at v2.6.26 115 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <asm/system.h> 77#include <linux/bitops.h> 78#include <linux/capability.h> 79#include <linux/cpu.h> 80#include <linux/types.h> 81#include <linux/kernel.h> 82#include <linux/sched.h> 83#include <linux/mutex.h> 84#include <linux/string.h> 85#include <linux/mm.h> 86#include <linux/socket.h> 87#include <linux/sockios.h> 88#include <linux/errno.h> 89#include <linux/interrupt.h> 90#include <linux/if_ether.h> 91#include <linux/netdevice.h> 92#include <linux/etherdevice.h> 93#include <linux/notifier.h> 94#include <linux/skbuff.h> 95#include <net/net_namespace.h> 96#include <net/sock.h> 97#include <linux/rtnetlink.h> 98#include <linux/proc_fs.h> 99#include <linux/seq_file.h> 100#include <linux/stat.h> 101#include <linux/if_bridge.h> 102#include <linux/if_macvlan.h> 103#include <net/dst.h> 104#include <net/pkt_sched.h> 105#include <net/checksum.h> 106#include <linux/highmem.h> 107#include <linux/init.h> 108#include <linux/kmod.h> 109#include <linux/module.h> 110#include <linux/kallsyms.h> 111#include <linux/netpoll.h> 112#include <linux/rcupdate.h> 113#include <linux/delay.h> 114#include <net/wext.h> 115#include <net/iw_handler.h> 116#include <asm/current.h> 117#include <linux/audit.h> 118#include <linux/dmaengine.h> 119#include <linux/err.h> 120#include <linux/ctype.h> 121#include <linux/if_arp.h> 122#include <linux/if_vlan.h> 123 124#include "net-sysfs.h" 125 126/* 127 * The list of packet types we will receive (as opposed to discard) 128 * and the routines to invoke. 129 * 130 * Why 16. Because with 16 the only overlap we get on a hash of the 131 * low nibble of the protocol value is RARP/SNAP/X.25. 132 * 133 * NOTE: That is no longer true with the addition of VLAN tags. Not 134 * sure which should go first, but I bet it won't make much 135 * difference if we are running VLANs. The good news is that 136 * this protocol won't be in the list unless compiled in, so 137 * the average user (w/out VLANs) will not be adversely affected. 138 * --BLG 139 * 140 * 0800 IP 141 * 8100 802.1Q VLAN 142 * 0001 802.3 143 * 0002 AX.25 144 * 0004 802.2 145 * 8035 RARP 146 * 0005 SNAP 147 * 0805 X.25 148 * 0806 ARP 149 * 8137 IPX 150 * 0009 Localtalk 151 * 86DD IPv6 152 */ 153 154#define PTYPE_HASH_SIZE (16) 155#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 156 157static DEFINE_SPINLOCK(ptype_lock); 158static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159static struct list_head ptype_all __read_mostly; /* Taps */ 160 161#ifdef CONFIG_NET_DMA 162struct net_dma { 163 struct dma_client client; 164 spinlock_t lock; 165 cpumask_t channel_mask; 166 struct dma_chan **channels; 167}; 168 169static enum dma_state_client 170netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 171 enum dma_state state); 172 173static struct net_dma net_dma = { 174 .client = { 175 .event_callback = netdev_dma_event, 176 }, 177}; 178#endif 179 180/* 181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 182 * semaphore. 183 * 184 * Pure readers hold dev_base_lock for reading. 185 * 186 * Writers must hold the rtnl semaphore while they loop through the 187 * dev_base_head list, and hold dev_base_lock for writing when they do the 188 * actual updates. This allows pure readers to access the list even 189 * while a writer is preparing to update it. 190 * 191 * To put it another way, dev_base_lock is held for writing only to 192 * protect against pure readers; the rtnl semaphore provides the 193 * protection against other writers. 194 * 195 * See, for example usages, register_netdevice() and 196 * unregister_netdevice(), which must be called with the rtnl 197 * semaphore held. 198 */ 199DEFINE_RWLOCK(dev_base_lock); 200 201EXPORT_SYMBOL(dev_base_lock); 202 203#define NETDEV_HASHBITS 8 204#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 205 206static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207{ 208 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 209 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 210} 211 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213{ 214 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 215} 216 217/* Device list insertion */ 218static int list_netdevice(struct net_device *dev) 219{ 220 struct net *net = dev_net(dev); 221 222 ASSERT_RTNL(); 223 224 write_lock_bh(&dev_base_lock); 225 list_add_tail(&dev->dev_list, &net->dev_base_head); 226 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 227 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 228 write_unlock_bh(&dev_base_lock); 229 return 0; 230} 231 232/* Device list removal */ 233static void unlist_netdevice(struct net_device *dev) 234{ 235 ASSERT_RTNL(); 236 237 /* Unlink dev from the device chain */ 238 write_lock_bh(&dev_base_lock); 239 list_del(&dev->dev_list); 240 hlist_del(&dev->name_hlist); 241 hlist_del(&dev->index_hlist); 242 write_unlock_bh(&dev_base_lock); 243} 244 245/* 246 * Our notifier list 247 */ 248 249static RAW_NOTIFIER_HEAD(netdev_chain); 250 251/* 252 * Device drivers call our routines to queue packets here. We empty the 253 * queue in the local softnet handler. 