the set of architecture-independent barrier functions 1181 * should be expanded to include weaker barriers. 1182 */ 1183 1184 eieio(); 1185 txbdp->status = status; 1186 1187 /* If this was the last BD in the ring, the next one */ 1188 /* is at the beginning of the ring */ 1189 if (txbdp->status & TXBD_WRAP) 1190 txbdp = priv->tx_bd_base; 1191 else 1192 txbdp++; 1193 1194 /* If the next BD still needs to be cleaned up, then the bds 1195 are full. We need to tell the kernel to stop sending us stuff. */ 1196 if (txbdp == priv->dirty_tx) { 1197 netif_stop_queue(dev); 1198 1199 dev->stats.tx_fifo_errors++; 1200 } 1201 1202 /* Update the current txbd to the next one */ 1203 priv->cur_tx = txbdp; 1204 1205 /* Tell the DMA to go go go */ 1206 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); 1207 1208 /* Unlock priv */ 1209 spin_unlock_irqrestore(&priv->txlock, flags); 1210 1211 return 0; 1212} 1213 1214/* Stops the kernel queue, and halts the controller */ 1215static int gfar_close(struct net_device *dev) 1216{ 1217 struct gfar_private *priv = netdev_priv(dev); 1218 1219 napi_disable(&priv->napi); 1220 1221 stop_gfar(dev); 1222 1223 /* Disconnect from the PHY */ 1224 phy_disconnect(priv->phydev); 1225 priv->phydev = NULL; 1226 1227 netif_stop_queue(dev); 1228 1229 return 0; 1230} 1231 1232/* Changes the mac address if the controller is not running. */ 1233static int gfar_set_mac_address(struct net_device *dev) 1234{ 1235 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 1236 1237 return 0; 1238} 1239 1240 1241/* Enables and disables VLAN insertion/extraction */ 1242static void gfar_vlan_rx_register(struct net_device *dev, 1243 struct vlan_group *grp) 1244{ 1245 struct gfar_private *priv = netdev_priv(dev); 1246 unsigned long flags; 1247 u32 tempval; 1248 1249 spin_lock_irqsave(&priv->rxlock, flags); 1250 1251 priv->vlgrp = grp; 1252 1253 if (grp) { 1254 /* Enable VLAN tag insertion */ 1255 tempval = gfar_read(&priv->regs->tctrl); 1256 tempval |= TCTRL_VLINS; 1257 1258 gfar_write(&priv->regs->tctrl, tempval); 1259 1260 /* Enable VLAN tag extraction */ 1261 tempval = gfar_read(&priv->regs->rctrl); 1262 tempval |= RCTRL_VLEX; 1263 gfar_write(&priv->regs->rctrl, tempval); 1264 } else { 1265 /* Disable VLAN tag insertion */ 1266 tempval = gfar_read(&priv->regs->tctrl); 1267 tempval &= ~TCTRL_VLINS; 1268 gfar_write(&priv->regs->tctrl, tempval); 1269 1270 /* Disable VLAN tag extraction */ 1271 tempval = gfar_read(&priv->regs->rctrl); 1272 tempval &= ~RCTRL_VLEX; 1273 gfar_write(&priv->regs->rctrl, tempval); 1274 } 1275 1276 spin_unlock_irqrestore(&priv->rxlock, flags); 1277} 1278 1279static int gfar_change_mtu(struct net_device *dev, int new_mtu) 1280{ 1281 int tempsize, tempval; 1282 struct gfar_private *priv = netdev_priv(dev); 1283 int oldsize = priv->rx_buffer_size; 1284 int frame_size = new_mtu + ETH_HLEN; 1285 1286 if (priv->vlan_enable) 1287 frame_size += VLAN_HLEN; 1288 1289 if (gfar_uses_fcb(priv)) 1290 frame_size += GMAC_FCB_LEN; 1291 1292 frame_size += priv->padding; 1293 1294 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 1295 if (netif_msg_drv(priv)) 1296 printk(KERN_ERR "%s: Invalid MTU setting\n", 1297 dev->name); 1298 return -EINVAL; 1299 } 1300 1301 tempsize = 1302 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 1303 INCREMENTAL_BUFFER_SIZE; 1304 1305 /* Only stop and start the controller if it isn't already 1306 * stopped, and we changed something */ 1307 if ((oldsize != tempsize) && (dev->flags & IFF_UP)) 1308 stop_gfar(dev); 1309 1310 priv->rx_buffer_size = tempsize; 1311 1312 dev->mtu = new_mtu; 1313 1314 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); 1315 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size); 1316 1317 /* If the mtu is larger than the max size for standard 1318 * ethernet frames (ie, a jumbo frame), then set maccfg2 1319 * to allow huge frames, and to check the length */ 1320 tempval = gfar_read(&priv->regs->maccfg2); 1321 1322 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE) 1323 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); 1324 else 1325 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); 1326 1327 gfar_write(&priv->regs->maccfg2, tempval); 1328 1329 if ((oldsize != tempsize) && (dev->flags & IFF_UP)) 1330 startup_gfar(dev); 1331 1332 return 0; 1333} 1334 1335/* gfar_timeout gets called when a packet has not been 1336 * transmitted after a set amount of time. 1337 * For now, assume that clearing out all the structures, and 1338 * starting over will fix the problem. */ 1339static void gfar_timeout(struct net_device *dev) 1340{ 1341 dev->stats.tx_errors++; 1342 1343 if (dev->flags & IFF_UP) { 1344 stop_gfar(dev); 1345 startup_gfar(dev); 1346 } 1347 1348 netif_tx_schedule_all(dev); 1349} 1350 1351/* Interrupt Handler for Transmit complete */ 1352static int gfar_clean_tx_ring(struct net_device *dev) 1353{ 1354 struct txbd8 *bdp; 1355 struct gfar_private *priv = netdev_priv(dev); 1356 int howmany = 0; 1357 1358 bdp = priv->dirty_tx; 1359 while ((bdp->status & TXBD_READY) == 0) { 1360 /* If dirty_tx and cur_tx are the same, then either the */ 1361 /* ring is empty or full now (it could only be full in the beginning, */ 1362 /* obviously). If it is empty, we are done. */ 1363 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0)) 1364 break; 1365 1366 howmany++; 1367 1368 /* Deferred means some collisions occurred during transmit, */ 1369 /* but we eventually sent the packet. */ 1370 if (bdp->status & TXBD_DEF) 1371 dev->stats.collisions++; 1372 1373 /* Free the sk buffer associated with this TxBD */ 1374 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]); 1375 1376 priv->tx_skbuff[priv->skb_dirtytx] = NULL; 1377 priv->skb_dirtytx = 1378 (priv->skb_dirtytx + 1379 1) & TX_RING_MOD_MASK(priv->tx_ring_size); 1380 1381 /* Clean BD length for empty detection */ 1382 bdp->length = 0; 1383 1384 /* update bdp to point at next bd in the ring (wrapping if necessary) */ 1385 if (bdp->status & TXBD_WRAP) 1386 bdp = priv->tx_bd_base; 1387 else 1388 bdp++; 1389 1390 /* Move dirty_tx to be the next bd */ 1391 priv->dirty_tx = bdp; 1392 1393 /* We freed a buffer, so now we can restart transmission */ 1394 if (netif_queue_stopped(dev)) 1395 netif_wake_queue(dev); 1396 } /* while ((bdp->status & TXBD_READY) == 0) */ 1397 1398 dev->stats.tx_packets += howmany; 1399 1400 return howmany; 1401} 1402 1403/* Interrupt Handler for Transmit complete */ 1404static irqreturn_t gfar_transmit(int irq, void *dev_id) 1405{ 1406 struct net_device *dev = (struct net_device *) dev_id; 1407 struct gfar_private *priv = netdev_priv(dev); 1408 1409 /* Clear IEVENT */ 1410 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK); 1411 1412 /* Lock priv */ 1413 spin_lock(&priv->txlock); 1414 1415 gfar_clean_tx_ring(dev); 1416 1417 /* If we are coalescing the interrupts, reset the timer */ 1418 /* Otherwise, clear it */ 1419 