at v2.6.27-rc2 4708 lines 130 kB view raw
1/******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2008 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29#include <linux/module.h> 30#include <linux/types.h> 31#include <linux/init.h> 32#include <linux/pci.h> 33#include <linux/vmalloc.h> 34#include <linux/pagemap.h> 35#include <linux/delay.h> 36#include <linux/netdevice.h> 37#include <linux/tcp.h> 38#include <linux/ipv6.h> 39#include <net/checksum.h> 40#include <net/ip6_checksum.h> 41#include <linux/mii.h> 42#include <linux/ethtool.h> 43#include <linux/if_vlan.h> 44#include <linux/cpu.h> 45#include <linux/smp.h> 46#include <linux/pm_qos_params.h> 47 48#include "e1000.h" 49 50#define DRV_VERSION "0.3.3.3-k2" 51char e1000e_driver_name[] = "e1000e"; 52const char e1000e_driver_version[] = DRV_VERSION; 53 54static const struct e1000_info *e1000_info_tbl[] = { 55 [board_82571] = &e1000_82571_info, 56 [board_82572] = &e1000_82572_info, 57 [board_82573] = &e1000_82573_info, 58 [board_80003es2lan] = &e1000_es2_info, 59 [board_ich8lan] = &e1000_ich8_info, 60 [board_ich9lan] = &e1000_ich9_info, 61}; 62 63#ifdef DEBUG 64/** 65 * e1000_get_hw_dev_name - return device name string 66 * used by hardware layer to print debugging information 67 **/ 68char *e1000e_get_hw_dev_name(struct e1000_hw *hw) 69{ 70 return hw->adapter->netdev->name; 71} 72#endif 73 74/** 75 * e1000_desc_unused - calculate if we have unused descriptors 76 **/ 77static int e1000_desc_unused(struct e1000_ring *ring) 78{ 79 if (ring->next_to_clean > ring->next_to_use) 80 return ring->next_to_clean - ring->next_to_use - 1; 81 82 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 83} 84 85/** 86 * e1000_receive_skb - helper function to handle Rx indications 87 * @adapter: board private structure 88 * @status: descriptor status field as written by hardware 89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 90 * @skb: pointer to sk_buff to be indicated to stack 91 **/ 92static void e1000_receive_skb(struct e1000_adapter *adapter, 93 struct net_device *netdev, 94 struct sk_buff *skb, 95 u8 status, __le16 vlan) 96{ 97 skb->protocol = eth_type_trans(skb, netdev); 98 99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) 100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, 101 le16_to_cpu(vlan)); 102 else 103 netif_receive_skb(skb); 104 105 netdev->last_rx = jiffies; 106} 107 108/** 109 * e1000_rx_checksum - Receive Checksum Offload for 82543 110 * @adapter: board private structure 111 * @status_err: receive descriptor status and error fields 112 * @csum: receive descriptor csum field 113 * @sk_buff: socket buffer with received data 114 **/ 115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 116 u32 csum, struct sk_buff *skb) 117{ 118 u16 status = (u16)status_err; 119 u8 errors = (u8)(status_err >> 24); 120 skb->ip_summed = CHECKSUM_NONE; 121 122 /* Ignore Checksum bit is set */ 123 if (status & E1000_RXD_STAT_IXSM) 124 return; 125 /* TCP/UDP checksum error bit is set */ 126 if (errors & E1000_RXD_ERR_TCPE) { 127 /* let the stack verify checksum errors */ 128 adapter->hw_csum_err++; 129 return; 130 } 131 132 /* TCP/UDP Checksum has not been calculated */ 133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 134 return; 135 136 /* It must be a TCP or UDP packet with a valid checksum */ 137 if (status & E1000_RXD_STAT_TCPCS) { 138 /* TCP checksum is good */ 139 skb->ip_summed = CHECKSUM_UNNECESSARY; 140 } else { 141 /* 142 * IP fragment with UDP payload 143 * Hardware complements the payload checksum, so we undo it 144 * and then put the value in host order for further stack use. 145 */ 146 __sum16 sum = (__force __sum16)htons(csum); 147 skb->csum = csum_unfold(~sum); 148 skb->ip_summed = CHECKSUM_COMPLETE; 149 } 150 adapter->hw_csum_good++; 151} 152 153/** 154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 155 * @adapter: address of board private structure 156 **/ 157static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 158 int cleaned_count) 159{ 160 struct net_device *netdev = adapter->netdev; 161 struct pci_dev *pdev = adapter->pdev; 162 struct e1000_ring *rx_ring = adapter->rx_ring; 163 struct e1000_rx_desc *rx_desc; 164 struct e1000_buffer *buffer_info; 165 struct sk_buff *skb; 166 unsigned int i; 167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; 168 169 i = rx_ring->next_to_use; 170 buffer_info = &rx_ring->buffer_info[i]; 171 172 while (cleaned_count--) { 173 skb = buffer_info->skb; 174 if (skb) { 175 skb_trim(skb, 0); 176 goto map_skb; 177 } 178 179 skb = netdev_alloc_skb(netdev, bufsz); 180 if (!skb) { 181 /* Better luck next round */ 182 adapter->alloc_rx_buff_failed++; 183 break; 184 } 185 186 /* 187 * Make buffer alignment 2 beyond a 16 byte boundary 188 * this will result in a 16 byte aligned IP header after 189 * the 14 byte MAC header is removed 190 */ 191 skb_reserve(skb, NET_IP_ALIGN); 192 193 buffer_info->skb = skb; 194map_skb: 195 buffer_info->dma = pci_map_single(pdev, skb->data, 196 adapter->rx_buffer_len, 197 PCI_DMA_FROMDEVICE); 198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) { 199 dev_err(&pdev->dev, "RX DMA map failed\n"); 200 adapter->rx_dma_failed++; 201 break; 202 } 203 204 rx_desc = E1000_RX_DESC(*rx_ring, i); 205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 206 207 i++; 208 if (i == rx_ring->count) 209 i = 0; 210 buffer_info = &rx_ring->buffer_info[i]; 211 } 212 213 if (rx_ring->next_to_use != i) { 214 rx_ring->next_to_use = i; 215 if (i-- == 0) 216 i = (rx_ring->count - 1); 217 218 /* 219 * Force memory writes to complete before letting h/w 220 * know there are new descriptors to fetch. (Only 221 * applicable for weak-ordered memory model archs, 222 * such as IA-64). 223 */ 224 wmb(); 225 writel(i, adapter->hw.hw_addr + rx_ring->tail); 226 } 227} 228 229/** 230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 231 * @adapter: address of board private structure 232 **/ 233static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, 234 int cleaned_count) 235{ 236 struct net_device *netdev = adapter->netdev; 237 struct pci_dev *pdev = adapter->pdev; 238 union e1000_rx_desc_packet_split *rx_desc; 239 struct e1000_ring *rx_ring = adapter->rx_ring; 240 struct e1000_buffer *buffer_info; 241 struct e1000_ps_page *ps_page; 242 struct sk_buff *skb; 243 unsigned int i, j; 244 245 i = rx_ring->next_to_use; 246 buffer_info = &rx_ring->buffer_info[i]; 247 248 while (cleaned_count--) { 249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 250 251 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 252 ps_page = &buffer_info->ps_pages[j]; 253 if (j >= adapter->rx_ps_pages) { 254 /* all unused desc entries get hw null ptr */ 255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); 256 continue; 257 } 258 if (!ps_page->page) { 259 ps_page->page = alloc_page(GFP_ATOMIC); 260 if (!ps_page->page) { 261 adapter->alloc_rx_buff_failed++; 262 goto no_buffers; 263 } 264 ps_page->dma = pci_map_page(pdev, 265 ps_page->page, 266 0, PAGE_SIZE, 267 PCI_DMA_FROMDEVICE); 268 if (pci_dma_mapping_error(pdev, ps_page->dma)) { 269 dev_err(&adapter->pdev->dev, 270 "RX DMA page map failed\n"); 271 adapter->rx_dma_failed++; 272 goto no_buffers; 273 } 274 } 275 /* 276 * Refresh the desc even if buffer_addrs 277 * didn't change because each write-back 278 * erases this info. 279 */ 280 rx_desc->read.buffer_addr[j+1] = 281 cpu_to_le64(ps_page->dma); 282 } 283 284 skb = netdev_alloc_skb(netdev, 285 adapter->rx_ps_bsize0 + NET_IP_ALIGN); 286 287 if (!skb) { 288 adapter->alloc_rx_buff_failed++; 289 break; 290 } 291 292 /* 293 * Make buffer alignment 2 beyond a 16 byte boundary 294 * this will result in a 16 byte aligned IP header after 295 * the 14 byte MAC header is removed 296 */ 297 skb_reserve(skb, NET_IP_ALIGN); 298 299 buffer_info->skb = skb; 300 buffer_info->dma = pci_map_single(pdev, skb->data, 301 adapter->rx_ps_bsize0, 302 PCI_DMA_FROMDEVICE); 303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) { 304 dev_err(&pdev->dev, "RX DMA map failed\n"); 305 adapter->rx_dma_failed++; 306 /* cleanup skb */ 307 dev_kfree_skb_any(skb); 308 buffer_info->skb = NULL; 309 break; 310 } 311 312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 313 314 i++; 315 if (i == rx_ring->count) 316 i = 0; 317 buffer_info = &rx_ring->buffer_info[i]; 318 } 319 320no_buffers: 321 if (rx_ring->next_to_use != i) { 322 rx_ring->next_to_use = i; 323 324 if (!(i--)) 325 i = (rx_ring->count - 1); 326 327 /* 328 * Force memory writes to complete before letting h/w 329 * know there are new descriptors to fetch. (Only 330 * applicable for weak-ordered memory model archs, 331 * such as IA-64). 332 */ 333 wmb(); 334 /* 335 * Hardware increments by 16 bytes, but packet split 336 * descriptors are 32 bytes...so we increment tail 337 * twice as much. 338 */ 339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); 340 } 341} 342 343/** 344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 345 * @adapter: address of board private structure 346 * @rx_ring: pointer to receive ring structure 347 * @cleaned_count: number of buffers to allocate this pass 348 **/ 349 350static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 351 int cleaned_count) 352{ 353 struct net_device *netdev = adapter->netdev; 354 struct pci_dev *pdev = adapter->pdev; 355 struct e1000_rx_desc *rx_desc; 356 struct e1000_ring *rx_ring = adapter->rx_ring; 357 struct e1000_buffer *buffer_info; 358 struct sk_buff *skb; 359 unsigned int i; 360 unsigned int bufsz = 256 - 361 16 /* for skb_reserve */ - 362 NET_IP_ALIGN; 363 364 i = rx_ring->next_to_use; 365 buffer_info = &rx_ring->buffer_info[i]; 366 367 while (cleaned_count--) { 368 skb = buffer_info->skb; 369 if (skb) { 370 skb_trim(skb, 0); 371 goto check_page; 372 } 373 374 skb = netdev_alloc_skb(netdev, bufsz); 375 if (unlikely(!skb)) { 376 /* Better luck next round */ 377 adapter->alloc_rx_buff_failed++; 378 break; 379 } 380 381 /* Make buffer alignment 2 beyond a 16 byte boundary 382 * this will result in a 16 byte aligned IP header after 383 * the 14 byte MAC header is removed 384 */ 385 skb_reserve(skb, NET_IP_ALIGN); 386 387 buffer_info->skb = skb; 388check_page: 389 /* allocate a new page if necessary */ 390 if (!buffer_info->page) { 391 buffer_info->page = alloc_page(GFP_ATOMIC); 392 if (unlikely(!buffer_info->page)) { 393 adapter->alloc_rx_buff_failed++; 394 break; 395 } 396 } 397 398 if (!buffer_info->dma) 399 buffer_info->dma = pci_map_page(pdev, 400 buffer_info->page, 0, 401 PAGE_SIZE, 402 PCI_DMA_FROMDEVICE); 403 404 rx_desc = E1000_RX_DESC(*rx_ring, i); 405 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 406 407 if (unlikely(++i == rx_ring->count)) 408 i = 0; 409 buffer_info = &rx_ring->buffer_info[i]; 410 } 411 412 if (likely(rx_ring->next_to_use != i)) { 413 rx_ring->next_to_use = i; 414 if (unlikely(i-- == 0)) 415 i = (rx_ring->count - 1); 416 417 /* Force memory writes to complete before letting h/w 418 * know there are new descriptors to fetch. (Only 419 * applicable for weak-ordered memory model archs, 420 * such as IA-64). */ 421 wmb(); 422 writel(i, adapter->hw.hw_addr + rx_ring->tail); 423 } 424} 425 426/** 427 * e1000_clean_rx_irq - Send received data up the network stack; legacy 428 * @adapter: board private structure 429 * 430 * the return value indicates whether actual cleaning was done, there 431 * is no guarantee that everything was cleaned 432 **/ 433static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 434 int *work_done, int work_to_do) 435{ 436 struct net_device *netdev = adapter->netdev; 437 struct pci_dev *pdev = adapter->pdev; 438 struct e1000_ring *rx_ring = adapter->rx_ring; 439 struct e1000_rx_desc *rx_desc, *next_rxd; 440 struct e1000_buffer *buffer_info, *next_buffer; 441 u32 length; 442 unsigned int i; 443 int cleaned_count = 0; 444 bool cleaned = 0; 445 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 446 447 i = rx_ring->next_to_clean; 448 rx_desc = E1000_RX_DESC(*rx_ring, i); 449 buffer_info = &rx_ring->buffer_info[i]; 450 451 while (rx_desc->status & E1000_RXD_STAT_DD) { 452 struct sk_buff *skb; 453 u8 status; 454 455 if (*work_done >= work_to_do) 456 break; 457 (*work_done)++; 458 459 status = rx_desc->status; 460 skb = buffer_info->skb; 461 buffer_info->skb = NULL; 462 463 prefetch(skb->data - NET_IP_ALIGN); 464 465 i++; 466 if (i == rx_ring->count) 467 i = 0; 468 next_rxd = E1000_RX_DESC(*rx_ring, i); 469 prefetch(next_rxd); 470 471 next_buffer = &rx_ring->buffer_info[i]; 472 473 cleaned = 1; 474 cleaned_count++; 475 pci_unmap_single(pdev, 476 buffer_info->dma, 477 adapter->rx_buffer_len, 478 PCI_DMA_FROMDEVICE); 479 buffer_info->dma = 0; 480 481 length = le16_to_cpu(rx_desc->length); 482 483 /* !EOP means multiple descriptors were used to store a single 484 * packet, also make sure the frame isn't just CRC only */ 485 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { 486 /* All receives must fit into a single buffer */ 487 ndev_dbg(netdev, "%s: Receive packet consumed " 488 "multiple buffers\n", netdev->name); 489 /* recycle */ 490 buffer_info->skb = skb; 491 goto next_desc; 492 } 493 494 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { 495 /* recycle */ 496 buffer_info->skb = skb; 497 goto next_desc; 498 } 499 500 total_rx_bytes += length; 501 total_rx_packets++; 502 503 /* 504 * code added for copybreak, this should improve 505 * performance for small packets with large amounts 506 * of reassembly being done in the stack 507 */ 508 if (length < copybreak) { 509 struct sk_buff *new_skb = 510 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); 511 if (new_skb) { 512 skb_reserve(new_skb, NET_IP_ALIGN); 513 memcpy(new_skb->data - NET_IP_ALIGN, 514 skb->data - NET_IP_ALIGN, 515 length + NET_IP_ALIGN); 516 /* save the skb in buffer_info as good */ 517 buffer_info->skb = skb; 518 skb = new_skb; 519 } 520 /* else just continue with the old one */ 521 } 522 /* end copybreak code */ 523 skb_put(skb, length); 524 525 /* Receive Checksum Offload */ 526 e1000_rx_checksum(adapter, 527 (u32)(status) | 528 ((u32)(rx_desc->errors) << 24), 529 le16_to_cpu(rx_desc->csum), skb); 530 531 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); 532 533next_desc: 534 rx_desc->status = 0; 535 536 /* return some buffers to hardware, one at a time is too slow */ 537 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 538 adapter->alloc_rx_buf(adapter, cleaned_count); 539 cleaned_count = 0; 540 } 541 542 /* use prefetched values */ 543 rx_desc = next_rxd; 544 buffer_info = next_buffer; 545 } 546 rx_ring->next_to_clean = i; 547 548 cleaned_count = e1000_desc_unused(rx_ring); 549 if (cleaned_count) 550 adapter->alloc_rx_buf(adapter, cleaned_count); 551 552 adapter->total_rx_bytes += total_rx_bytes; 553 adapter->total_rx_packets += total_rx_packets; 554 adapter->net_stats.rx_bytes += total_rx_bytes; 555 adapter->net_stats.rx_packets += total_rx_packets; 556 return cleaned; 557} 558 559static void e1000_put_txbuf(struct e1000_adapter *adapter, 560 struct e1000_buffer *buffer_info) 561{ 562 if (buffer_info->dma) { 563 pci_unmap_page(adapter->pdev, buffer_info->dma, 564 buffer_info->length, PCI_DMA_TODEVICE); 565 buffer_info->dma = 0; 566 } 567 if (buffer_info->skb) { 568 dev_kfree_skb_any(buffer_info->skb); 569 buffer_info->skb = NULL; 570 } 571} 572 573static void e1000_print_tx_hang(struct e1000_adapter *adapter) 574{ 575 struct e1000_ring *tx_ring = adapter->tx_ring; 576 unsigned int i = tx_ring->next_to_clean; 577 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 578 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 579 struct net_device *netdev = adapter->netdev; 580 581 /* detected Tx unit hang */ 582 ndev_err(netdev, 583 "Detected Tx Unit Hang:\n" 584 " TDH <%x>\n" 585 " TDT <%x>\n" 586 " next_to_use <%x>\n" 587 " next_to_clean <%x>\n" 588 "buffer_info[next_to_clean]:\n" 589 " time_stamp <%lx>\n" 590 " next_to_watch <%x>\n" 591 " jiffies <%lx>\n" 592 " next_to_watch.status <%x>\n", 593 readl(adapter->hw.hw_addr + tx_ring->head), 594 readl(adapter->hw.hw_addr + tx_ring->tail), 595 tx_ring->next_to_use, 596 tx_ring->next_to_clean, 597 tx_ring->buffer_info[eop].time_stamp, 598 eop, 599 jiffies, 600 eop_desc->upper.fields.status); 601} 602 603/** 604 * e1000_clean_tx_irq - Reclaim resources after transmit completes 605 * @adapter: board private structure 606 * 607 * the return value indicates whether actual cleaning was done, there 608 * is no guarantee that everything was cleaned 609 **/ 610static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) 611{ 612 struct net_device *netdev = adapter->netdev; 613 struct e1000_hw *hw = &adapter->hw; 614 struct e1000_ring *tx_ring = adapter->tx_ring; 615 struct e1000_tx_desc *tx_desc, *eop_desc; 616 struct e1000_buffer *buffer_info; 617 unsigned int i, eop; 618 unsigned int count = 0; 619 bool cleaned = 0; 620 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 621 622 i = tx_ring->next_to_clean; 623 eop = tx_ring->buffer_info[i].next_to_watch; 624 eop_desc = E1000_TX_DESC(*tx_ring, eop); 625 626 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { 627 for (cleaned = 0; !cleaned; ) { 628 tx_desc = E1000_TX_DESC(*tx_ring, i); 629 buffer_info = &tx_ring->buffer_info[i]; 630 cleaned = (i == eop); 631 632 if (cleaned) { 633 struct sk_buff *skb = buffer_info->skb; 634 unsigned int segs, bytecount; 635 segs = skb_shinfo(skb)->gso_segs ?: 1; 636 /* multiply data chunks by size of headers */ 637 bytecount = ((segs - 1) * skb_headlen(skb)) + 638 skb->len; 639 total_tx_packets += segs; 640 total_tx_bytes += bytecount; 641 } 642 643 e1000_put_txbuf(adapter, buffer_info); 644 tx_desc->upper.data = 0; 645 646 i++; 647 if (i == tx_ring->count) 648 i = 0; 649 } 650 651 eop = tx_ring->buffer_info[i].next_to_watch; 652 eop_desc = E1000_TX_DESC(*tx_ring, eop); 653#define E1000_TX_WEIGHT 64 654 /* weight of a sort for tx, to avoid endless transmit cleanup */ 655 if (count++ == E1000_TX_WEIGHT) 656 break; 657 } 658 659 tx_ring->next_to_clean = i; 660 661#define TX_WAKE_THRESHOLD 32 662 if (cleaned && netif_carrier_ok(netdev) && 663 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 664 /* Make sure that anybody stopping the queue after this 665 * sees the new next_to_clean. 