254 */ 255 256DEFINE_PER_CPU(struct softnet_data, softnet_data); 257 258#ifdef CONFIG_DEBUG_LOCK_ALLOC 259/* 260 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 261 * according to dev->type 262 */ 263static const unsigned short netdev_lock_type[] = 264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 276 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 277 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 278 ARPHRD_NONE}; 279 280static const char *netdev_lock_name[] = 281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 293 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 294 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 295 "_xmit_NONE"}; 296 297static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 298 299static inline unsigned short netdev_lock_pos(unsigned short dev_type) 300{ 301 int i; 302 303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 304 if (netdev_lock_type[i] == dev_type) 305 return i; 306 /* the last key is used by default */ 307 return ARRAY_SIZE(netdev_lock_type) - 1; 308} 309 310static inline void netdev_set_lockdep_class(spinlock_t *lock, 311 unsigned short dev_type) 312{ 313 int i; 314 315 i = netdev_lock_pos(dev_type); 316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 317 netdev_lock_name[i]); 318} 319#else 320static inline void netdev_set_lockdep_class(spinlock_t *lock, 321 unsigned short dev_type) 322{ 323} 324#endif 325 326/******************************************************************************* 327 328 Protocol management and registration routines 329 330*******************************************************************************/ 331 332/* 333 * Add a protocol ID to the list. Now that the input handler is 334 * smarter we can dispense with all the messy stuff that used to be 335 * here. 336 * 337 * BEWARE!!! Protocol handlers, mangling input packets, 338 * MUST BE last in hash buckets and checking protocol handlers 339 * MUST start from promiscuous ptype_all chain in net_bh. 340 * It is true now, do not change it. 341 * Explanation follows: if protocol handler, mangling packet, will 342 * be the first on list, it is not able to sense, that packet 343 * is cloned and should be copied-on-write, so that it will 344 * change it and subsequent readers will get broken packet. 345 * --ANK (980803) 346 */ 347 348/** 349 * dev_add_pack - add packet handler 350 * @pt: packet type declaration 351 * 352 * Add a protocol handler to the networking stack. The passed &packet_type 353 * is linked into kernel lists and may not be freed until it has been 354 * removed from the kernel lists. 355 * 356 * This call does not sleep therefore it can not 357 * guarantee all CPU's that are in middle of receiving packets 358 * will see the new packet type (until the next received packet). 359 */ 360 361void dev_add_pack(struct packet_type *pt) 362{ 363 int hash; 364 365 spin_lock_bh(&ptype_lock); 366 if (pt->type == htons(ETH_P_ALL)) 367 list_add_rcu(&pt->list, &ptype_all); 368 else { 369 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 370 list_add_rcu(&pt->list, &ptype_base[hash]); 371 } 372 spin_unlock_bh(&ptype_lock); 373} 374 375/** 376 * __dev_remove_pack - remove packet handler 377 * @pt: packet type declaration 378 * 379 * Remove a protocol handler that was previously added to the kernel 380 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 381 * from the kernel lists and can be freed or reused once this function 382 * returns. 383 * 384 * The packet type might still be in use by receivers 385 * and must not be freed until after all the CPU's have gone 386 * through a quiescent state. 387 */ 388void __dev_remove_pack(struct packet_type *pt) 389{ 390 struct list_head *head; 391 struct packet_type *pt1; 392 393 spin_lock_bh(&ptype_lock); 394 395 if (pt->type == htons(ETH_P_ALL)) 396 head = &ptype_all; 397 else 398 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 399 400 list_for_each_entry(pt1, head, list) { 401 if (pt == pt1) { 402 list_del_rcu(&pt->list); 403 goto out; 404 } 405 } 406 407 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 408out: 409 spin_unlock_bh(&ptype_lock); 410} 411/** 412 * dev_remove_pack - remove packet handler 413 * @pt: packet type declaration 414 * 415 * Remove a protocol handler that was previously added to the kernel 416 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 417 * from the kernel lists and can be freed or reused once this function 418 * returns. 419 * 420 * This call sleeps to guarantee that no CPU is looking at the packet 421 * type after return. 422 */ 423void dev_remove_pack(struct packet_type *pt) 424{ 425 __dev_remove_pack(pt); 426 427 synchronize_net(); 428} 429 430/****************************************************************************** 431 432 Device Boot-time Settings Routines 433 434*******************************************************************************/ 435 436/* Boot time configuration table */ 437static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 438 439/** 440 * netdev_boot_setup_add - add new setup entry 441 * @name: name of the device 442 * @map: configured settings for the device 443 * 444 * Adds new setup entry to the dev_boot_setup list. The function 445 * returns 0 on error and 1 on success. This is a generic routine to 446 * all netdevices. 