at v2.6.27-rc2 2942 lines 88 kB view raw
1/******************************************************************************* 2 3 Intel PRO/100 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29/* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Receive 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * In order to keep updates to the RFD link field from colliding with 110 * hardware writes to mark packets complete, we use the feature that 111 * hardware will not write to a size 0 descriptor and mark the previous 112 * packet as end-of-list (EL). After updating the link, we remove EL 113 * and only then restore the size such that hardware may use the 114 * previous-to-end RFD. 115 * 116 * Under typical operation, the receive unit (RU) is start once, 117 * and the controller happily fills RFDs as frames arrive. If 118 * replacement RFDs cannot be allocated, or the RU goes non-active, 119 * the RU must be restarted. Frame arrival generates an interrupt, 120 * and Rx indication and re-allocation happen in the same context, 121 * therefore no locking is required. A software-generated interrupt 122 * is generated from the watchdog to recover from a failed allocation 123 * scenario where all Rx resources have been indicated and none re- 124 * placed. 125 * 126 * V. Miscellaneous 127 * 128 * VLAN offloading of tagging, stripping and filtering is not 129 * supported, but driver will accommodate the extra 4-byte VLAN tag 130 * for processing by upper layers. Tx/Rx Checksum offloading is not 131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 132 * not supported (hardware limitation). 133 * 134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 135 * 136 * Thanks to JC (jchapman@katalix.com) for helping with 137 * testing/troubleshooting the development driver. 138 * 139 * TODO: 140 * o several entry points race with dev->close 141 * o check for tx-no-resources/stop Q races with tx clean/wake Q 142 * 143 * FIXES: 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 145 * - Stratus87247: protect MDI control register manipulations 146 */ 147 148#include <linux/module.h> 149#include <linux/moduleparam.h> 150#include <linux/kernel.h> 151#include <linux/types.h> 152#include <linux/slab.h> 153#include <linux/delay.h> 154#include <linux/init.h> 155#include <linux/pci.h> 156#include <linux/dma-mapping.h> 157#include <linux/netdevice.h> 158#include <linux/etherdevice.h> 159#include <linux/mii.h> 160#include <linux/if_vlan.h> 161#include <linux/skbuff.h> 162#include <linux/ethtool.h> 163#include <linux/string.h> 164#include <asm/unaligned.h> 165 166 167#define DRV_NAME "e100" 168#define DRV_EXT "-NAPI" 169#define DRV_VERSION "3.5.23-k4"DRV_EXT 170#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 171#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" 172#define PFX DRV_NAME ": " 173 174#define E100_WATCHDOG_PERIOD (2 * HZ) 175#define E100_NAPI_WEIGHT 16 176 177MODULE_DESCRIPTION(DRV_DESCRIPTION); 178MODULE_AUTHOR(DRV_COPYRIGHT); 179MODULE_LICENSE("GPL"); 180MODULE_VERSION(DRV_VERSION); 181 182static int debug = 3; 183static int eeprom_bad_csum_allow = 0; 184static int use_io = 0; 185module_param(debug, int, 0); 186module_param(eeprom_bad_csum_allow, int, 0); 187module_param(use_io, int, 0); 188MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 189MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); 190MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); 191#define DPRINTK(nlevel, klevel, fmt, args...) \ 192 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ 193 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ 194 __FUNCTION__ , ## args)) 195 196#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 197 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 198 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 199static struct pci_device_id e100_id_table[] = { 200 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 201 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 202 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 203 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 204 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 205 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 206 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 207 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 208 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 209 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 210 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 211 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 212 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 213 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 214 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 215 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 216 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 217 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 218 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 219 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 220 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 221 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 222 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 223 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 224 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 225 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 226 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 227 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 228 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 229 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 230 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 231 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 232 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 233 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 234 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 235 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 236 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 237 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 238 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 239 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 240 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 241 { 0, } 242}; 243MODULE_DEVICE_TABLE(pci, e100_id_table); 244 245enum mac { 246 mac_82557_D100_A = 0, 247 mac_82557_D100_B = 1, 248 mac_82557_D100_C = 2, 249 mac_82558_D101_A4 = 4, 250 mac_82558_D101_B0 = 5, 251 mac_82559_D101M = 8, 252 mac_82559_D101S = 9, 253 mac_82550_D102 = 12, 254 mac_82550_D102_C = 13, 255 mac_82551_E = 14, 256 mac_82551_F = 15, 257 mac_82551_10 = 16, 258 mac_unknown = 0xFF, 259}; 260 261enum phy { 262 phy_100a = 0x000003E0, 263 phy_100c = 0x035002A8, 264 phy_82555_tx = 0x015002A8, 265 phy_nsc_tx = 0x5C002000, 266 phy_82562_et = 0x033002A8, 267 phy_82562_em = 0x032002A8, 268 phy_82562_ek = 0x031002A8, 269 phy_82562_eh = 0x017002A8, 270 phy_unknown = 0xFFFFFFFF, 271}; 272 273/* CSR (Control/Status Registers) */ 274struct csr { 275 struct { 276 u8 status; 277 u8 stat_ack; 278 u8 cmd_lo; 279 u8 cmd_hi; 280 u32 gen_ptr; 281 } scb; 282 u32 port; 283 u16 flash_ctrl; 284 u8 eeprom_ctrl_lo; 285 u8 eeprom_ctrl_hi; 286 u32 mdi_ctrl; 287 u32 rx_dma_count; 288}; 289 290enum scb_status { 291 rus_no_res = 0x08, 292 rus_ready = 0x10, 293 rus_mask = 0x3C, 294}; 295 296enum ru_state { 297 RU_SUSPENDED = 0, 298 RU_RUNNING = 1, 299 RU_UNINITIALIZED = -1, 300}; 301 302enum scb_stat_ack { 303 stat_ack_not_ours = 0x00, 304 stat_ack_sw_gen = 0x04, 305 stat_ack_rnr = 0x10, 306 stat_ack_cu_idle = 0x20, 307 stat_ack_frame_rx = 0x40, 308 stat_ack_cu_cmd_done = 0x80, 309 stat_ack_not_present = 0xFF, 310 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 311 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 312}; 313 314enum scb_cmd_hi { 315 irq_mask_none = 0x00, 316 irq_mask_all = 0x01, 317 irq_sw_gen = 0x02, 318}; 319 320enum scb_cmd_lo { 321 cuc_nop = 0x00, 322 ruc_start = 0x01, 323 ruc_load_base = 0x06, 324 cuc_start = 0x10, 325 cuc_resume = 0x20, 326 cuc_dump_addr = 0x40, 327 cuc_dump_stats = 0x50, 328 cuc_load_base = 0x60, 329 cuc_dump_reset = 0x70, 330}; 331 332enum cuc_dump { 333 cuc_dump_complete = 0x0000A005, 334 cuc_dump_reset_complete = 0x0000A007, 335}; 336 337enum port { 338 software_reset = 0x0000, 339 selftest = 0x0001, 340 selective_reset = 0x0002, 341}; 342 343enum eeprom_ctrl_lo { 344 eesk = 0x01, 345 eecs = 0x02, 346 eedi = 0x04, 347 eedo = 0x08, 348}; 349 350enum mdi_ctrl { 351 mdi_write = 0x04000000, 352 mdi_read = 0x08000000, 353 mdi_ready = 0x10000000, 354}; 355 356enum eeprom_op { 357 op_write = 0x05, 358 op_read = 0x06, 359 op_ewds = 0x10, 360 op_ewen = 0x13, 361}; 362 363enum eeprom_offsets { 364 eeprom_cnfg_mdix = 0x03, 365 eeprom_id = 0x0A, 366 eeprom_config_asf = 0x0D, 367 eeprom_smbus_addr = 0x90, 368}; 369 370enum eeprom_cnfg_mdix { 371 eeprom_mdix_enabled = 0x0080, 372}; 373 374enum eeprom_id { 375 eeprom_id_wol = 0x0020, 376}; 377 378enum eeprom_config_asf { 379 eeprom_asf = 0x8000, 380 eeprom_gcl = 0x4000, 381}; 382 383enum cb_status { 384 cb_complete = 0x8000, 385 cb_ok = 0x2000, 386}; 387 388enum cb_command { 389 cb_nop = 0x0000, 390 cb_iaaddr = 0x0001, 391 cb_config = 0x0002, 392 cb_multi = 0x0003, 393 cb_tx = 0x0004, 394 cb_ucode = 0x0005, 395 cb_dump = 0x0006, 396 cb_tx_sf = 0x0008, 397 cb_cid = 0x1f00, 398 cb_i = 0x2000, 399 cb_s = 0x4000, 400 cb_el = 0x8000, 401}; 402 403struct rfd { 404 __le16 status; 405 __le16 command; 406 __le32 link; 407 __le32 rbd; 408 __le16 actual_size; 409 __le16 size; 410}; 411 412struct rx { 413 struct rx *next, *prev; 414 struct sk_buff *skb; 415 dma_addr_t dma_addr; 416}; 417 418#if defined(__BIG_ENDIAN_BITFIELD) 419#define X(a,b) b,a 420#else 421#define X(a,b) a,b 422#endif 423struct config { 424/*0*/ u8 X(byte_count:6, pad0:2); 425/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 426/*2*/ u8 adaptive_ifs; 427/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 428 term_write_cache_line:1), pad3:4); 429/*4*/ u8 X(rx_dma_max_count:7, pad4:1); 430/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 431/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 432 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 433 rx_discard_overruns:1), rx_save_bad_frames:1); 434/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 435 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 436 tx_dynamic_tbd:1); 437/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 438/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 439 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 440/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 441 loopback:2); 442/*11*/ u8 X(linear_priority:3, pad11:5); 443/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 444/*13*/ u8 ip_addr_lo; 445/*14*/ u8 ip_addr_hi; 446/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 447 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 448 pad15_2:1), crs_or_cdt:1); 449/*16*/ u8 fc_delay_lo; 450/*17*/ u8 fc_delay_hi; 451/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 452 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 453/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 454 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 455 full_duplex_force:1), full_duplex_pin:1); 456/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 457/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 458/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 459 u8 pad_d102[9]; 460}; 461 