666 */ 667 smp_mb(); 668 669 if (netif_queue_stopped(netdev) && 670 !(test_bit(__E1000_DOWN, &adapter->state))) { 671 netif_wake_queue(netdev); 672 ++adapter->restart_queue; 673 } 674 } 675 676 if (adapter->detect_tx_hung) { 677 /* 678 * Detect a transmit hang in hardware, this serializes the 679 * check with the clearing of time_stamp and movement of i 680 */ 681 adapter->detect_tx_hung = 0; 682 if (tx_ring->buffer_info[eop].dma && 683 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp 684 + (adapter->tx_timeout_factor * HZ)) 685 && !(er32(STATUS) & E1000_STATUS_TXOFF)) { 686 e1000_print_tx_hang(adapter); 687 netif_stop_queue(netdev); 688 } 689 } 690 adapter->total_tx_bytes += total_tx_bytes; 691 adapter->total_tx_packets += total_tx_packets; 692 adapter->net_stats.tx_bytes += total_tx_bytes; 693 adapter->net_stats.tx_packets += total_tx_packets; 694 return cleaned; 695} 696 697/** 698 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 699 * @adapter: board private structure 700 * 701 * the return value indicates whether actual cleaning was done, there 702 * is no guarantee that everything was cleaned 703 **/ 704static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, 705 int *work_done, int work_to_do) 706{ 707 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 708 struct net_device *netdev = adapter->netdev; 709 struct pci_dev *pdev = adapter->pdev; 710 struct e1000_ring *rx_ring = adapter->rx_ring; 711 struct e1000_buffer *buffer_info, *next_buffer; 712 struct e1000_ps_page *ps_page; 713 struct sk_buff *skb; 714 unsigned int i, j; 715 u32 length, staterr; 716 int cleaned_count = 0; 717 bool cleaned = 0; 718 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 719 720 i = rx_ring->next_to_clean; 721 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 722 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 723 buffer_info = &rx_ring->buffer_info[i]; 724 725 while (staterr & E1000_RXD_STAT_DD) { 726 if (*work_done >= work_to_do) 727 break; 728 (*work_done)++; 729 skb = buffer_info->skb; 730 731 /* in the packet split case this is header only */ 732 prefetch(skb->data - NET_IP_ALIGN); 733 734 i++; 735 if (i == rx_ring->count) 736 i = 0; 737 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 738 prefetch(next_rxd); 739 740 next_buffer = &rx_ring->buffer_info[i]; 741 742 cleaned = 1; 743 cleaned_count++; 744 pci_unmap_single(pdev, buffer_info->dma, 745 adapter->rx_ps_bsize0, 746 PCI_DMA_FROMDEVICE); 747 buffer_info->dma = 0; 748 749 if (!(staterr & E1000_RXD_STAT_EOP)) { 750 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick " 751 "up the full packet\n", netdev->name); 752 dev_kfree_skb_irq(skb); 753 goto next_desc; 754 } 755 756 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { 757 dev_kfree_skb_irq(skb); 758 goto next_desc; 759 } 760 761 length = le16_to_cpu(rx_desc->wb.middle.length0); 762 763 if (!length) { 764 ndev_dbg(netdev, "%s: Last part of the packet spanning" 765 " multiple descriptors\n", netdev->name); 766 dev_kfree_skb_irq(skb); 767 goto next_desc; 768 } 769 770 /* Good Receive */ 771 skb_put(skb, length); 772 773 { 774 /* 775 * this looks ugly, but it seems compiler issues make it 776 * more efficient than reusing j 777 */ 778 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 779 780 /* 781 * page alloc/put takes too long and effects small packet 782 * throughput, so unsplit small packets and save the alloc/put 783 * only valid in softirq (napi) context to call kmap_* 784 */ 785 if (l1 && (l1 <= copybreak) && 786 ((length + l1) <= adapter->rx_ps_bsize0)) { 787 u8 *vaddr; 788 789 ps_page = &buffer_info->ps_pages[0]; 790 791 /* 792 * there is no documentation about how to call 793 * kmap_atomic, so we can't hold the mapping 794 * very long 795 */ 796 pci_dma_sync_single_for_cpu(pdev, ps_page->dma, 797 PAGE_SIZE, PCI_DMA_FROMDEVICE); 798 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); 799 memcpy(skb_tail_pointer(skb), vaddr, l1); 800 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 801 pci_dma_sync_single_for_device(pdev, ps_page->dma, 802 PAGE_SIZE, PCI_DMA_FROMDEVICE); 803 804 skb_put(skb, l1); 805 goto copydone; 806 } /* if */ 807 } 808 809 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 810 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 811 if (!length) 812 break; 813 814 ps_page = &buffer_info->ps_pages[j]; 815 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, 816 PCI_DMA_FROMDEVICE); 817 ps_page->dma = 0; 818 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 819 ps_page->page = NULL; 820 skb->len += length; 821 skb->data_len += length; 822 skb->truesize += length; 823 } 824 825copydone: 826 total_rx_bytes += skb->len; 827 total_rx_packets++; 828 829 e1000_rx_checksum(adapter, staterr, le16_to_cpu( 830 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); 831 832 if (rx_desc->wb.upper.header_status & 833 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 834 adapter->rx_hdr_split++; 835 836 e1000_receive_skb(adapter, netdev, skb, 837 staterr, rx_desc->wb.middle.vlan); 838 839next_desc: 840 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 841 buffer_info->skb = NULL; 842 843 /* return some buffers to hardware, one at a time is too slow */ 844 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 845 adapter->alloc_rx_buf(adapter, cleaned_count); 846 cleaned_count = 0; 847 } 848 849 /* use prefetched values */ 850 rx_desc = next_rxd; 851 buffer_info = next_buffer; 852 853 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 854 } 855 rx_ring->next_to_clean = i; 856 857 cleaned_count = e1000_desc_unused(rx_ring); 858 if (cleaned_count) 859 adapter->alloc_rx_buf(adapter, cleaned_count); 860 861 adapter->total_rx_bytes += total_rx_bytes; 862 adapter->total_rx_packets += total_rx_packets; 863 adapter->net_stats.rx_bytes += total_rx_bytes; 864 adapter->net_stats.rx_packets += total_rx_packets; 865 return cleaned; 866} 867 868/** 869 * e1000_consume_page - helper function 870 **/ 871static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 872 u16 length) 873{ 874 bi->page = NULL; 875 skb->len += length; 876 skb->data_len += length; 877 skb->truesize += length; 878} 879 880/** 881 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 882 * @adapter: board private structure 883 * 884 * the return value indicates whether actual cleaning was done, there 885 * is no guarantee that everything was cleaned 886 **/ 887 888static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 889 int *work_done, int work_to_do) 890{ 891 struct net_device *netdev = adapter->netdev; 892 struct pci_dev *pdev = adapter->pdev; 893 struct e1000_ring *rx_ring = adapter->rx_ring; 894 struct e1000_rx_desc *rx_desc, *next_rxd; 895 struct e1000_buffer *buffer_info, *next_buffer; 896 u32 length; 897 unsigned int i; 898 int cleaned_count = 0; 899 bool cleaned = false; 900 unsigned int total_rx_bytes=0, total_rx_packets=0; 901 902 i = rx_ring->next_to_clean; 903 rx_desc = E1000_RX_DESC(*rx_ring, i); 904 buffer_info = &rx_ring->buffer_info[i]; 905 906 while (rx_desc->status & E1000_RXD_STAT_DD) { 907 struct sk_buff *skb; 908 u8 status; 909 910 if (*work_done >= work_to_do) 911 break; 912 (*work_done)++; 913 914 status = rx_desc->status; 915 skb = buffer_info->skb; 916 buffer_info->skb = NULL; 917 918 ++i; 919 if (i == rx_ring->count) 920 i = 0; 921 next_rxd = E1000_RX_DESC(*rx_ring, i); 922 prefetch(next_rxd); 923 924 next_buffer = &rx_ring->buffer_info[i]; 925 926 cleaned = true; 927 cleaned_count++; 928 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE, 929 PCI_DMA_FROMDEVICE); 930 buffer_info->dma = 0; 931 932 length = le16_to_cpu(rx_desc->length); 933 934 /* errors is only valid for DD + EOP descriptors */ 935 if (unlikely((status & E1000_RXD_STAT_EOP) && 936 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 937 /* recycle both page and skb */ 938 buffer_info->skb = skb; 939 /* an error means any chain goes out the window 940 * too */ 941 if (rx_ring->rx_skb_top) 942 dev_kfree_skb(rx_ring->rx_skb_top); 943 rx_ring->rx_skb_top = NULL; 944 goto next_desc; 945 } 946 947#define rxtop rx_ring->rx_skb_top 948 if (!(status & E1000_RXD_STAT_EOP)) { 949 /* this descriptor is only the beginning (or middle) */ 950 if (!rxtop) { 951 /* this is the beginning of a chain */ 952 rxtop = skb; 953 skb_fill_page_desc(rxtop, 0, buffer_info->page, 954 0, length); 955 } else { 956 /* this is the middle of a chain */ 957 skb_fill_page_desc(rxtop, 958 skb_shinfo(rxtop)->nr_frags, 959 buffer_info->page, 0, length); 960 /* re-use the skb, only consumed the page */ 961 buffer_info->skb = skb; 962 } 963 e1000_consume_page(buffer_info, rxtop, length); 964 goto next_desc; 965 } else { 966 if (rxtop) { 967 /* end of the chain */ 968 skb_fill_page_desc(rxtop, 969 skb_shinfo(rxtop)->nr_frags, 970 buffer_info->page, 0, length); 971 /* re-use the current skb, we only consumed the 972 * page */ 973 buffer_info->skb = skb; 974 skb = rxtop; 975 rxtop = NULL; 976 e1000_consume_page(buffer_info, skb, length); 977 } else { 978 /* no chain, got EOP, this buf is the packet 979 * copybreak to save the put_page/alloc_page */ 980 if (length <= copybreak && 981 skb_tailroom(skb) >= length) { 982 u8 *vaddr; 983 vaddr = kmap_atomic(buffer_info->page, 984 KM_SKB_DATA_SOFTIRQ); 985 memcpy(skb_tail_pointer(skb), vaddr, 986 length); 987 kunmap_atomic(vaddr, 988 KM_SKB_DATA_SOFTIRQ); 989 /* re-use the page, so don't erase 990 * buffer_info->page */ 991 skb_put(skb, length); 992 } else { 993 skb_fill_page_desc(skb, 0, 994 buffer_info->page, 0, 995 length); 996 e1000_consume_page(buffer_info, skb, 997 length); 998 } 999 } 1000 } 1001 1002 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 1003 e1000_rx_checksum(adapter, 1004 (u32)(status) | 1005 ((u32)(rx_desc->errors) << 24), 1006 le16_to_cpu(rx_desc->csum), skb); 1007 1008 /* probably a little skewed due to removing CRC */ 1009 total_rx_bytes += skb->len; 1010 total_rx_packets++; 1011 1012 /* eth type trans needs skb->data to point to something */ 1013 if (!pskb_may_pull(skb, ETH_HLEN)) { 1014 ndev_err(netdev, "pskb_may_pull failed.\n"); 1015 dev_kfree_skb(skb); 1016 goto next_desc; 1017 } 1018 1019 e1000_receive_skb(adapter, netdev, skb, status, 1020 rx_desc->special); 1021 1022next_desc: 1023 rx_desc->status = 0; 1024 1025 /* return some buffers to hardware, one at a time is too slow */ 1026 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1027 adapter->alloc_rx_buf(adapter, cleaned_count); 1028 cleaned_count = 0; 1029 } 1030 1031 /* use prefetched values */ 1032 rx_desc = next_rxd; 1033 buffer_info = next_buffer; 1034 } 1035 rx_ring->next_to_clean = i; 1036 1037 cleaned_count = e1000_desc_unused(rx_ring); 1038 if (cleaned_count) 1039 adapter->alloc_rx_buf(adapter, cleaned_count); 1040 1041 adapter->total_rx_bytes += total_rx_bytes; 1042 adapter->total_rx_packets += total_rx_packets; 1043 adapter->net_stats.rx_bytes += total_rx_bytes; 1044 adapter->net_stats.rx_packets += total_rx_packets; 1045 return cleaned; 1046} 1047 1048/** 1049 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1050 * @adapter: board private structure 1051 **/ 1052static void e1000_clean_rx_ring(struct e1000_adapter *adapter) 1053{ 1054 struct e1000_ring *rx_ring = adapter->rx_ring; 1055 struct e1000_buffer *buffer_info; 1056 struct e1000_ps_page *ps_page; 1057 struct pci_dev *pdev = adapter->pdev; 1058 unsigned int i, j; 1059 1060 /* Free all the Rx ring sk_buffs */ 1061 for (i = 0; i < rx_ring->count; i++) { 1062 buffer_info = &rx_ring->buffer_info[i]; 1063 if (buffer_info->dma) { 1064 if (adapter->clean_rx == e1000_clean_rx_irq) 1065 pci_unmap_single(pdev, buffer_info->dma, 1066 adapter->rx_buffer_len, 1067 PCI_DMA_FROMDEVICE); 1068 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1069 pci_unmap_page(pdev, buffer_info->dma, 1070 PAGE_SIZE, 1071 PCI_DMA_FROMDEVICE); 1072 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1073 pci_unmap_single(pdev, buffer_info->dma, 1074 adapter->rx_ps_bsize0, 1075 PCI_DMA_FROMDEVICE); 1076 buffer_info->dma = 0; 1077 } 1078 1079 if (buffer_info->page) { 1080 put_page(buffer_info->page); 1081 buffer_info->page = NULL; 1082 } 1083 1084 if (buffer_info->skb) { 1085 dev_kfree_skb(buffer_info->skb); 1086 buffer_info->skb = NULL; 1087 } 1088 1089 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1090 ps_page = &buffer_info->ps_pages[j]; 1091 if (!ps_page->page) 1092 break; 1093 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, 1094 PCI_DMA_FROMDEVICE); 1095 ps_page->dma = 0; 1096 put_page(ps_page->page); 1097 ps_page->page = NULL; 1098 } 1099 } 1100 1101 /* there also may be some cached data from a chained receive */ 1102 if (rx_ring->rx_skb_top) { 1103 dev_kfree_skb(rx_ring->rx_skb_top); 1104 rx_ring->rx_skb_top = NULL; 1105 } 1106 1107 /* Zero out the descriptor ring */ 1108 memset(rx_ring->desc, 0, rx_ring->size); 1109 1110 rx_ring->next_to_clean = 0; 1111 rx_ring->next_to_use = 0; 1112 1113 writel(0, adapter->hw.hw_addr + rx_ring->head); 1114 writel(0, adapter->hw.hw_addr + rx_ring->tail); 1115} 1116 1117/** 1118 * e1000_intr_msi - Interrupt Handler 1119 * @irq: interrupt number 1120 * @data: pointer to a network interface device structure 1121 **/ 1122static irqreturn_t e1000_intr_msi(int irq, void *data) 1123{ 1124 struct net_device *netdev = data; 1125 struct e1000_adapter *adapter = netdev_priv(netdev); 1126 struct e1000_hw *hw = &adapter->hw; 1127 u32 icr = er32(ICR); 1128 1129 /* 1130 * read ICR disables interrupts using IAM 1131 */ 1132 1133 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1134 hw->mac.get_link_status = 1; 1135 /* 1136 * ICH8 workaround-- Call gig speed drop workaround on cable 1137 * disconnect (LSC) before accessing any PHY registers 1138 */ 1139 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1140 (!(er32(STATUS) & E1000_STATUS_LU))) 1141 e1000e_gig_downshift_workaround_ich8lan(hw); 1142 1143 /* 1144 * 80003ES2LAN workaround-- For packet buffer work-around on 1145 * link down event; disable receives here in the ISR and reset 1146 * adapter in watchdog 1147 */ 1148 if (netif_carrier_ok(netdev) && 1149 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1150 /* disable receives */ 1151 u32 rctl = er32(RCTL); 1152 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1153 adapter->flags |= FLAG_RX_RESTART_NOW; 1154 } 1155 /* guard against interrupt when we're going down */ 1156 if (!test_bit(__E1000_DOWN, &adapter->state)) 1157 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1158 } 1159 1160 if (netif_rx_schedule_prep(netdev, &adapter->napi)) { 1161 adapter->total_tx_bytes = 0; 1162 adapter->total_tx_packets = 0; 1163 adapter->total_rx_bytes = 0; 1164 adapter->total_rx_packets = 0; 1165 __netif_rx_schedule(netdev, &adapter->napi); 1166 } 1167 1168 return IRQ_HANDLED; 1169} 1170 1171/** 1172 * e1000_intr - Interrupt Handler 1173 * @irq: interrupt number 1174 * @data: pointer to a network interface device structure 1175 **/ 1176static irqreturn_t e1000_intr(int irq, void *data) 1177{ 1178 struct net_device *netdev = data; 1179 struct e1000_adapter *adapter = netdev_priv(netdev); 1180 struct e1000_hw *hw = &adapter->hw; 1181 1182 u32 rctl, icr = er32(ICR); 1183 if (!icr) 1184 return IRQ_NONE; /* Not our interrupt */ 1185 1186 /* 1187 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1188 * not set, then the adapter didn't send an interrupt 1189 */ 1190 if (!(icr & E1000_ICR_INT_ASSERTED)) 1191 return IRQ_NONE; 1192 1193 /* 1194 * Interrupt Auto-Mask...upon reading ICR, 1195 * interrupts are masked. No need for the 1196 * IMC write 1197 */ 1198 1199 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 1200 hw->mac.get_link_status = 1; 1201 /* 1202 * ICH8 workaround-- Call gig speed drop workaround on cable 1203 * disconnect (LSC) before accessing any PHY registers 1204 */ 1205 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1206 (!