447 */ 448static int netdev_boot_setup_add(char *name, struct ifmap *map) 449{ 450 struct netdev_boot_setup *s; 451 int i; 452 453 s = dev_boot_setup; 454 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 455 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 456 memset(s[i].name, 0, sizeof(s[i].name)); 457 strlcpy(s[i].name, name, IFNAMSIZ); 458 memcpy(&s[i].map, map, sizeof(s[i].map)); 459 break; 460 } 461 } 462 463 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 464} 465 466/** 467 * netdev_boot_setup_check - check boot time settings 468 * @dev: the netdevice 469 * 470 * Check boot time settings for the device. 471 * The found settings are set for the device to be used 472 * later in the device probing. 473 * Returns 0 if no settings found, 1 if they are. 474 */ 475int netdev_boot_setup_check(struct net_device *dev) 476{ 477 struct netdev_boot_setup *s = dev_boot_setup; 478 int i; 479 480 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 481 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 482 !strcmp(dev->name, s[i].name)) { 483 dev->irq = s[i].map.irq; 484 dev->base_addr = s[i].map.base_addr; 485 dev->mem_start = s[i].map.mem_start; 486 dev->mem_end = s[i].map.mem_end; 487 return 1; 488 } 489 } 490 return 0; 491} 492 493 494/** 495 * netdev_boot_base - get address from boot time settings 496 * @prefix: prefix for network device 497 * @unit: id for network device 498 * 499 * Check boot time settings for the base address of device. 500 * The found settings are set for the device to be used 501 * later in the device probing. 502 * Returns 0 if no settings found. 503 */ 504unsigned long netdev_boot_base(const char *prefix, int unit) 505{ 506 const struct netdev_boot_setup *s = dev_boot_setup; 507 char name[IFNAMSIZ]; 508 int i; 509 510 sprintf(name, "%s%d", prefix, unit); 511 512 /* 513 * If device already registered then return base of 1 514 * to indicate not to probe for this interface 515 */ 516 if (__dev_get_by_name(&init_net, name)) 517 return 1; 518 519 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 520 if (!strcmp(name, s[i].name)) 521 return s[i].map.base_addr; 522 return 0; 523} 524 525/* 526 * Saves at boot time configured settings for any netdevice. 527 */ 528int __init netdev_boot_setup(char *str) 529{ 530 int ints[5]; 531 struct ifmap map; 532 533 str = get_options(str, ARRAY_SIZE(ints), ints); 534 if (!str || !*str) 535 return 0; 536 537 /* Save settings */ 538 memset(&map, 0, sizeof(map)); 539 if (ints[0] > 0) 540 map.irq = ints[1]; 541 if (ints[0] > 1) 542 map.base_addr = ints[2]; 543 if (ints[0] > 2) 544 map.mem_start = ints[3]; 545 if (ints[0] > 3) 546 map.mem_end = ints[4]; 547 548 /* Add new entry to the list */ 549 return netdev_boot_setup_add(str, &map); 550} 551 552__setup("netdev=", netdev_boot_setup); 553 554/******************************************************************************* 555 556 Device Interface Subroutines 557 558*******************************************************************************/ 559 560/** 561 * __dev_get_by_name - find a device by its name 562 * @net: the applicable net namespace 563 * @name: name to find 564 * 565 * Find an interface by name. Must be called under RTNL semaphore 566 * or @dev_base_lock. If the name is found a pointer to the device 567 * is returned. If the name is not found then %NULL is returned. The 568 * reference counters are not incremented so the caller must be 569 * careful with locks. 570 */ 571 572struct net_device *__dev_get_by_name(struct net *net, const char *name) 573{ 574 struct hlist_node *p; 575 576 hlist_for_each(p, dev_name_hash(net, name)) { 577 struct net_device *dev 578 = hlist_entry(p, struct net_device, name_hlist); 579 if (!strncmp(dev->name, name, IFNAMSIZ)) 580 return dev; 581 } 582 return NULL; 583} 584 585/** 586 * dev_get_by_name - find a device by its name 587 * @net: the applicable net namespace 588 * @name: name to find 589 * 590 * Find an interface by name. This can be called from any 591 * context and does its own locking. The returned handle has 592 * the usage count incremented and the caller must use dev_put() to 593 * release it when it is no longer needed. %NULL is returned if no 594 * matching device is found. 595 */ 596 597struct net_device *dev_get_by_name(struct net *net, const char *name) 598{ 599 struct net_device *dev; 600 601 read_lock(&dev_base_lock); 602 dev = __dev_get_by_name(net, name); 603 if (dev) 604 dev_hold(dev); 605 read_unlock(&dev_base_lock); 606 return dev; 607} 608 609/** 610 * __dev_get_by_index - find a device by its ifindex 611 * @net: the applicable net namespace 612 * @ifindex: index of device 613 * 614 * Search for an interface by index. Returns %NULL if the device 615 * is not found or a pointer to the device. The device has not 616 * had its reference counter increased so the caller must be careful 617 * about locking. The caller must hold either the RTNL semaphore 618 * or @dev_base_lock. 619 */ 620 621struct net_device *__dev_get_by_index(struct net *net, int ifindex) 622{ 623 struct hlist_node *p; 624 625 hlist_for_each(p, dev_index_hash(net, ifindex)) { 626 struct net_device *dev 627 = hlist_entry(p, struct net_device, index_hlist); 628 if (dev->ifindex == ifindex) 629 return dev; 630 } 631 return NULL; 632} 633 634 635/** 636 * dev_get_by_index - find a device by its ifindex 637 * @net: the applicable net namespace 638 * @ifindex: index of device 639 * 640 * Search for an interface by index. Returns NULL if the device 641 * is not found or a pointer to the device. The device returned has 642 * had a reference added and the