at v2.6.27-rc2 2490 lines 64 kB view raw
1/* 2 * The low performance USB storage driver (ub). 3 * 4 * Copyright (c) 1999, 2000 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 5 * Copyright (C) 2004 Pete Zaitcev (zaitcev@yahoo.com) 6 * 7 * This work is a part of Linux kernel, is derived from it, 8 * and is not licensed separately. See file COPYING for details. 9 * 10 * TODO (sorted by decreasing priority) 11 * -- Return sense now that rq allows it (we always auto-sense anyway). 12 * -- set readonly flag for CDs, set removable flag for CF readers 13 * -- do inquiry and verify we got a disk and not a tape (for LUN mismatch) 14 * -- verify the 13 conditions and do bulk resets 15 * -- highmem 16 * -- move top_sense and work_bcs into separate allocations (if they survive) 17 * for cache purists and esoteric architectures. 18 * -- Allocate structure for LUN 0 before the first ub_sync_tur, avoid NULL. ? 19 * -- prune comments, they are too volumnous 20 * -- Resove XXX's 21 * -- CLEAR, CLR2STS, CLRRS seem to be ripe for refactoring. 22 */ 23#include <linux/kernel.h> 24#include <linux/module.h> 25#include <linux/usb.h> 26#include <linux/usb_usual.h> 27#include <linux/blkdev.h> 28#include <linux/timer.h> 29#include <linux/scatterlist.h> 30#include <scsi/scsi.h> 31 32#define DRV_NAME "ub" 33 34#define UB_MAJOR 180 35 36/* 37 * The command state machine is the key model for understanding of this driver. 38 * 39 * The general rule is that all transitions are done towards the bottom 40 * of the diagram, thus preventing any loops. 41 * 42 * An exception to that is how the STAT state is handled. A counter allows it 43 * to be re-entered along the path marked with [C]. 44 * 45 * +--------+ 46 * ! INIT ! 47 * +--------+ 48 * ! 49 * ub_scsi_cmd_start fails ->--------------------------------------\ 50 * ! ! 51 * V ! 52 * +--------+ ! 53 * ! CMD ! ! 54 * +--------+ ! 55 * ! +--------+ ! 56 * was -EPIPE -->-------------------------------->! CLEAR ! ! 57 * ! +--------+ ! 58 * ! ! ! 59 * was error -->------------------------------------- ! --------->\ 60 * ! ! ! 61 * /--<-- cmd->dir == NONE ? ! ! 62 * ! ! ! ! 63 * ! V ! ! 64 * ! +--------+ ! ! 65 * ! ! DATA ! ! ! 66 * ! +--------+ ! ! 67 * ! ! +---------+ ! ! 68 * ! was -EPIPE -->--------------->! CLR2STS ! ! ! 69 * ! ! +---------+ ! ! 70 * ! ! ! ! ! 71 * ! ! was error -->---- ! --------->\ 72 * ! was error -->--------------------- ! ------------- ! --------->\ 73 * ! ! ! ! ! 74 * ! V ! ! ! 75 * \--->+--------+ ! ! ! 76 * ! STAT !<--------------------------/ ! ! 77 * /--->+--------+ ! ! 78 * ! ! ! ! 79 * [C] was -EPIPE -->-----------\ ! ! 80 * ! ! ! ! ! 81 * +<---- len == 0 ! ! ! 82 * ! ! ! ! ! 83 * ! was error -->--------------------------------------!---------->\ 84 * ! ! ! ! ! 85 * +<---- bad CSW ! ! ! 86 * +<---- bad tag ! ! ! 87 * ! ! V ! ! 88 * ! ! +--------+ ! ! 89 * ! ! ! CLRRS ! ! ! 90 * ! ! +--------+ ! ! 91 * ! ! ! ! ! 92 * \------- ! --------------------[C]--------\ ! ! 93 * ! ! ! ! 94 * cmd->error---\ +--------+ ! ! 95 * ! +--------------->! SENSE !<----------/ ! 96 * STAT_FAIL----/ +--------+ ! 97 * ! ! V 98 * ! V +--------+ 99 * \--------------------------------\--------------------->! DONE ! 100 * +--------+ 101 */ 102 103/* 104 * This many LUNs per USB device. 105 * Every one of them takes a host, see UB_MAX_HOSTS. 106 */ 107#define UB_MAX_LUNS 9 108 109/* 110 */ 111 112#define UB_PARTS_PER_LUN 8 113 114#define UB_MAX_CDB_SIZE 16 /* Corresponds to Bulk */ 115 116#define UB_SENSE_SIZE 18 117 118/* 119 */ 120 121/* command block wrapper */ 122struct bulk_cb_wrap { 123 __le32 Signature; /* contains 'USBC' */ 124 u32 Tag; /* unique per command id */ 125 __le32 DataTransferLength; /* size of data */ 126 u8 Flags; /* direction in bit 0 */ 127 u8 Lun; /* LUN */ 128 u8 Length; /* of of the CDB */ 129 u8 CDB[UB_MAX_CDB_SIZE]; /* max command */ 130}; 131 132#define US_BULK_CB_WRAP_LEN 31 133#define US_BULK_CB_SIGN 0x43425355 /*spells out USBC */ 134#define US_BULK_FLAG_IN 1 135#define US_BULK_FLAG_OUT 0 136 137/* command status wrapper */ 138struct bulk_cs_wrap { 139 __le32 Signature; /* should = 'USBS' */ 140 u32 Tag; /* same as original command */ 141 __le32 Residue; /* amount not transferred */ 142 u8 Status; /* see below */ 143}; 144 145#define US_BULK_CS_WRAP_LEN 13 146#define US_BULK_CS_SIGN 0x53425355 /* spells out 'USBS' */ 147#define US_BULK_STAT_OK 0 148#define US_BULK_STAT_FAIL 1 149#define US_BULK_STAT_PHASE 2 150 151/* bulk-only class specific requests */ 152#define US_BULK_RESET_REQUEST 0xff 153#define US_BULK_GET_MAX_LUN 0xfe 154 155/* 156 */ 157struct ub_dev; 158 159#define UB_MAX_REQ_SG 9 /* cdrecord requires 32KB and maybe a header */ 160#define UB_MAX_SECTORS 64 161 162/* 163 * A second is more than enough for a 32K transfer (UB_MAX_SECTORS) 164 * even if a webcam hogs the bus, but some devices need time to spin up. 165 */ 166#define UB_URB_TIMEOUT (HZ*2) 167#define UB_DATA_TIMEOUT (HZ*5) /* ZIP does spin-ups in the data phase */ 168#define UB_STAT_TIMEOUT (HZ*5) /* Same spinups and eject for a dataless cmd. */ 169#define UB_CTRL_TIMEOUT (HZ/2) /* 500ms ought to be enough to clear a stall */ 170 171/* 172 * An instance of a SCSI command in transit. 173 */ 174#define UB_DIR_NONE 0 175#define UB_DIR_READ 1 176#define UB_DIR_ILLEGAL2 2 177#define UB_DIR_WRITE 3 178 179#define UB_DIR_CHAR(c) (((c)==UB_DIR_WRITE)? 'w': \ 180 (((c)==UB_DIR_READ)? 'r': 'n')) 181 182enum ub_scsi_cmd_state { 183 UB_CMDST_INIT, /* Initial state */ 184 UB_CMDST_CMD, /* Command submitted */ 185 UB_CMDST_DATA, /* Data phase */ 186 UB_CMDST_CLR2STS, /* Clearing before requesting status */ 187 UB_CMDST_STAT, /* Status phase */ 188 UB_CMDST_CLEAR, /* Clearing a stall (halt, actually) */ 189 UB_CMDST_CLRRS, /* Clearing before retrying status */ 190 UB_CMDST_SENSE, /* Sending Request Sense */ 191 UB_CMDST_DONE /* Final state */ 192}; 193 194struct ub_scsi_cmd { 195 unsigned char cdb[UB_MAX_CDB_SIZE]; 196 unsigned char cdb_len; 197 198 unsigned char dir; /* 0 - none, 1 - read, 3 - write. */ 199 enum ub_scsi_cmd_state state; 200 unsigned int tag; 201 struct ub_scsi_cmd *next; 202 203 int error; /* Return code - valid upon done */ 204 unsigned int act_len; /* Return size */ 205 unsigned char key, asc, ascq; /* May be valid if error==-EIO */ 206 207 int stat_count; /* Retries getting status. */ 208 unsigned int timeo; /* jiffies until rq->timeout changes */ 209 210 unsigned int len; /* Requested length */ 211 unsigned int current_sg; 212 unsigned int nsg; /* sgv[nsg] */ 213 struct scatterlist sgv[UB_MAX_REQ_SG]; 214 215 struct ub_lun *lun; 216 void (*done)(struct ub_dev *, struct ub_scsi_cmd *); 217 void *back; 218}; 219 220struct ub_request { 221 struct request *rq; 222 unsigned int current_try; 223 unsigned int nsg; /* sgv[nsg] */ 224 struct scatterlist sgv[UB_MAX_REQ_SG]; 225}; 226 227/* 228 */ 229struct ub_capacity { 230 unsigned long nsec; /* Linux size - 512 byte sectors */ 231 unsigned int bsize; /* Linux hardsect_size */ 232 unsigned int bshift; /* Shift between 512 and hard sects */ 233}; 234 235/* 236 * This is a direct take-off from linux/include/completion.h 237 * The difference is that I do not wait on this thing, just poll. 238 * When I want to wait (ub_probe), I just use the stock completion. 239 * 240 * Note that INIT_COMPLETION takes no lock. It is correct. But why 241 * in the bloody hell that thing takes struct instead of pointer to struct 242 * is quite beyond me. I just copied it from the stock completion. 243 */ 244struct ub_completion { 245 unsigned int done; 246 spinlock_t lock; 247}; 248 249static inline void ub_init_completion(struct ub_completion *x) 250{ 251 x->done = 0; 252 spin_lock_init(&x->lock); 253} 254 255#define UB_INIT_COMPLETION(x) ((x).done = 0) 256 257static void ub_complete(struct ub_completion *x) 258{ 259 unsigned long flags; 260 261 spin_lock_irqsave(&x->lock, flags); 262 x->done++; 263 spin_unlock_irqrestore(&x->lock, flags); 264} 265 266static int ub_is_completed(struct ub_completion *x) 267{ 268 unsigned long flags; 269 int ret; 270 271 spin_lock_irqsave(&x->lock, flags); 272 ret = x->done; 273 spin_unlock_irqrestore(&x->lock, flags); 274 return ret; 275} 276 277/* 278 */ 279struct ub_scsi_cmd_queue { 280 int qlen, qmax; 281 struct ub_scsi_cmd *head, *tail; 282}; 283 284/* 285 * The block device instance (one per LUN). 