(er32(STATUS) & E1000_STATUS_LU))) 1207 e1000e_gig_downshift_workaround_ich8lan(hw); 1208 1209 /* 1210 * 80003ES2LAN workaround-- 1211 * For packet buffer work-around on link down event; 1212 * disable receives here in the ISR and 1213 * reset adapter in watchdog 1214 */ 1215 if (netif_carrier_ok(netdev) && 1216 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1217 /* disable receives */ 1218 rctl = er32(RCTL); 1219 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1220 adapter->flags |= FLAG_RX_RESTART_NOW; 1221 } 1222 /* guard against interrupt when we're going down */ 1223 if (!test_bit(__E1000_DOWN, &adapter->state)) 1224 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1225 } 1226 1227 if (netif_rx_schedule_prep(netdev, &adapter->napi)) { 1228 adapter->total_tx_bytes = 0; 1229 adapter->total_tx_packets = 0; 1230 adapter->total_rx_bytes = 0; 1231 adapter->total_rx_packets = 0; 1232 __netif_rx_schedule(netdev, &adapter->napi); 1233 } 1234 1235 return IRQ_HANDLED; 1236} 1237 1238static int e1000_request_irq(struct e1000_adapter *adapter) 1239{ 1240 struct net_device *netdev = adapter->netdev; 1241 irq_handler_t handler = e1000_intr; 1242 int irq_flags = IRQF_SHARED; 1243 int err; 1244 1245 if (!pci_enable_msi(adapter->pdev)) { 1246 adapter->flags |= FLAG_MSI_ENABLED; 1247 handler = e1000_intr_msi; 1248 irq_flags = 0; 1249 } 1250 1251 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 1252 netdev); 1253 if (err) { 1254 ndev_err(netdev, 1255 "Unable to allocate %s interrupt (return: %d)\n", 1256 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx", 1257 err); 1258 if (adapter->flags & FLAG_MSI_ENABLED) 1259 pci_disable_msi(adapter->pdev); 1260 } 1261 1262 return err; 1263} 1264 1265static void e1000_free_irq(struct e1000_adapter *adapter) 1266{ 1267 struct net_device *netdev = adapter->netdev; 1268 1269 free_irq(adapter->pdev->irq, netdev); 1270 if (adapter->flags & FLAG_MSI_ENABLED) { 1271 pci_disable_msi(adapter->pdev); 1272 adapter->flags &= ~FLAG_MSI_ENABLED; 1273 } 1274} 1275 1276/** 1277 * e1000_irq_disable - Mask off interrupt generation on the NIC 1278 **/ 1279static void e1000_irq_disable(struct e1000_adapter *adapter) 1280{ 1281 struct e1000_hw *hw = &adapter->hw; 1282 1283 ew32(IMC, ~0); 1284 e1e_flush(); 1285 synchronize_irq(adapter->pdev->irq); 1286} 1287 1288/** 1289 * e1000_irq_enable - Enable default interrupt generation settings 1290 **/ 1291static void e1000_irq_enable(struct e1000_adapter *adapter) 1292{ 1293 struct e1000_hw *hw = &adapter->hw; 1294 1295 ew32(IMS, IMS_ENABLE_MASK); 1296 e1e_flush(); 1297} 1298 1299/** 1300 * e1000_get_hw_control - get control of the h/w from f/w 1301 * @adapter: address of board private structure 1302 * 1303 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 1304 * For ASF and Pass Through versions of f/w this means that 1305 * the driver is loaded. For AMT version (only with 82573) 1306 * of the f/w this means that the network i/f is open. 1307 **/ 1308static void e1000_get_hw_control(struct e1000_adapter *adapter) 1309{ 1310 struct e1000_hw *hw = &adapter->hw; 1311 u32 ctrl_ext; 1312 u32 swsm; 1313 1314 /* Let firmware know the driver has taken over */ 1315 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1316 swsm = er32(SWSM); 1317 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 1318 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 1319 ctrl_ext = er32(CTRL_EXT); 1320 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1321 } 1322} 1323 1324/** 1325 * e1000_release_hw_control - release control of the h/w to f/w 1326 * @adapter: address of board private structure 1327 * 1328 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 1329 * For ASF and Pass Through versions of f/w this means that the 1330 * driver is no longer loaded. For AMT version (only with 82573) i 1331 * of the f/w this means that the network i/f is closed. 1332 * 1333 **/ 1334static void e1000_release_hw_control(struct e1000_adapter *adapter) 1335{ 1336 struct e1000_hw *hw = &adapter->hw; 1337 u32 ctrl_ext; 1338 u32 swsm; 1339 1340 /* Let firmware taken over control of h/w */ 1341 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 1342 swsm = er32(SWSM); 1343 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 1344 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 1345 ctrl_ext = er32(CTRL_EXT); 1346 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1347 } 1348} 1349 1350/** 1351 * @e1000_alloc_ring - allocate memory for a ring structure 1352 **/ 1353static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 1354 struct e1000_ring *ring) 1355{ 1356 struct pci_dev *pdev = adapter->pdev; 1357 1358 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 1359 GFP_KERNEL); 1360 if (!ring->desc) 1361 return -ENOMEM; 1362 1363 return 0; 1364} 1365 1366/** 1367 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 1368 * @adapter: board private structure 1369 * 1370 * Return 0 on success, negative on failure 1371 **/ 1372int e1000e_setup_tx_resources(struct e1000_adapter *adapter) 1373{ 1374 struct e1000_ring *tx_ring = adapter->tx_ring; 1375 int err = -ENOMEM, size; 1376 1377 size = sizeof(struct e1000_buffer) * tx_ring->count; 1378 tx_ring->buffer_info = vmalloc(size); 1379 if (!tx_ring->buffer_info) 1380 goto err; 1381 memset(tx_ring->buffer_info, 0, size); 1382 1383 /* round up to nearest 4K */ 1384 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1385 tx_ring->size = ALIGN(tx_ring->size, 4096); 1386 1387 err = e1000_alloc_ring_dma(adapter, tx_ring); 1388 if (err) 1389 goto err; 1390 1391 tx_ring->next_to_use = 0; 1392 tx_ring->next_to_clean = 0; 1393 spin_lock_init(&adapter->tx_queue_lock); 1394 1395 return 0; 1396err: 1397 vfree(tx_ring->buffer_info); 1398 ndev_err(adapter->netdev, 1399 "Unable to allocate memory for the transmit descriptor ring\n"); 1400 return err; 1401} 1402 1403/** 1404 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 1405 * @adapter: board private structure 1406 * 1407 * Returns 0 on success, negative on failure 1408 **/ 1409int e1000e_setup_rx_resources(struct e1000_adapter *adapter) 1410{ 1411 struct e1000_ring *rx_ring = adapter->rx_ring; 1412 struct e1000_buffer *buffer_info; 1413 int i, size, desc_len, err = -ENOMEM; 1414 1415 size = sizeof(struct e1000_buffer) * rx_ring->count; 1416 rx_ring->buffer_info = vmalloc(size); 1417 if (!rx_ring->buffer_info) 1418 goto err; 1419 memset(rx_ring->buffer_info, 0, size); 1420 1421 for (i = 0; i < rx_ring->count; i++) { 1422 buffer_info = &rx_ring->buffer_info[i]; 1423 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 1424 sizeof(struct e1000_ps_page), 1425 GFP_KERNEL); 1426 if (!buffer_info->ps_pages) 1427 goto err_pages; 1428 } 1429 1430 desc_len = sizeof(union e1000_rx_desc_packet_split); 1431 1432 /* Round up to nearest 4K */ 1433 rx_ring->size = rx_ring->count * desc_len; 1434 rx_ring->size = ALIGN(rx_ring->size, 4096); 1435 1436 err = e1000_alloc_ring_dma(adapter, rx_ring); 1437 if (err) 1438 goto err_pages; 1439 1440 rx_ring->next_to_clean = 0; 1441 rx_ring->next_to_use = 0; 1442 rx_ring->rx_skb_top = NULL; 1443 1444 return 0; 1445 1446err_pages: 1447 for (i = 0; i < rx_ring->count; i++) { 1448 buffer_info = &rx_ring->buffer_info[i]; 1449 kfree(buffer_info->ps_pages); 1450 } 1451err: 1452 vfree(rx_ring->buffer_info); 1453 ndev_err(adapter->netdev, 1454 "Unable to allocate memory for the transmit descriptor ring\n"); 1455 return err; 1456} 1457 1458/** 1459 * e1000_clean_tx_ring - Free Tx Buffers 1460 * @adapter: board private structure 1461 **/ 1462static void e1000_clean_tx_ring(struct e1000_adapter *adapter) 1463{ 1464 struct e1000_ring *tx_ring = adapter->tx_ring; 1465 struct e1000_buffer *buffer_info; 1466 unsigned long size; 1467 unsigned int i; 1468 1469 for (i = 0; i < tx_ring->count; i++) { 1470 buffer_info = &tx_ring->buffer_info[i]; 1471 e1000_put_txbuf(adapter, buffer_info); 1472 } 1473 1474 size = sizeof(struct e1000_buffer) * tx_ring->count; 1475 memset(tx_ring->buffer_info, 0, size); 1476 1477 memset(tx_ring->desc, 0, tx_ring->size); 1478 1479 tx_ring->next_to_use = 0; 1480 tx_ring->next_to_clean = 0; 1481 1482 writel(0, adapter->hw.hw_addr + tx_ring->head); 1483 writel(0, adapter->hw.hw_addr + tx_ring->tail); 1484} 1485 1486/** 1487 * e1000e_free_tx_resources - Free Tx Resources per Queue 1488 * @adapter: board private structure 1489 * 1490 * Free all transmit software resources 1491 **/ 1492void e1000e_free_tx_resources(struct e1000_adapter *adapter) 1493{ 1494 struct pci_dev *pdev = adapter->pdev; 1495 struct e1000_ring *tx_ring = adapter->tx_ring; 1496 1497 e1000_clean_tx_ring(adapter); 1498 1499 vfree(tx_ring->buffer_info); 1500 tx_ring->buffer_info = NULL; 1501 1502 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1503 tx_ring->dma); 1504 tx_ring->desc = NULL; 1505} 1506 1507/** 1508 * e1000e_free_rx_resources - Free Rx Resources 1509 * @adapter: board private structure 1510 * 1511 * Free all receive software resources 1512 **/ 1513 1514void e1000e_free_rx_resources(struct e1000_adapter *adapter) 1515{ 1516 struct pci_dev *pdev = adapter->pdev; 1517 struct e1000_ring *rx_ring = adapter->rx_ring; 1518 int i; 1519 1520 e1000_clean_rx_ring(adapter); 1521 1522 for (i = 0; i < rx_ring->count; i++) { 1523 kfree(rx_ring->buffer_info[i].ps_pages); 1524 } 1525 1526 vfree(rx_ring->buffer_info); 1527 rx_ring->buffer_info = NULL; 1528 1529 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1530 rx_ring->dma); 1531 rx_ring->desc = NULL; 1532} 1533 1534/** 1535 * e1000_update_itr - update the dynamic ITR value based on statistics 1536 * @adapter: pointer to adapter 1537 * @itr_setting: current adapter->itr 1538 * @packets: the number of packets during this measurement interval 1539 * @bytes: the number of bytes during this measurement interval 1540 * 1541 * Stores a new ITR value based on packets and byte 1542 * counts during the last interrupt. The advantage of per interrupt 1543 * computation is faster updates and more accurate ITR for the current 1544 * traffic pattern. Constants in this function were computed 1545 * based on theoretical maximum wire speed and thresholds were set based 1546 * on testing data as well as attempting to minimize response time 1547 * while increasing bulk throughput. 1548 * this functionality is controlled by the InterruptThrottleRate module 1549 * parameter (see e1000_param.c) 1550 **/ 1551static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 1552 u16 itr_setting, int packets, 1553 int bytes) 1554{ 1555 unsigned int retval = itr_setting; 1556 1557 if (packets == 0) 1558 goto update_itr_done; 1559 1560 switch (itr_setting) { 1561 case lowest_latency: 1562 /* handle TSO and jumbo frames */ 1563 if (bytes/packets > 8000) 1564 retval = bulk_latency; 1565 else if ((packets < 5) && (bytes > 512)) { 1566 retval = low_latency; 1567 } 1568 break; 1569 case low_latency: /* 50 usec aka 20000 ints/s */ 1570 if (bytes > 10000) { 1571 /* this if handles the TSO accounting */ 1572 if (bytes/packets > 8000) { 1573 retval = bulk_latency; 1574 } else if ((packets < 10) || ((bytes/packets) > 1200)) { 1575 retval = bulk_latency; 1576 } else if ((packets > 35)) { 1577 retval = lowest_latency; 1578 } 1579 } else if (bytes/packets > 2000) { 1580 retval = bulk_latency; 1581 } else if (packets <= 2 && bytes < 512) { 1582 retval = lowest_latency; 1583 } 1584 break; 1585 case bulk_latency: /* 250 usec aka 4000 ints/s */ 1586 if (bytes > 25000) { 1587 if (packets > 35) { 1588 retval = low_latency; 1589 } 1590 } else if (bytes < 6000) { 1591 retval = low_latency; 1592 } 1593 break; 1594 } 1595 1596update_itr_done: 1597 return retval; 1598} 1599 1600static void e1000_set_itr(struct e1000_adapter *adapter) 1601{ 1602 struct e1000_hw *hw = &adapter->hw; 1603 u16 current_itr; 1604 u32 new_itr = adapter->itr; 1605 1606 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 1607 if (adapter->link_speed != SPEED_1000) { 1608 current_itr = 0; 1609 new_itr = 4000; 1610 goto set_itr_now; 1611 } 1612 1613 adapter->tx_itr = e1000_update_itr(adapter, 1614 adapter->tx_itr, 1615 adapter->total_tx_packets, 1616 adapter->total_tx_bytes); 1617 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 1618 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 1619 adapter->tx_itr = low_latency; 1620 1621 adapter->rx_itr = e1000_update_itr(adapter, 1622 adapter->rx_itr, 1623 adapter->total_rx_packets, 1624 adapter->total_rx_bytes); 1625 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 1626 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 1627 adapter->rx_itr = low_latency; 1628 1629 current_itr = max(adapter->rx_itr, adapter->tx_itr); 1630 1631 switch (current_itr) { 1632 /* counts and packets in update_itr are dependent on these numbers */ 1633 case lowest_latency: 1634 new_itr = 70000; 1635 break; 1636 case low_latency: 1637 new_itr = 20000; /* aka hwitr = ~200 */ 1638 break; 1639 case bulk_latency: 1640 new_itr = 4000; 1641 break; 1642 default: 1643 break; 1644 } 1645 1646set_itr_now: 1647 if (new_itr != adapter->itr) { 1648 /* 1649 * this attempts to bias the interrupt rate towards Bulk 1650 * by adding intermediate steps when interrupt rate is 1651 * increasing 1652 */ 1653 new_itr = new_itr > adapter->itr ? 1654 min(adapter->itr + (new_itr >> 2), new_itr) : 1655 new_itr; 1656 adapter->itr = new_itr; 1657 ew32(ITR, 1000000000 / (new_itr * 256)); 1658 } 1659} 1660 1661/** 1662 * e1000_clean - NAPI Rx polling callback 1663 * @napi: struct associated with this polling callback 1664 * @budget: amount of packets driver is allowed to process this poll 1665 **/ 1666static int e1000_clean(struct napi_struct *napi, int budget) 1667{ 1668 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); 1669 struct net_device *poll_dev = adapter->netdev; 1670 int tx_cleaned = 0, work_done = 0; 1671 1672 /* Must NOT use netdev_priv macro here. */ 1673 adapter = poll_dev->priv; 1674 1675 /* 1676 * e1000_clean is called per-cpu. This lock protects 1677 * tx_ring from being cleaned by multiple cpus 1678 * simultaneously. A failure obtaining the lock means 1679 * tx_ring is currently being cleaned anyway. 1680 */ 1681 if (spin_trylock(&adapter->tx_queue_lock)) { 1682 tx_cleaned = e1000_clean_tx_irq(adapter); 1683 spin_unlock(&adapter->tx_queue_lock); 1684 } 1685 1686 adapter->clean_rx(adapter, &work_done, budget); 1687 1688 if (tx_cleaned) 1689 work_done = budget; 1690 1691 /* If budget not fully consumed, exit the polling mode */ 1692 if (work_done < budget) { 1693 if (adapter->itr_setting & 3) 1694 e1000_set_itr(adapter); 1695 netif_rx_complete(poll_dev, napi); 1696 e1000_irq_enable(adapter); 1697 } 1698 1699 return work_done; 1700} 1701 1702static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 1703{ 1704 struct e1000_adapter *adapter = netdev_priv(netdev); 1705 struct e1000_hw *hw = &adapter->hw; 1706 u32 vfta, index; 1707 1708 /* don't update vlan cookie if already programmed */ 1709 if ((adapter->hw.mng_cookie.status & 1710 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 1711 (vid == adapter->mng_vlan_id)) 1712 return; 1713 /* add VID to filter table */ 1714 index = (vid >> 5) & 0x7F; 1715 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 1716 vfta |= (1 << (vid & 0x1F)); 1717 e1000e_write_vfta(hw, index, vfta); 1718} 1719 1720static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 1721{ 1722 struct e1000_adapter *adapter = netdev_priv(netdev); 1723 struct e1000_hw *hw = &adapter->hw; 1724 u32 vfta, index; 1725 1726 if (!test_bit(__E1000_DOWN, &adapter->state)) 1727 e1000_irq_disable(adapter); 1728 vlan_group_set_device(adapter->vlgrp, vid, NULL); 1729 1730 if (!test_bit(__E1000_DOWN, &adapter->state)) 1731 e1000_irq_enable(adapter); 1732 1733 if ((adapter->hw.mng_cookie.status & 1734 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 1735 (vid == adapter->mng_vlan_id)) { 1736 /* release control to f/w */ 1737 e1000_release_hw_control(adapter); 1738 return; 1739 } 1740 1741 /* remove VID from filter table */ 1742 index = (vid >> 5) & 0x7F; 1743 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 1744 vfta &= ~(1 << (vid & 0x1F)); 1745 e1000e_write_vfta(hw, index, vfta); 1746} 1747 1748static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 1749{ 1750 struct net_device *netdev = adapter->netdev; 1751 u16 vid = adapter->hw.mng_cookie.vlan_id; 1752 u16 old_vid = adapter->mng_vlan_id; 1753 1754 if (!adapter->vlgrp) 1755 return; 1756 1757 if (!vlan_group_get_device(adapter->vlgrp, vid)) { 1758 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1759 if (adapter->hw.mng_cookie.status & 1760 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1761 e1000_vlan_rx_add_vid(netdev, vid); 1762 adapter->mng_vlan_id = vid; 1763 } 1764 1765 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 1766 (vid != old_vid) && 1767 !vlan_group_get_device(adapter->vlgrp, old_vid)) 1768 e1000_vlan_rx_kill_vid(netdev, old_vid); 1769 } else { 1770 adapter->mng_vlan_id = vid; 1771 } 1772} 1773 1774 1775static void e1000_vlan_rx_register(struct net_device *netdev, 1776 struct vlan_group *grp) 1777{ 1778 struct e1000_adapter *adapter = netdev_priv(netdev); 1779 struct e1000_hw *hw = &adapter->hw; 1780 u32 ctrl, rctl; 1781 1782 if (!test_bit(__E1000_DOWN, &adapter->state)) 1783 e1000_irq_disable(adapter); 1784 adapter->vlgrp = grp; 1785 1786 if (grp) { 1787 /* enable VLAN tag insert/strip */ 1788 ctrl = er32(CTRL); 1789 ctrl |= E1000_CTRL_VME; 1790 ew32(CTRL, ctrl); 1791 1792 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 1793 /* enable VLAN receive filtering */ 1794 rctl = er32(RCTL); 1795 rctl &= ~E1000_RCTL_CFIEN; 1796 ew32(RCTL, rctl); 1797 e1000_update_mng_vlan(adapter); 1798 } 1799 } else { 1800 /* disable VLAN tag insert/strip */ 1801 ctrl = er32(CTRL); 1802 ctrl &= ~E1000_CTRL_VME; 1803 ew32(CTRL, ctrl); 1804 1805 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 1806 if (adapter->mng_vlan_id != 1807 (u16)E1000_MNG_VLAN_NONE) { 1808 e1000_vlan_rx_kill_vid(netdev, 1809 adapter->mng_vlan_id); 1810 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1811 } 1812 } 1813 } 1814 1815 if (!test_bit(__E1000_DOWN, &adapter->state)) 1816 e1000_irq_enable(adapter); 1817} 1818 1819static void e1000_restore_vlan(struct e1000_adapter *adapter) 1820{ 1821 u16 vid; 1822 1823 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); 1824 1825 if (!adapter->vlgrp) 1826 return; 1827 1828 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { 1829 if (!vlan_group_get_device(adapter->vlgrp, vid)) 1830 continue; 1831 e1000_vlan_rx_add_vid(adapter->netdev, vid); 1832 } 1833} 1834 1835static void e1000_init_manageability(struct e1000_adapter *adapter) 1836{ 1837 struct e1000_hw *hw = &adapter->hw; 1838 u32 manc, manc2h; 1839 1840 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 1841 return; 1842 1843 manc = er32(MANC); 1844 1845 /* 1846 * enable receiving management packets to the host. this will probably 1847 * generate destination unreachable messages from the host OS, but 1848 * the packets will be handled on SMBUS 1849 */ 1850 manc |= E1000_MANC_EN_MNG2HOST; 1851 manc2h = er32(MANC2H); 1852#define E1000_MNG2HOST_PORT_623 (1 << 5) 1853#define E1000_MNG2HOST_PORT_664 (1 << 6) 1854 manc2h |= E1000_MNG2HOST_PORT_623; 1855 manc2h |= E1000_MNG2HOST_PORT_664; 1856 ew32(MANC2H, manc2h); 1857 ew32(MANC, manc); 1858} 1859 1860/** 1861 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1862 * @adapter: board private structure 1863 * 1864 * Configure the Tx unit of the MAC after a reset. 