pointer is safe until the user calls 643 * dev_put to indicate they have finished with it. 644 */ 645 646struct net_device *dev_get_by_index(struct net *net, int ifindex) 647{ 648 struct net_device *dev; 649 650 read_lock(&dev_base_lock); 651 dev = __dev_get_by_index(net, ifindex); 652 if (dev) 653 dev_hold(dev); 654 read_unlock(&dev_base_lock); 655 return dev; 656} 657 658/** 659 * dev_getbyhwaddr - find a device by its hardware address 660 * @net: the applicable net namespace 661 * @type: media type of device 662 * @ha: hardware address 663 * 664 * Search for an interface by MAC address. Returns NULL if the device 665 * is not found or a pointer to the device. The caller must hold the 666 * rtnl semaphore. The returned device has not had its ref count increased 667 * and the caller must therefore be careful about locking 668 * 669 * BUGS: 670 * If the API was consistent this would be __dev_get_by_hwaddr 671 */ 672 673struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 674{ 675 struct net_device *dev; 676 677 ASSERT_RTNL(); 678 679 for_each_netdev(net, dev) 680 if (dev->type == type && 681 !memcmp(dev->dev_addr, ha, dev->addr_len)) 682 return dev; 683 684 return NULL; 685} 686 687EXPORT_SYMBOL(dev_getbyhwaddr); 688 689struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 690{ 691 struct net_device *dev; 692 693 ASSERT_RTNL(); 694 for_each_netdev(net, dev) 695 if (dev->type == type) 696 return dev; 697 698 return NULL; 699} 700 701EXPORT_SYMBOL(__dev_getfirstbyhwtype); 702 703struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 704{ 705 struct net_device *dev; 706 707 rtnl_lock(); 708 dev = __dev_getfirstbyhwtype(net, type); 709 if (dev) 710 dev_hold(dev); 711 rtnl_unlock(); 712 return dev; 713} 714 715EXPORT_SYMBOL(dev_getfirstbyhwtype); 716 717/** 718 * dev_get_by_flags - find any device with given flags 719 * @net: the applicable net namespace 720 * @if_flags: IFF_* values 721 * @mask: bitmask of bits in if_flags to check 722 * 723 * Search for any interface with the given flags. Returns NULL if a device 724 * is not found or a pointer to the device. The device returned has 725 * had a reference added and the pointer is safe until the user calls 726 * dev_put to indicate they have finished with it. 727 */ 728 729struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 730{ 731 struct net_device *dev, *ret; 732 733 ret = NULL; 734 read_lock(&dev_base_lock); 735 for_each_netdev(net, dev) { 736 if (((dev->flags ^ if_flags) & mask) == 0) { 737 dev_hold(dev); 738 ret = dev; 739 break; 740 } 741 } 742 read_unlock(&dev_base_lock); 743 return ret; 744} 745 746/** 747 * dev_valid_name - check if name is okay for network device 748 * @name: name string 749 * 750 * Network device names need to be valid file names to 751 * to allow sysfs to work. We also disallow any kind of 752 * whitespace. 753 */ 754int dev_valid_name(const char *name) 755{ 756 if (*name == '\0') 757 return 0; 758 if (strlen(name) >= IFNAMSIZ) 759 return 0; 760 if (!strcmp(name, ".") || !strcmp(name, "..")) 761 return 0; 762 763 while (*name) { 764 if (*name == '/' || isspace(*name)) 765 return 0; 766 name++; 767 } 768 return 1; 769} 770 771/** 772 * __dev_alloc_name - allocate a name for a device 773 * @net: network namespace to allocate the device name in 774 * @name: name format string 775 * @buf: scratch buffer and result name string 776 * 777 * Passed a format string - eg "lt%d" it will try and find a suitable 778 * id. It scans list of devices to build up a free map, then chooses 779 * the first empty slot. The caller must hold the dev_base or rtnl lock 780 * while allocating the name and adding the device in order to avoid 781 * duplicates. 782 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 783 * Returns the number of the unit assigned or a negative errno code. 784 */ 785 786static int __dev_alloc_name(struct net *net, const char *name, char *buf) 787{ 788 int i = 0; 789 const char *p; 790 const int max_netdevices = 8*PAGE_SIZE; 791 unsigned long *inuse; 792 struct net_device *d; 793 794 p = strnchr(name, IFNAMSIZ-1, '%'); 795 if (p) { 796 /* 797 * Verify the string as this thing may have come from 798 * the user. There must be either one "%d" and no other "%" 799 * characters. 800 */ 801 if (p[1] != 'd' || strchr(p + 2, '%')) 802 return -EINVAL; 803 804 /* Use one page as a bit array of possible slots */ 805 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 806 if (!inuse) 807 return -ENOMEM; 808 809 for_each_netdev(net, d) { 810 if (!sscanf(d->name, name, &i)) 811 continue; 812 if (i < 0 || i >= max_netdevices) 813 continue; 814 815 /* avoid cases where sscanf is not exact inverse of printf */ 816 snprintf(buf, IFNAMSIZ, name, i); 817 if (!strncmp(buf, d->name, IFNAMSIZ)) 818 set_bit(i, inuse); 819 } 820 821 i = find_first_zero_bit(inuse, max_netdevices); 822 free_page((unsigned long) inuse); 823 } 824 825 snprintf(buf, IFNAMSIZ, name, i); 826 if (!__dev_get_by_name(net, buf)) 827 return i; 828 829 /* It is possible to run out of possible slots 830 * when the name is long and there isn't enough space left 831 * for the digits, or if all bits are used. 832 */ 833 return -ENFILE; 834} 835 836/** 837 * dev_alloc_name - allocate a name for a device 838 * @dev: device 839 * @name: name format string 840 * 841 * Passed a format string - eg "lt%d" it will try and find a suitable 842 * id. It scans list of devices to build up a free map, then chooses 843 * the first empty slot. The caller must hold the dev_base or rtnl lock 844 * while allocating the name and adding the device in order to avoid 845 * duplicates. 