286 */ 287struct ub_lun { 288 struct ub_dev *udev; 289 struct list_head link; 290 struct gendisk *disk; 291 int id; /* Host index */ 292 int num; /* LUN number */ 293 char name[16]; 294 295 int changed; /* Media was changed */ 296 int removable; 297 int readonly; 298 299 struct ub_request urq; 300 301 /* Use Ingo's mempool if or when we have more than one command. */ 302 /* 303 * Currently we never need more than one command for the whole device. 304 * However, giving every LUN a command is a cheap and automatic way 305 * to enforce fairness between them. 306 */ 307 int cmda[1]; 308 struct ub_scsi_cmd cmdv[1]; 309 310 struct ub_capacity capacity; 311}; 312 313/* 314 * The USB device instance. 315 */ 316struct ub_dev { 317 spinlock_t *lock; 318 atomic_t poison; /* The USB device is disconnected */ 319 int openc; /* protected by ub_lock! */ 320 /* kref is too implicit for our taste */ 321 int reset; /* Reset is running */ 322 int bad_resid; 323 unsigned int tagcnt; 324 char name[12]; 325 struct usb_device *dev; 326 struct usb_interface *intf; 327 328 struct list_head luns; 329 330 unsigned int send_bulk_pipe; /* cached pipe values */ 331 unsigned int recv_bulk_pipe; 332 unsigned int send_ctrl_pipe; 333 unsigned int recv_ctrl_pipe; 334 335 struct tasklet_struct tasklet; 336 337 struct ub_scsi_cmd_queue cmd_queue; 338 struct ub_scsi_cmd top_rqs_cmd; /* REQUEST SENSE */ 339 unsigned char top_sense[UB_SENSE_SIZE]; 340 341 struct ub_completion work_done; 342 struct urb work_urb; 343 struct timer_list work_timer; 344 int last_pipe; /* What might need clearing */ 345 __le32 signature; /* Learned signature */ 346 struct bulk_cb_wrap work_bcb; 347 struct bulk_cs_wrap work_bcs; 348 struct usb_ctrlrequest work_cr; 349 350 struct work_struct reset_work; 351 wait_queue_head_t reset_wait; 352 353 int sg_stat[6]; 354}; 355 356/* 357 */ 358static void ub_cleanup(struct ub_dev *sc); 359static int ub_request_fn_1(struct ub_lun *lun, struct request *rq); 360static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun, 361 struct ub_scsi_cmd *cmd, struct ub_request *urq); 362static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun, 363 struct ub_scsi_cmd *cmd, struct ub_request *urq); 364static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 365static void ub_end_rq(struct request *rq, unsigned int status, 366 unsigned int cmd_len); 367static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun, 368 struct ub_request *urq, struct ub_scsi_cmd *cmd); 369static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 370static void ub_urb_complete(struct urb *urb); 371static void ub_scsi_action(unsigned long _dev); 372static void ub_scsi_dispatch(struct ub_dev *sc); 373static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 374static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 375static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc); 376static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 377static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 378static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 379static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd); 380static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, 381 int stalled_pipe); 382static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd); 383static void ub_reset_enter(struct ub_dev *sc, int try); 384static void ub_reset_task(struct work_struct *work); 385static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun); 386static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun, 387 struct ub_capacity *ret); 388static int ub_sync_reset(struct ub_dev *sc); 389static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe); 390static int ub_probe_lun(struct ub_dev *sc, int lnum); 391 392/* 393 */ 394#ifdef CONFIG_USB_LIBUSUAL 395 396#define ub_usb_ids storage_usb_ids 397#else 398 399static struct usb_device_id ub_usb_ids[] = { 400 { USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, US_SC_SCSI, US_PR_BULK) }, 401 { } 402}; 403 404MODULE_DEVICE_TABLE(usb, ub_usb_ids); 405#endif /* CONFIG_USB_LIBUSUAL */ 406 407/* 408 * Find me a way to identify "next free minor" for add_disk(), 409 * and the array disappears the next day. However, the number of 410 * hosts has something to do with the naming and /proc/partitions. 411 * This has to be thought out in detail before changing. 412 * If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure. 413 */ 414#define UB_MAX_HOSTS 26 415static char ub_hostv[UB_MAX_HOSTS]; 416 417#define UB_QLOCK_NUM 5 418static spinlock_t ub_qlockv[UB_QLOCK_NUM]; 419static int ub_qlock_next = 0; 420 421static DEFINE_SPINLOCK(ub_lock); /* Locks globals and ->openc */ 422 423/* 424 * The id allocator. 425 * 426 * This also stores the host for indexing by minor, which is somewhat dirty. 427 */ 428static int ub_id_get(void) 429{ 430 unsigned long flags; 431 int i; 432 433 spin_lock_irqsave(&ub_lock, flags); 434 for (i = 0; i < UB_MAX_HOSTS; i++) { 435 if (ub_hostv[i] == 0) { 436 ub_hostv[i] = 1; 437 spin_unlock_irqrestore(&ub_lock, flags); 438 return i; 439 } 440 } 441 spin_unlock_irqrestore(&ub_lock, flags); 442 return -1; 443} 444 445static void ub_id_put(int id) 446{ 447 unsigned long flags; 448 449 if (id < 0 || id >= UB_MAX_HOSTS) { 450 printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id); 451 return; 452 } 453 454 spin_lock_irqsave(&ub_lock, flags); 455 if (ub_hostv[id] == 0) { 456 spin_unlock_irqrestore(&ub_lock, flags); 457 printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id); 458 return; 459 } 460 ub_hostv[id] = 0; 461 spin_unlock_irqrestore(&ub_lock, flags); 462} 463 464/* 465 * This is necessitated by the fact that blk_cleanup_queue does not 466 * necesserily destroy the queue. Instead, it may merely decrease q->refcnt. 467 * Since our blk_init_queue() passes a spinlock common with ub_dev, 468 * we have life time issues when ub_cleanup frees ub_dev. 469 */ 470static spinlock_t *ub_next_lock(void) 471{ 472 unsigned long flags; 473 spinlock_t *ret; 474 475 spin_lock_irqsave(&ub_lock, flags); 476 ret = &ub_qlockv[ub_qlock_next]; 477 ub_qlock_next = (ub_qlock_next + 1) % UB_QLOCK_NUM; 478 spin_unlock_irqrestore(&ub_lock, flags); 479 return ret; 480} 481 482/* 483 * Downcount for deallocation. This rides on two assumptions: 484 * - once something is poisoned, its refcount cannot grow 485 * - opens cannot happen at this time (del_gendisk was done) 486 * If the above is true, we can drop the lock, which we need for 487 * blk_cleanup_queue(): the silly thing may attempt to sleep. 488 * [Actually, it never needs to sleep for us, but it calls might_sleep()] 489 */ 490static void ub_put(struct ub_dev *sc) 491{ 492 unsigned long flags; 493 494 spin_lock_irqsave(&ub_lock, flags); 495 --sc->openc; 496 if (sc->openc == 0 && atomic_read(&sc->poison)) { 497 spin_unlock_irqrestore(&ub_lock, flags); 498 ub_cleanup(sc); 499 } else { 500 spin_unlock_irqrestore(&ub_lock, flags); 501 } 502} 503 504/* 505 * Final cleanup and deallocation. 506 */ 507static void ub_cleanup(struct ub_dev *sc) 508{ 509 struct list_head *p; 510 struct ub_lun *lun; 511 struct request_queue *q; 512 513 while (!list_empty(&sc->luns)) { 514 p = sc->luns.next; 515 lun = list_entry(p, struct ub_lun, link); 516 list_del(p); 517 518 /* I don't think queue can be NULL. But... Stolen from sx8.c */ 519 if ((q = lun->disk->queue) != NULL) 520 blk_cleanup_queue(q); 521 /* 522 * If we zero disk->private_data BEFORE put_disk, we have 523 * to check for NULL all over the place in open, release, 524 * check_media and revalidate, because the block level 525 * semaphore is well inside the put_disk. 526 * But we cannot zero after the call, because *disk is gone. 527 * The sd.c is blatantly racy in this area. 528 */ 529 /* disk->private_data = NULL; */ 530 put_disk(lun->disk); 531 lun->disk = NULL; 532 533 ub_id_put(lun->id); 534 kfree(lun); 535 } 536 537 usb_set_intfdata(sc->intf, NULL); 538 usb_put_intf(sc->intf); 539 usb_put_dev(sc->dev); 540 kfree(sc); 541} 542 543/* 544 * The "command allocator". 545 */ 546static struct ub_scsi_cmd *ub_get_cmd(struct ub_lun *lun) 547{ 548 struct ub_scsi_cmd *ret; 549 550 if (lun->cmda[0]) 551 return NULL; 552 ret = &lun->cmdv[0]; 553 lun->cmda[0] = 1; 554 return ret; 555} 556 557static void ub_put_cmd(struct ub_lun *lun, struct ub_scsi_cmd *cmd) 558{ 559 if (cmd != &lun->cmdv[0]) { 560 printk(KERN_WARNING "%s: releasing a foreign cmd %p\n", 561 lun->name, cmd); 562 return; 563 } 564 if (!lun->cmda[0]) { 565 printk(KERN_WARNING "%s: releasing a free cmd\n", lun->name); 566 return; 567 } 568 lun->cmda[0] = 0; 569} 570 571/* 572 * The command queue. 