462#define E100_MAX_MULTICAST_ADDRS 64 463struct multi { 464 __le16 count; 465 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 466}; 467 468/* Important: keep total struct u32-aligned */ 469#define UCODE_SIZE 134 470struct cb { 471 __le16 status; 472 __le16 command; 473 __le32 link; 474 union { 475 u8 iaaddr[ETH_ALEN]; 476 __le32 ucode[UCODE_SIZE]; 477 struct config config; 478 struct multi multi; 479 struct { 480 u32 tbd_array; 481 u16 tcb_byte_count; 482 u8 threshold; 483 u8 tbd_count; 484 struct { 485 __le32 buf_addr; 486 __le16 size; 487 u16 eol; 488 } tbd; 489 } tcb; 490 __le32 dump_buffer_addr; 491 } u; 492 struct cb *next, *prev; 493 dma_addr_t dma_addr; 494 struct sk_buff *skb; 495}; 496 497enum loopback { 498 lb_none = 0, lb_mac = 1, lb_phy = 3, 499}; 500 501struct stats { 502 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, 503 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 504 tx_multiple_collisions, tx_total_collisions; 505 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 506 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 507 rx_short_frame_errors; 508 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 509 __le16 xmt_tco_frames, rcv_tco_frames; 510 __le32 complete; 511}; 512 513struct mem { 514 struct { 515 u32 signature; 516 u32 result; 517 } selftest; 518 struct stats stats; 519 u8 dump_buf[596]; 520}; 521 522struct param_range { 523 u32 min; 524 u32 max; 525 u32 count; 526}; 527 528struct params { 529 struct param_range rfds; 530 struct param_range cbs; 531}; 532 533struct nic { 534 /* Begin: frequently used values: keep adjacent for cache effect */ 535 u32 msg_enable ____cacheline_aligned; 536 struct net_device *netdev; 537 struct pci_dev *pdev; 538 539 struct rx *rxs ____cacheline_aligned; 540 struct rx *rx_to_use; 541 struct rx *rx_to_clean; 542 struct rfd blank_rfd; 543 enum ru_state ru_running; 544 545 spinlock_t cb_lock ____cacheline_aligned; 546 spinlock_t cmd_lock; 547 struct csr __iomem *csr; 548 enum scb_cmd_lo cuc_cmd; 549 unsigned int cbs_avail; 550 struct napi_struct napi; 551 struct cb *cbs; 552 struct cb *cb_to_use; 553 struct cb *cb_to_send; 554 struct cb *cb_to_clean; 555 __le16 tx_command; 556 /* End: frequently used values: keep adjacent for cache effect */ 557 558 enum { 559 ich = (1 << 0), 560 promiscuous = (1 << 1), 561 multicast_all = (1 << 2), 562 wol_magic = (1 << 3), 563 ich_10h_workaround = (1 << 4), 564 } flags ____cacheline_aligned; 565 566 enum mac mac; 567 enum phy phy; 568 struct params params; 569 struct timer_list watchdog; 570 struct timer_list blink_timer; 571 struct mii_if_info mii; 572 struct work_struct tx_timeout_task; 573 enum loopback loopback; 574 575 struct mem *mem; 576 dma_addr_t dma_addr; 577 578 dma_addr_t cbs_dma_addr; 579 u8 adaptive_ifs; 580 u8 tx_threshold; 581 u32 tx_frames; 582 u32 tx_collisions; 583 u32 tx_deferred; 584 u32 tx_single_collisions; 585 u32 tx_multiple_collisions; 586 u32 tx_fc_pause; 587 u32 tx_tco_frames; 588 589 u32 rx_fc_pause; 590 u32 rx_fc_unsupported; 591 u32 rx_tco_frames; 592 u32 rx_over_length_errors; 593 594 u16 leds; 595 u16 eeprom_wc; 596 __le16 eeprom[256]; 597 spinlock_t mdio_lock; 598}; 599 600static inline void e100_write_flush(struct nic *nic) 601{ 602 /* Flush previous PCI writes through intermediate bridges 603 * by doing a benign read */ 604 (void)ioread8(&nic->csr->scb.status); 605} 606 607static void e100_enable_irq(struct nic *nic) 608{ 609 unsigned long flags; 610 611 spin_lock_irqsave(&nic->cmd_lock, flags); 612 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); 613 e100_write_flush(nic); 614 spin_unlock_irqrestore(&nic->cmd_lock, flags); 615} 616 617static void e100_disable_irq(struct nic *nic) 618{ 619 unsigned long flags; 620 621 spin_lock_irqsave(&nic->cmd_lock, flags); 622 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); 623 e100_write_flush(nic); 624 spin_unlock_irqrestore(&nic->cmd_lock, flags); 625} 626 627static void e100_hw_reset(struct nic *nic) 628{ 629 /* Put CU and RU into idle with a selective reset to get 630 * device off of PCI bus */ 631 iowrite32(selective_reset, &nic->csr->port); 632 e100_write_flush(nic); udelay(20); 633 634 /* Now fully reset device */ 635 iowrite32(software_reset, &nic->csr->port); 636 e100_write_flush(nic); udelay(20); 637 638 /* Mask off our interrupt line - it's unmasked after reset */ 639 e100_disable_irq(nic); 640} 641 642static int e100_self_test(struct nic *nic) 643{ 644 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 645 646 /* Passing the self-test is a pretty good indication 647 * that the device can DMA to/from host memory */ 648 649 nic->mem->selftest.signature = 0; 650 nic->mem->selftest.result = 0xFFFFFFFF; 651 652 iowrite32(selftest | dma_addr, &nic->csr->port); 653 e100_write_flush(nic); 654 /* Wait 10 msec for self-test to complete */ 655 msleep(10); 656 657 /* Interrupts are enabled after self-test */ 658 e100_disable_irq(nic); 659 660 /* Check results of self-test */ 661 if(nic->mem->selftest.result != 0) { 662 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", 663 nic->mem->selftest.result); 664 return -ETIMEDOUT; 665 } 666 if(nic->mem->selftest.signature == 0) { 667 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); 668 return -ETIMEDOUT; 669 } 670 671 return 0; 672} 673 674static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) 675{ 676 u32 cmd_addr_data[3]; 677 u8 ctrl; 678 int i, j; 679 680 /* Three cmds: write/erase enable, write data, write/erase disable */ 681 cmd_addr_data[0] = op_ewen << (addr_len - 2); 682 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 683 le16_to_cpu(data); 684 cmd_addr_data[2] = op_ewds << (addr_len - 2); 685 686 /* Bit-bang cmds to write word to eeprom */ 687 for(j = 0; j < 3; j++) { 688 689 /* Chip select */ 690 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 691 e100_write_flush(nic); udelay(4); 692 693 for(i = 31; i >= 0; i--) { 694 ctrl = (cmd_addr_data[j] & (1 << i)) ? 695 eecs | eedi : eecs; 696 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 697 e100_write_flush(nic); udelay(4); 698 699 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 700 e100_write_flush(nic); udelay(4); 701 } 702 /* Wait 10 msec for cmd to complete */ 703 msleep(10); 704 705 /* Chip deselect */ 706 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 707 e100_write_flush(nic); udelay(4); 708 } 709}; 710 711/* General technique stolen from the eepro100 driver - very clever */ 712static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 713{ 714 u32 cmd_addr_data; 715 u16 data = 0; 716 u8 ctrl; 717 int i; 718 719 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 720 721 /* Chip select */ 722 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 723 e100_write_flush(nic); udelay(4); 724 725 /* Bit-bang to read word from eeprom */ 726 for(i = 31; i >= 0; i--) { 727 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 728 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 729 e100_write_flush(nic); udelay(4); 730 731 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 732 e100_write_flush(nic); udelay(4); 733 734 /* Eeprom drives a dummy zero to EEDO after receiving 735 * complete address. Use this to adjust addr_len. */ 736 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); 737 if(!(ctrl & eedo) && i > 16) { 738 *addr_len -= (i - 16); 739 i = 17; 740 } 741 742 data = (data << 1) | (ctrl & eedo ? 1 : 0); 743 } 744 745 /* Chip deselect */ 746 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 747 e100_write_flush(nic); udelay(4); 748 749 return cpu_to_le16(data); 750}; 751 752/* Load entire EEPROM image into driver cache and validate checksum */ 753static int e100_eeprom_load(struct nic *nic) 754{ 755 u16 addr, addr_len = 8, checksum = 0; 756 757 /* Try reading with an 8-bit addr len to discover actual addr len */ 758 e100_eeprom_read(nic, &addr_len, 0); 759 nic->eeprom_wc = 1 << addr_len; 760 761 for(addr = 0; addr < nic->eeprom_wc; addr++) { 762 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 763 if(addr < nic->eeprom_wc - 1) 764 checksum += le16_to_cpu(nic->eeprom[addr]); 765 } 766 767 /* The checksum, stored in the last word, is calculated such that 768 * the sum of words should be 0xBABA */ 769 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { 770 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); 771 if (!eeprom_bad_csum_allow) 772 return -EAGAIN; 773 } 774 775 return 0; 776} 777 778/* Save (portion of) driver EEPROM cache to device and update checksum */ 779static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 780{ 781 u16 addr, addr_len = 8, checksum = 0; 782 783 /* Try reading with an 8-bit addr len to discover actual addr len */ 784 e100_eeprom_read(nic, &addr_len, 0); 785 nic->eeprom_wc = 1 << addr_len; 786 787 if(start + count >= nic->eeprom_wc) 788 return -EINVAL; 789 790 for(addr = start; addr < start + count; addr++) 791 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 792 793 /* The checksum, stored in the last word, is calculated such that 794 * the sum of words should be 0xBABA */ 795 for(addr = 0; addr < nic->eeprom_wc - 1; addr++) 796 checksum += le16_to_cpu(nic->eeprom[addr]); 797 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); 798 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 799 nic->eeprom[nic->eeprom_wc - 1]); 800 801 return 0; 802} 803 804#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 805#define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 806static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 807{ 808 unsigned long flags; 809 unsigned int i; 810 int err = 0; 811 812 spin_lock_irqsave(&nic->cmd_lock, flags); 813 814 /* Previous command is accepted when SCB clears */ 815 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 816 if(likely(!ioread8(&nic->csr->scb.cmd_lo))) 817 break; 818 cpu_relax(); 819 if(unlikely(i > E100_WAIT_SCB_FAST)) 820 udelay(5); 821 } 822 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 823 err = -EAGAIN; 824 goto err_unlock; 825 } 826 827 if(unlikely(cmd != cuc_resume)) 828 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); 829 iowrite8(cmd, &nic->csr->scb.cmd_lo); 830 831err_unlock: 832 spin_unlock_irqrestore(&nic->cmd_lock, flags); 833 834 return err; 835} 836 837static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 838 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 839{ 840 struct cb *cb; 841 unsigned long flags; 842 int err = 0; 843 844 spin_lock_irqsave(&nic->cb_lock, flags); 845 846 if(unlikely(!nic->cbs_avail)) { 847 err = -ENOMEM; 848 goto err_unlock; 849 } 850 851 cb = nic->cb_to_use; 852 nic->cb_to_use = cb->next; 853 nic->cbs_avail--; 854 cb->skb = skb; 855 856 if(unlikely(!nic->cbs_avail)) 857 err = -ENOSPC; 858 859 cb_prepare(nic, cb, skb); 860 861 /* Order is important otherwise we'll be in a race with h/w: 862 * set S-bit in current first, then clear S-bit in previous. */ 863 cb->command |= cpu_to_le16(cb_s); 864 wmb(); 865 cb->prev->command &= cpu_to_le16(~cb_s); 866 867 while(nic->cb_to_send != nic->cb_to_use) { 868 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 869 nic->cb_to_send->dma_addr))) { 870 /* Ok, here's where things get sticky. It's 871 * possible that we can't schedule the command 872 * because the controller is too busy, so 873 * let's just queue the command and try again 874 * when another command is scheduled. */ 875 if(err == -ENOSPC) { 876 //request a reset 877 schedule_work(&nic->tx_timeout_task); 878 } 879 break; 