846 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 847 * Returns the number of the unit assigned or a negative errno code. 848 */ 849 850int dev_alloc_name(struct net_device *dev, const char *name) 851{ 852 char buf[IFNAMSIZ]; 853 struct net *net; 854 int ret; 855 856 BUG_ON(!dev_net(dev)); 857 net = dev_net(dev); 858 ret = __dev_alloc_name(net, name, buf); 859 if (ret >= 0) 860 strlcpy(dev->name, buf, IFNAMSIZ); 861 return ret; 862} 863 864 865/** 866 * dev_change_name - change name of a device 867 * @dev: device 868 * @newname: name (or format string) must be at least IFNAMSIZ 869 * 870 * Change name of a device, can pass format strings "eth%d". 871 * for wildcarding. 872 */ 873int dev_change_name(struct net_device *dev, char *newname) 874{ 875 char oldname[IFNAMSIZ]; 876 int err = 0; 877 int ret; 878 struct net *net; 879 880 ASSERT_RTNL(); 881 BUG_ON(!dev_net(dev)); 882 883 net = dev_net(dev); 884 if (dev->flags & IFF_UP) 885 return -EBUSY; 886 887 if (!dev_valid_name(newname)) 888 return -EINVAL; 889 890 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 891 return 0; 892 893 memcpy(oldname, dev->name, IFNAMSIZ); 894 895 if (strchr(newname, '%')) { 896 err = dev_alloc_name(dev, newname); 897 if (err < 0) 898 return err; 899 strcpy(newname, dev->name); 900 } 901 else if (__dev_get_by_name(net, newname)) 902 return -EEXIST; 903 else 904 strlcpy(dev->name, newname, IFNAMSIZ); 905 906rollback: 907 err = device_rename(&dev->dev, dev->name); 908 if (err) { 909 memcpy(dev->name, oldname, IFNAMSIZ); 910 return err; 911 } 912 913 write_lock_bh(&dev_base_lock); 914 hlist_del(&dev->name_hlist); 915 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 916 write_unlock_bh(&dev_base_lock); 917 918 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 919 ret = notifier_to_errno(ret); 920 921 if (ret) { 922 if (err) { 923 printk(KERN_ERR 924 "%s: name change rollback failed: %d.\n", 925 dev->name, ret); 926 } else { 927 err = ret; 928 memcpy(dev->name, oldname, IFNAMSIZ); 929 goto rollback; 930 } 931 } 932 933 return err; 934} 935 936/** 937 * netdev_features_change - device changes features 938 * @dev: device to cause notification 939 * 940 * Called to indicate a device has changed features. 941 */ 942void netdev_features_change(struct net_device *dev) 943{ 944 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 945} 946EXPORT_SYMBOL(netdev_features_change); 947 948/** 949 * netdev_state_change - device changes state 950 * @dev: device to cause notification 951 * 952 * Called to indicate a device has changed state. This function calls 953 * the notifier chains for netdev_chain and sends a NEWLINK message 954 * to the routing socket. 955 */ 956void netdev_state_change(struct net_device *dev) 957{ 958 if (dev->flags & IFF_UP) { 959 call_netdevice_notifiers(NETDEV_CHANGE, dev); 960 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 961 } 962} 963 964/** 965 * dev_load - load a network module 966 * @net: the applicable net namespace 967 * @name: name of interface 968 * 969 * If a network interface is not present and the process has suitable 970 * privileges this function loads the module. If module loading is not 971 * available in this kernel then it becomes a nop. 972 */ 973 974void dev_load(struct net *net, const char *name) 975{ 976 struct net_device *dev; 977 978 read_lock(&dev_base_lock); 979 dev = __dev_get_by_name(net, name); 980 read_unlock(&dev_base_lock); 981 982 if (!dev && capable(CAP_SYS_MODULE)) 983 request_module("%s", name); 984} 985 986/** 987 * dev_open - prepare an interface for use. 988 * @dev: device to open 989 * 990 * Takes a device from down to up state. The device's private open 991 * function is invoked and then the multicast lists are loaded. Finally 992 * the device is moved into the up state and a %NETDEV_UP message is 993 * sent to the netdev notifier chain. 994 * 995 * Calling this function on an active interface is a nop. On a failure 996 * a negative errno code is returned. 997 */ 998int dev_open(struct net_device *dev) 999{ 1000 int ret = 0; 1001 1002 ASSERT_RTNL(); 1003 1004 /* 1005 * Is it already up? 1006 */ 1007 1008 if (dev->flags & IFF_UP) 1009 return 0; 1010 1011 /* 1012 * Is it even present? 1013 */ 1014 if (!netif_device_present(dev)) 1015 return -ENODEV; 1016 1017 /* 1018 * Call device private open method 1019 */ 1020 set_bit(__LINK_STATE_START, &dev->state); 1021 1022 if (dev->validate_addr) 1023 ret = dev->validate_addr(dev); 1024 1025 if (!ret && dev->open) 1026 ret = dev->open(dev); 1027 1028 /* 1029 * If it went open OK then: 1030 */ 1031 1032 if (ret) 1033 clear_bit(__LINK_STATE_START, &dev->state); 1034 else { 1035 /* 1036 * Set the flags. 1037 */ 1038 dev->flags |= IFF_UP; 1039 1040 /* 1041 * Initialize multicasting status 1042 */ 1043 dev_set_rx_mode(dev); 1044 1045 /* 1046 * Wakeup transmit queue engine 1047 */ 1048 dev_activate(dev); 1049 1050 /* 1051 * ... and announce new interface. 1052 */ 1053 call_netdevice_notifiers(NETDEV_UP, dev); 1054 } 1055 1056 return ret; 1057} 1058 1059/** 1060 * dev_close - shutdown an interface. 