573 */ 574static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 575{ 576 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 577 578 if (t->qlen++ == 0) { 579 t->head = cmd; 580 t->tail = cmd; 581 } else { 582 t->tail->next = cmd; 583 t->tail = cmd; 584 } 585 586 if (t->qlen > t->qmax) 587 t->qmax = t->qlen; 588} 589 590static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 591{ 592 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 593 594 if (t->qlen++ == 0) { 595 t->head = cmd; 596 t->tail = cmd; 597 } else { 598 cmd->next = t->head; 599 t->head = cmd; 600 } 601 602 if (t->qlen > t->qmax) 603 t->qmax = t->qlen; 604} 605 606static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc) 607{ 608 struct ub_scsi_cmd_queue *t = &sc->cmd_queue; 609 struct ub_scsi_cmd *cmd; 610 611 if (t->qlen == 0) 612 return NULL; 613 if (--t->qlen == 0) 614 t->tail = NULL; 615 cmd = t->head; 616 t->head = cmd->next; 617 cmd->next = NULL; 618 return cmd; 619} 620 621#define ub_cmdq_peek(sc) ((sc)->cmd_queue.head) 622 623/* 624 * The request function is our main entry point 625 */ 626 627static void ub_request_fn(struct request_queue *q) 628{ 629 struct ub_lun *lun = q->queuedata; 630 struct request *rq; 631 632 while ((rq = elv_next_request(q)) != NULL) { 633 if (ub_request_fn_1(lun, rq) != 0) { 634 blk_stop_queue(q); 635 break; 636 } 637 } 638} 639 640static int ub_request_fn_1(struct ub_lun *lun, struct request *rq) 641{ 642 struct ub_dev *sc = lun->udev; 643 struct ub_scsi_cmd *cmd; 644 struct ub_request *urq; 645 int n_elem; 646 647 if (atomic_read(&sc->poison)) { 648 blkdev_dequeue_request(rq); 649 ub_end_rq(rq, DID_NO_CONNECT << 16, blk_rq_bytes(rq)); 650 return 0; 651 } 652 653 if (lun->changed && !blk_pc_request(rq)) { 654 blkdev_dequeue_request(rq); 655 ub_end_rq(rq, SAM_STAT_CHECK_CONDITION, blk_rq_bytes(rq)); 656 return 0; 657 } 658 659 if (lun->urq.rq != NULL) 660 return -1; 661 if ((cmd = ub_get_cmd(lun)) == NULL) 662 return -1; 663 memset(cmd, 0, sizeof(struct ub_scsi_cmd)); 664 665 blkdev_dequeue_request(rq); 666 667 urq = &lun->urq; 668 memset(urq, 0, sizeof(struct ub_request)); 669 urq->rq = rq; 670 671 /* 672 * get scatterlist from block layer 673 */ 674 sg_init_table(&urq->sgv[0], UB_MAX_REQ_SG); 675 n_elem = blk_rq_map_sg(lun->disk->queue, rq, &urq->sgv[0]); 676 if (n_elem < 0) { 677 /* Impossible, because blk_rq_map_sg should not hit ENOMEM. */ 678 printk(KERN_INFO "%s: failed request map (%d)\n", 679 lun->name, n_elem); 680 goto drop; 681 } 682 if (n_elem > UB_MAX_REQ_SG) { /* Paranoia */ 683 printk(KERN_WARNING "%s: request with %d segments\n", 684 lun->name, n_elem); 685 goto drop; 686 } 687 urq->nsg = n_elem; 688 sc->sg_stat[n_elem < 5 ? n_elem : 5]++; 689 690 if (blk_pc_request(rq)) { 691 ub_cmd_build_packet(sc, lun, cmd, urq); 692 } else { 693 ub_cmd_build_block(sc, lun, cmd, urq); 694 } 695 cmd->state = UB_CMDST_INIT; 696 cmd->lun = lun; 697 cmd->done = ub_rw_cmd_done; 698 cmd->back = urq; 699 700 cmd->tag = sc->tagcnt++; 701 if (ub_submit_scsi(sc, cmd) != 0) 702 goto drop; 703 704 return 0; 705 706drop: 707 ub_put_cmd(lun, cmd); 708 ub_end_rq(rq, DID_ERROR << 16, blk_rq_bytes(rq)); 709 return 0; 710} 711 712static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun, 713 struct ub_scsi_cmd *cmd, struct ub_request *urq) 714{ 715 struct request *rq = urq->rq; 716 unsigned int block, nblks; 717 718 if (rq_data_dir(rq) == WRITE) 719 cmd->dir = UB_DIR_WRITE; 720 else 721 cmd->dir = UB_DIR_READ; 722 723 cmd->nsg = urq->nsg; 724 memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg); 725 726 /* 727 * build the command 728 * 729 * The call to blk_queue_hardsect_size() guarantees that request 730 * is aligned, but it is given in terms of 512 byte units, always. 731 */ 732 block = rq->sector >> lun->capacity.bshift; 733 nblks = rq->nr_sectors >> lun->capacity.bshift; 734 735 cmd->cdb[0] = (cmd->dir == UB_DIR_READ)? READ_10: WRITE_10; 736 /* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */ 737 cmd->cdb[2] = block >> 24; 738 cmd->cdb[3] = block >> 16; 739 cmd->cdb[4] = block >> 8; 740 cmd->cdb[5] = block; 741 cmd->cdb[7] = nblks >> 8; 742 cmd->cdb[8] = nblks; 743 cmd->cdb_len = 10; 744 745 cmd->len = rq->nr_sectors * 512; 746} 747 748static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun, 749 struct ub_scsi_cmd *cmd, struct ub_request *urq) 750{ 751 struct request *rq = urq->rq; 752 753 if (rq->data_len == 0) { 754 cmd->dir = UB_DIR_NONE; 755 } else { 756 if (rq_data_dir(rq) == WRITE) 757 cmd->dir = UB_DIR_WRITE; 758 else 759 cmd->dir = UB_DIR_READ; 760 } 761 762 cmd->nsg = urq->nsg; 763 memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg); 764 765 memcpy(&cmd->cdb, rq->cmd, rq->cmd_len); 766 cmd->cdb_len = rq->cmd_len; 767 768 cmd->len = rq->data_len; 769 770 /* 771 * To reapply this to every URB is not as incorrect as it looks. 772 * In return, we avoid any complicated tracking calculations. 773 */ 774 cmd->timeo = rq->timeout; 775} 776 777static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 778{ 779 struct ub_lun *lun = cmd->lun; 780 struct ub_request *urq = cmd->back; 781 struct request *rq; 782 unsigned int scsi_status; 783 unsigned int cmd_len; 784 785 rq = urq->rq; 786 787 if (cmd->error == 0) { 788 if (blk_pc_request(rq)) { 789 if (cmd->act_len >= rq->data_len) 790 rq->data_len = 0; 791 else 792 rq->data_len -= cmd->act_len; 793 scsi_status = 0; 794 } else { 795 if (cmd->act_len != cmd->len) { 796 scsi_status = SAM_STAT_CHECK_CONDITION; 797 } else { 798 scsi_status = 0; 799 } 800 } 801 } else { 802 if (blk_pc_request(rq)) { 803 /* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */ 804 memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE); 805 rq->sense_len = UB_SENSE_SIZE; 806 if (sc->top_sense[0] != 0) 807 scsi_status = SAM_STAT_CHECK_CONDITION; 808 else 809 scsi_status = DID_ERROR << 16; 810 } else { 811 if (cmd->error == -EIO && 812 (cmd->key == 0 || 813 cmd->key == MEDIUM_ERROR || 814 cmd->key == UNIT_ATTENTION)) { 815 if (ub_rw_cmd_retry(sc, lun, urq, cmd) == 0) 816 return; 817 } 818 scsi_status = SAM_STAT_CHECK_CONDITION; 819 } 820 } 821 822 urq->rq = NULL; 823 824 cmd_len = cmd->len; 825 ub_put_cmd(lun, cmd); 826 ub_end_rq(rq, scsi_status, cmd_len); 827 blk_start_queue(lun->disk->queue); 828} 829 830static void ub_end_rq(struct request *rq, unsigned int scsi_status, 831 unsigned int cmd_len) 832{ 833 int error; 834 long rqlen; 835 836 if (scsi_status == 0) { 837 error = 0; 838 } else { 839 error = -EIO; 840 rq->errors = scsi_status; 841 } 842 rqlen = blk_rq_bytes(rq); /* Oddly enough, this is the residue. */ 843 if (__blk_end_request(rq, error, cmd_len)) { 844 printk(KERN_WARNING DRV_NAME 845 ": __blk_end_request blew, %s-cmd total %u rqlen %ld\n", 846 blk_pc_request(rq)? "pc": "fs", cmd_len, rqlen); 847 } 848} 849 850static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun, 851 struct ub_request *urq, struct ub_scsi_cmd *cmd) 852{ 853 854 if (atomic_read(&sc->poison)) 855 return -ENXIO; 856 857 ub_reset_enter(sc, urq->current_try); 858 859 if (urq->current_try >= 3) 860 return -EIO; 861 urq->current_try++; 862 863 /* Remove this if anyone complains of flooding. */ 864 printk(KERN_DEBUG "%s: dir %c len/act %d/%d " 865 "[sense %x %02x %02x] retry %d\n", 866 sc->name, UB_DIR_CHAR(cmd->dir), cmd->len, cmd->act_len, 867 cmd->key, cmd->asc, cmd->ascq, urq->current_try); 868 869 memset(cmd, 0, sizeof(struct ub_scsi_cmd)); 870 ub_cmd_build_block(sc, lun, cmd, urq); 871 872 cmd->state = UB_CMDST_INIT; 873 cmd->lun = lun; 874 cmd->done = ub_rw_cmd_done; 875 cmd->back = urq; 876 877 cmd->tag = sc->tagcnt++; 878 879#if 0 /* Wasteful */ 880 return ub_submit_scsi(sc, cmd); 881#else 882 ub_cmdq_add(sc, cmd); 883 return 0; 884#endif 885} 886 887/* 888 * Submit a regular SCSI operation (not an auto-sense). 889 * 890 * The Iron Law of Good Submit Routine is: 891 * Zero return - callback is done, Nonzero return - callback is not done. 892 * No exceptions. 893 * 894 * Host is assumed locked. 895 */ 896static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 897{ 898 899 if (cmd->state != UB_CMDST_INIT || 900 (cmd->dir != UB_DIR_NONE && cmd->len == 0)) { 901 return -EINVAL; 902 } 903 904 ub_cmdq_add(sc, cmd); 905 /* 906 * We can call ub_scsi_dispatch(sc) right away here, but it's a little 907 * safer to jump to a tasklet, in case upper layers do something silly. 908 */ 909 tasklet_schedule(&sc->tasklet); 910 return 0; 911} 912 913/* 914 * Submit the first URB for the queued command. 