if (likely(priv->txcoalescing)) { 1420 gfar_write(&priv->regs->txic, 0); 1421 gfar_write(&priv->regs->txic, 1422 mk_ic_value(priv->txcount, priv->txtime)); 1423 } 1424 1425 spin_unlock(&priv->txlock); 1426 1427 return IRQ_HANDLED; 1428} 1429 1430static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp, 1431 struct sk_buff *skb) 1432{ 1433 struct gfar_private *priv = netdev_priv(dev); 1434 u32 * status_len = (u32 *)bdp; 1435 u16 flags; 1436 1437 bdp->bufPtr = dma_map_single(&dev->dev, skb->data, 1438 priv->rx_buffer_size, DMA_FROM_DEVICE); 1439 1440 flags = RXBD_EMPTY | RXBD_INTERRUPT; 1441 1442 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1) 1443 flags |= RXBD_WRAP; 1444 1445 eieio(); 1446 1447 *status_len = (u32)flags << 16; 1448} 1449 1450 1451struct sk_buff * gfar_new_skb(struct net_device *dev) 1452{ 1453 unsigned int alignamount; 1454 struct gfar_private *priv = netdev_priv(dev); 1455 struct sk_buff *skb = NULL; 1456 1457 /* We have to allocate the skb, so keep trying till we succeed */ 1458 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); 1459 1460 if (!skb) 1461 return NULL; 1462 1463 alignamount = RXBUF_ALIGNMENT - 1464 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)); 1465 1466 /* We need the data buffer to be aligned properly. We will reserve 1467 * as many bytes as needed to align the data properly 1468 */ 1469 skb_reserve(skb, alignamount); 1470 1471 return skb; 1472} 1473 1474static inline void count_errors(unsigned short status, struct net_device *dev) 1475{ 1476 struct gfar_private *priv = netdev_priv(dev); 1477 struct net_device_stats *stats = &dev->stats; 1478 struct gfar_extra_stats *estats = &priv->extra_stats; 1479 1480 /* If the packet was truncated, none of the other errors 1481 * matter */ 1482 if (status & RXBD_TRUNCATED) { 1483 stats->rx_length_errors++; 1484 1485 estats->rx_trunc++; 1486 1487 return; 1488 } 1489 /* Count the errors, if there were any */ 1490 if (status & (RXBD_LARGE | RXBD_SHORT)) { 1491 stats->rx_length_errors++; 1492 1493 if (status & RXBD_LARGE) 1494 estats->rx_large++; 1495 else 1496 estats->rx_short++; 1497 } 1498 if (status & RXBD_NONOCTET) { 1499 stats->rx_frame_errors++; 1500 estats->rx_nonoctet++; 1501 } 1502 if (status & RXBD_CRCERR) { 1503 estats->rx_crcerr++; 1504 stats->rx_crc_errors++; 1505 } 1506 if (status & RXBD_OVERRUN) { 1507 estats->rx_overrun++; 1508 stats->rx_crc_errors++; 1509 } 1510} 1511 1512irqreturn_t gfar_receive(int irq, void *dev_id) 1513{ 1514 struct net_device *dev = (struct net_device *) dev_id; 1515 struct gfar_private *priv = netdev_priv(dev); 1516 u32 tempval; 1517 1518 /* support NAPI */ 1519 /* Clear IEVENT, so interrupts aren't called again 1520 * because of the packets that have already arrived */ 1521 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK); 1522 1523 if (netif_rx_schedule_prep(dev, &priv->napi)) { 1524 tempval = gfar_read(&priv->regs->imask); 1525 tempval &= IMASK_RTX_DISABLED; 1526 gfar_write(&priv->regs->imask, tempval); 1527 1528 __netif_rx_schedule(dev, &priv->napi); 1529 } else { 1530 if (netif_msg_rx_err(priv)) 1531 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n", 1532 dev->name, gfar_read(&priv->regs->ievent), 1533 gfar_read(&priv->regs->imask)); 1534 } 1535 1536 return IRQ_HANDLED; 1537} 1538 1539static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 1540{ 1541 /* If valid headers were found, and valid sums 1542 * were verified, then we