1061 * @dev: device to shutdown 1062 * 1063 * This function moves an active device into down state. A 1064 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1065 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1066 * chain. 1067 */ 1068int dev_close(struct net_device *dev) 1069{ 1070 ASSERT_RTNL(); 1071 1072 might_sleep(); 1073 1074 if (!(dev->flags & IFF_UP)) 1075 return 0; 1076 1077 /* 1078 * Tell people we are going down, so that they can 1079 * prepare to death, when device is still operating. 1080 */ 1081 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1082 1083 clear_bit(__LINK_STATE_START, &dev->state); 1084 1085 /* Synchronize to scheduled poll. We cannot touch poll list, 1086 * it can be even on different cpu. So just clear netif_running(). 1087 * 1088 * dev->stop() will invoke napi_disable() on all of it's 1089 * napi_struct instances on this device. 1090 */ 1091 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1092 1093 dev_deactivate(dev); 1094 1095 /* 1096 * Call the device specific close. This cannot fail. 1097 * Only if device is UP 1098 * 1099 * We allow it to be called even after a DETACH hot-plug 1100 * event. 1101 */ 1102 if (dev->stop) 1103 dev->stop(dev); 1104 1105 /* 1106 * Device is now down. 1107 */ 1108 1109 dev->flags &= ~IFF_UP; 1110 1111 /* 1112 * Tell people we are down 1113 */ 1114 call_netdevice_notifiers(NETDEV_DOWN, dev); 1115 1116 return 0; 1117} 1118 1119 1120static int dev_boot_phase = 1; 1121 1122/* 1123 * Device change register/unregister. These are not inline or static 1124 * as we export them to the world. 1125 */ 1126 1127/** 1128 * register_netdevice_notifier - register a network notifier block 1129 * @nb: notifier 1130 * 1131 * Register a notifier to be called when network device events occur. 1132 * The notifier passed is linked into the kernel structures and must 1133 * not be reused until it has been unregistered. A negative errno code 1134 * is returned on a failure. 1135 * 1136 * When registered all registration and up events are replayed 1137 * to the new notifier to allow device to have a race free 1138 * view of the network device list. 1139 */ 1140 1141int register_netdevice_notifier(struct notifier_block *nb) 1142{ 1143 struct net_device *dev; 1144 struct net_device *last; 1145 struct net *net; 1146 int err; 1147 1148 rtnl_lock(); 1149 err = raw_notifier_chain_register(&netdev_chain, nb); 1150 if (err) 1151 goto unlock; 1152 if (dev_boot_phase) 1153 goto unlock; 1154 for_each_net(net) { 1155 for_each_netdev(net, dev) { 1156 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1157 err = notifier_to_errno(err); 1158 if (err) 1159 goto rollback; 1160 1161 if (!(dev->flags & IFF_UP)) 1162 continue; 1163 1164 nb->notifier_call(nb, NETDEV_UP, dev); 1165 } 1166 } 1167 1168unlock: 1169 rtnl_unlock(); 1170 return err; 1171 1172rollback: 1173 last = dev; 1174 for_each_net(net) { 1175 for_each_netdev(net, dev) { 1176 if (dev == last) 1177 break; 1178 1179 if (dev->flags & IFF_UP) { 1180 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1181 nb->notifier_call(nb, NETDEV_DOWN, dev); 1182 } 1183 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1184 } 1185 } 1186 1187 raw_notifier_chain_unregister(&netdev_chain, nb); 1188 goto unlock; 1189} 1190 1191/** 1192 * unregister_netdevice_notifier - unregister a network notifier block 1193 * @nb: notifier 1194 * 1195 * Unregister a notifier previously registered by 1196 * register_netdevice_notifier(). The notifier is unlinked into the 1197 * kernel structures and may then be reused. A negative errno code 1198 * is returned on a failure. 1199 */ 1200 1201int unregister_netdevice_notifier(struct notifier_block *nb) 1202{ 1203 int err; 1204 1205 rtnl_lock(); 1206 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1207 rtnl_unlock(); 1208 return err; 1209} 1210 1211/** 1212 * call_netdevice_notifiers - call all network notifier blocks 1213 * @val: value passed unmodified to notifier function 1214 * @dev: net_device pointer passed unmodified to notifier function 1215 * 1216 * Call all network notifier blocks. Parameters and return value 1217 * are as for raw_notifier_call_chain(). 1218 */ 1219 1220int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1221{ 1222 return raw_notifier_call_chain(&netdev_chain, val, dev); 1223} 1224 1225/* When > 0 there are consumers of rx skb time stamps */ 1226static atomic_t netstamp_needed = ATOMIC_INIT(0); 1227 1228void net_enable_timestamp(void) 1229{ 1230 atomic_inc(&netstamp_needed); 1231} 1232 1233void net_disable_timestamp(void) 1234{ 1235 atomic_dec(&netstamp_needed); 1236} 1237 1238static inline void net_timestamp(struct sk_buff *skb) 1239{ 1240 if (atomic_read(&netstamp_needed)) 1241 __net_timestamp(skb); 1242 else 1243 skb->tstamp.tv64 = 0; 1244} 1245 1246/* 1247 * Support routine. Sends outgoing frames to any network 1248 * taps currently in use. 1249 */ 1250 1251static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1252{ 1253 struct packet_type *ptype; 1254 1255 net_timestamp(skb); 1256 1257 rcu_read_lock(); 1258 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1259 /* Never send packets back to the socket 1260 * they originated from - MvS (miquels@drinkel.ow.org) 1261 */ 1262 if ((ptype->dev == dev || !ptype->dev) && 1263 (ptype->af_packet_priv == NULL || 1264 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1265 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1266 if (!skb2) 1267 break; 1268 1269 /* skb->nh should be correctly 1270 set by sender, so that the second statement is 1271 just protection against buggy protocols. 