915 * This function does not deal with queueing in any way. 916 */ 917static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 918{ 919 struct bulk_cb_wrap *bcb; 920 int rc; 921 922 bcb = &sc->work_bcb; 923 924 /* 925 * ``If the allocation length is eighteen or greater, and a device 926 * server returns less than eithteen bytes of data, the application 927 * client should assume that the bytes not transferred would have been 928 * zeroes had the device server returned those bytes.'' 929 * 930 * We zero sense for all commands so that when a packet request 931 * fails it does not return a stale sense. 932 */ 933 memset(&sc->top_sense, 0, UB_SENSE_SIZE); 934 935 /* set up the command wrapper */ 936 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 937 bcb->Tag = cmd->tag; /* Endianness is not important */ 938 bcb->DataTransferLength = cpu_to_le32(cmd->len); 939 bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0; 940 bcb->Lun = (cmd->lun != NULL) ? cmd->lun->num : 0; 941 bcb->Length = cmd->cdb_len; 942 943 /* copy the command payload */ 944 memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE); 945 946 UB_INIT_COMPLETION(sc->work_done); 947 948 sc->last_pipe = sc->send_bulk_pipe; 949 usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe, 950 bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc); 951 952 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 953 /* XXX Clear stalls */ 954 ub_complete(&sc->work_done); 955 return rc; 956 } 957 958 sc->work_timer.expires = jiffies + UB_URB_TIMEOUT; 959 add_timer(&sc->work_timer); 960 961 cmd->state = UB_CMDST_CMD; 962 return 0; 963} 964 965/* 966 * Timeout handler. 967 */ 968static void ub_urb_timeout(unsigned long arg) 969{ 970 struct ub_dev *sc = (struct ub_dev *) arg; 971 unsigned long flags; 972 973 spin_lock_irqsave(sc->lock, flags); 974 if (!ub_is_completed(&sc->work_done)) 975 usb_unlink_urb(&sc->work_urb); 976 spin_unlock_irqrestore(sc->lock, flags); 977} 978 979/* 980 * Completion routine for the work URB. 981 * 982 * This can be called directly from usb_submit_urb (while we have 983 * the sc->lock taken) and from an interrupt (while we do NOT have 984 * the sc->lock taken). Therefore, bounce this off to a tasklet. 985 */ 986static void ub_urb_complete(struct urb *urb) 987{ 988 struct ub_dev *sc = urb->context; 989 990 ub_complete(&sc->work_done); 991 tasklet_schedule(&sc->tasklet); 992} 993 994static void ub_scsi_action(unsigned long _dev) 995{ 996 struct ub_dev *sc = (struct ub_dev *) _dev; 997 unsigned long flags; 998 999 spin_lock_irqsave(sc->lock, flags); 1000 ub_scsi_dispatch(sc); 1001 spin_unlock_irqrestore(sc->lock, flags); 1002} 1003 1004static void ub_scsi_dispatch(struct ub_dev *sc) 1005{ 1006 struct ub_scsi_cmd *cmd; 1007 int rc; 1008 1009 while (!sc->reset && (cmd = ub_cmdq_peek(sc)) != NULL) { 1010 if (cmd->state == UB_CMDST_DONE) { 1011 ub_cmdq_pop(sc); 1012 (*cmd->done)(sc, cmd); 1013 } else if (cmd->state == UB_CMDST_INIT) { 1014 if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0) 1015 break; 1016 cmd->error = rc; 1017 cmd->state = UB_CMDST_DONE; 1018 } else { 1019 if (!ub_is_completed(&sc->work_done)) 1020 break; 1021 del_timer(&sc->work_timer); 1022 ub_scsi_urb_compl(sc, cmd); 1023 } 1024 } 1025} 1026 1027static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1028{ 1029 struct urb *urb = &sc->work_urb; 1030 struct bulk_cs_wrap *bcs; 1031 int len; 1032 int rc; 1033 1034 if (atomic_read(&sc->poison)) { 1035 ub_state_done(sc, cmd, -ENODEV); 1036 return; 1037 } 1038 1039 if (cmd->state == UB_CMDST_CLEAR) { 1040 if (urb->status == -EPIPE) { 1041 /* 1042 * STALL while clearning STALL. 1043 * The control pipe clears itself - nothing to do. 1044 */ 1045 printk(KERN_NOTICE "%s: stall on control pipe\n", 1046 sc->name); 1047 goto Bad_End; 1048 } 1049 1050 /* 1051 * We ignore the result for the halt clear. 1052 */ 1053 1054 /* reset the endpoint toggle */ 1055 usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe), 1056 usb_pipeout(sc->last_pipe), 0); 1057 1058 ub_state_sense(sc, cmd); 1059 1060 } else if (cmd->state == UB_CMDST_CLR2STS) { 1061 if (urb->status == -EPIPE) { 1062 printk(KERN_NOTICE "%s: stall on control pipe\n", 1063 sc->name); 1064 goto Bad_End; 1065 } 1066 1067 /* 1068 * We ignore the result for the halt clear. 1069 */ 1070 1071 /* reset the endpoint toggle */ 1072 usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe), 1073 usb_pipeout(sc->last_pipe), 0); 1074 1075 ub_state_stat(sc, cmd); 1076 1077 } else if (cmd->state == UB_CMDST_CLRRS) { 1078 if (urb->status == -EPIPE) { 1079 printk(KERN_NOTICE "%s: stall on control pipe\n", 1080 sc->name); 1081 goto Bad_End; 1082 } 1083 1084 /* 1085 * We ignore the result for the halt clear. 1086 */ 1087 1088 /* reset the endpoint toggle */ 1089 usb_settoggle(sc->dev, usb_pipeendpoint(sc->last_pipe), 1090 usb_pipeout(sc->last_pipe), 0); 1091 1092 ub_state_stat_counted(sc, cmd); 1093 1094 } else if (cmd->state == UB_CMDST_CMD) { 1095 switch (urb->status) { 1096 case 0: 1097 break; 1098 case -EOVERFLOW: 1099 goto Bad_End; 1100 case -EPIPE: 1101 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1102 if (rc != 0) { 1103 printk(KERN_NOTICE "%s: " 1104 "unable to submit clear (%d)\n", 1105 sc->name, rc); 1106 /* 1107 * This is typically ENOMEM or some other such shit. 1108 * Retrying is pointless. Just do Bad End on it... 1109 */ 1110 ub_state_done(sc, cmd, rc); 1111 return; 1112 } 1113 cmd->state = UB_CMDST_CLEAR; 1114 return; 1115 case -ESHUTDOWN: /* unplug */ 1116 case -EILSEQ: /* unplug timeout on uhci */ 1117 ub_state_done(sc, cmd, -ENODEV); 1118 return; 1119 default: 1120 goto Bad_End; 1121 } 1122 if (urb->actual_length != US_BULK_CB_WRAP_LEN) { 1123 goto Bad_End; 1124 } 1125 1126 if (cmd->dir == UB_DIR_NONE || cmd->nsg < 1) { 1127 ub_state_stat(sc, cmd); 1128 return; 1129 } 1130 1131 // udelay(125); // usb-storage has this 1132 ub_data_start(sc, cmd); 1133 1134 } else if (cmd->state == UB_CMDST_DATA) { 1135 if (urb->status == -EPIPE) { 1136 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1137 if (rc != 0) { 1138 printk(KERN_NOTICE "%s: " 1139 "unable to submit clear (%d)\n", 1140 sc->name, rc); 1141 ub_state_done(sc, cmd, rc); 1142 return; 1143 } 1144 cmd->state = UB_CMDST_CLR2STS; 1145 return; 1146 } 1147 if (urb->status == -EOVERFLOW) { 1148 /* 1149 * A babble? Failure, but we must transfer CSW now. 1150 */ 1151 cmd->error = -EOVERFLOW; /* A cheap trick... */ 1152 ub_state_stat(sc, cmd); 1153 return; 1154 } 1155 1156 if (cmd->dir == UB_DIR_WRITE) { 1157 /* 1158 * Do not continue writes in case of a failure. 1159 * Doing so would cause sectors to be mixed up, 1160 * which is worse than sectors lost. 1161 * 1162 * We must try to read the CSW, or many devices 1163 * get confused. 1164 */ 1165 len = urb->actual_length; 1166 if (urb->status != 0 || 1167 len != cmd->sgv[cmd->current_sg].length) { 1168 cmd->act_len += len; 1169 1170 cmd->error = -EIO; 1171 ub_state_stat(sc, cmd); 1172 return; 1173 } 1174 1175 } else { 1176 /* 1177 * If an error occurs on read, we record it, and 1178 * continue to fetch data in order to avoid bubble. 1179 * 1180 * As a small shortcut, we stop if we detect that 1181 * a CSW mixed into data. 1182 */ 1183 if (urb->status != 0) 1184 cmd->error = -EIO; 1185 1186 len = urb->actual_length; 1187 if (urb->status != 0 || 1188 len != cmd->sgv[cmd->current_sg].length) { 1189 if ((len & 0x1FF) == US_BULK_CS_WRAP_LEN) 1190 goto Bad_End; 1191 } 1192 } 1193 1194 cmd->act_len += urb->actual_length; 1195 1196 if (++cmd->current_sg < cmd->nsg) { 1197 ub_data_start(sc, cmd); 1198 return; 1199 } 1200 ub_state_stat(sc, cmd); 1201 1202 } else if (cmd->state == UB_CMDST_STAT) { 1203 if (urb->status == -EPIPE) { 1204 rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe); 1205 if (rc != 0) { 1206 printk(KERN_NOTICE "%s: " 1207 "unable to submit clear (%d)\n", 1208 sc->name, rc); 1209 ub_state_done(sc, cmd, rc); 1210 return; 1211 } 1212 1213 /* 1214 * Having a stall when getting CSW is an error, so 1215 * make sure uppper levels are not oblivious to it. 1216 */ 1217 cmd->error = -EIO; /* A cheap trick... */ 1218 1219 cmd->state = UB_CMDST_CLRRS; 1220 return; 1221 } 1222 1223 /* Catch everything, including -EOVERFLOW and other nasties. */ 1224 if (urb->status != 0) 1225 goto Bad_End; 1226 1227 if (urb->actual_length == 0) { 1228 ub_state_stat_counted(sc, cmd); 1229 return; 1230 } 1231 1232 /* 1233 * Check the returned Bulk protocol status. 1234 * The status block has to be validated first. 1235 */ 1236 1237 bcs = &sc->work_bcs; 1238 1239 if (sc->signature == cpu_to_le32(0)) { 1240 /* 1241 * This is the first reply, so do not perform the check. 