880 } else { 881 nic->cuc_cmd = cuc_resume; 882 nic->cb_to_send = nic->cb_to_send->next; 883 } 884 } 885 886err_unlock: 887 spin_unlock_irqrestore(&nic->cb_lock, flags); 888 889 return err; 890} 891 892static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 893{ 894 u32 data_out = 0; 895 unsigned int i; 896 unsigned long flags; 897 898 899 /* 900 * Stratus87247: we shouldn't be writing the MDI control 901 * register until the Ready bit shows True. Also, since 902 * manipulation of the MDI control registers is a multi-step 903 * procedure it should be done under lock. 904 */ 905 spin_lock_irqsave(&nic->mdio_lock, flags); 906 for (i = 100; i; --i) { 907 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) 908 break; 909 udelay(20); 910 } 911 if (unlikely(!i)) { 912 printk("e100.mdio_ctrl(%s) won't go Ready\n", 913 nic->netdev->name ); 914 spin_unlock_irqrestore(&nic->mdio_lock, flags); 915 return 0; /* No way to indicate timeout error */ 916 } 917 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 918 919 for (i = 0; i < 100; i++) { 920 udelay(20); 921 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) 922 break; 923 } 924 spin_unlock_irqrestore(&nic->mdio_lock, flags); 925 DPRINTK(HW, DEBUG, 926 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 927 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); 928 return (u16)data_out; 929} 930 931static int mdio_read(struct net_device *netdev, int addr, int reg) 932{ 933 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); 934} 935 936static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 937{ 938 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); 939} 940 941static void e100_get_defaults(struct nic *nic) 942{ 943 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 944 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 945 946 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 947 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; 948 if(nic->mac == mac_unknown) 949 nic->mac = mac_82557_D100_A; 950 951 nic->params.rfds = rfds; 952 nic->params.cbs = cbs; 953 954 /* Quadwords to DMA into FIFO before starting frame transmit */ 955 nic->tx_threshold = 0xE0; 956 957 /* no interrupt for every tx completion, delay = 256us if not 557 */ 958 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 959 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 960 961 /* Template for a freshly allocated RFD */ 962 nic->blank_rfd.command = 0; 963 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); 964 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 965 966 /* MII setup */ 967 nic->mii.phy_id_mask = 0x1F; 968 nic->mii.reg_num_mask = 0x1F; 969 nic->mii.dev = nic->netdev; 970 nic->mii.mdio_read = mdio_read; 971 nic->mii.mdio_write = mdio_write; 972} 973 974static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 975{ 976 struct config *config = &cb->u.config; 977 u8 *c = (u8 *)config; 978 979 cb->command = cpu_to_le16(cb_config); 980 981 memset(config, 0, sizeof(struct config)); 982 983 config->byte_count = 0x16; /* bytes in this struct */ 984 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 985 config->direct_rx_dma = 0x1; /* reserved */ 986 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 987 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 988 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 989 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 990 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ 991 config->pad10 = 0x6; 992 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 993 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 994 config->ifs = 0x6; /* x16 = inter frame spacing */ 995 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 996 config->pad15_1 = 0x1; 997 config->pad15_2 = 0x1; 998 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 999 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 1000 config->tx_padding = 0x1; /* 1=pad short frames */ 1001 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 1002 config->pad18 = 0x1; 1003 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 1004 config->pad20_1 = 0x1F; 1005 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 1006 config->pad21_1 = 0x5; 1007 1008 config->adaptive_ifs = nic->adaptive_ifs; 1009 config->loopback = nic->loopback; 1010 1011 if(nic->mii.force_media && nic->mii.full_duplex) 1012 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1013 1014 if(nic->flags & promiscuous || nic->loopback) { 1015 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1016 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1017 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1018 } 1019 1020 if(nic->flags & multicast_all) 1021 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1022 1023 /* disable WoL when up */ 1024 if(netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1025 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1026 1027 if(nic->mac >= mac_82558_D101_A4) { 1028 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1029 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1030 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1031 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1032 if (nic->mac >= mac_82559_D101M) { 1033 config->tno_intr = 0x1; /* TCO stats enable */ 1034 /* Enable TCO in extended config */ 1035 if (nic->mac >= mac_82551_10) { 1036 config->byte_count = 0x20; /* extended bytes */ 1037 config->rx_d102_mode = 0x1; /* GMRC for TCO */ 1038 } 1039 } else { 1040 config->standard_stat_counter = 0x0; 1041 } 1042 } 1043 1044 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1045 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 1046 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1047 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 1048 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1049 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 1050} 1051 1052/********************************************************/ 1053/* Micro code for 8086:1229 Rev 8 */ 1054/********************************************************/ 1055 1056/* Parameter values for the D101M B-step */ 1057#define D101M_CPUSAVER_TIMER_DWORD 78 1058#define D101M_CPUSAVER_BUNDLE_DWORD 65 1059#define D101M_CPUSAVER_MIN_SIZE_DWORD 126 1060 1061#define D101M_B_RCVBUNDLE_UCODE \ 1062{\ 10630x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \ 10640x000C0001, 0x00101312, 0x000C0008, 0x00380216, \ 10650x0010009C, 0x00204056, 0x002380CC, 0x00380056, \ 10660x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \ 10670x00380438, 0x00000000, 0x00140000, 0x00380555, \ 10680x00308000, 0x00100662, 0x00100561, 0x000E0408, \ 10690x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 10700x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 10710x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \ 10720x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \ 10730x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10740x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \ 10750x003A0437, 0x00044010, 0x0038078A, 0x00000000, \ 10760x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \ 10770x00130824, 0x000C0001, 0x00101213, 0x00260C75, \ 10780x00041000, 0x00010004, 0x00130826, 0x000C0006, \ 10790x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \ 10800x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10810x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10820x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 10830x00101210, 0x00380C34, 0x00000000, 0x00000000, \ 10840x0021155B, 0x00100099, 0x00206559, 0x0010009C, \ 10850x00244559, 0x00130836, 0x000C0000, 0x00220C62, \ 10860x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \ 10870x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \ 10880x00214C0E, 0x00380555, 0x00010004, 0x00041000, \ 10890x00278C67, 0x00040800, 0x00018100, 0x003A0437, \ 10900x00130826, 0x000C0001, 0x00220559, 0x00101313, \ 10910x00380559, 0x00000000, 0x00000000, 0x00000000, \ 10920x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10930x00000000, 0x00130831, 0x0010090B, 0x00124813, \ 10940x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \ 10950x003806A8, 0x00000000, 0x00000000, 0x00000000, \ 1096} 1097 1098/********************************************************/ 1099/* Micro code for 8086:1229 Rev 9 */ 1100/********************************************************/ 1101 1102/* Parameter values for the D101S */ 1103#define D101S_CPUSAVER_TIMER_DWORD 78 1104#define D101S_CPUSAVER_BUNDLE_DWORD 67 1105#define D101S_CPUSAVER_MIN_SIZE_DWORD 128 1106 1107#define D101S_RCVBUNDLE_UCODE \ 1108{\ 11090x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \ 11100x000C0001, 0x00101312, 0x000C0008, 0x00380243, \ 11110x0010009C, 0x00204056, 0x002380D0, 0x00380056, \ 11120x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \ 11130x0038047F, 0x00000000, 0x00140000, 0x003805A3, \ 11140x00308000, 0x00100610, 0x00100561, 0x000E0408, \ 11150x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 11160x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 11170x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \ 11180x00380F90, 0x00080000, 0x00103090, 0x00380F90, \ 11190x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11200x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \ 11210x003A047E, 0x00044010, 0x00380819, 0x00000000, \ 11220x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \ 11230x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \ 11240x00101213, 0x00260FF7, 0x00041000, 0x00010004, \ 11250x00130826, 0x000C0006, 0x00220700, 0x0013C926, \ 11260x00101313, 0x00380700, 0x00000000, 0x00000000, \ 11270x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11280x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 11290x00101210, 0x00380FB6, 0x00000000, 0x00000000, \ 11300x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \ 11310x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \ 11320x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \ 11330x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \ 11340x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \ 11350x00010004, 0x00041000, 0x00278FE9, 0x00040800, \ 11360x00018100, 0x003A047E, 0x00130826, 0x000C0001, \ 11370x002205A7, 0x00101313, 0x003805A7, 0x00000000, \ 11380x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11390x00000000, 0x00000000, 0x00000000, 0x00130831, \ 11400x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \ 11410x00041000, 0x00010004, 0x00380700 \ 1142} 1143 1144/********************************************************/ 1145/* Micro code for the 8086:1229 Rev F/10 */ 1146/********************************************************/ 1147 1148/* Parameter values for the D102 E-step */ 1149#define D102_E_CPUSAVER_TIMER_DWORD 42 1150#define D102_E_CPUSAVER_BUNDLE_DWORD 54 1151#define D102_E_CPUSAVER_MIN_SIZE_DWORD 46 1152 1153#define D102_E_RCVBUNDLE_UCODE \ 1154{\ 11550x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \ 11560x00E014B9, 0x00000000, 0x00000000, 0x00000000, \ 11570x00E014BD, 0x00000000, 0x00000000, 0x00000000, \ 11580x00E014D5, 0x00000000, 0x00000000, 0x00000000, \ 11590x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11600x00E014C1, 0x00000000, 0x00000000, 0x00000000, \ 11610x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11620x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11630x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11640x00E014C8, 0x00000000, 0x00000000, 0x00000000, \ 