1865 **/ 1866static void e1000_configure_tx(struct e1000_adapter *adapter) 1867{ 1868 struct e1000_hw *hw = &adapter->hw; 1869 struct e1000_ring *tx_ring = adapter->tx_ring; 1870 u64 tdba; 1871 u32 tdlen, tctl, tipg, tarc; 1872 u32 ipgr1, ipgr2; 1873 1874 /* Setup the HW Tx Head and Tail descriptor pointers */ 1875 tdba = tx_ring->dma; 1876 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 1877 ew32(TDBAL, (tdba & DMA_32BIT_MASK)); 1878 ew32(TDBAH, (tdba >> 32)); 1879 ew32(TDLEN, tdlen); 1880 ew32(TDH, 0); 1881 ew32(TDT, 0); 1882 tx_ring->head = E1000_TDH; 1883 tx_ring->tail = E1000_TDT; 1884 1885 /* Set the default values for the Tx Inter Packet Gap timer */ 1886 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ 1887 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ 1888 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ 1889 1890 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) 1891 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ 1892 1893 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1894 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1895 ew32(TIPG, tipg); 1896 1897 /* Set the Tx Interrupt Delay register */ 1898 ew32(TIDV, adapter->tx_int_delay); 1899 /* Tx irq moderation */ 1900 ew32(TADV, adapter->tx_abs_int_delay); 1901 1902 /* Program the Transmit Control Register */ 1903 tctl = er32(TCTL); 1904 tctl &= ~E1000_TCTL_CT; 1905 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1906 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1907 1908 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 1909 tarc = er32(TARC(0)); 1910 /* 1911 * set the speed mode bit, we'll clear it if we're not at 1912 * gigabit link later 1913 */ 1914#define SPEED_MODE_BIT (1 << 21) 1915 tarc |= SPEED_MODE_BIT; 1916 ew32(TARC(0), tarc); 1917 } 1918 1919 /* errata: program both queues to unweighted RR */ 1920 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 1921 tarc = er32(TARC(0)); 1922 tarc |= 1; 1923 ew32(TARC(0), tarc); 1924 tarc = er32(TARC(1)); 1925 tarc |= 1; 1926 ew32(TARC(1), tarc); 1927 } 1928 1929 e1000e_config_collision_dist(hw); 1930 1931 /* Setup Transmit Descriptor Settings for eop descriptor */ 1932 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1933 1934 /* only set IDE if we are delaying interrupts using the timers */ 1935 if (adapter->tx_int_delay) 1936 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1937 1938 /* enable Report Status bit */ 1939 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1940 1941 ew32(TCTL, tctl); 1942 1943 adapter->tx_queue_len = adapter->netdev->tx_queue_len; 1944} 1945 1946/** 1947 * e1000_setup_rctl - configure the receive control registers 1948 * @adapter: Board private structure 1949 **/ 1950#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 1951 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 1952static void e1000_setup_rctl(struct e1000_adapter *adapter) 1953{ 1954 struct e1000_hw *hw = &adapter->hw; 1955 u32 rctl, rfctl; 1956 u32 psrctl = 0; 1957 u32 pages = 0; 1958 1959 /* Program MC offset vector base */ 1960 rctl = er32(RCTL); 1961 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1962 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 1963 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1964 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1965 1966 /* Do not Store bad packets */ 1967 rctl &= ~E1000_RCTL_SBP; 1968 1969 /* Enable Long Packet receive */ 1970 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1971 rctl &= ~E1000_RCTL_LPE; 1972 else 1973 rctl |= E1000_RCTL_LPE; 1974 1975 /* Enable hardware CRC frame stripping */ 1976 rctl |= E1000_RCTL_SECRC; 1977 1978 /* Setup buffer sizes */ 1979 rctl &= ~E1000_RCTL_SZ_4096; 1980 rctl |= E1000_RCTL_BSEX; 1981 switch (adapter->rx_buffer_len) { 1982 case 256: 1983 rctl |= E1000_RCTL_SZ_256; 1984 rctl &= ~E1000_RCTL_BSEX; 1985 break; 1986 case 512: 1987 rctl |= E1000_RCTL_SZ_512; 1988 rctl &= ~E1000_RCTL_BSEX; 1989 break; 1990 case 1024: 1991 rctl |= E1000_RCTL_SZ_1024; 1992 rctl &= ~E1000_RCTL_BSEX; 1993 break; 1994 case 2048: 1995 default: 1996 rctl |= E1000_RCTL_SZ_2048; 1997 rctl &= ~E1000_RCTL_BSEX; 1998 break; 1999 case 4096: 2000 rctl |= E1000_RCTL_SZ_4096; 2001 break; 2002 case 8192: 2003 rctl |= E1000_RCTL_SZ_8192; 2004 break; 2005 case 16384: 2006 rctl |= E1000_RCTL_SZ_16384; 2007 break; 2008 } 2009 2010 /* 2011 * 82571 and greater support packet-split where the protocol 2012 * header is placed in skb->data and the packet data is 2013 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 2014 * In the case of a non-split, skb->data is linearly filled, 2015 * followed by the page buffers. Therefore, skb->data is 2016 * sized to hold the largest protocol header. 2017 * 2018 * allocations using alloc_page take too long for regular MTU 2019 * so only enable packet split for jumbo frames 2020 * 2021 * Using pages when the page size is greater than 16k wastes 2022 * a lot of memory, since we allocate 3 pages at all times 2023 * per packet. 2024 */ 2025 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 2026 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) && 2027 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 2028 adapter->rx_ps_pages = pages; 2029 else 2030 adapter->rx_ps_pages = 0; 2031 2032 if (adapter->rx_ps_pages) { 2033 /* Configure extra packet-split registers */ 2034 rfctl = er32(RFCTL); 2035 rfctl |= E1000_RFCTL_EXTEN; 2036 /* 2037 * disable packet split support for IPv6 extension headers, 2038 * because some malformed IPv6 headers can hang the Rx 2039 */ 2040 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | 2041 E1000_RFCTL_NEW_IPV6_EXT_DIS); 2042 2043 ew32(RFCTL, rfctl); 2044 2045 /* Enable Packet split descriptors */ 2046 rctl |= E1000_RCTL_DTYP_PS; 2047 2048 psrctl |= adapter->rx_ps_bsize0 >> 2049 E1000_PSRCTL_BSIZE0_SHIFT; 2050 2051 switch (adapter->rx_ps_pages) { 2052 case 3: 2053 psrctl |= PAGE_SIZE << 2054 E1000_PSRCTL_BSIZE3_SHIFT; 2055 case 2: 2056 psrctl |= PAGE_SIZE << 2057 E1000_PSRCTL_BSIZE2_SHIFT; 2058 case 1: 2059 psrctl |= PAGE_SIZE >> 2060 E1000_PSRCTL_BSIZE1_SHIFT; 2061 break; 2062 } 2063 2064 ew32(PSRCTL, psrctl); 2065 } 2066 2067 ew32(RCTL, rctl); 2068 /* just started the receive unit, no need to restart */ 2069 adapter->flags &= ~FLAG_RX_RESTART_NOW; 2070} 2071 2072/** 2073 * e1000_configure_rx - Configure Receive Unit after Reset 2074 * @adapter: board private structure 2075 * 2076 * Configure the Rx unit of the MAC after a reset. 2077 **/ 2078static void e1000_configure_rx(struct e1000_adapter *adapter) 2079{ 2080 struct e1000_hw *hw = &adapter->hw; 2081 struct e1000_ring *rx_ring = adapter->rx_ring; 2082 u64 rdba; 2083 u32 rdlen, rctl, rxcsum, ctrl_ext; 2084 2085 if (adapter->rx_ps_pages) { 2086 /* this is a 32 byte descriptor */ 2087 rdlen = rx_ring->count * 2088 sizeof(union e1000_rx_desc_packet_split); 2089 adapter->clean_rx = e1000_clean_rx_irq_ps; 2090 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 2091 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 2092 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); 2093 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 2094 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 2095 } else { 2096 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); 2097 adapter->clean_rx = e1000_clean_rx_irq; 2098 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 2099 } 2100 2101 /* disable receives while setting up the descriptors */ 2102 rctl = er32(RCTL); 2103 ew32(RCTL, rctl & ~E1000_RCTL_EN); 2104 e1e_flush(); 2105 msleep(10); 2106 2107 /* set the Receive Delay Timer Register */ 2108 ew32(RDTR, adapter->rx_int_delay); 2109 2110 /* irq moderation */ 2111 ew32(RADV, adapter->rx_abs_int_delay); 2112 if (adapter->itr_setting != 0) 2113 ew32(ITR, 1000000000 / (adapter->itr * 256)); 2114 2115 ctrl_ext = er32(CTRL_EXT); 2116 /* Reset delay timers after every interrupt */ 2117 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; 2118 /* Auto-Mask interrupts upon ICR access */ 2119 ctrl_ext |= E1000_CTRL_EXT_IAME; 2120 ew32(IAM, 0xffffffff); 2121 ew32(CTRL_EXT, ctrl_ext); 2122 e1e_flush(); 2123 2124 /* 2125 * Setup the HW Rx Head and Tail Descriptor Pointers and 2126 * the Base and Length of the Rx Descriptor Ring 2127 */ 2128 rdba = rx_ring->dma; 2129 ew32(RDBAL, (rdba & DMA_32BIT_MASK)); 2130 ew32(RDBAH, (rdba >> 32)); 2131 ew32(RDLEN, rdlen); 2132 ew32(RDH, 0); 2133 ew32(RDT, 0); 2134 rx_ring->head = E1000_RDH; 2135 rx_ring->tail = E1000_RDT; 2136 2137 /* Enable Receive Checksum Offload for TCP and UDP */ 2138 rxcsum = er32(RXCSUM); 2139 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { 2140 rxcsum |= E1000_RXCSUM_TUOFL; 2141 2142 /* 2143 * IPv4 payload checksum for UDP fragments must be 2144 * used in conjunction with packet-split. 2145 */ 2146 if (adapter->rx_ps_pages) 2147 rxcsum |= E1000_RXCSUM_IPPCSE; 2148 } else { 2149 rxcsum &= ~E1000_RXCSUM_TUOFL; 2150 /* no need to clear IPPCSE as it defaults to 0 */ 2151 } 2152 ew32(RXCSUM, rxcsum); 2153 2154 /* 2155 * Enable early receives on supported devices, only takes effect when 2156 * packet size is equal or larger than the specified value (in 8 byte 2157 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 2158 */ 2159 if ((adapter->flags & FLAG_HAS_ERT) && 2160 (adapter->netdev->mtu > ETH_DATA_LEN)) { 2161 u32 rxdctl = er32(RXDCTL(0)); 2162 ew32(RXDCTL(0), rxdctl | 0x3); 2163 ew32(ERT, E1000_ERT_2048 | (1 << 13)); 2164 /* 2165 * With jumbo frames and early-receive enabled, excessive 2166 * C4->C2 latencies result in dropped transactions. 2167 */ 2168 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, 2169 e1000e_driver_name, 55); 2170 } else { 2171 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, 2172 e1000e_driver_name, 2173 PM_QOS_DEFAULT_VALUE); 2174 } 2175 2176 /* Enable Receives */ 2177 ew32(RCTL, rctl); 2178} 2179 2180/** 2181 * e1000_update_mc_addr_list - Update Multicast addresses 2182 * @hw: pointer to the HW structure 2183 * @mc_addr_list: array of multicast addresses to program 2184 * @mc_addr_count: number of multicast addresses to program 2185 * @rar_used_count: the first RAR register free to program 2186 * @rar_count: total number of supported Receive Address Registers 2187 * 2188 * Updates the Receive Address Registers and Multicast Table Array. 2189 * The caller must have a packed mc_addr_list of multicast addresses. 2190 * The parameter rar_count will usually be hw->mac.rar_entry_count 2191 * unless there are workarounds that change this. Currently no func pointer 2192 * exists and all implementations are handled in the generic version of this 2193 * function. 2194 **/ 2195static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 2196 u32 mc_addr_count, u32 rar_used_count, 2197 u32 rar_count) 2198{ 2199 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count, 2200 rar_used_count, rar_count); 2201} 2202 2203/** 2204 * e1000_set_multi - Multicast and Promiscuous mode set 2205 * @netdev: network interface device structure 2206 * 2207 * The set_multi entry point is called whenever the multicast address 2208 * list or the network interface flags are updated. This routine is 2209 * responsible for configuring the hardware for proper multicast, 2210 * promiscuous mode, and all-multi behavior. 2211 **/ 2212static void e1000_set_multi(struct net_device *netdev) 2213{ 2214 struct e1000_adapter *adapter = netdev_priv(netdev); 2215 struct e1000_hw *hw = &adapter->hw; 2216 struct e1000_mac_info *mac = &hw->mac; 2217 struct dev_mc_list *mc_ptr; 2218 u8 *mta_list; 2219 u32 rctl; 2220 int i; 2221 2222 /* Check for Promiscuous and All Multicast modes */ 2223 2224 rctl = er32(RCTL); 2225 2226 if (netdev->flags & IFF_PROMISC) { 2227 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2228 rctl &= ~E1000_RCTL_VFE; 2229 } else { 2230 if (netdev->flags & IFF_ALLMULTI) { 2231 rctl |= E1000_RCTL_MPE; 2232 rctl &= ~E1000_RCTL_UPE; 2233 } else { 2234 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 2235 } 2236 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 2237 rctl |= E1000_RCTL_VFE; 2238 } 2239 2240 ew32(RCTL, rctl); 2241 2242 if (netdev->mc_count) { 2243 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); 2244 if (!mta_list) 2245 return; 2246 2247 /* prepare a packed array of only addresses. */ 2248 mc_ptr = netdev->mc_list; 2249 2250 for (i = 0; i < netdev->mc_count; i++) { 2251 if (!mc_ptr) 2252 break; 2253 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, 2254 ETH_ALEN); 2255 mc_ptr = mc_ptr->next; 2256 } 2257 2258 e1000_update_mc_addr_list(hw, mta_list, i, 1, 2259 mac->rar_entry_count); 2260 kfree(mta_list); 2261 } else { 2262 /* 2263 * if we're called from probe, we might not have 2264 * anything to do here, so clear out the list 2265 */ 2266 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count); 2267 } 2268} 2269 2270/** 2271 * e1000_configure - configure the hardware for Rx and Tx 2272 * @adapter: private board structure 2273 **/ 2274static void e1000_configure(struct e1000_adapter *adapter) 2275{ 2276 e1000_set_multi(adapter->netdev); 2277 2278 e1000_restore_vlan(adapter); 2279 e1000_init_manageability(adapter); 2280 2281 e1000_configure_tx(adapter); 2282 e1000_setup_rctl(adapter); 2283 e1000_configure_rx(adapter); 2284 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); 2285} 2286 2287/** 2288 * e1000e_power_up_phy - restore link in case the phy was powered down 2289 * @adapter: address of board private structure 2290 * 2291 * The phy may be powered down to save power and turn off link when the 2292 * driver is unloaded and wake on lan is not enabled (among others) 2293 * *** this routine MUST be followed by a call to e1000e_reset *** 2294 **/ 2295void e1000e_power_up_phy(struct e1000_adapter *adapter) 2296{ 2297 u16 mii_reg = 0; 2298 2299 /* Just clear the power down bit to wake the phy back up */ 2300 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 2301 /* 2302 * According to the manual, the phy will retain its 2303 * settings across a power-down/up cycle 2304 */ 2305 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); 2306 mii_reg &= ~MII_CR_POWER_DOWN; 2307 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); 2308 } 2309 2310 adapter->hw.mac.ops.setup_link(&adapter->hw); 2311} 2312 2313/** 2314 * e1000_power_down_phy - Power down the PHY 2315 * 2316 * Power down the PHY so no link is implied when interface is down 2317 * The PHY cannot be powered down is management or WoL is active 2318 */ 2319static void e1000_power_down_phy(struct e1000_adapter *adapter) 2320{ 2321 struct e1000_hw *hw = &adapter->hw; 2322 u16 mii_reg; 2323 2324 /* WoL is enabled */ 2325 if (adapter->wol) 2326 return; 2327 2328 /* non-copper PHY? */ 2329 if (adapter->hw.phy.media_type != e1000_media_type_copper) 2330 return; 2331 2332 /* reset is blocked because of a SoL/IDER session */ 2333 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw)) 2334 return; 2335 2336 /* manageability (AMT) is enabled */ 2337 if (er32(MANC) & E1000_MANC_SMBUS_EN) 2338 return; 2339 2340 /* power down the PHY */ 2341 e1e_rphy(hw, PHY_CONTROL, &mii_reg); 2342 mii_reg |= MII_CR_POWER_DOWN; 2343 e1e_wphy(hw, PHY_CONTROL, mii_reg); 2344 mdelay(1); 2345} 2346 2347/** 2348 * e1000e_reset - bring the hardware into a known good state 2349 * 2350 * This function boots the hardware and enables some settings that 2351 * require a configuration cycle of the hardware - those cannot be 2352 * set/changed during runtime. After reset the device needs to be 2353 * properly configured for Rx, Tx etc. 2354 */ 2355void e1000e_reset(struct e1000_adapter *adapter) 2356{ 2357 struct e1000_mac_info *mac = &adapter->hw.mac; 2358 struct e1000_fc_info *fc = &adapter->hw.fc; 2359 struct e1000_hw *hw = &adapter->hw; 2360 u32 tx_space, min_tx_space, min_rx_space; 2361 u32 pba = adapter->pba; 2362 u16 hwm; 2363 2364 /* reset Packet Buffer Allocation to default */ 2365 ew32(PBA, pba); 2366 2367 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 2368 /* 2369 * To maintain wire speed transmits, the Tx FIFO should be 2370 * large enough to accommodate two full transmit packets, 2371 * rounded up to the next 1KB and expressed in KB. Likewise, 2372 * the Rx FIFO should be large enough to accommodate at least 2373 * one full receive packet and is similarly rounded up and 2374 * expressed in KB. 2375 */ 2376 pba = er32(PBA); 2377 /* upper 16 bits has Tx packet buffer allocation size in KB */ 2378 tx_space = pba >> 16; 2379 /* lower 16 bits has Rx packet buffer allocation size in KB */ 2380 pba &= 0xffff; 2381 /* 2382 * the Tx fifo also stores 16 bytes of information about the tx 2383 * but don't include ethernet FCS because hardware appends it 2384 */ 2385 min_tx_space = (adapter->max_frame_size + 2386 sizeof(struct e1000_tx_desc) - 2387 ETH_FCS_LEN) * 2; 2388 min_tx_space = ALIGN(min_tx_space, 1024); 2389 min_tx_space >>= 10; 2390 /* software strips receive CRC, so leave room for it */ 2391 min_rx_space = adapter->max_frame_size; 2392 min_rx_space = ALIGN(min_rx_space, 1024); 2393 min_rx_space >>= 10; 2394 2395 /* 2396 * If current Tx allocation is less than the min Tx FIFO size, 2397 * and the min Tx FIFO size is less than the current Rx FIFO 2398 * allocation, take space away from current Rx allocation 2399 */ 2400 if ((tx_space < min_tx_space) && 2401 ((min_tx_space - tx_space) < pba)) { 2402 pba -= min_tx_space - tx_space; 2403 2404 /* 2405 * if short on Rx space, Rx wins and must trump tx 2406 * adjustment or use Early Receive if available 2407 */ 2408 if ((pba < min_rx_space) && 2409 (!