1242 * Instead, remember the signature the device uses 1243 * for future checks. But do not allow a nul. 1244 */ 1245 sc->signature = bcs->Signature; 1246 if (sc->signature == cpu_to_le32(0)) { 1247 ub_state_stat_counted(sc, cmd); 1248 return; 1249 } 1250 } else { 1251 if (bcs->Signature != sc->signature) { 1252 ub_state_stat_counted(sc, cmd); 1253 return; 1254 } 1255 } 1256 1257 if (bcs->Tag != cmd->tag) { 1258 /* 1259 * This usually happens when we disagree with the 1260 * device's microcode about something. For instance, 1261 * a few of them throw this after timeouts. They buffer 1262 * commands and reply at commands we timed out before. 1263 * Without flushing these replies we loop forever. 1264 */ 1265 ub_state_stat_counted(sc, cmd); 1266 return; 1267 } 1268 1269 if (!sc->bad_resid) { 1270 len = le32_to_cpu(bcs->Residue); 1271 if (len != cmd->len - cmd->act_len) { 1272 /* 1273 * Only start ignoring if this cmd ended well. 1274 */ 1275 if (cmd->len == cmd->act_len) { 1276 printk(KERN_NOTICE "%s: " 1277 "bad residual %d of %d, ignoring\n", 1278 sc->name, len, cmd->len); 1279 sc->bad_resid = 1; 1280 } 1281 } 1282 } 1283 1284 switch (bcs->Status) { 1285 case US_BULK_STAT_OK: 1286 break; 1287 case US_BULK_STAT_FAIL: 1288 ub_state_sense(sc, cmd); 1289 return; 1290 case US_BULK_STAT_PHASE: 1291 goto Bad_End; 1292 default: 1293 printk(KERN_INFO "%s: unknown CSW status 0x%x\n", 1294 sc->name, bcs->Status); 1295 ub_state_done(sc, cmd, -EINVAL); 1296 return; 1297 } 1298 1299 /* Not zeroing error to preserve a babble indicator */ 1300 if (cmd->error != 0) { 1301 ub_state_sense(sc, cmd); 1302 return; 1303 } 1304 cmd->state = UB_CMDST_DONE; 1305 ub_cmdq_pop(sc); 1306 (*cmd->done)(sc, cmd); 1307 1308 } else if (cmd->state == UB_CMDST_SENSE) { 1309 ub_state_done(sc, cmd, -EIO); 1310 1311 } else { 1312 printk(KERN_WARNING "%s: wrong command state %d\n", 1313 sc->name, cmd->state); 1314 ub_state_done(sc, cmd, -EINVAL); 1315 return; 1316 } 1317 return; 1318 1319Bad_End: /* Little Excel is dead */ 1320 ub_state_done(sc, cmd, -EIO); 1321} 1322 1323/* 1324 * Factorization helper for the command state machine: 1325 * Initiate a data segment transfer. 1326 */ 1327static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1328{ 1329 struct scatterlist *sg = &cmd->sgv[cmd->current_sg]; 1330 int pipe; 1331 int rc; 1332 1333 UB_INIT_COMPLETION(sc->work_done); 1334 1335 if (cmd->dir == UB_DIR_READ) 1336 pipe = sc->recv_bulk_pipe; 1337 else 1338 pipe = sc->send_bulk_pipe; 1339 sc->last_pipe = pipe; 1340 usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, sg_virt(sg), 1341 sg->length, ub_urb_complete, sc); 1342 1343 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1344 /* XXX Clear stalls */ 1345 ub_complete(&sc->work_done); 1346 ub_state_done(sc, cmd, rc); 1347 return; 1348 } 1349 1350 if (cmd->timeo) 1351 sc->work_timer.expires = jiffies + cmd->timeo; 1352 else 1353 sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT; 1354 add_timer(&sc->work_timer); 1355 1356 cmd->state = UB_CMDST_DATA; 1357} 1358 1359/* 1360 * Factorization helper for the command state machine: 1361 * Finish the command. 1362 */ 1363static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc) 1364{ 1365 1366 cmd->error = rc; 1367 cmd->state = UB_CMDST_DONE; 1368 ub_cmdq_pop(sc); 1369 (*cmd->done)(sc, cmd); 1370} 1371 1372/* 1373 * Factorization helper for the command state machine: 1374 * Submit a CSW read. 1375 */ 1376static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1377{ 1378 int rc; 1379 1380 UB_INIT_COMPLETION(sc->work_done); 1381 1382 sc->last_pipe = sc->recv_bulk_pipe; 1383 usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe, 1384 &sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc); 1385 1386 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1387 /* XXX Clear stalls */ 1388 ub_complete(&sc->work_done); 1389 ub_state_done(sc, cmd, rc); 1390 return -1; 1391 } 1392 1393 if (cmd->timeo) 1394 sc->work_timer.expires = jiffies + cmd->timeo; 1395 else 1396 sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT; 1397 add_timer(&sc->work_timer); 1398 return 0; 1399} 1400 1401/* 1402 * Factorization helper for the command state machine: 1403 * Submit a CSW read and go to STAT state. 1404 */ 1405static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1406{ 1407 1408 if (__ub_state_stat(sc, cmd) != 0) 1409 return; 1410 1411 cmd->stat_count = 0; 1412 cmd->state = UB_CMDST_STAT; 1413} 1414 1415/* 1416 * Factorization helper for the command state machine: 1417 * Submit a CSW read and go to STAT state with counter (along [C] path). 1418 */ 1419static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1420{ 1421 1422 if (++cmd->stat_count >= 4) { 1423 ub_state_sense(sc, cmd); 1424 return; 1425 } 1426 1427 if (__ub_state_stat(sc, cmd) != 0) 1428 return; 1429 1430 cmd->state = UB_CMDST_STAT; 1431} 1432 1433/* 1434 * Factorization helper for the command state machine: 1435 * Submit a REQUEST SENSE and go to SENSE state. 1436 */ 1437static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1438{ 1439 struct ub_scsi_cmd *scmd; 1440 struct scatterlist *sg; 1441 int rc; 1442 1443 if (cmd->cdb[0] == REQUEST_SENSE) { 1444 rc = -EPIPE; 1445 goto error; 1446 } 1447 1448 scmd = &sc->top_rqs_cmd; 1449 memset(scmd, 0, sizeof(struct ub_scsi_cmd)); 1450 scmd->cdb[0] = REQUEST_SENSE; 1451 scmd->cdb[4] = UB_SENSE_SIZE; 1452 scmd->cdb_len = 6; 1453 scmd->dir = UB_DIR_READ; 1454 scmd->state = UB_CMDST_INIT; 1455 scmd->nsg = 1; 1456 sg = &scmd->sgv[0]; 1457 sg_init_table(sg, UB_MAX_REQ_SG); 1458 sg_set_page(sg, virt_to_page(sc->top_sense), UB_SENSE_SIZE, 1459 (unsigned long)sc->top_sense & (PAGE_SIZE-1)); 1460 scmd->len = UB_SENSE_SIZE; 1461 scmd->lun = cmd->lun; 1462 scmd->done = ub_top_sense_done; 1463 scmd->back = cmd; 1464 1465 scmd->tag = sc->tagcnt++; 1466 1467 cmd->state = UB_CMDST_SENSE; 1468 1469 ub_cmdq_insert(sc, scmd); 1470 return; 1471 1472error: 1473 ub_state_done(sc, cmd, rc); 1474} 1475 1476/* 1477 * A helper for the command's state machine: 1478 * Submit a stall clear. 1479 */ 1480static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd, 1481 int stalled_pipe) 1482{ 1483 int endp; 1484 struct usb_ctrlrequest *cr; 1485 int rc; 1486 1487 endp = usb_pipeendpoint(stalled_pipe); 1488 if (usb_pipein (stalled_pipe)) 1489 endp |= USB_DIR_IN; 1490 1491 cr = &sc->work_cr; 1492 cr->bRequestType = USB_RECIP_ENDPOINT; 1493 cr->bRequest = USB_REQ_CLEAR_FEATURE; 1494 cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); 1495 cr->wIndex = cpu_to_le16(endp); 1496 cr->wLength = cpu_to_le16(0); 1497 1498 UB_INIT_COMPLETION(sc->work_done); 1499 1500 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 1501 (unsigned char*) cr, NULL, 0, ub_urb_complete, sc); 1502 1503 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) { 1504 ub_complete(&sc->work_done); 1505 return rc; 1506 } 1507 1508 sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT; 1509 add_timer(&sc->work_timer); 1510 return 0; 1511} 1512 1513/* 1514 */ 1515static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd) 1516{ 1517 unsigned char *sense = sc->top_sense; 1518 struct ub_scsi_cmd *cmd; 1519 1520 /* 1521 * Find the command which triggered the unit attention or a check, 1522 * save the sense into it, and advance its state machine. 1523 */ 1524 if ((cmd = ub_cmdq_peek(sc)) == NULL) { 1525 printk(KERN_WARNING "%s: sense done while idle\n", sc->name); 1526 return; 1527 } 1528 if (cmd != scmd->back) { 1529 printk(KERN_WARNING "%s: " 1530 "sense done for wrong command 0x%x\n", 1531 sc->name, cmd->tag); 1532 return; 1533 } 1534 if (cmd->state != UB_CMDST_SENSE) { 1535 printk(KERN_WARNING "%s: sense done with bad cmd state %d\n", 1536 sc->name, cmd->state); 1537 return; 1538 } 1539 1540 /* 1541 * Ignoring scmd->act_len, because the buffer was pre-zeroed. 1542 */ 1543 cmd->key = sense[2] & 0x0F; 1544 cmd->asc = sense[12]; 1545 cmd->ascq = sense[13]; 1546 1547 ub_scsi_urb_compl(sc, cmd); 1548} 1549 1550/* 1551 * Reset management 1552 * XXX Move usb_reset_device to khubd. Hogging kevent is not a good thing. 1553 * XXX Make usb_sync_reset asynchronous. 