11650x00200600, 0x00E014EE, 0x00000000, 0x00000000, \ 11660x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \ 11670x00E00E43, 0x00000000, 0x00000000, 0x00000000, \ 11680x00300006, 0x00E014FB, 0x00000000, 0x00000000, \ 11690x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11700x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11710x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11720x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \ 11730x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \ 11740x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11750x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11760x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11770x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11780x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11790x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11800x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11810x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11820x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11830x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11840x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11850x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11860x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11870x00000000, 0x00000000, 0x00000000, 0x00000000, \ 1188} 1189 1190static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1191{ 1192/* *INDENT-OFF* */ 1193 static struct { 1194 u32 ucode[UCODE_SIZE + 1]; 1195 u8 mac; 1196 u8 timer_dword; 1197 u8 bundle_dword; 1198 u8 min_size_dword; 1199 } ucode_opts[] = { 1200 { D101M_B_RCVBUNDLE_UCODE, 1201 mac_82559_D101M, 1202 D101M_CPUSAVER_TIMER_DWORD, 1203 D101M_CPUSAVER_BUNDLE_DWORD, 1204 D101M_CPUSAVER_MIN_SIZE_DWORD }, 1205 { D101S_RCVBUNDLE_UCODE, 1206 mac_82559_D101S, 1207 D101S_CPUSAVER_TIMER_DWORD, 1208 D101S_CPUSAVER_BUNDLE_DWORD, 1209 D101S_CPUSAVER_MIN_SIZE_DWORD }, 1210 { D102_E_RCVBUNDLE_UCODE, 1211 mac_82551_F, 1212 D102_E_CPUSAVER_TIMER_DWORD, 1213 D102_E_CPUSAVER_BUNDLE_DWORD, 1214 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1215 { D102_E_RCVBUNDLE_UCODE, 1216 mac_82551_10, 1217 D102_E_CPUSAVER_TIMER_DWORD, 1218 D102_E_CPUSAVER_BUNDLE_DWORD, 1219 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1220 { {0}, 0, 0, 0, 0} 1221 }, *opts; 1222/* *INDENT-ON* */ 1223 1224/************************************************************************* 1225* CPUSaver parameters 1226* 1227* All CPUSaver parameters are 16-bit literals that are part of a 1228* "move immediate value" instruction. By changing the value of 1229* the literal in the instruction before the code is loaded, the 1230* driver can change the algorithm. 1231* 1232* INTDELAY - This loads the dead-man timer with its initial value. 1233* When this timer expires the interrupt is asserted, and the 1234* timer is reset each time a new packet is received. (see 1235* BUNDLEMAX below to set the limit on number of chained packets) 1236* The current default is 0x600 or 1536. Experiments show that 1237* the value should probably stay within the 0x200 - 0x1000. 1238* 1239* BUNDLEMAX - 1240* This sets the maximum number of frames that will be bundled. In 1241* some situations, such as the TCP windowing algorithm, it may be 1242* better to limit the growth of the bundle size than let it go as 1243* high as it can, because that could cause too much added latency. 1244* The default is six, because this is the number of packets in the 1245* default TCP window size. A value of 1 would make CPUSaver indicate 1246* an interrupt for every frame received. If you do not want to put 1247* a limit on the bundle size, set this value to xFFFF. 1248* 1249* BUNDLESMALL - 1250* This contains a bit-mask describing the minimum size frame that 1251* will be bundled. The default masks the lower 7 bits, which means 1252* that any frame less than 128 bytes in length will not be bundled, 1253* but will instead immediately generate an interrupt. This does 1254* not affect the current bundle in any way. Any frame that is 128 1255* bytes or large will be bundled normally. This feature is meant 1256* to provide immediate indication of ACK frames in a TCP environment. 1257* Customers were seeing poor performance when a machine with CPUSaver 1258* enabled was sending but not receiving. The delay introduced when 1259* the ACKs were received was enough to reduce total throughput, because 1260* the sender would sit idle until the ACK was finally seen. 1261* 1262* The current default is 0xFF80, which masks out the lower 7 bits. 1263* This means that any frame which is x7F (127) bytes or smaller 1264* will cause an immediate interrupt. Because this value must be a 1265* bit mask, there are only a few valid values that can be used. To 1266* turn this feature off, the driver can write the value xFFFF to the 1267* lower word of this instruction (in the same way that the other 1268* parameters are used). Likewise, a value of 0xF800 (2047) would 1269* cause an interrupt to be generated for every frame, because all 1270* standard Ethernet frames are <= 2047 bytes in length. 1271*************************************************************************/ 1272 1273/* if you wish to disable the ucode functionality, while maintaining the 1274 * workarounds it provides, set the following defines to: 1275 * BUNDLESMALL 0 1276 * BUNDLEMAX 1 1277 * INTDELAY 1 1278 */ 1279#define BUNDLESMALL 1 1280#define BUNDLEMAX (u16)6 1281#define INTDELAY (u16)1536 /* 0x600 */ 1282 1283 /* do not load u-code for ICH devices */ 1284 if (nic->flags & ich) 1285 goto noloaducode; 1286 1287 /* Search for ucode match against h/w revision */ 1288 for (opts = ucode_opts; opts->mac; opts++) { 1289 int i; 1290 u32 *ucode = opts->ucode; 1291 if (nic->mac != opts->mac) 1292 continue; 1293 1294 /* Insert user-tunable settings */ 1295 ucode[opts->timer_dword] &= 0xFFFF0000; 1296 ucode[opts->timer_dword] |= INTDELAY; 1297 ucode[opts->bundle_dword] &= 0xFFFF0000; 1298 ucode[opts->bundle_dword] |= BUNDLEMAX; 1299 ucode[opts->min_size_dword] &= 0xFFFF0000; 1300 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80; 1301 1302 for (i = 0; i < UCODE_SIZE; i++) 1303 cb->u.ucode[i] = cpu_to_le32(ucode[i]); 1304 cb->command = cpu_to_le16(cb_ucode | cb_el); 1305 return; 1306 } 1307 1308noloaducode: 1309 cb->command = cpu_to_le16(cb_nop | cb_el); 1310} 1311 1312static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb, 1313 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 1314{ 1315 int err = 0, counter = 50; 1316 struct cb *cb = nic->cb_to_clean; 1317 1318 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode))) 1319 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); 1320 1321 /* must restart cuc */ 1322 nic->cuc_cmd = cuc_start; 1323 1324 /* wait for completion */ 1325 e100_write_flush(nic); 1326 udelay(10); 1327 1328 /* wait for possibly (ouch) 500ms */ 1329 while (!(cb->status & cpu_to_le16(cb_complete))) { 1330 msleep(10); 1331 if (!--counter) break; 1332 } 1333 1334 /* ack any interrupts, something could have been set */ 1335 iowrite8(~0, &nic->csr->scb.stat_ack); 1336 1337 /* if the command failed, or is not OK, notify and return */ 1338 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1339 DPRINTK(PROBE,ERR, "ucode load failed\n"); 1340 err = -EPERM; 1341 } 1342 1343 return err; 1344} 1345 1346static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1347 struct sk_buff *skb) 1348{ 1349 cb->command = cpu_to_le16(cb_iaaddr); 1350 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1351} 1352 1353static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1354{ 1355 cb->command = cpu_to_le16(cb_dump); 1356 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1357 offsetof(struct mem, dump_buf)); 1358} 1359 1360#define NCONFIG_AUTO_SWITCH 0x0080 1361#define MII_NSC_CONG MII_RESV1 1362#define NSC_CONG_ENABLE 0x0100 1363#define NSC_CONG_TXREADY 0x0400 1364#define ADVERTISE_FC_SUPPORTED 0x0400 1365static int e100_phy_init(struct nic *nic) 1366{ 1367 struct net_device *netdev = nic->netdev; 1368 u32 addr; 1369 u16 bmcr, stat, id_lo, id_hi, cong; 1370 1371 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1372 for(addr = 0; addr < 32; addr++) { 1373 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1374 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1375 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1376 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1377 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1378 break; 1379 } 1380 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); 1381 if(addr == 32) 1382 return -EAGAIN; 1383 1384 /* Selected the phy and isolate the rest */ 1385 for(addr = 0; addr < 32; addr++) { 1386 if(addr != nic->mii.phy_id) { 1387 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1388 } else { 1389 bmcr = mdio_read(netdev, addr, MII_BMCR); 1390 mdio_write(netdev, addr, MII_BMCR, 1391 bmcr & ~BMCR_ISOLATE); 1392 } 1393 } 1394 1395 /* Get phy ID */ 1396 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1397 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1398 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1399 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); 1400 1401 /* Handle National tx phys */ 1402#define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1403 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1404 /* Disable congestion control */ 1405 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1406 cong |= NSC_CONG_TXREADY; 1407 cong &= ~NSC_CONG_ENABLE; 1408 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1409 } 1410 1411 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1412 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1413 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { 1414 /* enable/disable MDI/MDI-X auto-switching. */ 1415 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1416 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1417 } 1418 1419 return 0; 1420} 1421 1422static int e100_hw_init(struct nic *nic) 1423{ 1424 int err; 1425 1426 e100_hw_reset(nic); 1427 1428 DPRINTK(HW, ERR, "e100_hw_init\n"); 1429 if(!in_interrupt() && (err = e100_self_test(nic))) 1430 return err; 1431 1432 if((err = e100_phy_init(nic))) 1433 return err; 1434 if((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1435 return err; 1436 if((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1437 return err; 1438 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode))) 1439 return err; 1440 if((err = e100_exec_cb(nic, NULL, e100_configure))) 1441 return err; 1442 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1443 return err; 1444 if((err = e100_exec_cmd(nic, cuc_dump_addr, 1445 nic->dma_addr + offsetof(struct mem, stats)))) 1446 return err; 1447 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1448 return err; 1449 1450 e100_disable_irq(nic); 1451 1452 return 0; 1453} 1454 1455static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1456{ 1457 struct net_device *netdev = nic->netdev; 1458 struct dev_mc_list *list = netdev->mc_list; 1459 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); 1460 1461 cb->command = cpu_to_le16(cb_multi); 1462 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1463 for(i = 0; list && i < count; i++, list = list->next) 1464 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, 1465 ETH_ALEN); 1466} 1467 1468static void e100_set_multicast_list(struct net_device *netdev) 1469{ 1470 struct nic *nic = netdev_priv(netdev); 1471 1472 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", 1473 netdev->mc_count, netdev->flags); 1474 1475 if(netdev->flags & IFF_PROMISC) 1476 nic->flags |= promiscuous; 1477 else 1478 nic->flags &= ~promiscuous; 1479 1480 if(netdev->flags & IFF_ALLMULTI || 1481 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) 1482 nic->flags |= multicast_all; 1483 else 1484 nic->flags &= ~multicast_all; 1485 1486 e100_exec_cb(nic, NULL, e100_configure); 1487 e100_exec_cb(nic, NULL, e100_multi); 1488} 1489 1490static void e100_update_stats(struct nic *nic) 1491{ 1492 struct net_device *dev = nic->netdev; 1493 struct net_device_stats *ns = &dev->stats; 1494 struct stats *s = &nic->mem->stats; 1495 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1496 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : 1497 &s->complete; 1498 1499 /* Device's stats reporting may take several microseconds to 1500 * complete, so we're always waiting for results of the 1501 * previous command. */ 1502 1503 if(*complete == cpu_to_le32(cuc_dump_reset_complete)) { 1504 *complete = 0; 1505 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1506 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1507 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1508 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1509 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1510 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1511 ns->collisions += nic->tx_collisions; 1512 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1513 le32_to_cpu(s->tx_lost_crs); 1514 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + 1515 nic->rx_over_length_errors; 1516 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1517 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1518 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1519 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1520 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1521 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1522 le32_to_cpu(s->rx_alignment_errors) + 1523 le32_to_cpu(s->rx_short_frame_errors) + 1524 le32_to_cpu(s->rx_cdt_errors); 1525 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1526 nic->tx_single_collisions += 1527 le32_to_cpu(s->tx_single_collisions); 1528 nic->tx_multiple_collisions += 1529 le32_to_cpu(s->tx_multiple_collisions); 1530 if(nic->mac >= mac_82558_D101_A4) { 1531 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1532 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1533 nic->rx_fc_unsupported += 1534 le32_to_cpu(s->fc_rcv_unsupported); 1535 if(nic->mac >= mac_82559_D101M) { 1536 nic->tx_tco_frames += 1537 le16_to_cpu(s->xmt_tco_frames); 1538 nic->rx_tco_frames += 1539 le16_to_cpu(s->rcv_tco_frames); 1540 } 1541 } 1542 } 1543 1544 1545 if(e100_exec_cmd(nic, cuc_dump_reset, 0)) 1546 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); 1547} 1548 1549static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1550{ 1551 /* Adjust inter-frame-spacing (IFS) between two transmits if 1552 * we're getting collisions on a half-duplex connection. */ 1553 1554 if(duplex == DUPLEX_HALF) { 1555 u32 prev = nic->adaptive_ifs; 1556 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1557 1558 if((nic->tx_frames / 32 < nic->tx_collisions) && 1559 (nic->tx_frames > min_frames)) { 1560 if(nic->adaptive_ifs < 60) 1561 nic->adaptive_ifs += 5; 1562 } else if (nic->tx_frames < min_frames) { 1563 if(nic->adaptive_ifs >= 5) 1564 nic->adaptive_ifs -= 5; 1565 } 1566 if(nic->adaptive_ifs != prev) 1567 e100_exec_cb(nic, NULL, e100_configure); 1568 } 1569} 1570 1571static void e100_watchdog(unsigned long data) 1572{ 1573 struct nic *nic = (struct nic *)data; 1574 struct ethtool_cmd cmd; 1575 1576 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); 1577 1578 /* mii library handles link maintenance tasks */ 1579 1580 mii_ethtool_gset(&nic->mii, &cmd); 1581 1582 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1583 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", 1584 cmd.speed == SPEED_100 ? "100" : "10", 1585 cmd.duplex == DUPLEX_FULL ? "full" : "half"); 1586 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1587 DPRINTK(LINK, INFO, "link down\n"); 1588 } 1589 1590 mii_check_link(&nic->mii); 1591 1592 /* Software generated interrupt to recover from (rare) Rx 1593 * allocation failure. 1594 * Unfortunately have to use a spinlock to not re-enable interrupts 1595 * accidentally, due to hardware that shares a register between the 1596 * interrupt mask bit and the SW Interrupt generation bit */ 1597 spin_lock_irq(&nic->cmd_lock); 1598 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1599 e100_write_flush(nic); 1600 spin_unlock_irq(&nic->cmd_lock); 1601 1602 e100_update_stats(nic); 1603 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); 1604 1605 if(nic->mac <= mac_82557_D100_C) 1606 /* Issue a multicast command to workaround a 557 lock up */ 1607 e100_set_multicast_list(nic->netdev); 1608 1609 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) 1610 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1611 nic->flags |= ich_10h_workaround; 1612 else 1613 nic->flags &= ~ich_10h_workaround; 1614 1615 mod_timer(&nic->watchdog, 1616 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); 1617} 1618 1619static void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1620 struct sk_buff *skb) 1621{ 1622 cb->command = nic->tx_command; 1623 /* interrupt every 16 packets regardless of delay */ 1624 if((nic->cbs_avail & ~15) == nic->cbs_avail) 1625 cb->command |= cpu_to_le16(cb_i); 1626 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1627 cb->u.tcb.tcb_byte_count = 0; 1628 cb->u.tcb.threshold = nic->tx_threshold; 1629 cb->u.tcb.tbd_count = 1; 1630 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1631 skb->data, skb->len, PCI_DMA_TODEVICE)); 1632 /* check for mapping failure? */ 1633 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1634} 1635 1636static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 1637{ 1638 struct nic *nic = netdev_priv(netdev); 1639 int err; 1640 1641 if(nic->flags & ich_10h_workaround) { 1642 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1643 Issue a NOP command followed by a 1us delay before 1644 issuing the Tx command. */ 1645 if(e100_exec_cmd(nic, cuc_nop, 0)) 1646 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); 1647 udelay(1); 1648 } 1649 1650 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1651 1652 switch(err) { 1653 case -ENOSPC: 1654 /* We queued the skb, but now we're out of space. */ 1655 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); 1656 netif_stop_queue(netdev); 1657 break; 1658 case -ENOMEM: 1659 /* This is a hard error - log it. */ 1660 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); 1661 netif_stop_queue(netdev); 1662 return 1; 1663 } 1664 1665 netdev->trans_start = jiffies; 1666 return 0; 1667} 1668 1669static int e100_tx_clean(struct nic *nic) 1670{ 1671 struct net_device *dev = nic->netdev; 1672 struct cb *cb; 1673 int tx_cleaned = 0; 1674 1675 spin_lock(&nic->cb_lock); 1676 1677 /* Clean CBs marked complete */ 1678 for(cb = nic->cb_to_clean; 1679 cb->status & cpu_to_le16(cb_complete); 1680 cb = nic->cb_to_clean = cb->next) { 1681 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n", 1682 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), 1683 cb->status); 1684 1685 if(likely(cb->skb != NULL)) { 1686 dev->stats.tx_packets++; 1687 dev->stats.tx_bytes += cb->skb->len; 1688 1689 pci_unmap_single(nic->pdev, 1690 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1691 le16_to_cpu(cb->u.tcb.tbd.size), 1692 PCI_DMA_TODEVICE); 1693 dev_kfree_skb_any(cb->skb); 1694 cb->skb = NULL; 1695 tx_cleaned = 1; 1696 } 1697 cb->status = 0; 1698 nic->cbs_avail++; 1699 } 1700 1701 spin_unlock(&nic->cb_lock); 1702 1703 /* Recover from running out of Tx resources in xmit_frame */ 1704 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1705 netif_wake_queue(nic->netdev); 1706 1707 return tx_cleaned; 1708} 1709 1710static void e100_clean_cbs(struct nic *nic) 1711{ 1712 if(nic->cbs) { 1713 while(nic->cbs_avail != nic->params.cbs.count) { 1714 struct cb *cb = nic->cb_to_clean; 1715 if(cb->skb) { 1716 pci_unmap_single(nic->pdev, 1717 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1718 le16_to_cpu(cb->u.tcb.tbd.size), 1719 PCI_DMA_TODEVICE); 1720 dev_kfree_skb(cb->skb); 1721 } 1722 nic->cb_to_clean = nic->cb_to_clean->next; 1723 nic->cbs_avail++; 1724 } 1725 pci_free_consistent(nic->pdev, 1726 sizeof(struct cb) * nic->params.cbs.count, 1727 nic->cbs, nic->cbs_dma_addr); 1728 nic->cbs = NULL; 1729 nic->cbs_avail = 0; 1730 } 1731 nic->cuc_cmd = cuc_start; 1732 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1733 nic->cbs; 1734} 1735 1736static int e100_alloc_cbs(struct nic *nic) 1737{ 1738 struct cb *cb; 1739 unsigned int i, count = nic->params.cbs.count; 1740 1741 nic->cuc_cmd = cuc_start; 1742 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1743 nic->cbs_avail = 0; 1744 1745 nic->cbs = pci_alloc_consistent(nic->pdev, 1746 sizeof(struct cb) * count, &nic->cbs_dma_addr); 1747 if(!nic->cbs) 1748 return -ENOMEM; 1749 1750 for(cb = nic->cbs, i = 0; i < count; cb++, i++) { 1751 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1752 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1753 1754 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1755 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1756 ((i+1) % count) * sizeof(struct cb)); 1757 cb->skb = NULL; 1758 } 1759 1760 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1761 nic->cbs_avail = count; 1762 1763 return 0; 1764} 1765 1766static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1767{ 1768 if(!nic->rxs) return; 1769 if(RU_SUSPENDED != nic->ru_running) return; 1770 1771 /* handle init time starts */ 1772 if(!rx) rx = nic->rxs; 1773 1774 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1775 if(rx->skb) { 1776 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1777 nic->ru_running = RU_RUNNING; 1778 } 1779} 1780 1781#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) 1782static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1783{ 1784 if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN))) 1785 return -ENOMEM; 1786 1787 /* Align, init, and map the RFD. */ 1788 skb_reserve(rx->skb, NET_IP_ALIGN); 1789 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); 1790 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1791 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1792 1793 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { 1794 dev_kfree_skb_any(rx->skb); 1795 rx->skb = NULL; 1796 rx->dma_addr = 0; 1797 return -ENOMEM; 1798 } 1799 1800 /* Link the RFD to end of RFA by linking previous RFD to 1801 * this one. We are safe to touch the previous RFD because 1802 * it is protected by the before last buffer's el bit being set */ 1803 if (rx->prev->skb) { 1804 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1805 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); 1806 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1807 sizeof(struct rfd), PCI_DMA_TODEVICE); 1808 } 1809 1810 return 0; 1811} 1812 1813static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1814 unsigned int *work_done, unsigned int work_to_do) 1815{ 1816 struct net_device *dev = nic->netdev; 1817 struct sk_buff *skb = rx->skb; 1818 struct rfd *rfd = (struct rfd *)skb->data; 1819 u16 rfd_status, actual_size; 1820 1821 if(unlikely(work_done && *work_done >= work_to_do)) 1822 return -EAGAIN; 1823 1824 /* Need to sync before taking a peek at cb_complete bit */ 1825 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1826 sizeof(struct rfd), PCI_DMA_FROMDEVICE); 1827 rfd_status = le16_to_cpu(rfd->status); 1828 1829 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); 1830 1831 /* If data isn't ready, nothing to indicate */ 1832 if (unlikely(!