tell the kernel that no 1543 * checksumming is necessary. Otherwise, it is */ 1544 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) 1545 skb->ip_summed = CHECKSUM_UNNECESSARY; 1546 else 1547 skb->ip_summed = CHECKSUM_NONE; 1548} 1549 1550 1551static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb) 1552{ 1553 struct rxfcb *fcb = (struct rxfcb *)skb->data; 1554 1555 /* Remove the FCB from the skb */ 1556 skb_pull(skb, GMAC_FCB_LEN); 1557 1558 return fcb; 1559} 1560 1561/* gfar_process_frame() -- handle one incoming packet if skb 1562 * isn't NULL. */ 1563static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 1564 int length) 1565{ 1566 struct gfar_private *priv = netdev_priv(dev); 1567 struct rxfcb *fcb = NULL; 1568 1569 if (NULL == skb) { 1570 if (netif_msg_rx_err(priv)) 1571 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name); 1572 dev->stats.rx_dropped++; 1573 priv->extra_stats.rx_skbmissing++; 1574 } else { 1575 int ret; 1576 1577 /* Prep the skb for the packet */ 1578 skb_put(skb, length); 1579 1580 /* Grab the FCB if there is one */ 1581 if (gfar_uses_fcb(priv)) 1582 fcb = gfar_get_fcb(skb); 1583 1584 /* Remove the padded bytes, if there are any */ 1585 if (priv->padding) 1586 skb_pull(skb, priv->padding); 1587 1588 if (priv->rx_csum_enable) 1589 gfar_rx_checksum(skb, fcb); 1590 1591 /* Tell the skb what kind of packet this is */ 1592 skb->protocol = eth_type_trans(skb, dev); 1593 1594 /* Send the packet up the stack */ 1595 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) { 1596 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, 1597 fcb->vlctl); 1598 } else 1599 ret = netif_receive_skb(skb); 1600 1601 if (NET_RX_DROP == ret) 1602 priv->extra_stats.kernel_dropped++; 1603 } 1604 1605 return 0; 1606} 1607 1608/* gfar_clean_rx_ring() -- Processes each frame in the rx ring 1609 * until the budget/quota has been reached. Returns the number 1610 * of frames handled 1611 */ 1612int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit) 1613{ 1614 struct rxbd8 *bdp; 1615 struct sk_buff *skb; 1616 u16 pkt_len; 1617 int howmany = 0; 1618 struct gfar_private *priv = netdev_priv(dev); 1619 1620 /* Get the first full descriptor */ 1621 bdp = priv->cur_rx; 1622 1623 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { 1624 struct sk_buff *newskb; 1625 rmb(); 1626 1627 /* Add another skb for the future */ 1628 newskb = gfar_new_skb(dev); 1629 1630 skb = priv->rx_skbuff[priv->skb_currx]; 1631 1632 /* We drop the frame if we failed to allocate a new buffer */ 1633 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || 1634 bdp->status & RXBD_ERR)) { 1635 count_errors(bdp->status, dev); 1636 1637 if (unlikely(!newskb)) 1638 newskb = skb; 1639 1640 if (skb) { 1641 dma_unmap_single(&priv->dev->dev, 1642 bdp->bufPtr, 1643 priv->rx_buffer_size, 1644 DMA_FROM_DEVICE); 1645 1646 dev_kfree_skb_any(skb); 1647 } 1648 } else { 1649 /* Increment the number of packets */ 1650 dev->stats.rx_packets++; 1651 howmany++; 1652 1653 /* Remove the FCS from the packet length */ 1654 pkt_len = bdp->length - 4; 1655 1656 gfar_process_frame(dev, skb, pkt_len); 1657 1658 dev->stats.rx_bytes += pkt_len; 1659 } 1660 1661 dev->last_rx = jiffies; 1662 1663 priv->rx_skbuff[priv->skb_currx] = newskb; 1664 1665 /* Setup the new bdp */ 1666 gfar_new_rxbdp(dev, bdp, newskb); 1667 1668 /* Update to the next pointer */ 1669 if (bdp->status & RXBD_WRAP) 1670 bdp = priv->rx_bd_base; 1671 else 1672 