1554 */ 1555 1556static void ub_reset_enter(struct ub_dev *sc, int try) 1557{ 1558 1559 if (sc->reset) { 1560 /* This happens often on multi-LUN devices. */ 1561 return; 1562 } 1563 sc->reset = try + 1; 1564 1565#if 0 /* Not needed because the disconnect waits for us. */ 1566 unsigned long flags; 1567 spin_lock_irqsave(&ub_lock, flags); 1568 sc->openc++; 1569 spin_unlock_irqrestore(&ub_lock, flags); 1570#endif 1571 1572#if 0 /* We let them stop themselves. */ 1573 struct ub_lun *lun; 1574 list_for_each_entry(lun, &sc->luns, link) { 1575 blk_stop_queue(lun->disk->queue); 1576 } 1577#endif 1578 1579 schedule_work(&sc->reset_work); 1580} 1581 1582static void ub_reset_task(struct work_struct *work) 1583{ 1584 struct ub_dev *sc = container_of(work, struct ub_dev, reset_work); 1585 unsigned long flags; 1586 struct ub_lun *lun; 1587 int lkr, rc; 1588 1589 if (!sc->reset) { 1590 printk(KERN_WARNING "%s: Running reset unrequested\n", 1591 sc->name); 1592 return; 1593 } 1594 1595 if (atomic_read(&sc->poison)) { 1596 ; 1597 } else if ((sc->reset & 1) == 0) { 1598 ub_sync_reset(sc); 1599 msleep(700); /* usb-storage sleeps 6s (!) */ 1600 ub_probe_clear_stall(sc, sc->recv_bulk_pipe); 1601 ub_probe_clear_stall(sc, sc->send_bulk_pipe); 1602 } else if (sc->dev->actconfig->desc.bNumInterfaces != 1) { 1603 ; 1604 } else { 1605 if ((lkr = usb_lock_device_for_reset(sc->dev, sc->intf)) < 0) { 1606 printk(KERN_NOTICE 1607 "%s: usb_lock_device_for_reset failed (%d)\n", 1608 sc->name, lkr); 1609 } else { 1610 rc = usb_reset_device(sc->dev); 1611 if (rc < 0) { 1612 printk(KERN_NOTICE "%s: " 1613 "usb_lock_device_for_reset failed (%d)\n", 1614 sc->name, rc); 1615 } 1616 1617 if (lkr) 1618 usb_unlock_device(sc->dev); 1619 } 1620 } 1621 1622 /* 1623 * In theory, no commands can be running while reset is active, 1624 * so nobody can ask for another reset, and so we do not need any 1625 * queues of resets or anything. We do need a spinlock though, 1626 * to interact with block layer. 1627 */ 1628 spin_lock_irqsave(sc->lock, flags); 1629 sc->reset = 0; 1630 tasklet_schedule(&sc->tasklet); 1631 list_for_each_entry(lun, &sc->luns, link) { 1632 blk_start_queue(lun->disk->queue); 1633 } 1634 wake_up(&sc->reset_wait); 1635 spin_unlock_irqrestore(sc->lock, flags); 1636} 1637 1638/* 1639 * This is called from a process context. 1640 */ 1641static void ub_revalidate(struct ub_dev *sc, struct ub_lun *lun) 1642{ 1643 1644 lun->readonly = 0; /* XXX Query this from the device */ 1645 1646 lun->capacity.nsec = 0; 1647 lun->capacity.bsize = 512; 1648 lun->capacity.bshift = 0; 1649 1650 if (ub_sync_tur(sc, lun) != 0) 1651 return; /* Not ready */ 1652 lun->changed = 0; 1653 1654 if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) { 1655 /* 1656 * The retry here means something is wrong, either with the 1657 * device, with the transport, or with our code. 1658 * We keep this because sd.c has retries for capacity. 1659 */ 1660 if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) { 1661 lun->capacity.nsec = 0; 1662 lun->capacity.bsize = 512; 1663 lun->capacity.bshift = 0; 1664 } 1665 } 1666} 1667 1668/* 1669 * The open funcion. 1670 * This is mostly needed to keep refcounting, but also to support 1671 * media checks on removable media drives. 1672 */ 1673static int ub_bd_open(struct inode *inode, struct file *filp) 1674{ 1675 struct gendisk *disk = inode->i_bdev->bd_disk; 1676 struct ub_lun *lun = disk->private_data; 1677 struct ub_dev *sc = lun->udev; 1678 unsigned long flags; 1679 int rc; 1680 1681 spin_lock_irqsave(&ub_lock, flags); 1682 if (atomic_read(&sc->poison)) { 1683 spin_unlock_irqrestore(&ub_lock, flags); 1684 return -ENXIO; 1685 } 1686 sc->openc++; 1687 spin_unlock_irqrestore(&ub_lock, flags); 1688 1689 if (lun->removable || lun->readonly) 1690 check_disk_change(inode->i_bdev); 1691 1692 /* 1693 * The sd.c considers ->media_present and ->changed not equivalent, 1694 * under some pretty murky conditions (a failure of READ CAPACITY). 1695 * We may need it one day. 1696 */ 1697 if (lun->removable && lun->changed && !(filp->f_flags & O_NDELAY)) { 1698 rc = -ENOMEDIUM; 1699 goto err_open; 1700 } 1701 1702 if (lun->readonly && (filp->f_mode & FMODE_WRITE)) { 1703 rc = -EROFS; 1704 goto err_open; 1705 } 1706 1707 return 0; 1708 1709err_open: 1710 ub_put(sc); 1711 return rc; 1712} 1713 1714/* 1715 */ 1716static int ub_bd_release(struct inode *inode, struct file *filp) 1717{ 1718 struct gendisk *disk = inode->i_bdev->bd_disk; 1719 struct ub_lun *lun = disk->private_data; 1720 struct ub_dev *sc = lun->udev; 1721 1722 ub_put(sc); 1723 return 0; 1724} 1725 1726/* 1727 * The ioctl interface. 1728 */ 1729static int ub_bd_ioctl(struct inode *inode, struct file *filp, 1730 unsigned int cmd, unsigned long arg) 1731{ 1732 struct gendisk *disk = inode->i_bdev->bd_disk; 1733 void __user *usermem = (void __user *) arg; 1734 1735 return scsi_cmd_ioctl(filp, disk->queue, disk, cmd, usermem); 1736} 1737 1738/* 1739 * This is called by check_disk_change if we reported a media change. 1740 * The main onjective here is to discover the features of the media such as 1741 * the capacity, read-only status, etc. USB storage generally does not 1742 * need to be spun up, but if we needed it, this would be the place. 1743 * 1744 * This call can sleep. 1745 * 1746 * The return code is not used. 1747 */ 1748static int ub_bd_revalidate(struct gendisk *disk) 1749{ 1750 struct ub_lun *lun = disk->private_data; 1751 1752 ub_revalidate(lun->udev, lun); 1753 1754 /* XXX Support sector size switching like in sr.c */ 1755 blk_queue_hardsect_size(disk->queue, lun->capacity.bsize); 1756 set_capacity(disk, lun->capacity.nsec); 1757 // set_disk_ro(sdkp->disk, lun->readonly); 1758 1759 return 0; 1760} 1761 1762/* 1763 * The check is called by the block layer to verify if the media 1764 * is still available. It is supposed to be harmless, lightweight and 1765 * non-intrusive in case the media was not changed. 1766 * 1767 * This call can sleep. 1768 * 1769 * The return code is bool! 1770 */ 1771static int ub_bd_media_changed(struct gendisk *disk) 1772{ 1773 struct ub_lun *lun = disk->private_data; 1774 1775 if (!lun->removable) 1776 return 0; 1777 1778 /* 1779 * We clean checks always after every command, so this is not 1780 * as dangerous as it looks. If the TEST_UNIT_READY fails here, 1781 * the device is actually not ready with operator or software 1782 * intervention required. One dangerous item might be a drive which 1783 * spins itself down, and come the time to write dirty pages, this 1784 * will fail, then block layer discards the data. Since we never 1785 * spin drives up, such devices simply cannot be used with ub anyway. 1786 */ 1787 if (ub_sync_tur(lun->udev, lun) != 0) { 1788 lun->changed = 1; 1789 return 1; 1790 } 1791 1792 return lun->changed; 1793} 1794 1795static struct block_device_operations ub_bd_fops = { 1796 .owner = THIS_MODULE, 1797 .open = ub_bd_open, 1798 .release = ub_bd_release, 1799 .ioctl = ub_bd_ioctl, 1800 .media_changed = ub_bd_media_changed, 1801 .revalidate_disk = ub_bd_revalidate, 1802}; 1803 1804/* 1805 * Common ->done routine for commands executed synchronously. 1806 */ 1807static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd) 1808{ 1809 struct completion *cop = cmd->back; 1810 complete(cop); 1811} 1812 1813/* 1814 * Test if the device has a check condition on it, synchronously. 1815 */ 1816static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun) 1817{ 1818 struct ub_scsi_cmd *cmd; 1819 enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) }; 1820 unsigned long flags; 1821 struct completion compl; 1822 int rc; 1823 1824 init_completion(&compl); 1825 1826 rc = -ENOMEM; 1827 if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 1828 goto err_alloc; 1829 1830 cmd->cdb[0] = TEST_UNIT_READY; 1831 cmd->cdb_len = 6; 1832 cmd->dir = UB_DIR_NONE; 1833 cmd->state = UB_CMDST_INIT; 1834 cmd->lun = lun; /* This may be NULL, but that's ok */ 1835 cmd->done = ub_probe_done; 1836 cmd->back = &compl; 1837 1838 spin_lock_irqsave(sc->lock, flags); 1839 cmd->tag = sc->tagcnt++; 1840 1841 rc = ub_submit_scsi(sc, cmd); 1842 spin_unlock_irqrestore(sc->lock, flags); 1843 1844 if (rc != 0) 1845 goto err_submit; 1846 1847 wait_for_completion(&compl); 1848 1849 rc = cmd->error; 1850 1851 if (rc == -EIO && cmd->key != 0) /* Retries for benh's key */ 1852 rc = cmd->key; 1853 1854err_submit: 1855 kfree(cmd); 1856err_alloc: 1857 return rc; 1858} 1859 1860/* 1861 * Read the SCSI capacity synchronously (for probing). 