(rfd_status & cb_complete))) { 1833 /* If the next buffer has the el bit, but we think the receiver 1834 * is still running, check to see if it really stopped while 1835 * we had interrupts off. 1836 * This allows for a fast restart without re-enabling 1837 * interrupts */ 1838 if ((le16_to_cpu(rfd->command) & cb_el) && 1839 (RU_RUNNING == nic->ru_running)) 1840 1841 if (readb(&nic->csr->scb.status) & rus_no_res) 1842 nic->ru_running = RU_SUSPENDED; 1843 return -ENODATA; 1844 } 1845 1846 /* Get actual data size */ 1847 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1848 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1849 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1850 1851 /* Get data */ 1852 pci_unmap_single(nic->pdev, rx->dma_addr, 1853 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1854 1855 /* If this buffer has the el bit, but we think the receiver 1856 * is still running, check to see if it really stopped while 1857 * we had interrupts off. 1858 * This allows for a fast restart without re-enabling interrupts. 1859 * This can happen when the RU sees the size change but also sees 1860 * the el bit set. */ 1861 if ((le16_to_cpu(rfd->command) & cb_el) && 1862 (RU_RUNNING == nic->ru_running)) { 1863 1864 if (readb(&nic->csr->scb.status) & rus_no_res) 1865 nic->ru_running = RU_SUSPENDED; 1866 } 1867 1868 /* Pull off the RFD and put the actual data (minus eth hdr) */ 1869 skb_reserve(skb, sizeof(struct rfd)); 1870 skb_put(skb, actual_size); 1871 skb->protocol = eth_type_trans(skb, nic->netdev); 1872 1873 if(unlikely(!(rfd_status & cb_ok))) { 1874 /* Don't indicate if hardware indicates errors */ 1875 dev_kfree_skb_any(skb); 1876 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { 1877 /* Don't indicate oversized frames */ 1878 nic->rx_over_length_errors++; 1879 dev_kfree_skb_any(skb); 1880 } else { 1881 dev->stats.rx_packets++; 1882 dev->stats.rx_bytes += actual_size; 1883 nic->netdev->last_rx = jiffies; 1884 netif_receive_skb(skb); 1885 if(work_done) 1886 (*work_done)++; 1887 } 1888 1889 rx->skb = NULL; 1890 1891 return 0; 1892} 1893 1894static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 1895 unsigned int work_to_do) 1896{ 1897 struct rx *rx; 1898 int restart_required = 0, err = 0; 1899 struct rx *old_before_last_rx, *new_before_last_rx; 1900 struct rfd *old_before_last_rfd, *new_before_last_rfd; 1901 1902 /* Indicate newly arrived packets */ 1903 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 1904 err = e100_rx_indicate(nic, rx, work_done, work_to_do); 1905 /* Hit quota or no more to clean */ 1906 if (-EAGAIN == err || -ENODATA == err) 1907 break; 1908 } 1909 1910 1911 /* On EAGAIN, hit quota so have more work to do, restart once 1912 * cleanup is complete. 1913 * Else, are we already rnr? then pay attention!!! this ensures that 1914 * the state machine progression never allows a start with a 1915 * partially cleaned list, avoiding a race between hardware 1916 * and rx_to_clean when in NAPI mode */ 1917 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) 1918 restart_required = 1; 1919 1920 old_before_last_rx = nic->rx_to_use->prev->prev; 1921 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; 1922 1923 /* Alloc new skbs to refill list */ 1924 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 1925 if(unlikely(e100_rx_alloc_skb(nic, rx))) 1926 break; /* Better luck next time (see watchdog) */ 1927 } 1928 1929 new_before_last_rx = nic->rx_to_use->prev->prev; 1930 if (new_before_last_rx != old_before_last_rx) { 1931 /* Set the el-bit on the buffer that is before the last buffer. 1932 * This lets us update the next pointer on the last buffer 1933 * without worrying about hardware touching it. 1934 * We set the size to 0 to prevent hardware from touching this 1935 * buffer. 1936 * When the hardware hits the before last buffer with el-bit 1937 * and size of 0, it will RNR interrupt, the RUS will go into 1938 * the No Resources state. It will not complete nor write to 1939 * this buffer. */ 1940 new_before_last_rfd = 1941 (struct rfd *)new_before_last_rx->skb->data; 1942 new_before_last_rfd->size = 0; 1943 new_before_last_rfd->command |= cpu_to_le16(cb_el); 1944 pci_dma_sync_single_for_device(nic->pdev, 1945 new_before_last_rx->dma_addr, sizeof(struct rfd), 1946 PCI_DMA_TODEVICE); 1947 1948 /* Now that we have a new stopping point, we can clear the old 1949 * stopping point. We must sync twice to get the proper 1950 * ordering on the hardware side of things. */ 1951 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); 1952 pci_dma_sync_single_for_device(nic->pdev, 1953 old_before_last_rx->dma_addr, sizeof(struct rfd), 1954 PCI_DMA_TODEVICE); 1955 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 1956 pci_dma_sync_single_for_device(nic->pdev, 1957 old_before_last_rx->dma_addr, sizeof(struct rfd), 1958 PCI_DMA_TODEVICE); 1959 } 1960 1961 if(restart_required) { 1962 // ack the rnr? 1963 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); 1964 e100_start_receiver(nic, nic->rx_to_clean); 1965 if(work_done) 1966 (*work_done)++; 1967 } 1968} 1969 1970static void e100_rx_clean_list(struct nic *nic) 1971{ 1972 struct rx *rx; 1973 unsigned int i, count = nic->params.rfds.count; 1974 1975 nic->ru_running = RU_UNINITIALIZED; 1976 1977 if(nic->rxs) { 1978 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1979 if(rx->skb) { 1980 pci_unmap_single(nic->pdev, rx->dma_addr, 1981 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1982 dev_kfree_skb(rx->skb); 1983 } 1984 } 1985 kfree(nic->rxs); 1986 nic->rxs = NULL; 1987 } 1988 1989 nic->rx_to_use = nic->rx_to_clean = NULL; 1990} 1991 1992static int e100_rx_alloc_list(struct nic *nic) 1993{ 1994 struct rx *rx; 1995 unsigned int i, count = nic->params.rfds.count; 1996 struct rfd *before_last; 1997 1998 nic->rx_to_use = nic->rx_to_clean = NULL; 1999 nic->ru_running = RU_UNINITIALIZED; 2000 2001 if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) 2002 return -ENOMEM; 2003 2004 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 2005 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 2006 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 2007 if(e100_rx_alloc_skb(nic, rx)) { 2008 e100_rx_clean_list(nic); 2009 return -ENOMEM; 2010 } 2011 } 2012 /* Set the el-bit on the buffer that is before the last buffer. 2013 * This lets us update the next pointer on the last buffer without 2014 * worrying about hardware touching it. 2015 * We set the size to 0 to prevent hardware from touching this buffer. 2016 * When the hardware hits the before last buffer with el-bit and size 2017 * of 0, it will RNR interrupt, the RU will go into the No Resources 2018 * state. It will not complete nor write to this buffer. */ 2019 rx = nic->rxs->prev->prev; 2020 before_last = (struct rfd *)rx->skb->data; 2021 before_last->command |= cpu_to_le16(cb_el); 2022 before_last->size = 0; 2023 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 2024 sizeof(struct rfd), PCI_DMA_TODEVICE); 2025 2026 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 2027 nic->ru_running = RU_SUSPENDED; 2028 2029 return 0; 2030} 2031 2032static irqreturn_t e100_intr(int irq, void *dev_id) 2033{ 2034 struct net_device *netdev = dev_id; 2035 struct nic *nic = netdev_priv(netdev); 2036 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); 2037 2038 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); 2039 2040 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ 2041 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 2042 return IRQ_NONE; 2043 2044 /* Ack interrupt(s) */ 2045 iowrite8(stat_ack, &nic->csr->scb.stat_ack); 2046 2047 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 2048 if(stat_ack & stat_ack_rnr) 2049 nic->ru_running = RU_SUSPENDED; 2050 2051 if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) { 2052 e100_disable_irq(nic); 2053 __netif_rx_schedule(netdev, &nic->napi); 2054 } 2055 2056 return IRQ_HANDLED; 2057} 2058 2059static int e100_poll(struct napi_struct *napi, int budget) 2060{ 2061 struct nic *nic = container_of(napi, struct nic, napi); 2062 struct net_device *netdev = nic->netdev; 2063 unsigned int work_done = 0; 2064 2065 e100_rx_clean(nic, &work_done, budget); 2066 e100_tx_clean(nic); 2067 2068 /* If budget not fully consumed, exit the polling mode */ 2069 if (work_done < budget) { 2070 netif_rx_complete(netdev, napi); 2071 e100_enable_irq(nic); 2072 } 2073 2074 return work_done; 2075} 2076 2077#ifdef CONFIG_NET_POLL_CONTROLLER 2078static void e100_netpoll(struct net_device *netdev) 2079{ 2080 struct nic *nic = netdev_priv(netdev); 2081 2082 e100_disable_irq(nic); 2083 e100_intr(nic->pdev->irq, netdev); 2084 e100_tx_clean(nic); 2085 e100_enable_irq(nic); 2086} 2087#endif 2088 2089static int e100_set_mac_address(struct net_device *netdev, void *p) 2090{ 2091 struct nic *nic = netdev_priv(netdev); 2092 struct sockaddr *addr = p; 2093 2094 if (!is_valid_ether_addr(addr->sa_data)) 2095 return -EADDRNOTAVAIL; 2096 2097 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2098 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2099 2100 return 0; 2101} 2102 2103static int e100_change_mtu(struct net_device *netdev, int new_mtu) 2104{ 2105 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 2106 return -EINVAL; 2107 netdev->mtu = new_mtu; 2108 return 0; 2109} 2110 2111static int e100_asf(struct nic *nic) 2112{ 2113 /* ASF can be enabled from eeprom */ 2114 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2115 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 2116 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 2117 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); 2118} 2119 2120static int e100_up(struct nic *nic) 2121{ 2122 int err; 2123 2124 if((err = e100_rx_alloc_list(nic))) 2125 return err; 2126 if((err = e100_alloc_cbs(nic))) 2127 goto err_rx_clean_list; 2128 if((err = e100_hw_init(nic))) 2129 goto err_clean_cbs; 2130 e100_set_multicast_list(nic->netdev); 2131 e100_start_receiver(nic, NULL); 2132 mod_timer(&nic->watchdog, jiffies); 2133 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, 2134 nic->netdev->name, nic->netdev))) 2135 goto err_no_irq; 2136 netif_wake_queue(nic->netdev); 2137 napi_enable(&nic->napi); 2138 /* enable ints _after_ enabling poll, preventing a race between 2139 * disable ints+schedule */ 2140 e100_enable_irq(nic); 2141 return 0; 2142 2143err_no_irq: 2144 del_timer_sync(&nic->watchdog); 2145err_clean_cbs: 2146 e100_clean_cbs(nic); 2147err_rx_clean_list: 2148 e100_rx_clean_list(nic); 2149 return err; 2150} 2151 2152static void e100_down(struct nic *nic) 2153{ 2154 /* wait here for poll to complete */ 2155 napi_disable(&nic->napi); 2156 netif_stop_queue(nic->netdev); 2157 e100_hw_reset(nic); 2158 free_irq(nic->pdev->irq, nic->netdev); 2159 del_timer_sync(&nic->watchdog); 2160 netif_carrier_off(nic->netdev); 2161 e100_clean_cbs(nic); 2162 e100_rx_clean_list(nic); 2163} 2164 2165static void e100_tx_timeout(struct net_device *netdev) 2166{ 2167 struct nic *nic = netdev_priv(netdev); 