(adapter->flags & FLAG_HAS_ERT))) 2410 /* ERT enabled in e1000_configure_rx */ 2411 pba = min_rx_space; 2412 } 2413 2414 ew32(PBA, pba); 2415 } 2416 2417 2418 /* 2419 * flow control settings 2420 * 2421 * The high water mark must be low enough to fit one full frame 2422 * (or the size used for early receive) above it in the Rx FIFO. 2423 * Set it to the lower of: 2424 * - 90% of the Rx FIFO size, and 2425 * - the full Rx FIFO size minus the early receive size (for parts 2426 * with ERT support assuming ERT set to E1000_ERT_2048), or 2427 * - the full Rx FIFO size minus one full frame 2428 */ 2429 if (adapter->flags & FLAG_HAS_ERT) 2430 hwm = min(((pba << 10) * 9 / 10), 2431 ((pba << 10) - (E1000_ERT_2048 << 3))); 2432 else 2433 hwm = min(((pba << 10) * 9 / 10), 2434 ((pba << 10) - adapter->max_frame_size)); 2435 2436 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ 2437 fc->low_water = fc->high_water - 8; 2438 2439 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 2440 fc->pause_time = 0xFFFF; 2441 else 2442 fc->pause_time = E1000_FC_PAUSE_TIME; 2443 fc->send_xon = 1; 2444 fc->type = fc->original_type; 2445 2446 /* Allow time for pending master requests to run */ 2447 mac->ops.reset_hw(hw); 2448 2449 /* 2450 * For parts with AMT enabled, let the firmware know 2451 * that the network interface is in control 2452 */ 2453 if ((adapter->flags & FLAG_HAS_AMT) && e1000e_check_mng_mode(hw)) 2454 e1000_get_hw_control(adapter); 2455 2456 ew32(WUC, 0); 2457 2458 if (mac->ops.init_hw(hw)) 2459 ndev_err(adapter->netdev, "Hardware Error\n"); 2460 2461 e1000_update_mng_vlan(adapter); 2462 2463 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2464 ew32(VET, ETH_P_8021Q); 2465 2466 e1000e_reset_adaptive(hw); 2467 e1000_get_phy_info(hw); 2468 2469 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { 2470 u16 phy_data = 0; 2471 /* 2472 * speed up time to link by disabling smart power down, ignore 2473 * the return value of this function because there is nothing 2474 * different we would do if it failed 2475 */ 2476 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 2477 phy_data &= ~IGP02E1000_PM_SPD; 2478 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 2479 } 2480} 2481 2482int e1000e_up(struct e1000_adapter *adapter) 2483{ 2484 struct e1000_hw *hw = &adapter->hw; 2485 2486 /* hardware has been reset, we need to reload some things */ 2487 e1000_configure(adapter); 2488 2489 clear_bit(__E1000_DOWN, &adapter->state); 2490 2491 napi_enable(&adapter->napi); 2492 e1000_irq_enable(adapter); 2493 2494 /* fire a link change interrupt to start the watchdog */ 2495 ew32(ICS, E1000_ICS_LSC); 2496 return 0; 2497} 2498 2499void e1000e_down(struct e1000_adapter *adapter) 2500{ 2501 struct net_device *netdev = adapter->netdev; 2502 struct e1000_hw *hw = &adapter->hw; 2503 u32 tctl, rctl; 2504 2505 /* 2506 * signal that we're down so the interrupt handler does not 2507 * reschedule our watchdog timer 2508 */ 2509 set_bit(__E1000_DOWN, &adapter->state); 2510 2511 /* disable receives in the hardware */ 2512 rctl = er32(RCTL); 2513 ew32(RCTL, rctl & ~E1000_RCTL_EN); 2514 /* flush and sleep below */ 2515 2516 netif_tx_stop_all_queues(netdev); 2517 2518 /* disable transmits in the hardware */ 2519 tctl = er32(TCTL); 2520 tctl &= ~E1000_TCTL_EN; 2521 ew32(TCTL, tctl); 2522 /* flush both disables and wait for them to finish */ 2523 e1e_flush(); 2524 msleep(10); 2525 2526 napi_disable(&adapter->napi); 2527 e1000_irq_disable(adapter); 2528 2529 del_timer_sync(&adapter->watchdog_timer); 2530 del_timer_sync(&adapter->phy_info_timer); 2531 2532 netdev->tx_queue_len = adapter->tx_queue_len; 2533 netif_carrier_off(netdev); 2534 adapter->link_speed = 0; 2535 adapter->link_duplex = 0; 2536 2537 if (!pci_channel_offline(adapter->pdev)) 2538 e1000e_reset(adapter); 2539 e1000_clean_tx_ring(adapter); 2540 e1000_clean_rx_ring(adapter); 2541 2542 /* 2543 * TODO: for power management, we could drop the link and 2544 * pci_disable_device here. 2545 */ 2546} 2547 2548void e1000e_reinit_locked(struct e1000_adapter *adapter) 2549{ 2550 might_sleep(); 2551 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 2552 msleep(1); 2553 e1000e_down(adapter); 2554 e1000e_up(adapter); 2555 clear_bit(__E1000_RESETTING, &adapter->state); 2556} 2557 2558/** 2559 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 2560 * @adapter: board private structure to initialize 2561 * 2562 * e1000_sw_init initializes the Adapter private data structure. 2563 * Fields are initialized based on PCI device information and 2564 * OS network device settings (MTU size). 2565 **/ 2566static int __devinit e1000_sw_init(struct e1000_adapter *adapter) 2567{ 2568 struct net_device *netdev = adapter->netdev; 2569 2570 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 2571 adapter->rx_ps_bsize0 = 128; 2572 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 2573 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2574 2575 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2576 if (!adapter->tx_ring) 2577 goto err; 2578 2579 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); 2580 if (!adapter->rx_ring) 2581 goto err; 2582 2583 spin_lock_init(&adapter->tx_queue_lock); 2584 2585 /* Explicitly disable IRQ since the NIC can be in any state. */ 2586 e1000_irq_disable(adapter); 2587 2588 spin_lock_init(&adapter->stats_lock); 2589 2590 set_bit(__E1000_DOWN, &adapter->state); 2591 return 0; 2592 2593err: 2594 ndev_err(netdev, "Unable to allocate memory for queues\n"); 2595 kfree(adapter->rx_ring); 2596 kfree(adapter->tx_ring); 2597 return -ENOMEM; 2598} 2599 2600/** 2601 * e1000_open - Called when a network interface is made active 2602 * @netdev: network interface device structure 2603 * 2604 * Returns 0 on success, negative value on failure 2605 * 2606 * The open entry point is called when a network interface is made 2607 * active by the system (IFF_UP). At this point all resources needed 2608 * for transmit and receive operations are allocated, the interrupt 2609 * handler is registered with the OS, the watchdog timer is started, 2610 * and the stack is notified that the interface is ready. 2611 **/ 2612static int e1000_open(struct net_device *netdev) 2613{ 2614 struct e1000_adapter *adapter = netdev_priv(netdev); 2615 struct e1000_hw *hw = &adapter->hw; 2616 int err; 2617 2618 /* disallow open during test */ 2619 if (test_bit(__E1000_TESTING, &adapter->state)) 2620 return -EBUSY; 2621 2622 /* allocate transmit descriptors */ 2623 err = e1000e_setup_tx_resources(adapter); 2624 if (err) 2625 goto err_setup_tx; 2626 2627 /* allocate receive descriptors */ 2628 err = e1000e_setup_rx_resources(adapter); 2629 if (err) 2630 goto err_setup_rx; 2631 2632 e1000e_power_up_phy(adapter); 2633 2634 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2635 if ((adapter->hw.mng_cookie.status & 2636 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 2637 e1000_update_mng_vlan(adapter); 2638 2639 /* 2640 * If AMT is enabled, let the firmware know that the network 2641 * interface is now open 2642 */ 2643 if ((adapter->flags & FLAG_HAS_AMT) && 2644 e1000e_check_mng_mode(&adapter->hw)) 2645 e1000_get_hw_control(adapter); 2646 2647 /* 2648 * before we allocate an interrupt, we must be ready to handle it. 2649 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 2650 * as soon as we call pci_request_irq, so we have to setup our 2651 * clean_rx handler before we do so. 2652 */ 2653 e1000_configure(adapter); 2654 2655 err = e1000_request_irq(adapter); 2656 if (err) 2657 goto err_req_irq; 2658 2659 /* From here on the code is the same as e1000e_up() */ 2660 clear_bit(__E1000_DOWN, &adapter->state); 2661 2662 napi_enable(&adapter->napi); 2663 2664 e1000_irq_enable(adapter); 2665 2666 netif_tx_start_all_queues(netdev); 2667 2668 /* fire a link status change interrupt to start the watchdog */ 2669 ew32(ICS, E1000_ICS_LSC); 2670 2671 return 0; 2672 2673err_req_irq: 2674 e1000_release_hw_control(adapter); 2675 e1000_power_down_phy(adapter); 2676 e1000e_free_rx_resources(adapter); 2677err_setup_rx: 2678 e1000e_free_tx_resources(adapter); 2679err_setup_tx: 2680 e1000e_reset(adapter); 2681 2682 return err; 2683} 2684 2685/** 2686 * e1000_close - Disables a network interface 2687 * @netdev: network interface device structure 2688 * 2689 * Returns 0, this is not allowed to fail 2690 * 2691 * The close entry point is called when an interface is de-activated 2692 * by the OS. The hardware is still under the drivers control, but 2693 * needs to be disabled. A global MAC reset is issued to stop the 2694 * hardware, and all transmit and receive resources are freed. 2695 **/ 2696static int e1000_close(struct net_device *netdev) 2697{ 2698 struct e1000_adapter *adapter = netdev_priv(netdev); 2699 2700 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 2701 e1000e_down(adapter); 2702 e1000_power_down_phy(adapter); 2703 e1000_free_irq(adapter); 2704 2705 e1000e_free_tx_resources(adapter); 2706 e1000e_free_rx_resources(adapter); 2707 2708 /* 2709 * kill manageability vlan ID if supported, but not if a vlan with 2710 * the same ID is registered on the host OS (let 8021q kill it) 2711 */ 2712 if ((adapter->hw.mng_cookie.status & 2713 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2714 !(adapter->vlgrp && 2715 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) 2716 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 2717 2718 /* 2719 * If AMT is enabled, let the firmware know that the network 2720 * interface is now closed 2721 */ 2722 if ((adapter->flags & FLAG_HAS_AMT) && 2723 e1000e_check_mng_mode(&adapter->hw)) 2724 e1000_release_hw_control(adapter); 2725 2726 return 0; 2727} 2728/** 2729 * e1000_set_mac - Change the Ethernet Address of the NIC 2730 * @netdev: network interface device structure 2731 * @p: pointer to an address structure 2732 * 2733 * Returns 0 on success, negative on failure 2734 **/ 2735static int e1000_set_mac(struct net_device *netdev, void *p) 2736{ 2737 struct e1000_adapter *adapter = netdev_priv(netdev); 2738 struct sockaddr *addr = p; 2739 2740 if (!is_valid_ether_addr(addr->sa_data)) 2741 return -EADDRNOTAVAIL; 2742 2743 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2744 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 2745 2746 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 2747 2748 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 2749 /* activate the work around */ 2750 e1000e_set_laa_state_82571(&adapter->hw, 1); 2751 2752 /* 2753 * Hold a copy of the LAA in RAR[14] This is done so that 2754 * between the time RAR[0] gets clobbered and the time it 2755 * gets fixed (in e1000_watchdog), the actual LAA is in one 2756 * of the RARs and no incoming packets directed to this port 2757 * are dropped. Eventually the LAA will be in RAR[0] and 2758 * RAR[14] 2759 */ 2760 e1000e_rar_set(&adapter->hw, 2761 adapter->hw.mac.addr, 2762 adapter->hw.mac.rar_entry_count - 1); 2763 } 2764 2765 return 0; 2766} 2767 2768/* 2769 * Need to wait a few seconds after link up to get diagnostic information from 2770 * the phy 2771 */ 2772static void e1000_update_phy_info(unsigned long data) 2773{ 2774 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 2775 e1000_get_phy_info(&adapter->hw); 2776} 2777 2778/** 2779 * e1000e_update_stats - Update the board statistics counters 2780 * @adapter: board private structure 2781 **/ 2782void e1000e_update_stats(struct e1000_adapter *adapter) 2783{ 2784 struct e1000_hw *hw = &adapter->hw; 2785 struct pci_dev *pdev = adapter->pdev; 2786 unsigned long irq_flags; 2787 u16 phy_tmp; 2788 2789#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 2790 2791 /* 2792 * Prevent stats update while adapter is being reset, or if the pci 2793 * connection is down. 2794 */ 2795 if (adapter->link_speed == 0) 2796 return; 2797 if (pci_channel_offline(pdev)) 2798 return; 2799 2800 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 2801 2802 /* 2803 * these counters are modified from e1000_adjust_tbi_stats, 2804 * called from the interrupt context, so they must only 2805 * be written while holding adapter->stats_lock 2806 */ 2807 2808 adapter->stats.crcerrs += er32(CRCERRS); 2809 adapter->stats.gprc += er32(GPRC); 2810 adapter->stats.gorc += er32(GORCL); 2811 er32(GORCH); /* Clear gorc */ 2812 adapter->stats.bprc += er32(BPRC); 2813 adapter->stats.mprc += er32(MPRC); 2814 adapter->stats.roc += er32(ROC); 2815 2816 adapter->stats.mpc += er32(MPC); 2817 adapter->stats.scc += er32(SCC); 2818 adapter->stats.ecol += er32(ECOL); 2819 adapter->stats.mcc += er32(MCC); 2820 adapter->stats.latecol += er32(LATECOL); 2821 adapter->stats.dc += er32(DC); 2822 adapter->stats.xonrxc += er32(XONRXC); 2823 adapter->stats.xontxc += er32(XONTXC); 2824 adapter->stats.xoffrxc += er32(XOFFRXC); 2825 adapter->stats.xofftxc += er32(XOFFTXC); 2826 adapter->stats.gptc += er32(GPTC); 2827 adapter->stats.gotc += er32(GOTCL); 2828 er32(GOTCH); /* Clear gotc */ 2829 adapter->stats.rnbc += er32(RNBC); 2830 adapter->stats.ruc += er32(RUC); 2831 2832 adapter->stats.mptc += er32(MPTC); 2833 adapter->stats.bptc += er32(BPTC); 2834 2835 /* used for adaptive IFS */ 2836 2837 hw->mac.tx_packet_delta = er32(TPT); 2838 adapter->stats.tpt += hw->mac.tx_packet_delta; 2839 hw->mac.collision_delta = er32(COLC); 2840 adapter->stats.colc += hw->mac.collision_delta; 2841 2842 adapter->stats.algnerrc += er32(ALGNERRC); 2843 adapter->stats.rxerrc += er32(RXERRC); 2844 adapter->stats.tncrs += er32(TNCRS); 2845 adapter->stats.cexterr += er32(CEXTERR); 2846 adapter->stats.tsctc += er32(TSCTC); 2847 adapter->stats.tsctfc += er32(TSCTFC); 2848 2849 /* Fill out the OS statistics structure */ 2850 adapter->net_stats.multicast = adapter->stats.mprc; 2851 adapter->net_stats.collisions = adapter->stats.colc; 2852 2853 /* Rx Errors */ 2854 2855 /* 2856 * RLEC on some newer hardware can be incorrect so build 2857 * our own version based on RUC and ROC 2858 */ 2859 adapter->net_stats.rx_errors = adapter->stats.rxerrc + 2860 adapter->stats.crcerrs + adapter->stats.algnerrc + 2861 adapter->stats.ruc + adapter->stats.roc + 2862 adapter->stats.cexterr; 2863 adapter->net_stats.rx_length_errors = adapter->stats.ruc + 2864 adapter->stats.roc; 2865 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; 2866 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; 2867 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; 2868 2869 /* Tx Errors */ 2870 adapter->net_stats.tx_errors = adapter->stats.ecol + 2871 adapter->stats.latecol; 2872 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; 2873 adapter->net_stats.tx_window_errors = adapter->stats.latecol; 2874 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; 2875 2876 /* Tx Dropped needs to be maintained elsewhere */ 2877 2878 /* Phy Stats */ 2879 if (hw->phy.media_type == e1000_media_type_copper) { 2880 if ((adapter->link_speed == SPEED_1000) && 2881 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { 2882 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 2883 adapter->phy_stats.idle_errors += phy_tmp; 2884 } 2885 } 2886 2887 /* Management Stats */ 2888 adapter->stats.mgptc += er32(MGTPTC); 2889 adapter->stats.mgprc += er32(MGTPRC); 2890 adapter->stats.mgpdc += er32(MGTPDC); 2891 2892 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 2893} 2894 2895/** 2896 * e1000_phy_read_status - Update the PHY register status snapshot 2897 * @adapter: board private structure 2898 **/ 2899static void e1000_phy_read_status(struct e1000_adapter *adapter) 2900{ 2901 struct e1000_hw *hw = &adapter->hw; 2902 struct e1000_phy_regs *phy = &adapter->phy_regs; 2903 int ret_val; 2904 unsigned long irq_flags; 2905 2906 2907 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 2908 2909 if ((er32(STATUS) & E1000_STATUS_LU) && 2910 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 2911 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); 2912 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); 2913 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); 2914 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); 2915 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); 2916 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); 2917 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); 2918 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); 2919 if (ret_val) 2920 ndev_warn(adapter->netdev, 2921 "Error reading PHY register\n"); 2922 } else { 2923 /* 2924 * Do not read PHY registers if link is not up 2925 * Set values to typical power-on defaults 2926 */ 2927 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 2928 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 2929 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 2930 BMSR_ERCAP); 2931 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 2932 ADVERTISE_ALL | ADVERTISE_CSMA); 2933 phy->lpa = 0; 2934 phy->expansion = EXPANSION_ENABLENPAGE; 2935 phy->ctrl1000 = ADVERTISE_1000FULL; 2936 phy->stat1000 = 0; 2937 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 2938 } 2939 2940 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 2941} 2942 2943static void e1000_print_link_info(struct e1000_adapter *adapter) 2944{ 2945 struct e1000_hw *hw = &adapter->hw; 2946 struct net_device *netdev = adapter->netdev; 2947 u32 ctrl = er32(CTRL); 2948 2949 ndev_info(netdev, 2950 "Link is Up %d Mbps %s, Flow Control: %s\n", 2951 adapter->link_speed, 2952 (adapter->link_duplex == FULL_DUPLEX) ? 2953 "Full Duplex" : "Half Duplex", 2954 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? 