1862 */ 1863static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun, 1864 struct ub_capacity *ret) 1865{ 1866 struct ub_scsi_cmd *cmd; 1867 struct scatterlist *sg; 1868 char *p; 1869 enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 }; 1870 unsigned long flags; 1871 unsigned int bsize, shift; 1872 unsigned long nsec; 1873 struct completion compl; 1874 int rc; 1875 1876 init_completion(&compl); 1877 1878 rc = -ENOMEM; 1879 if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 1880 goto err_alloc; 1881 p = (char *)cmd + sizeof(struct ub_scsi_cmd); 1882 1883 cmd->cdb[0] = 0x25; 1884 cmd->cdb_len = 10; 1885 cmd->dir = UB_DIR_READ; 1886 cmd->state = UB_CMDST_INIT; 1887 cmd->nsg = 1; 1888 sg = &cmd->sgv[0]; 1889 sg_init_table(sg, UB_MAX_REQ_SG); 1890 sg_set_page(sg, virt_to_page(p), 8, (unsigned long)p & (PAGE_SIZE-1)); 1891 cmd->len = 8; 1892 cmd->lun = lun; 1893 cmd->done = ub_probe_done; 1894 cmd->back = &compl; 1895 1896 spin_lock_irqsave(sc->lock, flags); 1897 cmd->tag = sc->tagcnt++; 1898 1899 rc = ub_submit_scsi(sc, cmd); 1900 spin_unlock_irqrestore(sc->lock, flags); 1901 1902 if (rc != 0) 1903 goto err_submit; 1904 1905 wait_for_completion(&compl); 1906 1907 if (cmd->error != 0) { 1908 rc = -EIO; 1909 goto err_read; 1910 } 1911 if (cmd->act_len != 8) { 1912 rc = -EIO; 1913 goto err_read; 1914 } 1915 1916 /* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */ 1917 nsec = be32_to_cpu(*(__be32 *)p) + 1; 1918 bsize = be32_to_cpu(*(__be32 *)(p + 4)); 1919 switch (bsize) { 1920 case 512: shift = 0; break; 1921 case 1024: shift = 1; break; 1922 case 2048: shift = 2; break; 1923 case 4096: shift = 3; break; 1924 default: 1925 rc = -EDOM; 1926 goto err_inv_bsize; 1927 } 1928 1929 ret->bsize = bsize; 1930 ret->bshift = shift; 1931 ret->nsec = nsec << shift; 1932 rc = 0; 1933 1934err_inv_bsize: 1935err_read: 1936err_submit: 1937 kfree(cmd); 1938err_alloc: 1939 return rc; 1940} 1941 1942/* 1943 */ 1944static void ub_probe_urb_complete(struct urb *urb) 1945{ 1946 struct completion *cop = urb->context; 1947 complete(cop); 1948} 1949 1950static void ub_probe_timeout(unsigned long arg) 1951{ 1952 struct completion *cop = (struct completion *) arg; 1953 complete(cop); 1954} 1955 1956/* 1957 * Reset with a Bulk reset. 1958 */ 1959static int ub_sync_reset(struct ub_dev *sc) 1960{ 1961 int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber; 1962 struct usb_ctrlrequest *cr; 1963 struct completion compl; 1964 struct timer_list timer; 1965 int rc; 1966 1967 init_completion(&compl); 1968 1969 cr = &sc->work_cr; 1970 cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 1971 cr->bRequest = US_BULK_RESET_REQUEST; 1972 cr->wValue = cpu_to_le16(0); 1973 cr->wIndex = cpu_to_le16(ifnum); 1974 cr->wLength = cpu_to_le16(0); 1975 1976 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 1977 (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); 1978 1979 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { 1980 printk(KERN_WARNING 1981 "%s: Unable to submit a bulk reset (%d)\n", sc->name, rc); 1982 return rc; 1983 } 1984 1985 init_timer(&timer); 1986 timer.function = ub_probe_timeout; 1987 timer.data = (unsigned long) &compl; 1988 timer.expires = jiffies + UB_CTRL_TIMEOUT; 1989 add_timer(&timer); 1990 1991 wait_for_completion(&compl); 1992 1993 del_timer_sync(&timer); 1994 usb_kill_urb(&sc->work_urb); 1995 1996 return sc->work_urb.status; 1997} 1998 1999/* 2000 * Get number of LUNs by the way of Bulk GetMaxLUN command. 2001 */ 2002static int ub_sync_getmaxlun(struct ub_dev *sc) 2003{ 2004 int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber; 2005 unsigned char *p; 2006 enum { ALLOC_SIZE = 1 }; 2007 struct usb_ctrlrequest *cr; 2008 struct completion compl; 2009 struct timer_list timer; 2010 int nluns; 2011 int rc; 2012 2013 init_completion(&compl); 2014 2015 rc = -ENOMEM; 2016 if ((p = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL) 2017 goto err_alloc; 2018 *p = 55; 2019 2020 cr = &sc->work_cr; 2021 cr->bRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE; 2022 cr->bRequest = US_BULK_GET_MAX_LUN; 2023 cr->wValue = cpu_to_le16(0); 2024 cr->wIndex = cpu_to_le16(ifnum); 2025 cr->wLength = cpu_to_le16(1); 2026 2027 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->recv_ctrl_pipe, 2028 (unsigned char*) cr, p, 1, ub_probe_urb_complete, &compl); 2029 2030 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) 2031 goto err_submit; 2032 2033 init_timer(&timer); 2034 timer.function = ub_probe_timeout; 2035 timer.data = (unsigned long) &compl; 2036 timer.expires = jiffies + UB_CTRL_TIMEOUT; 2037 add_timer(&timer); 2038 2039 wait_for_completion(&compl); 2040 2041 del_timer_sync(&timer); 2042 usb_kill_urb(&sc->work_urb); 2043 2044 if ((rc = sc->work_urb.status) < 0) 2045 goto err_io; 2046 2047 if (sc->work_urb.actual_length != 1) { 2048 nluns = 0; 2049 } else { 2050 if ((nluns = *p) == 55) { 2051 nluns = 0; 2052 } else { 2053 /* GetMaxLUN returns the maximum LUN number */ 2054 nluns += 1; 2055 if (nluns > UB_MAX_LUNS) 2056 nluns = UB_MAX_LUNS; 2057 } 2058 } 2059 2060 kfree(p); 2061 return nluns; 2062 2063err_io: 2064err_submit: 2065 kfree(p); 2066err_alloc: 2067 return rc; 2068} 2069 2070/* 2071 * Clear initial stalls. 2072 */ 2073static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe) 2074{ 2075 int endp; 2076 struct usb_ctrlrequest *cr; 2077 struct completion compl; 2078 struct timer_list timer; 2079 int rc; 2080 2081 init_completion(&compl); 2082 2083 endp = usb_pipeendpoint(stalled_pipe); 2084 if (usb_pipein (stalled_pipe)) 2085 endp |= USB_DIR_IN; 2086 2087 cr = &sc->work_cr; 2088 cr->bRequestType = USB_RECIP_ENDPOINT; 2089 cr->bRequest = USB_REQ_CLEAR_FEATURE; 2090 cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT); 2091 cr->wIndex = cpu_to_le16(endp); 2092 cr->wLength = cpu_to_le16(0); 2093 2094 usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe, 2095 (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl); 2096 2097 if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) { 2098 printk(KERN_WARNING 2099 "%s: Unable to submit a probe clear (%d)\n", sc->name, rc); 2100 return rc; 2101 } 2102 2103 init_timer(&timer); 2104 timer.function = ub_probe_timeout; 2105 timer.data = (unsigned long) &compl; 2106 timer.expires = jiffies + UB_CTRL_TIMEOUT; 2107 add_timer(&timer); 2108 2109 wait_for_completion(&compl); 2110 2111 del_timer_sync(&timer); 2112 usb_kill_urb(&sc->work_urb); 2113 2114 /* reset the endpoint toggle */ 2115 usb_settoggle(sc->dev, endp, usb_pipeout(sc->last_pipe), 0); 2116 2117 return 0; 2118} 2119 2120/* 2121 * Get the pipe settings. 2122 */ 2123static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev, 2124 struct usb_interface *intf) 2125{ 2126 struct usb_host_interface *altsetting = intf->cur_altsetting; 2127 struct usb_endpoint_descriptor *ep_in = NULL; 2128 struct usb_endpoint_descriptor *ep_out = NULL; 2129 struct usb_endpoint_descriptor *ep; 2130 int i; 2131 2132 /* 2133 * Find the endpoints we need. 2134 * We are expecting a minimum of 2 endpoints - in and out (bulk). 2135 * We will ignore any others. 2136 */ 2137 for (i = 0; i < altsetting->desc.bNumEndpoints; i++) { 2138 ep = &altsetting->endpoint[i].desc; 2139 2140 /* Is it a BULK endpoint? */ 2141 if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 2142 == USB_ENDPOINT_XFER_BULK) { 2143 /* BULK in or out? */ 2144 if (ep->bEndpointAddress & USB_DIR_IN) { 2145 if (ep_in == NULL) 2146 ep_in = ep; 2147 } else { 2148 if (ep_out == NULL) 2149 ep_out = ep; 2150 } 2151 } 2152 } 2153 2154 if (ep_in == NULL || ep_out == NULL) { 2155 printk(KERN_NOTICE "%s: failed endpoint check\n", sc->name); 2156 return -ENODEV; 2157 } 2158 2159 /* Calculate and store the pipe values */ 2160 sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0); 2161 sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0); 2162 sc->send_bulk_pipe = usb_sndbulkpipe(dev, 2163 ep_out->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2164 sc->recv_bulk_pipe = usb_rcvbulkpipe(dev, 2165 ep_in->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2166 2167 return 0; 2168} 2169 2170/* 2171 * Probing is done in the process context, which allows us to cheat 2172 * and not to build a state machine for the discovery. 