2168 2169 /* Reset outside of interrupt context, to avoid request_irq 2170 * in interrupt context */ 2171 schedule_work(&nic->tx_timeout_task); 2172} 2173 2174static void e100_tx_timeout_task(struct work_struct *work) 2175{ 2176 struct nic *nic = container_of(work, struct nic, tx_timeout_task); 2177 struct net_device *netdev = nic->netdev; 2178 2179 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", 2180 ioread8(&nic->csr->scb.status)); 2181 e100_down(netdev_priv(netdev)); 2182 e100_up(netdev_priv(netdev)); 2183} 2184 2185static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2186{ 2187 int err; 2188 struct sk_buff *skb; 2189 2190 /* Use driver resources to perform internal MAC or PHY 2191 * loopback test. A single packet is prepared and transmitted 2192 * in loopback mode, and the test passes if the received 2193 * packet compares byte-for-byte to the transmitted packet. */ 2194 2195 if((err = e100_rx_alloc_list(nic))) 2196 return err; 2197 if((err = e100_alloc_cbs(nic))) 2198 goto err_clean_rx; 2199 2200 /* ICH PHY loopback is broken so do MAC loopback instead */ 2201 if(nic->flags & ich && loopback_mode == lb_phy) 2202 loopback_mode = lb_mac; 2203 2204 nic->loopback = loopback_mode; 2205 if((err = e100_hw_init(nic))) 2206 goto err_loopback_none; 2207 2208 if(loopback_mode == lb_phy) 2209 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2210 BMCR_LOOPBACK); 2211 2212 e100_start_receiver(nic, NULL); 2213 2214 if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { 2215 err = -ENOMEM; 2216 goto err_loopback_none; 2217 } 2218 skb_put(skb, ETH_DATA_LEN); 2219 memset(skb->data, 0xFF, ETH_DATA_LEN); 2220 e100_xmit_frame(skb, nic->netdev); 2221 2222 msleep(10); 2223 2224 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, 2225 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 2226 2227 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2228 skb->data, ETH_DATA_LEN)) 2229 err = -EAGAIN; 2230 2231err_loopback_none: 2232 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2233 nic->loopback = lb_none; 2234 e100_clean_cbs(nic); 2235 e100_hw_reset(nic); 2236err_clean_rx: 2237 e100_rx_clean_list(nic); 2238 return err; 2239} 2240 2241#define MII_LED_CONTROL 0x1B 2242static void e100_blink_led(unsigned long data) 2243{ 2244 struct nic *nic = (struct nic *)data; 2245 enum led_state { 2246 led_on = 0x01, 2247 led_off = 0x04, 2248 led_on_559 = 0x05, 2249 led_on_557 = 0x07, 2250 }; 2251 2252 nic->leds = (nic->leds & led_on) ? led_off : 2253 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2254 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); 2255 mod_timer(&nic->blink_timer, jiffies + HZ / 4); 2256} 2257 2258static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2259{ 2260 struct nic *nic = netdev_priv(netdev); 2261 return mii_ethtool_gset(&nic->mii, cmd); 2262} 2263 2264static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2265{ 2266 struct nic *nic = netdev_priv(netdev); 2267 int err; 2268 2269 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2270 err = mii_ethtool_sset(&nic->mii, cmd); 2271 e100_exec_cb(nic, NULL, e100_configure); 2272 2273 return err; 2274} 2275 2276static void e100_get_drvinfo(struct net_device *netdev, 2277 struct ethtool_drvinfo *info) 2278{ 2279 struct nic *nic = netdev_priv(netdev); 2280 strcpy(info->driver, DRV_NAME); 2281 strcpy(info->version, DRV_VERSION); 2282 strcpy(info->fw_version, "N/A"); 2283 strcpy(info->bus_info, pci_name(nic->pdev)); 2284} 2285 2286#define E100_PHY_REGS 0x1C 2287static int e100_get_regs_len(struct net_device *netdev) 2288{ 2289 struct nic *nic = netdev_priv(netdev); 2290 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); 2291} 2292 2293static void e100_get_regs(struct net_device *netdev, 2294 struct ethtool_regs *regs, void *p) 2295{ 2296 struct nic *nic = netdev_priv(netdev); 2297 u32 *buff = p; 2298 int i; 2299 2300 regs->version = (1 << 24) | nic->pdev->revision; 2301 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | 2302 ioread8(&nic->csr->scb.cmd_lo) << 16 | 2303 ioread16(&nic->csr->scb.status); 2304 for(i = E100_PHY_REGS; i >= 0; i--) 2305 buff[1 + E100_PHY_REGS - i] = 2306 mdio_read(netdev, nic->mii.phy_id, i); 2307 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2308 e100_exec_cb(nic, NULL, e100_dump); 2309 msleep(10); 2310 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2311 sizeof(nic->mem->dump_buf)); 2312} 2313 2314static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2315{ 2316 struct nic *nic = netdev_priv(netdev); 2317 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2318 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2319} 2320 2321static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2322{ 2323 struct nic *nic = netdev_priv(netdev); 2324 2325 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) 2326 return -EOPNOTSUPP; 2327 2328 if(wol->wolopts) 2329 nic->flags |= wol_magic; 2330 else 2331 nic->flags &= ~wol_magic; 2332 2333 e100_exec_cb(nic, NULL, e100_configure); 2334 2335 return 0; 2336} 2337 2338static u32 e100_get_msglevel(struct net_device *netdev) 2339{ 2340 struct nic *nic = netdev_priv(netdev); 2341 return nic->msg_enable; 2342} 2343 2344static void e100_set_msglevel(struct net_device *netdev, u32 value) 2345{ 2346 struct nic *nic = netdev_priv(netdev); 2347 nic->msg_enable = value; 2348} 2349 2350static int e100_nway_reset(struct net_device *netdev) 2351{ 2352 struct nic *nic = netdev_priv(netdev); 2353 return mii_nway_restart(&nic->mii); 2354} 2355 2356static u32 e100_get_link(struct net_device *netdev) 2357{ 2358 struct nic *nic = netdev_priv(netdev); 2359 return mii_link_ok(&nic->mii); 2360} 2361 2362static int e100_get_eeprom_len(struct net_device *netdev) 2363{ 2364 struct nic *nic = netdev_priv(netdev); 2365 return nic->eeprom_wc << 1; 2366} 2367 2368#define E100_EEPROM_MAGIC 0x1234 2369static int e100_get_eeprom(struct net_device *netdev, 2370 struct ethtool_eeprom *eeprom, u8 *bytes) 2371{ 2372 struct nic *nic = netdev_priv(netdev); 2373 2374 eeprom->magic = E100_EEPROM_MAGIC; 2375 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2376 2377 return 0; 2378} 2379 2380static int e100_set_eeprom(struct net_device *netdev, 2381 struct ethtool_eeprom *eeprom, u8 *bytes) 2382{ 2383 struct nic *nic = netdev_priv(netdev); 2384 2385 if(eeprom->magic != E100_EEPROM_MAGIC) 2386 return -EINVAL; 2387 2388 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2389 2390 return e100_eeprom_save(nic, eeprom->offset >> 1, 2391 (eeprom->len >> 1) + 1); 2392} 2393 2394static void e100_get_ringparam(struct net_device *netdev, 2395 struct ethtool_ringparam *ring) 2396{ 2397 struct nic *nic = netdev_priv(netdev); 2398 struct param_range *rfds = &nic->params.rfds; 2399 struct param_range *cbs = &nic->params.cbs; 2400 2401 ring->rx_max_pending = rfds->max; 2402 ring->tx_max_pending = cbs->max; 2403 ring->rx_mini_max_pending = 0; 2404 ring->rx_jumbo_max_pending = 0; 2405 ring->rx_pending = rfds->count; 2406 ring->tx_pending = cbs->count; 2407 ring->rx_mini_pending = 0; 2408 ring->rx_jumbo_pending = 0; 2409} 2410 2411static int e100_set_ringparam(struct net_device *netdev, 2412 struct ethtool_ringparam *ring) 2413{ 2414 struct nic *nic = netdev_priv(netdev); 2415 struct param_range *rfds = &nic->params.rfds; 2416 struct param_range *cbs = &nic->params.cbs; 2417 2418 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2419 return -EINVAL; 2420 2421 if(netif_running(netdev)) 2422 e100_down(nic); 2423 rfds->count = max(ring->rx_pending, rfds->min); 2424 rfds->count = min(rfds->count, rfds->max); 2425 cbs->count = max(ring->tx_pending, cbs->min); 2426 cbs->count = min(cbs->count, cbs->max); 2427 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", 2428 rfds->count, cbs->count); 2429 if(netif_running(netdev)) 2430 e100_up(nic); 2431 2432 return 0; 2433} 2434 2435static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2436 "Link test (on/offline)", 2437 "Eeprom test (on/offline)", 2438 "Self test (offline)", 2439 "Mac loopback (offline)", 2440 "Phy loopback (offline)", 2441}; 2442#define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) 2443 2444static void e100_diag_test(struct net_device *netdev, 2445 struct ethtool_test *test, u64 *data) 2446{ 2447 struct ethtool_cmd cmd; 2448 struct nic *nic = netdev_priv(netdev); 2449 int i, err; 2450 2451 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2452 data[0] = !mii_link_ok(&nic->mii); 2453 data[1] = e100_eeprom_load(nic); 2454 if(test->flags & ETH_TEST_FL_OFFLINE) { 2455 2456 /* save speed, duplex & autoneg settings */ 2457 err = mii_ethtool_gset(&nic->mii, &cmd); 2458 2459 if(netif_running(netdev)) 2460 e100_down(nic); 2461 data[2] = e100_self_test(nic); 2462 data[3] = e100_loopback_test(nic, lb_mac); 2463 data[4] = e100_loopback_test(nic, lb_phy); 2464 2465 /* restore speed, duplex & autoneg settings */ 2466 err = mii_ethtool_sset(&nic->mii, &cmd); 2467 2468 if(netif_running(netdev)) 2469 e100_up(nic); 2470 } 2471 for(i = 0; i < E100_TEST_LEN; i++) 2472 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2473 2474 msleep_interruptible(4 * 1000); 2475} 2476 2477static int e100_phys_id(struct net_device *netdev, u32 data) 2478{ 2479 struct nic *nic = netdev_priv(netdev); 2480 2481 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 2482 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); 2483 mod_timer(&nic->blink_timer, jiffies); 2484 msleep_interruptible(data * 1000); 2485 del_timer_sync(&nic->blink_timer); 2486 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); 2487 2488 return 0; 2489} 2490 2491static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2492 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2493 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2494 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2495 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2496 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2497 "tx_heartbeat_errors", "tx_window_errors", 2498 /* device-specific stats */ 2499 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2500 "tx_flow_control_pause", "rx_flow_control_pause", 2501 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2502}; 2503#define E100_NET_STATS_LEN 21 2504#define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) 2505 2506static int e100_get_sset_count(struct net_device *netdev, int sset) 2507{ 2508 switch (sset) { 2509 case ETH_SS_TEST: 2510 return E100_TEST_LEN; 2511 case ETH_SS_STATS: 2512 return E100_STATS_LEN; 2513 default: 2514 return -EOPNOTSUPP; 2515 } 2516} 2517 2518static void e100_get_ethtool_stats(struct net_device *netdev, 2519 struct ethtool_stats *stats, u64 *data) 2520{ 2521 struct nic *nic = netdev_priv(netdev); 2522 int i; 2523 2524 for(i = 0; i < E100_NET_STATS_LEN; i++) 2525 data[i] = ((unsigned long *)&netdev->stats)[i]; 2526 2527 data[i++] = nic->tx_deferred; 2528 data[i++] = nic->tx_single_collisions; 2529 data[i++] = nic->tx_multiple_collisions; 2530 data[i++] = nic->tx_fc_pause; 2531 data[i++] = nic->rx_fc_pause; 2532 data[i++] = nic->rx_fc_unsupported; 2533 data[i++] = nic->tx_tco_frames; 2534 data[i++] = nic->rx_tco_frames; 2535} 2536 2537static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2538{ 2539 switch(stringset) { 2540 case ETH_SS_TEST: 2541 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2542 break; 2543 case ETH_SS_STATS: 2544 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2545 break; 2546 } 2547} 2548 2549static const struct ethtool_ops e100_ethtool_ops = { 2550 .get_settings = e100_get_settings, 2551 .set_settings = e100_set_settings, 2552 .get_drvinfo = e100_get_drvinfo, 2553 .get_regs_len = e100_get_regs_len, 2554 .get_regs = e100_get_regs, 2555 .get_wol = e100_get_wol, 2556 .set_wol = e100_set_wol, 2557 .get_msglevel = e100_get_msglevel, 2558 .set_msglevel = e100_set_msglevel, 2559 .nway_reset = e100_nway_reset, 2560 .get_link = e100_get_link, 2561 .get_eeprom_len = e100_get_eeprom_len, 2562 .get_eeprom = e100_get_eeprom, 2563 .set_eeprom = e100_set_eeprom, 2564 .get_ringparam = e100_get_ringparam, 2565 .set_ringparam = e100_set_ringparam, 2566 .self_test = e100_diag_test, 2567 .get_strings = e100_get_strings, 2568 .phys_id = e100_phys_id, 2569 .get_ethtool_stats = e100_get_ethtool_stats, 2570 .get_sset_count = e100_get_sset_count, 2571}; 2572 2573static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2574{ 2575 struct nic *nic = netdev_priv(netdev); 2576 2577 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2578} 2579 2580static int e100_alloc(struct nic *nic) 2581{ 2582 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2583 &nic->dma_addr); 2584 return nic->mem ? 