1272 */ 1273 skb_reset_mac_header(skb2); 1274 1275 if (skb_network_header(skb2) < skb2->data || 1276 skb2->network_header > skb2->tail) { 1277 if (net_ratelimit()) 1278 printk(KERN_CRIT "protocol %04x is " 1279 "buggy, dev %s\n", 1280 skb2->protocol, dev->name); 1281 skb_reset_network_header(skb2); 1282 } 1283 1284 skb2->transport_header = skb2->network_header; 1285 skb2->pkt_type = PACKET_OUTGOING; 1286 ptype->func(skb2, skb->dev, ptype, skb->dev); 1287 } 1288 } 1289 rcu_read_unlock(); 1290} 1291 1292 1293void __netif_schedule(struct net_device *dev) 1294{ 1295 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1296 unsigned long flags; 1297 struct softnet_data *sd; 1298 1299 local_irq_save(flags); 1300 sd = &__get_cpu_var(softnet_data); 1301 dev->next_sched = sd->output_queue; 1302 sd->output_queue = dev; 1303 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1304 local_irq_restore(flags); 1305 } 1306} 1307EXPORT_SYMBOL(__netif_schedule); 1308 1309void dev_kfree_skb_irq(struct sk_buff *skb) 1310{ 1311 if (atomic_dec_and_test(&skb->users)) { 1312 struct softnet_data *sd; 1313 unsigned long flags; 1314 1315 local_irq_save(flags); 1316 sd = &__get_cpu_var(softnet_data); 1317 skb->next = sd->completion_queue; 1318 sd->completion_queue = skb; 1319 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1320 local_irq_restore(flags); 1321 } 1322} 1323EXPORT_SYMBOL(dev_kfree_skb_irq); 1324 1325void dev_kfree_skb_any(struct sk_buff *skb) 1326{ 1327 if (in_irq() || irqs_disabled()) 1328 dev_kfree_skb_irq(skb); 1329 else 1330 dev_kfree_skb(skb); 1331} 1332EXPORT_SYMBOL(dev_kfree_skb_any); 1333 1334 1335/** 1336 * netif_device_detach - mark device as removed 1337 * @dev: network device 1338 * 1339 * Mark device as removed from system and therefore no longer available. 1340 */ 1341void netif_device_detach(struct net_device *dev) 1342{ 1343 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1344 netif_running(dev)) { 1345 netif_stop_queue(dev); 1346 } 1347} 1348EXPORT_SYMBOL(netif_device_detach); 1349 1350/** 1351 * netif_device_attach - mark device as attached 1352 * @dev: network device 1353 * 1354 * Mark device as attached from system and restart if needed. 1355 */ 1356void netif_device_attach(struct net_device *dev) 1357{ 1358 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1359 netif_running(dev)) { 1360 netif_wake_queue(dev); 1361 __netdev_watchdog_up(dev); 1362 } 1363} 1364EXPORT_SYMBOL(netif_device_attach); 1365 1366static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1367{ 1368 return ((features & NETIF_F_GEN_CSUM) || 1369 ((features & NETIF_F_IP_CSUM) && 1370 protocol == htons(ETH_P_IP)) || 1371 ((features & NETIF_F_IPV6_CSUM) && 1372 protocol == htons(ETH_P_IPV6))); 1373} 1374 1375static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1376{ 1377 if (can_checksum_protocol(dev->features, skb->protocol)) 1378 return true; 1379 1380 if (skb->protocol == htons(ETH_P_8021Q)) { 1381 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1382 if (can_checksum_protocol(dev->features & dev->vlan_features, 1383 veh->h_vlan_encapsulated_proto)) 1384 return true; 1385 } 1386 1387 return false; 1388} 1389 1390/* 1391 * Invalidate hardware checksum when packet is to be mangled, and 1392 * complete checksum manually on outgoing path. 1393 */ 1394int skb_checksum_help(struct sk_buff *skb) 1395{ 1396 __wsum csum; 1397 int ret = 0, offset; 1398 1399 if (skb->ip_summed == CHECKSUM_COMPLETE) 1400 goto out_set_summed; 1401 1402 if (unlikely(skb_shinfo(skb)->gso_size)) { 1403 /* Let GSO fix up the checksum. */ 1404 goto out_set_summed; 1405 } 1406 1407 offset = skb->csum_start - skb_headroom(skb); 1408 BUG_ON(offset >= skb_headlen(skb)); 1409 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1410 1411 offset += skb->csum_offset; 1412 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1413 1414 if (skb_cloned(skb) && 1415 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1416 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1417 if (ret) 1418 goto out; 1419 } 1420 1421 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1422out_set_summed: 1423 skb->ip_summed = CHECKSUM_NONE; 1424out: 1425 return ret; 1426} 1427 1428/** 1429 * skb_gso_segment - Perform segmentation on skb. 1430 * @skb: buffer to segment 1431 * @features: features for the output path (see dev->features) 1432 * 1433 * This function segments the given skb and returns a list of segments. 1434 * 1435 * It may return NULL if the skb requires no segmentation. This is 1436 * only possible when GSO is used for verifying header integrity. 