2173 */ 2174static int ub_probe(struct usb_interface *intf, 2175 const struct usb_device_id *dev_id) 2176{ 2177 struct ub_dev *sc; 2178 int nluns; 2179 int rc; 2180 int i; 2181 2182 if (usb_usual_check_type(dev_id, USB_US_TYPE_UB)) 2183 return -ENXIO; 2184 2185 rc = -ENOMEM; 2186 if ((sc = kzalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL) 2187 goto err_core; 2188 sc->lock = ub_next_lock(); 2189 INIT_LIST_HEAD(&sc->luns); 2190 usb_init_urb(&sc->work_urb); 2191 tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc); 2192 atomic_set(&sc->poison, 0); 2193 INIT_WORK(&sc->reset_work, ub_reset_task); 2194 init_waitqueue_head(&sc->reset_wait); 2195 2196 init_timer(&sc->work_timer); 2197 sc->work_timer.data = (unsigned long) sc; 2198 sc->work_timer.function = ub_urb_timeout; 2199 2200 ub_init_completion(&sc->work_done); 2201 sc->work_done.done = 1; /* A little yuk, but oh well... */ 2202 2203 sc->dev = interface_to_usbdev(intf); 2204 sc->intf = intf; 2205 // sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber; 2206 usb_set_intfdata(intf, sc); 2207 usb_get_dev(sc->dev); 2208 /* 2209 * Since we give the interface struct to the block level through 2210 * disk->driverfs_dev, we have to pin it. Otherwise, block_uevent 2211 * oopses on close after a disconnect (kernels 2.6.16 and up). 2212 */ 2213 usb_get_intf(sc->intf); 2214 2215 snprintf(sc->name, 12, DRV_NAME "(%d.%d)", 2216 sc->dev->bus->busnum, sc->dev->devnum); 2217 2218 /* XXX Verify that we can handle the device (from descriptors) */ 2219 2220 if (ub_get_pipes(sc, sc->dev, intf) != 0) 2221 goto err_dev_desc; 2222 2223 /* 2224 * At this point, all USB initialization is done, do upper layer. 2225 * We really hate halfway initialized structures, so from the 2226 * invariants perspective, this ub_dev is fully constructed at 2227 * this point. 2228 */ 2229 2230 /* 2231 * This is needed to clear toggles. It is a problem only if we do 2232 * `rmmod ub && modprobe ub` without disconnects, but we like that. 2233 */ 2234#if 0 /* iPod Mini fails if we do this (big white iPod works) */ 2235 ub_probe_clear_stall(sc, sc->recv_bulk_pipe); 2236 ub_probe_clear_stall(sc, sc->send_bulk_pipe); 2237#endif 2238 2239 /* 2240 * The way this is used by the startup code is a little specific. 2241 * A SCSI check causes a USB stall. Our common case code sees it 2242 * and clears the check, after which the device is ready for use. 2243 * But if a check was not present, any command other than 2244 * TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE). 2245 * 2246 * If we neglect to clear the SCSI check, the first real command fails 2247 * (which is the capacity readout). We clear that and retry, but why 2248 * causing spurious retries for no reason. 2249 * 2250 * Revalidation may start with its own TEST_UNIT_READY, but that one 2251 * has to succeed, so we clear checks with an additional one here. 2252 * In any case it's not our business how revaliadation is implemented. 2253 */ 2254 for (i = 0; i < 3; i++) { /* Retries for the schwag key from KS'04 */ 2255 if ((rc = ub_sync_tur(sc, NULL)) <= 0) break; 2256 if (rc != 0x6) break; 2257 msleep(10); 2258 } 2259 2260 nluns = 1; 2261 for (i = 0; i < 3; i++) { 2262 if ((rc = ub_sync_getmaxlun(sc)) < 0) 2263 break; 2264 if (rc != 0) { 2265 nluns = rc; 2266 break; 2267 } 2268 msleep(100); 2269 } 2270 2271 for (i = 0; i < nluns; i++) { 2272 ub_probe_lun(sc, i); 2273 } 2274 return 0; 2275 2276err_dev_desc: 2277 usb_set_intfdata(intf, NULL); 2278 usb_put_intf(sc->intf); 2279 usb_put_dev(sc->dev); 2280 kfree(sc); 2281err_core: 2282 return rc; 2283} 2284 2285static int ub_probe_lun(struct ub_dev *sc, int lnum) 2286{ 2287 struct ub_lun *lun; 2288 struct request_queue *q; 2289 struct gendisk *disk; 2290 int rc; 2291 2292 rc = -ENOMEM; 2293 if ((lun = kzalloc(sizeof(struct ub_lun), GFP_KERNEL)) == NULL) 2294 goto err_alloc; 2295 lun->num = lnum; 2296 2297 rc = -ENOSR; 2298 if ((lun->id = ub_id_get()) == -1) 2299 goto err_id; 2300 2301 lun->udev = sc; 2302 2303 snprintf(lun->name, 16, DRV_NAME "%c(%d.%d.%d)", 2304 lun->id + 'a', sc->dev->bus->busnum, sc->dev->devnum, lun->num); 2305 2306 lun->removable = 1; /* XXX Query this from the device */ 2307 lun->changed = 1; /* ub_revalidate clears only */ 2308 ub_revalidate(sc, lun); 2309 2310 rc = -ENOMEM; 2311 if ((disk = alloc_disk(UB_PARTS_PER_LUN)) == NULL) 2312 goto err_diskalloc; 2313 2314 sprintf(disk->disk_name, DRV_NAME "%c", lun->id + 'a'); 2315 disk->major = UB_MAJOR; 2316 disk->first_minor = lun->id * UB_PARTS_PER_LUN; 2317 disk->fops = &ub_bd_fops; 2318 disk->private_data = lun; 2319 disk->driverfs_dev = &sc->intf->dev; 2320 2321 rc = -ENOMEM; 2322 if ((q = blk_init_queue(ub_request_fn, sc->lock)) == NULL) 2323 goto err_blkqinit; 2324 2325 disk->queue = q; 2326 2327 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 2328 blk_queue_max_hw_segments(q, UB_MAX_REQ_SG); 2329 blk_queue_max_phys_segments(q, UB_MAX_REQ_SG); 2330 blk_queue_segment_boundary(q, 0xffffffff); /* Dubious. */ 2331 blk_queue_max_sectors(q, UB_MAX_SECTORS); 2332 blk_queue_hardsect_size(q, lun->capacity.bsize); 2333 2334 lun->disk = disk; 2335 q->queuedata = lun; 2336 list_add(&lun->link, &sc->luns); 2337 2338 set_capacity(disk, lun->capacity.nsec); 2339 if (lun->removable) 2340 disk->flags |= GENHD_FL_REMOVABLE; 2341 2342 add_disk(disk); 2343 2344 return 0; 2345 2346err_blkqinit: 2347 put_disk(disk); 2348err_diskalloc: 2349 ub_id_put(lun->id); 2350err_id: 2351 kfree(lun); 2352err_alloc: 2353 return rc; 2354} 2355 2356static void ub_disconnect(struct usb_interface *intf) 2357{ 2358 struct ub_dev *sc = usb_get_intfdata(intf); 2359 struct ub_lun *lun; 2360 unsigned long flags; 2361 2362 /* 2363 * Prevent ub_bd_release from pulling the rug from under us. 2364 * XXX This is starting to look like a kref. 2365 * XXX Why not to take this ref at probe time? 2366 */ 2367 spin_lock_irqsave(&ub_lock, flags); 2368 sc->openc++; 2369 spin_unlock_irqrestore(&ub_lock, flags); 2370 2371 /* 2372 * Fence stall clearings, operations triggered by unlinkings and so on. 2373 * We do not attempt to unlink any URBs, because we do not trust the 2374 * unlink paths in HC drivers. Also, we get -84 upon disconnect anyway. 2375 */ 2376 atomic_set(&sc->poison, 1); 2377 2378 /* 2379 * Wait for reset to end, if any. 2380 */ 2381 wait_event(sc->reset_wait, !sc->reset); 2382 2383 /* 2384 * Blow away queued commands. 2385 * 2386 * Actually, this never works, because before we get here 2387 * the HCD terminates outstanding URB(s). It causes our 2388 * SCSI command queue to advance, commands fail to submit, 2389 * and the whole queue drains. So, we just use this code to 2390 * print warnings. 2391 */ 2392 spin_lock_irqsave(sc->lock, flags); 2393 { 2394 struct ub_scsi_cmd *cmd; 2395 int cnt = 0; 2396 while ((cmd = ub_cmdq_peek(sc)) != NULL) { 2397 cmd->error = -ENOTCONN; 2398 cmd->state = UB_CMDST_DONE; 2399 ub_cmdq_pop(sc); 2400 (*cmd->done)(sc, cmd); 2401 cnt++; 2402 } 2403 if (cnt != 0) { 2404 printk(KERN_WARNING "%s: " 2405 "%d was queued after shutdown\n", sc->name, cnt); 2406 } 2407 } 2408 spin_unlock_irqrestore(sc->lock, flags); 2409 2410 /* 2411 * Unregister the upper layer. 2412 */ 2413 list_for_each_entry(lun, &sc->luns, link) { 2414 del_gendisk(lun->disk); 2415 /* 2416 * I wish I could do: 2417 * queue_flag_set(QUEUE_FLAG_DEAD, q); 2418 * As it is, we rely on our internal poisoning and let 2419 * the upper levels to spin furiously failing all the I/O. 2420 */ 2421 } 2422 2423 /* 2424 * Testing for -EINPROGRESS is always a bug, so we are bending 2425 * the rules a little. 2426 */ 2427 spin_lock_irqsave(sc->lock, flags); 2428 if (sc->work_urb.status == -EINPROGRESS) { /* janitors: ignore */ 2429 printk(KERN_WARNING "%s: " 2430 "URB is active after disconnect\n", sc->name); 2431 } 2432 spin_unlock_irqrestore(sc->lock, flags); 2433 2434 /* 2435 * There is virtually no chance that other CPU runs a timeout so long 2436 * after ub_urb_complete should have called del_timer, but only if HCD 2437 * didn't forget to deliver a callback on unlink. 2438 */ 2439 del_timer_sync(&sc->work_timer); 2440 2441 /* 2442 * At this point there must be no commands coming from anyone 2443 * and no URBs left in transit. 2444 */ 2445 2446 ub_put(sc); 2447} 2448 2449static struct usb_driver ub_driver = { 2450 .name = "ub", 2451 .probe = ub_probe, 2452 .disconnect = ub_disconnect, 2453 .id_table = ub_usb_ids, 2454}; 2455 2456static int __init ub_init(void) 2457{ 2458 int rc; 2459 int i; 2460 2461 for (i = 0; i < UB_QLOCK_NUM; i++) 2462 spin_lock_init(&ub_qlockv[i]); 2463 2464 if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0) 2465 goto err_regblkdev; 2466 2467 if ((rc = usb_register(&ub_driver)) != 0) 2468 goto err_register; 2469 2470 usb_usual_set_present(USB_US_TYPE_UB); 2471 return 0; 2472 2473err_register: 2474 unregister_blkdev(UB_MAJOR, DRV_NAME); 2475err_regblkdev: 2476 return rc; 2477} 2478 2479static void __exit ub_exit(void) 2480{ 2481 usb_deregister(&ub_driver); 2482 2483 unregister_blkdev(UB_MAJOR, DRV_NAME); 2484 usb_usual_clear_present(USB_US_TYPE_UB); 2485} 2486 2487module_init(ub_init); 2488module_exit(ub_exit); 2489 2490MODULE_LICENSE("GPL");