bdp++; 1673 1674 /* update to point at the next skb */ 1675 priv->skb_currx = 1676 (priv->skb_currx + 1) & 1677 RX_RING_MOD_MASK(priv->rx_ring_size); 1678 } 1679 1680 /* Update the current rxbd pointer to be the next one */ 1681 priv->cur_rx = bdp; 1682 1683 return howmany; 1684} 1685 1686static int gfar_poll(struct napi_struct *napi, int budget) 1687{ 1688 struct gfar_private *priv = container_of(napi, struct gfar_private, napi); 1689 struct net_device *dev = priv->dev; 1690 int howmany; 1691 unsigned long flags; 1692 1693 /* If we fail to get the lock, don't bother with the TX BDs */ 1694 if (spin_trylock_irqsave(&priv->txlock, flags)) { 1695 gfar_clean_tx_ring(dev); 1696 spin_unlock_irqrestore(&priv->txlock, flags); 1697 } 1698 1699 howmany = gfar_clean_rx_ring(dev, budget); 1700 1701 if (howmany < budget) { 1702 netif_rx_complete(dev, napi); 1703 1704 /* Clear the halt bit in RSTAT */ 1705 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); 1706 1707 gfar_write(&priv->regs->imask, IMASK_DEFAULT); 1708 1709 /* If we are coalescing interrupts, update the timer */ 1710 /* Otherwise, clear it */ 1711 if (likely(priv->rxcoalescing)) { 1712 gfar_write(&priv->regs->rxic, 0); 1713 gfar_write(&priv->regs->rxic, 1714 mk_ic_value(priv->rxcount, priv->rxtime)); 1715 } 1716 } 1717 1718 return howmany; 1719} 1720 1721#ifdef CONFIG_NET_POLL_CONTROLLER 1722/* 1723 * Polling 'interrupt' - used by things like netconsole to send skbs 1724 * without having to re-enable interrupts. It's not called while 1725 * the interrupt routine is executing. 1726 */ 1727static void gfar_netpoll(struct net_device *dev) 1728{ 1729 struct gfar_private *priv = netdev_priv(dev); 1730 1731 /* If the device has multiple interrupts, run tx/rx */ 1732 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1733 disable_irq(priv->interruptTransmit); 1734 disable_irq(priv->interruptReceive); 1735 disable_irq(priv->interruptError); 1736 gfar_interrupt(priv->interruptTransmit, dev); 1737 enable_irq(priv->interruptError); 1738 enable_irq(priv->interruptReceive); 1739 enable_irq(priv->interruptTransmit); 1740 } else { 1741 disable_irq(priv->interruptTransmit); 1742 gfar_interrupt(priv->interruptTransmit, dev); 1743 enable_irq(priv->interruptTransmit); 1744 } 1745} 1746#endif 1747 1748/* The interrupt handler for devices with one interrupt */ 1749static irqreturn_t gfar_interrupt(int irq, void *dev_id) 1750{ 1751 struct net_device *dev = dev_id; 1752 struct gfar_private *priv = netdev_priv(dev); 1753 1754 /* Save ievent for future reference */ 1755 u32 events = gfar_read(&priv->regs->ievent); 1756 1757 /* Check for reception */ 1758 if (events & IEVENT_RX_MASK) 1759 gfar_receive(irq, dev_id); 1760 1761 /* Check for transmit completion */ 1762 if (events & IEVENT_TX_MASK) 1763 gfar_transmit(irq, dev_id); 1764 1765 /* Check for errors */ 1766 if (events & IEVENT_ERR_MASK) 1767 gfar_error(irq, dev_id); 1768 1769 return IRQ_HANDLED; 1770} 1771 1772/* Called every time the controller might need to be made 1773 * aware of new link state. The PHY code conveys this 1774 * information through variables in the phydev structure, and this 1775 * function converts those variables into the appropriate 1776 * register values, and can bring down the device if needed. 