2955 "RX/TX" : 2956 ((ctrl & E1000_CTRL_RFCE) ? "RX" : 2957 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); 2958} 2959 2960static bool e1000_has_link(struct e1000_adapter *adapter) 2961{ 2962 struct e1000_hw *hw = &adapter->hw; 2963 bool link_active = 0; 2964 s32 ret_val = 0; 2965 2966 /* 2967 * get_link_status is set on LSC (link status) interrupt or 2968 * Rx sequence error interrupt. get_link_status will stay 2969 * false until the check_for_link establishes link 2970 * for copper adapters ONLY 2971 */ 2972 switch (hw->phy.media_type) { 2973 case e1000_media_type_copper: 2974 if (hw->mac.get_link_status) { 2975 ret_val = hw->mac.ops.check_for_link(hw); 2976 link_active = !hw->mac.get_link_status; 2977 } else { 2978 link_active = 1; 2979 } 2980 break; 2981 case e1000_media_type_fiber: 2982 ret_val = hw->mac.ops.check_for_link(hw); 2983 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2984 break; 2985 case e1000_media_type_internal_serdes: 2986 ret_val = hw->mac.ops.check_for_link(hw); 2987 link_active = adapter->hw.mac.serdes_has_link; 2988 break; 2989 default: 2990 case e1000_media_type_unknown: 2991 break; 2992 } 2993 2994 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 2995 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 2996 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 2997 ndev_info(adapter->netdev, 2998 "Gigabit has been disabled, downgrading speed\n"); 2999 } 3000 3001 return link_active; 3002} 3003 3004static void e1000e_enable_receives(struct e1000_adapter *adapter) 3005{ 3006 /* make sure the receive unit is started */ 3007 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 3008 (adapter->flags & FLAG_RX_RESTART_NOW)) { 3009 struct e1000_hw *hw = &adapter->hw; 3010 u32 rctl = er32(RCTL); 3011 ew32(RCTL, rctl | E1000_RCTL_EN); 3012 adapter->flags &= ~FLAG_RX_RESTART_NOW; 3013 } 3014} 3015 3016/** 3017 * e1000_watchdog - Timer Call-back 3018 * @data: pointer to adapter cast into an unsigned long 3019 **/ 3020static void e1000_watchdog(unsigned long data) 3021{ 3022 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 3023 3024 /* Do the rest outside of interrupt context */ 3025 schedule_work(&adapter->watchdog_task); 3026 3027 /* TODO: make this use queue_delayed_work() */ 3028} 3029 3030static void e1000_watchdog_task(struct work_struct *work) 3031{ 3032 struct e1000_adapter *adapter = container_of(work, 3033 struct e1000_adapter, watchdog_task); 3034 struct net_device *netdev = adapter->netdev; 3035 struct e1000_mac_info *mac = &adapter->hw.mac; 3036 struct e1000_ring *tx_ring = adapter->tx_ring; 3037 struct e1000_hw *hw = &adapter->hw; 3038 u32 link, tctl; 3039 int tx_pending = 0; 3040 3041 link = e1000_has_link(adapter); 3042 if ((netif_carrier_ok(netdev)) && link) { 3043 e1000e_enable_receives(adapter); 3044 goto link_up; 3045 } 3046 3047 if ((e1000e_enable_tx_pkt_filtering(hw)) && 3048 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 3049 e1000_update_mng_vlan(adapter); 3050 3051 if (link) { 3052 if (!netif_carrier_ok(netdev)) { 3053 bool txb2b = 1; 3054 /* update snapshot of PHY registers on LSC */ 3055 e1000_phy_read_status(adapter); 3056 mac->ops.get_link_up_info(&adapter->hw, 3057 &adapter->link_speed, 3058 &adapter->link_duplex); 3059 e1000_print_link_info(adapter); 3060 /* 3061 * tweak tx_queue_len according to speed/duplex 3062 * and adjust the timeout factor 3063 */ 3064 netdev->tx_queue_len = adapter->tx_queue_len; 3065 adapter->tx_timeout_factor = 1; 3066 switch (adapter->link_speed) { 3067 case SPEED_10: 3068 txb2b = 0; 3069 netdev->tx_queue_len = 10; 3070 adapter->tx_timeout_factor = 14; 3071 break; 3072 case SPEED_100: 3073 txb2b = 0; 3074 netdev->tx_queue_len = 100; 3075 /* maybe add some timeout factor ? */ 3076 break; 3077 } 3078 3079 /* 3080 * workaround: re-program speed mode bit after 3081 * link-up event 3082 */ 3083 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 3084 !txb2b) { 3085 u32 tarc0; 3086 tarc0 = er32(TARC(0)); 3087 tarc0 &= ~SPEED_MODE_BIT; 3088 ew32(TARC(0), tarc0); 3089 } 3090 3091 /* 3092 * disable TSO for pcie and 10/100 speeds, to avoid 3093 * some hardware issues 3094 */ 3095 if (!(adapter->flags & FLAG_TSO_FORCE)) { 3096 switch (adapter->link_speed) { 3097 case SPEED_10: 3098 case SPEED_100: 3099 ndev_info(netdev, 3100 "10/100 speed: disabling TSO\n"); 3101 netdev->features &= ~NETIF_F_TSO; 3102 netdev->features &= ~NETIF_F_TSO6; 3103 break; 3104 case SPEED_1000: 3105 netdev->features |= NETIF_F_TSO; 3106 netdev->features |= NETIF_F_TSO6; 3107 break; 3108 default: 3109 /* oops */ 3110 break; 3111 } 3112 } 3113 3114 /* 3115 * enable transmits in the hardware, need to do this 3116 * after setting TARC(0) 3117 */ 3118 tctl = er32(TCTL); 3119 tctl |= E1000_TCTL_EN; 3120 ew32(TCTL, tctl); 3121 3122 netif_carrier_on(netdev); 3123 netif_tx_wake_all_queues(netdev); 3124 3125 if (!test_bit(__E1000_DOWN, &adapter->state)) 3126 mod_timer(&adapter->phy_info_timer, 3127 round_jiffies(jiffies + 2 * HZ)); 3128 } 3129 } else { 3130 if (netif_carrier_ok(netdev)) { 3131 adapter->link_speed = 0; 3132 adapter->link_duplex = 0; 3133 ndev_info(netdev, "Link is Down\n"); 3134 netif_carrier_off(netdev); 3135 netif_tx_stop_all_queues(netdev); 3136 if (!test_bit(__E1000_DOWN, &adapter->state)) 3137 mod_timer(&adapter->phy_info_timer, 3138 round_jiffies(jiffies + 2 * HZ)); 3139 3140 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 3141 schedule_work(&adapter->reset_task); 3142 } 3143 } 3144 3145link_up: 3146 e1000e_update_stats(adapter); 3147 3148 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 3149 adapter->tpt_old = adapter->stats.tpt; 3150 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 3151 adapter->colc_old = adapter->stats.colc; 3152 3153 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 3154 adapter->gorc_old = adapter->stats.gorc; 3155 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 3156 adapter->gotc_old = adapter->stats.gotc; 3157 3158 e1000e_update_adaptive(&adapter->hw); 3159 3160 if (!netif_carrier_ok(netdev)) { 3161 tx_pending = (e1000_desc_unused(tx_ring) + 1 < 3162 tx_ring->count); 3163 if (tx_pending) { 3164 /* 3165 * We've lost link, so the controller stops DMA, 3166 * but we've got queued Tx work that's never going 3167 * to get done, so reset controller to flush Tx. 3168 * (Do the reset outside of interrupt context). 3169 */ 3170 adapter->tx_timeout_count++; 3171 schedule_work(&adapter->reset_task); 3172 } 3173 } 3174 3175 /* Cause software interrupt to ensure Rx ring is cleaned */ 3176 ew32(ICS, E1000_ICS_RXDMT0); 3177 3178 /* Force detection of hung controller every watchdog period */ 3179 adapter->detect_tx_hung = 1; 3180 3181 /* 3182 * With 82571 controllers, LAA may be overwritten due to controller 3183 * reset from the other port. Set the appropriate LAA in RAR[0] 3184 */ 3185 if (e1000e_get_laa_state_82571(hw)) 3186 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); 3187 3188 /* Reset the timer */ 3189 if (!test_bit(__E1000_DOWN, &adapter->state)) 3190 mod_timer(&adapter->watchdog_timer, 3191 round_jiffies(jiffies + 2 * HZ)); 3192} 3193 3194#define E1000_TX_FLAGS_CSUM 0x00000001 3195#define E1000_TX_FLAGS_VLAN 0x00000002 3196#define E1000_TX_FLAGS_TSO 0x00000004 3197#define E1000_TX_FLAGS_IPV4 0x00000008 3198#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 3199#define E1000_TX_FLAGS_VLAN_SHIFT 16 3200 3201static int e1000_tso(struct e1000_adapter *adapter, 3202 struct sk_buff *skb) 3203{ 3204 struct e1000_ring *tx_ring = adapter->tx_ring; 3205 struct e1000_context_desc *context_desc; 3206 struct e1000_buffer *buffer_info; 3207 unsigned int i; 3208 u32 cmd_length = 0; 3209 u16 ipcse = 0, tucse, mss; 3210 u8 ipcss, ipcso, tucss, tucso, hdr_len; 3211 int err; 3212 3213 if (skb_is_gso(skb)) { 3214 if (skb_header_cloned(skb)) { 3215 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3216 if (err) 3217 return err; 3218 } 3219 3220 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3221 mss = skb_shinfo(skb)->gso_size; 3222 if (skb->protocol == htons(ETH_P_IP)) { 3223 struct iphdr *iph = ip_hdr(skb); 3224 iph->tot_len = 0; 3225 iph->check = 0; 3226 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 3227 iph->daddr, 0, 3228 IPPROTO_TCP, 3229 0); 3230 cmd_length = E1000_TXD_CMD_IP; 3231 ipcse = skb_transport_offset(skb) - 1; 3232 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { 3233 ipv6_hdr(skb)->payload_len = 0; 3234 tcp_hdr(skb)->check = 3235 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3236 &ipv6_hdr(skb)->daddr, 3237 0, IPPROTO_TCP, 0); 3238 ipcse = 0; 3239 } 3240 ipcss = skb_network_offset(skb); 3241 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 3242 tucss = skb_transport_offset(skb); 3243 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 3244 tucse = 0; 3245 3246 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 3247 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 3248 3249 i = tx_ring->next_to_use; 3250 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 3251 buffer_info = &tx_ring->buffer_info[i]; 3252 3253 context_desc->lower_setup.ip_fields.ipcss = ipcss; 3254 context_desc->lower_setup.ip_fields.ipcso = ipcso; 3255 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 3256 context_desc->upper_setup.tcp_fields.tucss = tucss; 3257 context_desc->upper_setup.tcp_fields.tucso = tucso; 3258 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 3259 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 3260 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 3261 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 3262 3263 buffer_info->time_stamp = jiffies; 3264 buffer_info->next_to_watch = i; 3265 3266 i++; 3267 if (i == tx_ring->count) 3268 i = 0; 3269 tx_ring->next_to_use = i; 3270 3271 return 1; 3272 } 3273 3274 return 0; 3275} 3276 3277static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) 3278{ 3279 struct e1000_ring *tx_ring = adapter->tx_ring; 3280 struct e1000_context_desc *context_desc; 3281 struct e1000_buffer *buffer_info; 3282 unsigned int i; 3283 u8 css; 3284 3285 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3286 css = skb_transport_offset(skb); 3287 3288 i = tx_ring->next_to_use; 3289 buffer_info = &tx_ring->buffer_info[i]; 3290 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 3291 3292 context_desc->lower_setup.ip_config = 0; 3293 context_desc->upper_setup.tcp_fields.tucss = css; 3294 context_desc->upper_setup.tcp_fields.tucso = 3295 css + skb->csum_offset; 3296 context_desc->upper_setup.tcp_fields.tucse = 0; 3297 context_desc->tcp_seg_setup.data = 0; 3298 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); 3299 3300 buffer_info->time_stamp = jiffies; 3301 buffer_info->next_to_watch = i; 3302 3303 i++; 3304 if (i == tx_ring->count) 3305 i = 0; 3306 tx_ring->next_to_use = i; 3307 3308 return 1; 3309 } 3310 3311 return 0; 3312} 3313 3314#define E1000_MAX_PER_TXD 8192 3315#define E1000_MAX_TXD_PWR 12 3316 3317static int e1000_tx_map(struct e1000_adapter *adapter, 3318 struct sk_buff *skb, unsigned int first, 3319 unsigned int max_per_txd, unsigned int nr_frags, 3320 unsigned int mss) 3321{ 3322 struct e1000_ring *tx_ring = adapter->tx_ring; 3323 struct e1000_buffer *buffer_info; 3324 unsigned int len = skb->len - skb->data_len; 3325 unsigned int offset = 0, size, count = 0, i; 3326 unsigned int f; 3327 3328 i = tx_ring->next_to_use; 3329 3330 while (len) { 3331 buffer_info = &tx_ring->buffer_info[i]; 3332 size = min(len, max_per_txd); 3333 3334 /* Workaround for premature desc write-backs 3335 * in TSO mode. Append 4-byte sentinel desc */ 3336 if (mss && !nr_frags && size == len && size > 8) 3337 size -= 4; 3338 3339 buffer_info->length = size; 3340 /* set time_stamp *before* dma to help avoid a possible race */ 3341 buffer_info->time_stamp = jiffies; 3342 buffer_info->dma = 3343 pci_map_single(adapter->pdev, 3344 skb->data + offset, 3345 size, 3346 PCI_DMA_TODEVICE); 3347 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) { 3348 dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); 3349 adapter->tx_dma_failed++; 3350 return -1; 3351 } 3352 buffer_info->next_to_watch = i; 3353 3354 len -= size; 3355 offset += size; 3356 count++; 3357 i++; 3358 if (i == tx_ring->count) 3359 i = 0; 3360 } 3361 3362 for (f = 0; f < nr_frags; f++) { 3363 struct skb_frag_struct *frag; 3364 3365 frag = &skb_shinfo(skb)->frags[f]; 3366 len = frag->size; 3367 offset = frag->page_offset; 3368 3369 while (len) { 3370 buffer_info = &tx_ring->buffer_info[i]; 3371 size = min(len, max_per_txd); 3372 /* Workaround for premature desc write-backs 3373 * in TSO mode. Append 4-byte sentinel desc */ 3374 if (mss && f == (nr_frags-1) && size == len && size > 8) 3375 size -= 4; 3376 3377 buffer_info->length = size; 3378 buffer_info->time_stamp = jiffies; 3379 buffer_info->dma = 3380 pci_map_page(adapter->pdev, 3381 frag->page, 3382 offset, 3383 size, 3384 PCI_DMA_TODEVICE); 3385 if (pci_dma_mapping_error(adapter->pdev, 3386 buffer_info->dma)) { 3387 dev_err(&adapter->pdev->dev, 3388 "TX DMA page map failed\n"); 3389 adapter->tx_dma_failed++; 3390 return -1; 3391 } 3392 3393 buffer_info->next_to_watch = i; 3394 3395 len -= size; 3396 offset += size; 3397 count++; 3398 3399 i++; 3400 if (i == tx_ring->count) 3401 i = 0; 3402 } 3403 } 3404 3405 if (i == 0) 3406 i = tx_ring->count - 1; 3407 else 3408 i--; 3409 3410 tx_ring->buffer_info[i].skb = skb; 3411 tx_ring->buffer_info[first].next_to_watch = i; 3412 3413 return count; 3414} 3415 3416static void e1000_tx_queue(struct e1000_adapter *adapter, 3417 int tx_flags, int count) 3418{ 3419 struct e1000_ring *tx_ring = adapter->tx_ring; 3420 struct e1000_tx_desc *tx_desc = NULL; 3421 struct e1000_buffer *buffer_info; 3422 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 3423 unsigned int i; 3424 3425 if (tx_flags & E1000_TX_FLAGS_TSO) { 3426 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 3427 E1000_TXD_CMD_TSE; 3428 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3429 3430 if (tx_flags & E1000_TX_FLAGS_IPV4) 3431 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 3432 } 3433 3434 if (tx_flags & E1000_TX_FLAGS_CSUM) { 3435 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 3436 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3437 } 3438 3439 if (tx_flags & E1000_TX_FLAGS_VLAN) { 3440 txd_lower |= E1000_TXD_CMD_VLE; 3441 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3442 } 3443 3444 i = tx_ring->next_to_use; 3445 3446 while (count--) { 3447 buffer_info = &tx_ring->buffer_info[i]; 3448 tx_desc = E1000_TX_DESC(*tx_ring, i); 3449 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3450 tx_desc->lower.data = 3451 cpu_to_le32(txd_lower | buffer_info->length); 3452 tx_desc->upper.data = cpu_to_le32(txd_upper); 3453 3454 i++; 3455 if (i == tx_ring->count) 3456 i = 0; 3457 } 3458 3459 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3460 3461 /* 3462 * Force memory writes to complete before letting h/w 3463 * know there are new descriptors to fetch. (Only 3464 * applicable for weak-ordered memory model archs, 3465 * such as IA-64). 3466 */ 3467 wmb(); 3468 3469 tx_ring->next_to_use = i; 3470 writel(i, adapter->hw.hw_addr + tx_ring->tail); 3471 /* 3472 * we need this if more than one processor can write to our tail 3473 * at a time, it synchronizes IO on IA64/Altix systems 3474 */ 3475 mmiowb(); 3476} 3477 3478#define MINIMUM_DHCP_PACKET_SIZE 282 3479static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 3480 struct sk_buff *skb) 3481{ 3482 struct e1000_hw *hw = &adapter->hw; 3483 u16 length, offset; 3484 3485 if (vlan_tx_tag_present(skb)) { 3486 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) 3487 && (adapter->hw.mng_cookie.status & 3488 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 3489 return 0; 3490 } 3491 3492 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 3493 return 0; 3494 3495 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) 3496 return 0; 3497 3498 { 3499 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); 3500 struct udphdr *udp; 3501 3502 if (ip->protocol != IPPROTO_UDP) 3503 return 0; 3504 3505 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 3506 if (ntohs(udp->dest) != 67) 3507 return 0; 3508 3509 offset = (u8 *)udp + 8 - skb->data; 3510 length = skb->len - offset; 3511 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 3512 } 3513 3514 return 0; 3515} 3516 3517static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3518{ 3519 struct e1000_adapter *adapter = netdev_priv(netdev); 3520 3521 netif_stop_queue(netdev); 3522 /* 3523 * Herbert's original patch had: 3524 * smp_mb__after_netif_stop_queue(); 3525 * but since that doesn't exist yet, just open code it. 3526 */ 3527 smp_mb(); 3528 3529 /* 3530 * We need to check again in a case another CPU has just 3531 * made room available. 3532 */ 3533 if (e1000_desc_unused(adapter->tx_ring) < size) 3534 return -EBUSY; 3535 3536 /* A reprieve! */ 3537 netif_start_queue(netdev); 3538 ++adapter->restart_queue; 3539 return 0; 3540} 3541 3542static int e1000_maybe_stop_tx(struct net_device *netdev, int size) 3543{ 3544 struct e1000_adapter *adapter = netdev_priv(netdev); 3545 3546 if (e1000_desc_unused(adapter->tx_ring) >= size) 3547 return 0; 3548 return __e1000_maybe_stop_tx(netdev, size); 3549} 3550 3551#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3552static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3553{ 3554 struct e1000_adapter *adapter = netdev_priv(netdev); 3555 struct e1000_ring *tx_ring = adapter->tx_ring; 3556 unsigned int first; 3557 unsigned int max_per_txd = E1000_MAX_PER_TXD; 3558 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3559 unsigned int tx_flags = 0; 3560 unsigned int len = skb->len - skb->data_len; 3561 unsigned long irq_flags; 3562 unsigned int nr_frags; 3563 unsigned int mss; 3564 int count = 0; 3565 int tso; 3566 unsigned int f; 3567 3568 if (test_bit(__E1000_DOWN, &adapter->state)) { 3569 dev_kfree_skb_any(skb); 3570 return NETDEV_TX_OK; 3571 } 3572 3573 if (skb->len <= 0) { 3574 dev_kfree_skb_any(skb); 3575 return NETDEV_TX_OK; 3576 } 3577 3578 mss = skb_shinfo(skb)->gso_size; 3579 /* 3580 * The controller does a simple calculation to 3581 * make sure there is enough room in the FIFO before 3582 * initiating the DMA for each buffer. The calc is: 3583 * 4 = ceil(buffer len/mss). To make sure we don't 3584 * overrun the FIFO, adjust the max buffer len if mss 3585 * drops. 