0 : -ENOMEM; 2585} 2586 2587static void e100_free(struct nic *nic) 2588{ 2589 if(nic->mem) { 2590 pci_free_consistent(nic->pdev, sizeof(struct mem), 2591 nic->mem, nic->dma_addr); 2592 nic->mem = NULL; 2593 } 2594} 2595 2596static int e100_open(struct net_device *netdev) 2597{ 2598 struct nic *nic = netdev_priv(netdev); 2599 int err = 0; 2600 2601 netif_carrier_off(netdev); 2602 if((err = e100_up(nic))) 2603 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); 2604 return err; 2605} 2606 2607static int e100_close(struct net_device *netdev) 2608{ 2609 e100_down(netdev_priv(netdev)); 2610 return 0; 2611} 2612 2613static int __devinit e100_probe(struct pci_dev *pdev, 2614 const struct pci_device_id *ent) 2615{ 2616 struct net_device *netdev; 2617 struct nic *nic; 2618 int err; 2619 DECLARE_MAC_BUF(mac); 2620 2621 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { 2622 if(((1 << debug) - 1) & NETIF_MSG_PROBE) 2623 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); 2624 return -ENOMEM; 2625 } 2626 2627 netdev->open = e100_open; 2628 netdev->stop = e100_close; 2629 netdev->hard_start_xmit = e100_xmit_frame; 2630 netdev->set_multicast_list = e100_set_multicast_list; 2631 netdev->set_mac_address = e100_set_mac_address; 2632 netdev->change_mtu = e100_change_mtu; 2633 netdev->do_ioctl = e100_do_ioctl; 2634 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2635 netdev->tx_timeout = e100_tx_timeout; 2636 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2637#ifdef CONFIG_NET_POLL_CONTROLLER 2638 netdev->poll_controller = e100_netpoll; 2639#endif 2640 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2641 2642 nic = netdev_priv(netdev); 2643 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); 2644 nic->netdev = netdev; 2645 nic->pdev = pdev; 2646 nic->msg_enable = (1 << debug) - 1; 2647 pci_set_drvdata(pdev, netdev); 2648 2649 if((err = pci_enable_device(pdev))) { 2650 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); 2651 goto err_out_free_dev; 2652 } 2653 2654 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2655 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " 2656 "base address, aborting.\n"); 2657 err = -ENODEV; 2658 goto err_out_disable_pdev; 2659 } 2660 2661 if((err = pci_request_regions(pdev, DRV_NAME))) { 2662 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); 2663 goto err_out_disable_pdev; 2664 } 2665 2666 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { 2667 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); 2668 goto err_out_free_res; 2669 } 2670 2671 SET_NETDEV_DEV(netdev, &pdev->dev); 2672 2673 if (use_io) 2674 DPRINTK(PROBE, INFO, "using i/o access mode\n"); 2675 2676 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); 2677 if(!nic->csr) { 2678 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); 2679 err = -ENOMEM; 2680 goto err_out_free_res; 2681 } 2682 2683 if(ent->driver_data) 2684 nic->flags |= ich; 2685 else 2686 nic->flags &= ~ich; 2687 2688 e100_get_defaults(nic); 2689 2690 /* locks must be initialized before calling hw_reset */ 2691 spin_lock_init(&nic->cb_lock); 2692 spin_lock_init(&nic->cmd_lock); 2693 spin_lock_init(&nic->mdio_lock); 2694 2695 /* Reset the device before pci_set_master() in case device is in some 2696 * funky state and has an interrupt pending - hint: we don't have the 2697 * interrupt handler registered yet. */ 2698 e100_hw_reset(nic); 2699 2700 pci_set_master(pdev); 2701 2702 init_timer(&nic->watchdog); 2703 nic->watchdog.function = e100_watchdog; 2704 nic->watchdog.data = (unsigned long)nic; 2705 init_timer(&nic->blink_timer); 2706 nic->blink_timer.function = e100_blink_led; 2707 nic->blink_timer.data = (unsigned long)nic; 2708 2709 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); 2710 2711 if((err = e100_alloc(nic))) { 2712 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); 2713 goto err_out_iounmap; 2714 } 2715 2716 if((err = e100_eeprom_load(nic))) 2717 goto err_out_free; 2718 2719 e100_phy_init(nic); 2720 2721 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2722 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); 2723 if (!is_valid_ether_addr(netdev->perm_addr)) { 2724 if (!eeprom_bad_csum_allow) { 2725 DPRINTK(PROBE, ERR, "Invalid MAC address from " 2726 "EEPROM, aborting.\n"); 2727 err = -EAGAIN; 2728 goto err_out_free; 2729 } else { 2730 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, " 2731 "you MUST configure one.\n"); 2732 } 2733 } 2734 2735 /* Wol magic packet can be enabled from eeprom */ 2736 if((nic->mac >= mac_82558_D101_A4) && 2737 (nic->eeprom[eeprom_id] & eeprom_id_wol)) 2738 nic->flags |= wol_magic; 2739 2740 /* ack any pending wake events, disable PME */ 2741 err = pci_enable_wake(pdev, 0, 0); 2742 if (err) 2743 DPRINTK(PROBE, ERR, "Error clearing wake event\n"); 2744 2745 strcpy(netdev->name, "eth%d"); 2746 if((err = register_netdev(netdev))) { 2747 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); 2748 goto err_out_free; 2749 } 2750 2751 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %s\n", 2752 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), 2753 pdev->irq, print_mac(mac, netdev->dev_addr)); 2754 2755 return 0; 2756 2757err_out_free: 2758 e100_free(nic); 2759err_out_iounmap: 2760 pci_iounmap(pdev, nic->csr); 2761err_out_free_res: 2762 pci_release_regions(pdev); 2763err_out_disable_pdev: 2764 pci_disable_device(pdev); 2765err_out_free_dev: 2766 pci_set_drvdata(pdev, NULL); 2767 free_netdev(netdev); 2768 return err; 2769} 2770 2771static void __devexit e100_remove(struct pci_dev *pdev) 2772{ 2773 struct net_device *netdev = pci_get_drvdata(pdev); 2774 2775 if(netdev) { 2776 struct nic *nic = netdev_priv(netdev); 2777 unregister_netdev(netdev); 2778 e100_free(nic); 2779 pci_iounmap(pdev, nic->csr); 2780 free_netdev(netdev); 2781 pci_release_regions(pdev); 2782 pci_disable_device(pdev); 2783 pci_set_drvdata(pdev, NULL); 2784 } 2785} 2786 2787static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 2788{ 2789 struct net_device *netdev = pci_get_drvdata(pdev); 2790 struct nic *nic = netdev_priv(netdev); 2791 2792 if (netif_running(netdev)) 2793 e100_down(nic); 2794 netif_device_detach(netdev); 2795 2796 pci_save_state(pdev); 2797 2798 if ((nic->flags & wol_magic) | e100_asf(nic)) { 2799 pci_enable_wake(pdev, PCI_D3hot, 1); 2800 pci_enable_wake(pdev, PCI_D3cold, 1); 2801 } else { 2802 pci_enable_wake(pdev, PCI_D3hot, 0); 2803 pci_enable_wake(pdev, PCI_D3cold, 0); 2804 } 2805 2806 pci_disable_device(pdev); 2807 pci_set_power_state(pdev, PCI_D3hot); 2808 2809 return 0; 2810} 2811 2812#ifdef CONFIG_PM 2813static int e100_resume(struct pci_dev *pdev) 2814{ 2815 struct net_device *netdev = pci_get_drvdata(pdev); 2816 struct nic *nic = netdev_priv(netdev); 2817 2818 pci_set_power_state(pdev, PCI_D0); 2819 pci_restore_state(pdev); 2820 /* ack any pending wake events, disable PME */ 2821 pci_enable_wake(pdev, 0, 0); 2822 2823 netif_device_attach(netdev); 2824 if (netif_running(netdev)) 2825 e100_up(nic); 2826 2827 return 0; 2828} 2829#endif /* CONFIG_PM */ 2830 2831static void e100_shutdown(struct pci_dev *pdev) 2832{ 2833 e100_suspend(pdev, PMSG_SUSPEND); 2834} 2835 2836/* ------------------ PCI Error Recovery infrastructure -------------- */ 2837/** 2838 * e100_io_error_detected - called when PCI error is detected. 2839 * @pdev: Pointer to PCI device 2840 * @state: The current pci connection state 2841 */ 2842static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2843{ 2844 struct net_device *netdev = pci_get_drvdata(pdev); 2845 struct nic *nic = netdev_priv(netdev); 2846 2847 /* Similar to calling e100_down(), but avoids adapter I/O. */ 2848 netdev->stop(netdev); 2849 2850 /* Detach; put netif into a state similar to hotplug unplug. */ 2851 napi_enable(&nic->napi); 2852 netif_device_detach(netdev); 2853 pci_disable_device(pdev); 2854 2855 /* Request a slot reset. */ 2856 return PCI_ERS_RESULT_NEED_RESET; 2857} 2858 2859/** 2860 * e100_io_slot_reset - called after the pci bus has been reset. 2861 * @pdev: Pointer to PCI device 2862 * 2863 * Restart the card from scratch. 2864 */ 2865static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) 2866{ 2867 struct net_device *netdev = pci_get_drvdata(pdev); 2868 struct nic *nic = netdev_priv(netdev); 2869 2870 if (pci_enable_device(pdev)) { 2871 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n"); 2872 return PCI_ERS_RESULT_DISCONNECT; 2873 } 2874 pci_set_master(pdev); 2875 2876 /* Only one device per card can do a reset */ 2877 if (0 != PCI_FUNC(pdev->devfn)) 2878 return PCI_ERS_RESULT_RECOVERED; 2879 e100_hw_reset(nic); 2880 e100_phy_init(nic); 2881 2882 return PCI_ERS_RESULT_RECOVERED; 2883} 2884 2885/** 2886 * e100_io_resume - resume normal operations 2887 * @pdev: Pointer to PCI device 2888 * 2889 * Resume normal operations after an error recovery 2890 * sequence has been completed. 2891 */ 2892static void e100_io_resume(struct pci_dev *pdev) 2893{ 2894 struct net_device *netdev = pci_get_drvdata(pdev); 2895 struct nic *nic = netdev_priv(netdev); 2896 2897 /* ack any pending wake events, disable PME */ 2898 pci_enable_wake(pdev, 0, 0); 2899 2900 netif_device_attach(netdev); 2901 if (netif_running(netdev)) { 2902 e100_open(netdev); 2903 mod_timer(&nic->watchdog, jiffies); 2904 } 2905} 2906 2907static struct pci_error_handlers e100_err_handler = { 2908 .error_detected = e100_io_error_detected, 2909 .slot_reset = e100_io_slot_reset, 2910 .resume = e100_io_resume, 2911}; 2912 2913static struct pci_driver e100_driver = { 2914 .name = DRV_NAME, 2915 .id_table = e100_id_table, 2916 .probe = e100_probe, 2917 .remove = __devexit_p(e100_remove), 2918#ifdef CONFIG_PM 2919 /* Power Management hooks */ 2920 .suspend = e100_suspend, 2921 .resume = e100_resume, 2922#endif 2923 .shutdown = e100_shutdown, 2924 .err_handler = &e100_err_handler, 2925}; 2926 2927static int __init e100_init_module(void) 2928{ 2929 if(((1 << debug) - 1) & NETIF_MSG_DRV) { 2930 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 2931 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); 2932 } 2933 return pci_register_driver(&e100_driver); 2934} 2935 2936static void __exit e100_cleanup_module(void) 2937{ 2938 pci_unregister_driver(&e100_driver); 2939} 2940 2941module_init(e100_init_module); 2942module_exit(e100_cleanup_module);