1777 */ 1778static void adjust_link(struct net_device *dev) 1779{ 1780 struct gfar_private *priv = netdev_priv(dev); 1781 struct gfar __iomem *regs = priv->regs; 1782 unsigned long flags; 1783 struct phy_device *phydev = priv->phydev; 1784 int new_state = 0; 1785 1786 spin_lock_irqsave(&priv->txlock, flags); 1787 if (phydev->link) { 1788 u32 tempval = gfar_read(&regs->maccfg2); 1789 u32 ecntrl = gfar_read(&regs->ecntrl); 1790 1791 /* Now we make sure that we can be in full duplex mode. 1792 * If not, we operate in half-duplex mode. */ 1793 if (phydev->duplex != priv->oldduplex) { 1794 new_state = 1; 1795 if (!(phydev->duplex)) 1796 tempval &= ~(MACCFG2_FULL_DUPLEX); 1797 else 1798 tempval |= MACCFG2_FULL_DUPLEX; 1799 1800 priv->oldduplex = phydev->duplex; 1801 } 1802 1803 if (phydev->speed != priv->oldspeed) { 1804 new_state = 1; 1805 switch (phydev->speed) { 1806 case 1000: 1807 tempval = 1808 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1809 break; 1810 case 100: 1811 case 10: 1812 tempval = 1813 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1814 1815 /* Reduced mode distinguishes 1816 * between 10 and 100 */ 1817 if (phydev->speed == SPEED_100) 1818 ecntrl |= ECNTRL_R100; 1819 else 1820 ecntrl &= ~(ECNTRL_R100); 1821 break; 1822 default: 1823 if (netif_msg_link(priv)) 1824 printk(KERN_WARNING 1825 "%s: Ack! Speed (%d) is not 10/100/1000!\n", 1826 dev->name, phydev->speed); 1827 break; 1828 } 1829 1830 priv->oldspeed = phydev->speed; 1831 } 1832 1833 gfar_write(&regs->maccfg2, tempval); 1834 gfar_write(&regs->ecntrl, ecntrl); 1835 1836 if (!priv->oldlink) { 1837 new_state = 1; 1838 priv->oldlink = 1; 1839 } 1840 } else if (priv->oldlink) { 1841 new_state = 1; 1842 priv->oldlink = 0; 1843 priv->oldspeed = 0; 1844 priv->oldduplex = -1; 1845 } 1846 1847 if (new_state && netif_msg_link(priv)) 1848 phy_print_status(phydev); 1849 1850 spin_unlock_irqrestore(&priv->txlock, flags); 1851} 1852 1853/* Update the hash table based on the current list of multicast 1854 * addresses we subscribe to. Also, change the promiscuity of 1855 * the device based on the flags (this function is called 1856 * whenever dev->flags is changed */ 1857static void gfar_set_multi(struct net_device *dev) 1858{ 1859 struct dev_mc_list *mc_ptr; 1860 struct gfar_private *priv = netdev_priv(dev); 1861 struct gfar __iomem *regs = priv->regs; 1862 u32 tempval; 1863 1864 if(dev->flags & IFF_PROMISC) { 1865 /* Set RCTRL to PROM */ 1866 tempval = gfar_read(&regs->rctrl); 1867 tempval |= RCTRL_PROM; 1868 gfar_write(&regs->rctrl, tempval); 1869 } else { 1870 /* Set RCTRL to not PROM */ 1871 tempval = gfar_read(&regs->rctrl); 1872 tempval &= ~(RCTRL_PROM); 1873 gfar_write(&regs->rctrl, tempval); 1874 } 1875 1876 if(dev->flags & IFF_ALLMULTI) { 1877 /* Set the hash to rx all multicast frames */ 1878 gfar_write(&regs->igaddr0, 0xffffffff); 1879 gfar_write(&regs->igaddr1, 0xffffffff); 1880 gfar_write(&regs->igaddr2, 0xffffffff); 1881 gfar_write(&regs->igaddr3, 0xffffffff); 1882 gfar_write(&regs->igaddr4, 0xffffffff); 1883 gfar_write(&regs->igaddr5, 0xffffffff); 1884 gfar_write(&regs->igaddr6, 0xffffffff); 1885 gfar_write(&regs->igaddr7, 0xffffffff); 1886 gfar_write(&regs->gaddr0, 0xffffffff); 1887 gfar_write(&regs->gaddr1, 0xffffffff); 1888 gfar_write(&regs->gaddr2, 0xffffffff); 1889 gfar_write(&regs->gaddr3, 0xffffffff); 1890 gfar_write(&regs->gaddr4, 0xffffffff); 1891 gfar_write(&regs->gaddr5, 0xffffffff); 1892 gfar_write(&regs->gaddr6, 0xffffffff); 1893 gfar_write(&regs->gaddr7, 0xffffffff); 1894 } else { 1895 int em_num; 1896 int idx; 1897 1898 /* zero out the hash */ 1899 gfar_write(&regs->igaddr0, 