3586 */ 3587 if (mss) { 3588 u8 hdr_len; 3589 max_per_txd = min(mss << 2, max_per_txd); 3590 max_txd_pwr = fls(max_per_txd) - 1; 3591 3592 /* 3593 * TSO Workaround for 82571/2/3 Controllers -- if skb->data 3594 * points to just header, pull a few bytes of payload from 3595 * frags into skb->data 3596 */ 3597 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3598 /* 3599 * we do this workaround for ES2LAN, but it is un-necessary, 3600 * avoiding it could save a lot of cycles 3601 */ 3602 if (skb->data_len && (hdr_len == len)) { 3603 unsigned int pull_size; 3604 3605 pull_size = min((unsigned int)4, skb->data_len); 3606 if (!__pskb_pull_tail(skb, pull_size)) { 3607 ndev_err(netdev, 3608 "__pskb_pull_tail failed.\n"); 3609 dev_kfree_skb_any(skb); 3610 return NETDEV_TX_OK; 3611 } 3612 len = skb->len - skb->data_len; 3613 } 3614 } 3615 3616 /* reserve a descriptor for the offload context */ 3617 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3618 count++; 3619 count++; 3620 3621 count += TXD_USE_COUNT(len, max_txd_pwr); 3622 3623 nr_frags = skb_shinfo(skb)->nr_frags; 3624 for (f = 0; f < nr_frags; f++) 3625 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, 3626 max_txd_pwr); 3627 3628 if (adapter->hw.mac.tx_pkt_filtering) 3629 e1000_transfer_dhcp_info(adapter, skb); 3630 3631 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) 3632 /* Collision - tell upper layer to requeue */ 3633 return NETDEV_TX_LOCKED; 3634 3635 /* 3636 * need: count + 2 desc gap to keep tail from touching 3637 * head, otherwise try next time 3638 */ 3639 if (e1000_maybe_stop_tx(netdev, count + 2)) { 3640 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3641 return NETDEV_TX_BUSY; 3642 } 3643 3644 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { 3645 tx_flags |= E1000_TX_FLAGS_VLAN; 3646 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 3647 } 3648 3649 first = tx_ring->next_to_use; 3650 3651 tso = e1000_tso(adapter, skb); 3652 if (tso < 0) { 3653 dev_kfree_skb_any(skb); 3654 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3655 return NETDEV_TX_OK; 3656 } 3657 3658 if (tso) 3659 tx_flags |= E1000_TX_FLAGS_TSO; 3660 else if (e1000_tx_csum(adapter, skb)) 3661 tx_flags |= E1000_TX_FLAGS_CSUM; 3662 3663 /* 3664 * Old method was to assume IPv4 packet by default if TSO was enabled. 3665 * 82571 hardware supports TSO capabilities for IPv6 as well... 3666 * no longer assume, we must. 3667 */ 3668 if (skb->protocol == htons(ETH_P_IP)) 3669 tx_flags |= E1000_TX_FLAGS_IPV4; 3670 3671 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); 3672 if (count < 0) { 3673 /* handle pci_map_single() error in e1000_tx_map */ 3674 dev_kfree_skb_any(skb); 3675 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3676 return NETDEV_TX_OK; 3677 } 3678 3679 e1000_tx_queue(adapter, tx_flags, count); 3680 3681 netdev->trans_start = jiffies; 3682 3683 /* Make sure there is space in the ring for the next send. */ 3684 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); 3685 3686 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); 3687 return NETDEV_TX_OK; 3688} 3689 3690/** 3691 * e1000_tx_timeout - Respond to a Tx Hang 3692 * @netdev: network interface device structure 3693 **/ 3694static void e1000_tx_timeout(struct net_device *netdev) 3695{ 3696 struct e1000_adapter *adapter = netdev_priv(netdev); 3697 3698 /* Do the reset outside of interrupt context */ 3699 adapter->tx_timeout_count++; 3700 schedule_work(&adapter->reset_task); 3701} 3702 3703static void e1000_reset_task(struct work_struct *work) 3704{ 3705 struct e1000_adapter *adapter; 3706 adapter = container_of(work, struct e1000_adapter, reset_task); 3707 3708 e1000e_reinit_locked(adapter); 3709} 3710 3711/** 3712 * e1000_get_stats - Get System Network Statistics 3713 * @netdev: network interface device structure 3714 * 3715 * Returns the address of the device statistics structure. 3716 * The statistics are actually updated from the timer callback. 3717 **/ 3718static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3719{ 3720 struct e1000_adapter *adapter = netdev_priv(netdev); 3721 3722 /* only return the current stats */ 3723 return &adapter->net_stats; 3724} 3725 3726/** 3727 * e1000_change_mtu - Change the Maximum Transfer Unit 3728 * @netdev: network interface device structure 3729 * @new_mtu: new value for maximum frame size 3730 * 3731 * Returns 0 on success, negative on failure 3732 **/ 3733static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3734{ 3735 struct e1000_adapter *adapter = netdev_priv(netdev); 3736 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3737 3738 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || 3739 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3740 ndev_err(netdev, "Invalid MTU setting\n"); 3741 return -EINVAL; 3742 } 3743 3744 /* Jumbo frame size limits */ 3745 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { 3746 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 3747 ndev_err(netdev, "Jumbo Frames not supported.\n"); 3748 return -EINVAL; 3749 } 3750 if (adapter->hw.phy.type == e1000_phy_ife) { 3751 ndev_err(netdev, "Jumbo Frames not supported.\n"); 3752 return -EINVAL; 3753 } 3754 } 3755 3756#define MAX_STD_JUMBO_FRAME_SIZE 9234 3757 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 3758 ndev_err(netdev, "MTU > 9216 not supported.\n"); 3759 return -EINVAL; 3760 } 3761 3762 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 3763 msleep(1); 3764 /* e1000e_down has a dependency on max_frame_size */ 3765 adapter->max_frame_size = max_frame; 3766 if (netif_running(netdev)) 3767 e1000e_down(adapter); 3768 3769 /* 3770 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3771 * means we reserve 2 more, this pushes us to allocate from the next 3772 * larger slab size. 3773 * i.e. RXBUFFER_2048 --> size-4096 slab 3774 * However with the new *_jumbo_rx* routines, jumbo receives will use 3775 * fragmented skbs 3776 */ 3777 3778 if (max_frame <= 256) 3779 adapter->rx_buffer_len = 256; 3780 else if (max_frame <= 512) 3781 adapter->rx_buffer_len = 512; 3782 else if (max_frame <= 1024) 3783 adapter->rx_buffer_len = 1024; 3784 else if (max_frame <= 2048) 3785 adapter->rx_buffer_len = 2048; 3786 else 3787 adapter->rx_buffer_len = 4096; 3788 3789 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3790 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 3791 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 3792 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN 3793 + ETH_FCS_LEN; 3794 3795 ndev_info(netdev, "changing MTU from %d to %d\n", 3796 netdev->mtu, new_mtu); 3797 netdev->mtu = new_mtu; 3798 3799 if (netif_running(netdev)) 3800 e1000e_up(adapter); 3801 else 3802 e1000e_reset(adapter); 3803 3804 clear_bit(__E1000_RESETTING, &adapter->state); 3805 3806 return 0; 3807} 3808 3809static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 3810 int cmd) 3811{ 3812 struct e1000_adapter *adapter = netdev_priv(netdev); 3813 struct mii_ioctl_data *data = if_mii(ifr); 3814 3815 if (adapter->hw.phy.media_type != e1000_media_type_copper) 3816 return -EOPNOTSUPP; 3817 3818 switch (cmd) { 3819 case SIOCGMIIPHY: 3820 data->phy_id = adapter->hw.phy.addr; 3821 break; 3822 case SIOCGMIIREG: 3823 if (!capable(CAP_NET_ADMIN)) 3824 return -EPERM; 3825 switch (data->reg_num & 0x1F) { 3826 case MII_BMCR: 3827 data->val_out = adapter->phy_regs.bmcr; 3828 break; 3829 case MII_BMSR: 3830 data->val_out = adapter->phy_regs.bmsr; 3831 break; 3832 case MII_PHYSID1: 3833 data->val_out = (adapter->hw.phy.id >> 16); 3834 break; 3835 case MII_PHYSID2: 3836 data->val_out = (adapter->hw.phy.id & 0xFFFF); 3837 break; 3838 case MII_ADVERTISE: 3839 data->val_out = adapter->phy_regs.advertise; 3840 break; 3841 case MII_LPA: 3842 data->val_out = adapter->phy_regs.lpa; 3843 break; 3844 case MII_EXPANSION: 3845 data->val_out = adapter->phy_regs.expansion; 3846 break; 3847 case MII_CTRL1000: 3848 data->val_out = adapter->phy_regs.ctrl1000; 3849 break; 3850 case MII_STAT1000: 3851 data->val_out = adapter->phy_regs.stat1000; 3852 break; 3853 case MII_ESTATUS: 3854 data->val_out = adapter->phy_regs.estatus; 3855 break; 3856 default: 3857 return -EIO; 3858 } 3859 break; 3860 case SIOCSMIIREG: 3861 default: 3862 return -EOPNOTSUPP; 3863 } 3864 return 0; 3865} 3866 3867static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 3868{ 3869 switch (cmd) { 3870 case SIOCGMIIPHY: 3871 case SIOCGMIIREG: 3872 case SIOCSMIIREG: 3873 return e1000_mii_ioctl(netdev, ifr, cmd); 3874 default: 3875 return -EOPNOTSUPP; 3876 } 3877} 3878 3879static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 3880{ 3881 struct net_device *netdev = pci_get_drvdata(pdev); 3882 struct e1000_adapter *adapter = netdev_priv(netdev); 3883 struct e1000_hw *hw = &adapter->hw; 3884 u32 ctrl, ctrl_ext, rctl, status; 3885 u32 wufc = adapter->wol; 3886 int retval = 0; 3887 3888 netif_device_detach(netdev); 3889 3890 if (netif_running(netdev)) { 3891 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 3892 e1000e_down(adapter); 3893 e1000_free_irq(adapter); 3894 } 3895 3896 retval = pci_save_state(pdev); 3897 if (retval) 3898 return retval; 3899 3900 status = er32(STATUS); 3901 if (status & E1000_STATUS_LU) 3902 wufc &= ~E1000_WUFC_LNKC; 3903 3904 if (wufc) { 3905 e1000_setup_rctl(adapter); 3906 e1000_set_multi(netdev); 3907 3908 /* turn on all-multi mode if wake on multicast is enabled */ 3909 if (wufc & E1000_WUFC_MC) { 3910 rctl = er32(RCTL); 3911 rctl |= E1000_RCTL_MPE; 3912 ew32(RCTL, rctl); 3913 } 3914 3915 ctrl = er32(CTRL); 3916 /* advertise wake from D3Cold */ 3917 #define E1000_CTRL_ADVD3WUC 0x00100000 3918 /* phy power management enable */ 3919 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 3920 ctrl |= E1000_CTRL_ADVD3WUC | 3921 E1000_CTRL_EN_PHY_PWR_MGMT; 3922 ew32(CTRL, ctrl); 3923 3924 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 3925 adapter->hw.phy.media_type == 3926 e1000_media_type_internal_serdes) { 3927 /* keep the laser running in D3 */ 3928 ctrl_ext = er32(CTRL_EXT); 3929 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 3930 ew32(CTRL_EXT, ctrl_ext); 3931 } 3932 3933 if (adapter->flags & FLAG_IS_ICH) 3934 e1000e_disable_gig_wol_ich8lan(&adapter->hw); 3935 3936 /* Allow time for pending master requests to run */ 3937 e1000e_disable_pcie_master(&adapter->hw); 3938 3939 ew32(WUC, E1000_WUC_PME_EN); 3940 ew32(WUFC, wufc); 3941 pci_enable_wake(pdev, PCI_D3hot, 1); 3942 pci_enable_wake(pdev, PCI_D3cold, 1); 3943 } else { 3944 ew32(WUC, 0); 3945 ew32(WUFC, 0); 3946 pci_enable_wake(pdev, PCI_D3hot, 0); 3947 pci_enable_wake(pdev, PCI_D3cold, 0); 3948 } 3949 3950 /* make sure adapter isn't asleep if manageability is enabled */ 3951 if (adapter->flags & FLAG_MNG_PT_ENABLED) { 3952 pci_enable_wake(pdev, PCI_D3hot, 1); 3953 pci_enable_wake(pdev, PCI_D3cold, 1); 3954 } 3955 3956 if (adapter->hw.phy.type == e1000_phy_igp_3) 3957 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 3958 3959 /* 3960 * Release control of h/w to f/w. If f/w is AMT enabled, this 3961 * would have already happened in close and is redundant. 3962 */ 3963 e1000_release_hw_control(adapter); 3964 3965 pci_disable_device(pdev); 3966 3967 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 3968 3969 return 0; 3970} 3971 3972static void e1000e_disable_l1aspm(struct pci_dev *pdev) 3973{ 3974 int pos; 3975 u16 val; 3976 3977 /* 3978 * 82573 workaround - disable L1 ASPM on mobile chipsets 3979 * 3980 * L1 ASPM on various mobile (ich7) chipsets do not behave properly 3981 * resulting in lost data or garbage information on the pci-e link 3982 * level. This could result in (false) bad EEPROM checksum errors, 3983 * long ping times (up to 2s) or even a system freeze/hang. 3984 * 3985 * Unfortunately this feature saves about 1W power consumption when 3986 * active. 3987 */ 3988 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); 3989 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); 3990 if (val & 0x2) { 3991 dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); 3992 val &= ~0x2; 3993 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); 3994 } 3995} 3996 3997#ifdef CONFIG_PM 3998static int e1000_resume(struct pci_dev *pdev) 3999{ 4000 struct net_device *netdev = pci_get_drvdata(pdev); 4001 struct e1000_adapter *adapter = netdev_priv(netdev); 4002 struct e1000_hw *hw = &adapter->hw; 4003 u32 err; 4004 4005 pci_set_power_state(pdev, PCI_D0); 4006 pci_restore_state(pdev); 4007 e1000e_disable_l1aspm(pdev); 4008 4009 if (adapter->need_ioport) 4010 err = pci_enable_device(pdev); 4011 else 4012 err = pci_enable_device_mem(pdev); 4013 if (err) { 4014 dev_err(&pdev->dev, 4015 "Cannot enable PCI device from suspend\n"); 4016 return err; 4017 } 4018 4019 pci_set_master(pdev); 4020 4021 pci_enable_wake(pdev, PCI_D3hot, 0); 4022 pci_enable_wake(pdev, PCI_D3cold, 0); 4023 4024 if (netif_running(netdev)) { 4025 err = e1000_request_irq(adapter); 4026 if (err) 4027 return err; 4028 } 4029 4030 e1000e_power_up_phy(adapter); 4031 e1000e_reset(adapter); 4032 ew32(WUS, ~0); 4033 4034 e1000_init_manageability(adapter); 4035 4036 if (netif_running(netdev)) 4037 e1000e_up(adapter); 4038 4039 netif_device_attach(netdev); 4040 4041 /* 4042 * If the controller has AMT, do not set DRV_LOAD until the interface 4043 * is up. For all other cases, let the f/w know that the h/w is now 4044 * under the control of the driver. 4045 */ 4046 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) 4047 e1000_get_hw_control(adapter); 4048 4049 return 0; 4050} 4051#endif 4052 4053static void e1000_shutdown(struct pci_dev *pdev) 4054{ 4055 e1000_suspend(pdev, PMSG_SUSPEND); 4056} 4057 4058#ifdef CONFIG_NET_POLL_CONTROLLER 4059/* 4060 * Polling 'interrupt' - used by things like netconsole to send skbs 4061 * without having to re-enable interrupts. It's not called while 4062 * the interrupt routine is executing. 4063 */ 4064static void e1000_netpoll(struct net_device *netdev) 4065{ 4066 struct e1000_adapter *adapter = netdev_priv(netdev); 4067 4068 disable_irq(adapter->pdev->irq); 4069 e1000_intr(adapter->pdev->irq, netdev); 4070 4071 enable_irq(adapter->pdev->irq); 4072} 4073#endif 4074 4075/** 4076 * e1000_io_error_detected - called when PCI error is detected 4077 * @pdev: Pointer to PCI device 4078 * @state: The current pci connection state 4079 * 4080 * This function is called after a PCI bus error affecting 4081 * this device has been detected. 4082 */ 4083static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 4084 pci_channel_state_t state) 4085{ 4086 struct net_device *netdev = pci_get_drvdata(pdev); 4087 struct e1000_adapter *adapter = netdev_priv(netdev); 4088 4089 netif_device_detach(netdev); 4090 4091 if (netif_running(netdev)) 4092 e1000e_down(adapter); 4093 pci_disable_device(pdev); 4094 4095 /* Request a slot slot reset. */ 4096 return PCI_ERS_RESULT_NEED_RESET; 4097} 4098 4099/** 4100 * e1000_io_slot_reset - called after the pci bus has been reset. 4101 * @pdev: Pointer to PCI device 4102 * 4103 * Restart the card from scratch, as if from a cold-boot. Implementation 4104 * resembles the first-half of the e1000_resume routine. 4105 */ 4106static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 4107{ 4108 struct net_device *netdev = pci_get_drvdata(pdev); 4109 struct e1000_adapter *adapter = netdev_priv(netdev); 4110 struct e1000_hw *hw = &adapter->hw; 4111 int err; 4112 4113 e1000e_disable_l1aspm(pdev); 4114 if (adapter->need_ioport) 4115 err = pci_enable_device(pdev); 4116 else 4117 err = pci_enable_device_mem(pdev); 4118 if (err) { 4119 dev_err(&pdev->dev, 4120 "Cannot re-enable PCI device after reset.\n"); 4121 return PCI_ERS_RESULT_DISCONNECT; 4122 } 4123 pci_set_master(pdev); 4124 pci_restore_state(pdev); 4125 4126 pci_enable_wake(pdev, PCI_D3hot, 0); 4127 pci_enable_wake(pdev, PCI_D3cold, 0); 4128 4129 e1000e_reset(adapter); 4130 ew32(WUS, ~0); 4131 4132 return PCI_ERS_RESULT_RECOVERED; 4133} 4134 4135/** 4136 * e1000_io_resume - called when traffic can start flowing again. 4137 * @pdev: Pointer to PCI device 4138 * 4139 * This callback is called when the error recovery driver tells us that 4140 * its OK to resume normal operation. Implementation resembles the 4141 * second-half of the e1000_resume routine. 4142 */ 4143static void e1000_io_resume(struct pci_dev *pdev) 4144{ 4145 struct net_device *netdev = pci_get_drvdata(pdev); 4146 struct e1000_adapter *adapter = netdev_priv(netdev); 4147 4148 e1000_init_manageability(adapter); 4149 4150 if (netif_running(netdev)) { 4151 if (e1000e_up(adapter)) { 4152 dev_err(&pdev->dev, 4153 "can't bring device back up after reset\n"); 4154 return; 4155 } 4156 } 4157 4158 netif_device_attach(netdev); 4159 4160 /* 4161 * If the controller has AMT, do not set DRV_LOAD until the interface 4162 * is up. For all other cases, let the f/w know that the h/w is now 4163 * under the control of the driver. 4164 */ 4165 if (!(adapter->flags & FLAG_HAS_AMT) || 4166 !e1000e_check_mng_mode(&adapter->hw)) 4167 e1000_get_hw_control(adapter); 4168 4169} 4170 4171static void e1000_print_device_info(struct e1000_adapter *adapter) 4172{ 4173 struct e1000_hw *hw = &adapter->hw; 4174 struct net_device *netdev = adapter->netdev; 4175 u32 pba_num; 4176 4177 /* print bus type/speed/width info */ 4178 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) " 4179 "%02x:%02x:%02x:%02x:%02x:%02x\n", 4180 /* bus width */ 4181 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 4182 "Width x1"), 4183 /* MAC address */ 4184 netdev->dev_addr[0], netdev->dev_addr[1], 4185 netdev->dev_addr[2], netdev->dev_addr[3], 4186 netdev->dev_addr[4], netdev->dev_addr[5]); 4187 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n", 4188 (hw->phy.type == e1000_phy_ife) 4189 ? "10/100" : "1000"); 4190 e1000e_read_pba_num(hw, &pba_num); 4191 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n", 4192 hw->mac.type, hw->phy.type, 4193 (pba_num >> 8), (pba_num & 0xff)); 4194} 4195 4196/** 4197 * e1000e_is_need_ioport - determine if an adapter needs ioport resources or not 4198 * @pdev: PCI device information struct 4199 * 4200 * Returns true if an adapters needs ioport resources 4201 **/ 4202static int e1000e_is_need_ioport(struct pci_dev *pdev) 4203{ 4204 switch (pdev->device) { 4205 /* Currently there are no adapters that need ioport resources */ 4206 default: 4207 return false; 4208 } 4209} 4210 4211/** 4212 * e1000_probe - Device Initialization Routine 4213 * @pdev: PCI device information struct 4214 * @ent: entry in e1000_pci_tbl 4215 * 4216 * Returns 0 on success, negative on failure 4217 * 4218 * e1000_probe initializes an adapter identified by a pci_dev structure. 4219 * The OS initialization, configuring of the adapter private structure, 4220 * and a hardware reset occur. 4221 **/ 4222static int __devinit e1000_probe(struct pci_dev *pdev, 4223 const struct pci_device_id *ent) 4224{ 4225 struct net_device *netdev; 4226 struct e1000_adapter *adapter; 4227 struct e1000_hw *hw; 4228 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 4229 resource_size_t mmio_start, mmio_len; 4230 resource_size_t flash_start, flash_len; 4231 4232 static int cards_found; 4233 int i, err, pci_using_dac; 4234 u16 eeprom_data = 0; 4235 u16 eeprom_apme_mask = E1000_EEPROM_APME; 4236 int bars, need_ioport; 4237 4238 e1000e_disable_l1aspm(pdev); 4239 4240 /* do not allocate ioport bars when not needed */ 4241 need_ioport = e1000e_is_need_ioport(pdev); 4242 if (need_ioport) { 4243 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 4244 err = pci_enable_device(pdev); 4245 } else { 4246 bars = pci_select_bars(pdev, IORESOURCE_MEM); 4247 err = pci_enable_device_mem(pdev); 4248 } 4249 if (err) 4250 return err; 4251 4252 pci_using_dac = 0; 4253 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); 4254 if (!err) { 4255 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); 4256 if (!err) 4257 pci_using_dac = 1; 4258 } else { 4259 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 4260 if (err) { 4261 err = pci_set_consistent_dma_mask(pdev, 4262 DMA_32BIT_MASK); 4263 if (err) { 4264 dev_err(&pdev->dev, "No usable DMA " 4265 "configuration, aborting\n"); 4266 goto err_dma; 4267 } 4268 } 4269 } 4270 4271 err = pci_request_selected_regions(pdev, bars, e1000e_driver_name); 4272 if (err) 4273 goto err_pci_reg; 4274 4275 pci_set_master(pdev); 4276 pci_save_state(pdev); 4277 4278 err = -ENOMEM; 4279 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 4280 if (!netdev) 4281 goto err_alloc_etherdev; 4282 4283 SET_NETDEV_DEV(netdev, &pdev->dev); 4284 4285 pci_set_drvdata(pdev, netdev); 4286 adapter = netdev_priv(netdev); 4287 hw = &adapter->hw; 4288 adapter->netdev = netdev; 4289 adapter->pdev = pdev; 4290 adapter->ei = ei; 4291 adapter->pba = ei->pba; 4292 adapter->flags = ei->flags; 4293 adapter->hw.adapter = adapter; 4294 adapter->hw.mac.type = ei->mac; 4295 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; 4296 adapter->bars = bars; 4297 adapter->need_ioport = need_ioport; 4298 4299 mmio_start = pci_resource_start(pdev, 0); 4300 mmio_len = pci_resource_len(pdev, 0); 4301 4302 err = -EIO; 4303 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 4304 if (!adapter->hw.hw_addr) 4305 goto err_ioremap; 4306 4307 if ((adapter->flags & FLAG_HAS_FLASH) && 4308 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 4309 flash_start = pci_resource_start(pdev, 1); 4310 flash_len = pci_resource_len(pdev, 1); 4311 adapter->hw.flash_address = ioremap(flash_start, flash_len); 4312 if (!adapter->hw.flash_address) 4313 goto err_flashmap; 4314 } 4315 4316 /* construct the net_device struct */ 4317 netdev->open = &e1000_open; 4318 netdev->stop = &e1000_close; 4319 netdev->hard_start_xmit = &e1000_xmit_frame; 4320 netdev->get_stats = &e1000_get_stats; 4321 netdev->set_multicast_list = &e1000_set_multi; 4322 netdev->set_mac_address = &e1000_set_mac; 4323 netdev->change_mtu = &e1000_change_mtu; 4324 netdev->do_ioctl = &e1000_ioctl; 4325 e1000e_set_ethtool_ops(netdev); 4326 netdev->tx_timeout = &e1000_tx_timeout; 4327 netdev->watchdog_timeo = 5 * HZ; 4328 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 4329 netdev->vlan_rx_register = e1000_vlan_rx_register; 4330 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; 4331 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; 4332#ifdef CONFIG_NET_POLL_CONTROLLER 4333 netdev->poll_controller = e1000_netpoll; 4334#endif 4335 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 4336 4337 netdev->mem_start = mmio_start; 4338 netdev->mem_end = mmio_start + mmio_len; 4339 4340 adapter->bd_number = cards_found++; 4341 4342 /* setup adapter struct */ 4343 err = e1000_sw_init(adapter); 4344 if (err) 4345 goto err_sw_init; 4346 4347 err = -EIO; 4348 4349 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 4350 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 4351 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 4352 4353 err = ei->get_variants(adapter); 4354 if (err) 4355 goto err_hw_init; 4356 4357 hw->mac.ops.get_bus_info(&adapter->hw); 4358 4359 adapter->hw.phy.autoneg_wait_to_complete = 0; 4360 4361 /* Copper options */ 4362 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 4363 adapter->hw.phy.mdix = AUTO_ALL_MODES; 4364 adapter->hw.phy.disable_polarity_correction = 0; 4365 adapter->hw.phy.ms_type = e1000_ms_hw_default; 4366 } 4367 4368 if (e1000_check_reset_block(&adapter->hw)) 4369 ndev_info(netdev, 4370 "PHY reset is blocked due to SOL/IDER session.\n"); 4371 4372 netdev->features = NETIF_F_SG | 4373 NETIF_F_HW_CSUM | 4374 NETIF_F_HW_VLAN_TX | 4375 NETIF_F_HW_VLAN_RX; 4376 4377 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 4378 netdev->features |= NETIF_F_HW_VLAN_FILTER; 4379 4380 netdev->features |= NETIF_F_TSO; 4381 netdev->features |= NETIF_F_TSO6; 4382 4383 netdev->vlan_features |= NETIF_F_TSO; 4384 netdev->vlan_features |= NETIF_F_TSO6; 4385 netdev->vlan_features |= NETIF_F_HW_CSUM; 4386 netdev->vlan_features |= NETIF_F_SG; 4387 4388 if (pci_using_dac) 4389 netdev->features |= NETIF_F_HIGHDMA; 4390 4391 /* 4392 * We should not be using LLTX anymore, but we are still Tx faster with 4393 * it. 4394 */ 4395 netdev->features |= NETIF_F_LLTX; 4396 4397 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 4398 adapter->flags |= FLAG_MNG_PT_ENABLED; 4399 4400 /* 4401 * before reading the NVM, reset the controller to 4402 * put the device in a known good starting state 4403 */ 4404 adapter->hw.mac.ops.reset_hw(&adapter->hw); 4405 4406 /* 4407 * systems with ASPM and others may see the checksum fail on the first 4408 * attempt. Let's give it a few tries 4409 */ 4410 for (i = 0;; i++) { 4411 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 4412 break; 4413 if (i == 2) { 4414 ndev_err(netdev, "The NVM Checksum Is Not Valid\n"); 4415 err = -EIO; 4416 goto err_eeprom; 4417 } 4418 } 4419 4420 /* copy the MAC address out of the NVM */ 4421 if (e1000e_read_mac_addr(&adapter->hw)) 4422 ndev_err(netdev, "NVM Read Error while reading MAC address\n"); 4423 4424 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 4425 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); 4426 4427 if (!is_valid_ether_addr(netdev->perm_addr)) { 4428 ndev_err(netdev, "Invalid MAC Address: " 4429 "%02x:%02x:%02x:%02x:%02x:%02x\n", 4430 netdev->perm_addr[0], netdev->perm_addr[1], 4431 netdev->perm_addr[2], netdev->perm_addr[3], 4432 netdev->perm_addr[4], netdev->perm_addr[5]); 4433 err = -EIO; 4434 goto err_eeprom; 4435 } 4436 4437 init_timer(&adapter->watchdog_timer); 4438 adapter->watchdog_timer.function = &e1000_watchdog; 4439 adapter->watchdog_timer.data = (unsigned long) adapter; 4440 4441 init_timer(&adapter->phy_info_timer); 4442 adapter->phy_info_timer.function = &e1000_update_phy_info; 4443 adapter->phy_info_timer.data = (unsigned long) adapter; 4444 4445 INIT_WORK(&adapter->reset_task, e1000_reset_task); 4446 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 4447 4448 e1000e_check_options(adapter); 4449 4450 /* Initialize link parameters. User can change them with ethtool */ 4451 adapter->hw.mac.autoneg = 1; 4452 adapter->fc_autoneg = 1; 4453 adapter->hw.fc.original_type = e1000_fc_default; 4454 adapter->hw.fc.type = e1000_fc_default; 4455 adapter->hw.phy.autoneg_advertised = 0x2f; 4456 4457 /* ring size defaults */ 4458 adapter->rx_ring->count = 256; 4459 adapter->tx_ring->count = 256; 4460 4461 /* 4462 * Initial Wake on LAN setting - If APM wake is enabled in 4463 * the EEPROM, enable the ACPI Magic Packet filter 4464 */ 4465 if (adapter->flags & FLAG_APME_IN_WUC) { 4466 /* APME bit in EEPROM is mapped to WUC.APME */ 4467 eeprom_data = er32(WUC); 4468 eeprom_apme_mask = E1000_WUC_APME; 4469 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 4470 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 4471 (adapter->hw.bus.func == 1)) 4472 e1000_read_nvm(&adapter->hw, 4473 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 4474 else 4475 e1000_read_nvm(&adapter->hw, 4476 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 4477 } 4478 4479 /* fetch WoL from EEPROM */ 4480 if (eeprom_data & eeprom_apme_mask) 4481 adapter->eeprom_wol |= E1000_WUFC_MAG; 4482 4483 /* 4484 * now that we have the eeprom settings, apply the special cases 4485 * where the eeprom may be wrong or the board simply won't support 4486 * wake on lan on a particular port 4487 */ 4488 if (!(adapter->flags & FLAG_HAS_WOL)) 4489 adapter->eeprom_wol = 0; 4490 4491 /* initialize the wol settings based on the eeprom settings */ 4492 adapter->wol = adapter->eeprom_wol; 4493 4494 /* reset the hardware with the new settings */ 4495 e1000e_reset(adapter); 4496 4497 /* 4498 * If the controller has AMT, do not set DRV_LOAD until the interface 4499 * is up. For all other cases, let the f/w know that the h/w is now 4500 * under the control of the driver. 4501 */ 4502 if (!(adapter->flags & FLAG_HAS_AMT) || 4503 !e1000e_check_mng_mode(&adapter->hw)) 4504 e1000_get_hw_control(adapter); 4505 4506 /* tell the stack to leave us alone until e1000_open() is called */ 4507 netif_carrier_off(netdev); 4508 netif_tx_stop_all_queues(netdev); 4509 4510 strcpy(netdev->name, "eth%d"); 4511 err = register_netdev(netdev); 4512 if (err) 4513 goto err_register; 4514 4515 e1000_print_device_info(adapter); 4516 4517 return 0; 4518 4519err_register: 4520err_hw_init: 4521 e1000_release_hw_control(adapter); 4522err_eeprom: 4523 if (!e1000_check_reset_block(&adapter->hw)) 4524 e1000_phy_hw_reset(&adapter->hw); 4525 4526 if (adapter->hw.flash_address) 4527 iounmap(adapter->hw.flash_address); 4528 4529err_flashmap: 4530 kfree(adapter->tx_ring); 4531 kfree(adapter->rx_ring); 4532err_sw_init: 4533 iounmap(adapter->hw.hw_addr); 4534err_ioremap: 4535 free_netdev(netdev); 4536err_alloc_etherdev: 4537 pci_release_selected_regions(pdev, bars); 4538err_pci_reg: 4539err_dma: 4540 pci_disable_device(pdev); 4541 return err; 4542} 4543 4544/** 4545 * e1000_remove - Device Removal Routine 4546 * @pdev: PCI device information struct 4547 * 4548 * e1000_remove is called by the PCI subsystem to alert the driver 4549 * that it should release a PCI device. The could be caused by a 4550 * Hot-Plug event, or because the driver is going to be removed from 4551 * memory. 4552 **/ 4553static void __devexit e1000_remove(struct pci_dev *pdev) 4554{ 4555 struct net_device *netdev = pci_get_drvdata(pdev); 4556 struct e1000_adapter *adapter = netdev_priv(netdev); 4557 4558 /* 4559 * flush_scheduled work may reschedule our watchdog task, so 4560 * explicitly disable watchdog tasks from being rescheduled 4561 */ 4562 set_bit(__E1000_DOWN, &adapter->state); 4563 del_timer_sync(&adapter->watchdog_timer); 4564 del_timer_sync(&adapter->phy_info_timer); 4565 4566 flush_scheduled_work(); 4567 4568 /* 4569 * Release control of h/w to f/w. If f/w is AMT enabled, this 4570 * would have already happened in close and is redundant. 4571 */ 4572 e1000_release_hw_control(adapter); 4573 4574 unregister_netdev(netdev); 4575 4576 if (!e1000_check_reset_block(&adapter->hw)) 4577 e1000_phy_hw_reset(&adapter->hw); 4578 4579 kfree(adapter->tx_ring); 4580 kfree(adapter->rx_ring); 4581 4582 iounmap(adapter->hw.hw_addr); 4583 if (adapter->hw.flash_address) 4584 iounmap(adapter->hw.flash_address); 4585 pci_release_selected_regions(pdev, adapter->bars); 4586 4587 free_netdev(netdev); 4588 4589 pci_disable_device(pdev); 4590} 4591 4592/* PCI Error Recovery (ERS) */ 4593static struct pci_error_handlers e1000_err_handler = { 4594 .error_detected = e1000_io_error_detected, 4595 .slot_reset = e1000_io_slot_reset, 4596 .resume = e1000_io_resume, 4597}; 4598 4599static struct pci_device_id e1000_pci_tbl[] = { 4600 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 4601 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 4602 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 4603 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, 4604 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 4605 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 4606 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 4607 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 4608 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 4609 4610 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 4611 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 4612 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 4613 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 4614 4615 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 4616 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 4617 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 4618 4619 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 4620 board_80003es2lan }, 4621 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 4622 board_80003es2lan }, 4623 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 4624 board_80003es2lan }, 4625 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 4626 board_80003es2lan }, 4627 4628 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 4629 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 4630 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 4631 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 4632 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 4633 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 4634 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 4635 4636 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 4637 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 4638 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 4639 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 4640 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 4641 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 4642 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 4643 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 4644 4645 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 4646 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 4647 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 4648 4649 { } /* terminate list */ 4650}; 4651MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 4652 4653/* PCI Device API Driver */ 4654static struct pci_driver e1000_driver = { 4655 .name = e1000e_driver_name, 4656 .id_table = e1000_pci_tbl, 4657 .probe = e1000_probe, 4658 .remove = __devexit_p(e1000_remove), 4659#ifdef CONFIG_PM 4660 /* Power Management Hooks */ 4661 .suspend = e1000_suspend, 4662 .resume = e1000_resume, 4663#endif 4664 .shutdown = e1000_shutdown, 4665 .err_handler = &e1000_err_handler 4666}; 4667 4668/** 4669 * e1000_init_module - Driver Registration Routine 4670 * 4671 * e1000_init_module is the first routine called when the driver is 4672 * loaded. All it does is register with the PCI subsystem. 4673 **/ 4674static int __init e1000_init_module(void) 4675{ 4676 int ret; 4677 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", 4678 e1000e_driver_name, e1000e_driver_version); 4679 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n", 4680 e1000e_driver_name); 4681 ret = pci_register_driver(&e1000_driver); 4682 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name, 4683 PM_QOS_DEFAULT_VALUE); 4684 4685 return ret; 4686} 4687module_init(e1000_init_module); 4688 4689/** 4690 * e1000_exit_module - Driver Exit Cleanup Routine 4691 * 4692 * e1000_exit_module is called just before the driver is removed 4693 * from memory. 4694 **/ 4695static void __exit e1000_exit_module(void) 4696{ 4697 pci_unregister_driver(&e1000_driver); 4698 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name); 4699} 4700module_exit(e1000_exit_module); 4701 4702 4703MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 4704MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 4705MODULE_LICENSE("GPL"); 4706MODULE_VERSION(DRV_VERSION); 4707 4708/* e1000_main.c */