0x0); 1900 gfar_write(&regs->igaddr1, 0x0); 1901 gfar_write(&regs->igaddr2, 0x0); 1902 gfar_write(&regs->igaddr3, 0x0); 1903 gfar_write(&regs->igaddr4, 0x0); 1904 gfar_write(&regs->igaddr5, 0x0); 1905 gfar_write(&regs->igaddr6, 0x0); 1906 gfar_write(&regs->igaddr7, 0x0); 1907 gfar_write(&regs->gaddr0, 0x0); 1908 gfar_write(&regs->gaddr1, 0x0); 1909 gfar_write(&regs->gaddr2, 0x0); 1910 gfar_write(&regs->gaddr3, 0x0); 1911 gfar_write(&regs->gaddr4, 0x0); 1912 gfar_write(&regs->gaddr5, 0x0); 1913 gfar_write(&regs->gaddr6, 0x0); 1914 gfar_write(&regs->gaddr7, 0x0); 1915 1916 /* If we have extended hash tables, we need to 1917 * clear the exact match registers to prepare for 1918 * setting them */ 1919 if (priv->extended_hash) { 1920 em_num = GFAR_EM_NUM + 1; 1921 gfar_clear_exact_match(dev); 1922 idx = 1; 1923 } else { 1924 idx = 0; 1925 em_num = 0; 1926 } 1927 1928 if(dev->mc_count == 0) 1929 return; 1930 1931 /* Parse the list, and set the appropriate bits */ 1932 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { 1933 if (idx < em_num) { 1934 gfar_set_mac_for_addr(dev, idx, 1935 mc_ptr->dmi_addr); 1936 idx++; 1937 } else 1938 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr); 1939 } 1940 } 1941 1942 return; 1943} 1944 1945 1946/* Clears each of the exact match registers to zero, so they 1947 * don't interfere with normal reception */ 1948static void gfar_clear_exact_match(struct net_device *dev) 1949{ 1950 int idx; 1951 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0}; 1952 1953 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++) 1954 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr); 1955} 1956 1957/* Set the appropriate hash bit for the given addr */ 1958/* The algorithm works like so: 1959 * 1) Take the Destination Address (ie the multicast address), and 1960 * do a CRC on it (little endian), and reverse the bits of the 1961 * result. 1962 * 2) Use the 8 most significant bits as a hash into a 256-entry 1963 * table. The table is controlled through 8 32-bit registers: 1964 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 1965 * gaddr7. This means that the 3 most significant bits in the 1966 * hash index which gaddr register to use, and the 5 other bits 1967 * indicate which bit (assuming an IBM numbering scheme, which 1968 * for PowerPC (tm) is usually the case) in the register holds 1969 * the entry. */ 1970static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 1971{ 1972 u32 tempval; 1973 struct gfar_private *priv = netdev_priv(dev); 1974 u32 result = ether_crc(MAC_ADDR_LEN, addr); 1975 int width = priv->hash_width; 1976 u8 whichbit = (result >> (32 - width)) & 0x1f; 1977 u8 whichreg = result >> (32 - width + 5); 1978 u32 value = (1 << (31-whichbit)); 1979 1980 tempval = gfar_read(priv->hash_regs[whichreg]); 1981 tempval |= value; 1982 gfar_write(priv->hash_regs[whichreg], tempval); 1983 1984 return; 1985} 1986 1987 1988/* There are multiple MAC Address register pairs on some controllers 1989 * This function sets the numth pair to a given address 1990 */ 1991static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr) 1992{ 1993 struct gfar_private *priv = netdev_priv(dev); 1994 int idx; 1995 char tmpbuf[MAC_ADDR_LEN]; 1996 u32 tempval; 1997 u32 __iomem *macptr = &priv->regs->macstnaddr1; 1998 1999 macptr += num*2; 2000 2001 /* Now copy it into the mac registers backwards, cuz */ 2002 /* little endian is silly */ 2003 for (idx = 0; idx < MAC_ADDR_LEN; idx++) 2004 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx]; 2005 2006 gfar_write(macptr, *((u32 *) (tmpbuf))); 2007 2008 tempval = *((u32 *) (tmpbuf + 4)); 2009 2010 gfar_write(macptr+1, tempval); 2011} 2012 2013/* GFAR error interrupt handler */ 2014static irqreturn_t gfar_error(int irq, void *dev_id) 2015{ 2016 struct net_device *dev = dev_id; 2017 struct gfar_private *priv = netdev_priv(dev); 2018 2019 /* Save ievent for future reference */ 2020 u32 events = gfar_read(&priv->regs->ievent); 2021 2022 /* Clear IEVENT */ 2023 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK); 2024 2025 /* Magic Packet is not an error. */ 2026 if ((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2027 (events & IEVENT_MAG)) 2028 events &= ~IEVENT_MAG; 2029 2030 /* Hmm... */ 2031 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2032 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n", 2033 dev->name, events, gfar_read(&priv->regs->imask)); 2034 2035 /* Update the error counters */ 2036 if (events & IEVENT_TXE) { 2037 dev->stats.tx_errors++; 2038 2039 if (events & IEVENT_LC) 2040 dev->stats.tx_window_errors++; 2041 if (events & IEVENT_CRL) 2042 dev->stats.tx_aborted_errors++; 2043 if (events & IEVENT_XFUN) { 2044 if (netif_msg_tx_err(priv)) 2045 printk(KERN_DEBUG "%s: TX FIFO underrun, " 2046 "packet dropped.\n", dev->name); 2047 dev->stats.tx_dropped++; 2048 priv->extra_stats.tx_underrun++; 2049 2050 /* Reactivate the Tx Queues */ 2051 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); 2052 } 2053 if (netif_msg_tx_err(priv)) 2054 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name); 2055 } 2056 if (events & IEVENT_BSY) { 2057 dev->stats.rx_errors++; 2058 priv->extra_stats.rx_bsy++; 2059 2060 gfar_receive(irq, dev_id); 2061 2062 if (netif_msg_rx_err(priv)) 2063 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n", 2064 dev->name, gfar_read(&priv->regs->rstat)); 2065 } 2066 if (events & IEVENT_BABR) { 2067 dev->stats.rx_errors++; 2068 priv->extra_stats.rx_babr++; 2069 2070 if (netif_msg_rx_err(priv)) 2071 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name); 2072 } 2073 if (events & IEVENT_EBERR) { 2074 priv->extra_stats.eberr++; 2075 if (netif_msg_rx_err(priv)) 2076 printk(KERN_DEBUG "%s: bus error\n", dev->name); 2077 } 2078 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv)) 2079 printk(KERN_DEBUG "%s: control frame\n", dev->name); 2080 2081 if (events & IEVENT_BABT) { 2082 priv->extra_stats.tx_babt++; 2083 if (netif_msg_tx_err(priv)) 2084 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name); 2085 } 2086 return IRQ_HANDLED; 2087} 2088 2089/* work with hotplug and coldplug */ 2090MODULE_ALIAS("platform:fsl-gianfar"); 2091 2092/* Structure for a device driver */ 2093static struct platform_driver gfar_driver = { 2094 .probe = gfar_probe, 2095 .remove = gfar_remove, 2096 .suspend = gfar_suspend, 2097 .resume = gfar_resume, 2098 .driver = { 2099 .name = "fsl-gianfar", 2100 .owner = THIS_MODULE, 2101 }, 2102}; 2103 2104static int __init gfar_init(void) 2105{ 2106 int err = gfar_mdio_init(); 2107 2108 if (err) 2109 return err; 2110 2111 err = platform_driver_register(&gfar_driver); 2112 2113 if (err) 2114 gfar_mdio_exit(); 2115 2116 return err; 2117} 2118 2119static void __exit gfar_exit(void) 2120{ 2121 platform_driver_unregister(&gfar_driver); 2122 gfar_mdio_exit(); 2123} 2124 2125module_init(gfar_init); 2126module_exit(gfar_exit); 2127