1437 */ 1438struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1439{ 1440 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1441 struct packet_type *ptype; 1442 __be16 type = skb->protocol; 1443 int err; 1444 1445 BUG_ON(skb_shinfo(skb)->frag_list); 1446 1447 skb_reset_mac_header(skb); 1448 skb->mac_len = skb->network_header - skb->mac_header; 1449 __skb_pull(skb, skb->mac_len); 1450 1451 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1452 if (skb_header_cloned(skb) && 1453 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1454 return ERR_PTR(err); 1455 } 1456 1457 rcu_read_lock(); 1458 list_for_each_entry_rcu(ptype, 1459 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1460 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1461 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1462 err = ptype->gso_send_check(skb); 1463 segs = ERR_PTR(err); 1464 if (err || skb_gso_ok(skb, features)) 1465 break; 1466 __skb_push(skb, (skb->data - 1467 skb_network_header(skb))); 1468 } 1469 segs = ptype->gso_segment(skb, features); 1470 break; 1471 } 1472 } 1473 rcu_read_unlock(); 1474 1475 __skb_push(skb, skb->data - skb_mac_header(skb)); 1476 1477 return segs; 1478} 1479 1480EXPORT_SYMBOL(skb_gso_segment); 1481 1482/* Take action when hardware reception checksum errors are detected. */ 1483#ifdef CONFIG_BUG 1484void netdev_rx_csum_fault(struct net_device *dev) 1485{ 1486 if (net_ratelimit()) { 1487 printk(KERN_ERR "%s: hw csum failure.\n", 1488 dev ? dev->name : "<unknown>"); 1489 dump_stack(); 1490 } 1491} 1492EXPORT_SYMBOL(netdev_rx_csum_fault); 1493#endif 1494 1495/* Actually, we should eliminate this check as soon as we know, that: 1496 * 1. IOMMU is present and allows to map all the memory. 1497 * 2. No high memory really exists on this machine. 1498 */ 1499 1500static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1501{ 1502#ifdef CONFIG_HIGHMEM 1503 int i; 1504 1505 if (dev->features & NETIF_F_HIGHDMA) 1506 return 0; 1507 1508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1509 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1510 return 1; 1511 1512#endif 1513 return 0; 1514} 1515 1516struct dev_gso_cb { 1517 void (*destructor)(struct sk_buff *skb); 1518}; 1519 1520#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1521 1522static void dev_gso_skb_destructor(struct sk_buff *skb) 1523{ 1524 struct dev_gso_cb *cb; 1525 1526 do { 1527 struct sk_buff *nskb = skb->next; 1528 1529 skb->next = nskb->next; 1530 nskb->next = NULL; 1531 kfree_skb(nskb); 1532 } while (skb->next); 1533 1534 cb = DEV_GSO_CB(skb); 1535 if (cb->destructor) 1536 cb->destructor(skb); 1537} 1538 1539/** 1540 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1541 * @skb: buffer to segment 1542 * 1543 * This function segments the given skb and stores the list of segments 1544 * in skb->next. 1545 */ 1546static int dev_gso_segment(struct sk_buff *skb) 1547{ 1548 struct net_device *dev = skb->dev; 1549 struct sk_buff *segs; 1550 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1551 NETIF_F_SG : 0); 1552 1553 segs = skb_gso_segment(skb, features); 1554 1555 /* Verifying header integrity only. */ 1556 if (!segs) 1557 return 0; 1558 1559 if (IS_ERR(segs)) 1560 return PTR_ERR(segs); 1561 1562 skb->next = segs; 1563 DEV_GSO_CB(skb)->destructor = skb->destructor; 1564 skb->destructor = dev_gso_skb_destructor; 1565 1566 return 0; 1567} 1568 1569int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1570{ 1571 if (likely(!skb->next)) { 1572 if (!list_empty(&ptype_all)) 1573 dev_queue_xmit_nit(skb, dev); 1574 1575 if (netif_needs_gso(dev, skb)) { 1576 if (unlikely(dev_gso_segment(skb))) 1577 goto out_kfree_skb; 1578 if (skb->next) 1579 goto gso; 1580 } 1581 1582 return dev->hard_start_xmit(skb, dev); 1583 } 1584 1585gso: 1586 do { 1587 struct sk_buff *nskb = skb->next; 1588 int rc; 1589 1590 skb->next = nskb->next; 1591 nskb->next = NULL; 1592 rc = dev->hard_start_xmit(nskb, dev); 1593 if (unlikely(rc)) { 1594 nskb->next = skb->next; 1595 skb->next = nskb; 1596 return rc; 1597 } 1598 if (unlikely((netif_queue_stopped(dev) || 1599 netif_subqueue_stopped(dev, skb)) && 1600 skb->next)) 1601 return NETDEV_TX_BUSY; 1602 } while (skb->next); 1603 1604 skb->destructor = DEV_GSO_CB(skb)->destructor; 1605 1606out_kfree_skb: 1607 kfree_skb(skb); 1608 return 0; 1609} 1610 1611/** 1612 * dev_queue_xmit - transmit a buffer 1613 * @skb: buffer to transmit 1614 * 1615 * Queue a buffer for transmission to a network device. The caller must 1616 * have set the device and priority and built the buffer before calling 1617 * this function. The function can be called from an interrupt. 1618 * 1619 * A negative errno code is returned on a failure. A success does not 1620 * guarantee the frame will be transmitted as it may be dropped due 1621 * to congestion or traffic shaping. 1622 * 1623 * ----------------------------------------------------------------------------------- 1624 * I notice this method can also return errors from the queue disciplines, 1625 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1626 * be positive. 1627 * 1628 * Regardless of the return value, the skb is consumed, so it is currently 1629 * difficult to retry a send to this method. (You can bump the ref count 1630 * before sending to hold a reference for retry if you are careful.) 1631 * 1632 * When calling this method, interrupts MUST be enabled. This is because 1633 * the BH enable code must have IRQs enabled so that it will not deadlock. 1634 * --BLG 1635 */ 1636 1637int dev_queue_xmit(struct sk_buff *skb) 1638{ 1639 struct net_device *dev = skb->dev; 1640 struct Qdisc *q; 1641 int rc = -ENOMEM; 1642 1643 /* GSO will handle the following emulations directly. */ 1644 if (netif_needs_gso(dev, skb)) 1645 goto gso; 1646 1647 if (skb_shinfo(skb)->frag_list && 1648 !(dev->features & NETIF_F_FRAGLIST) && 1649 __skb_linearize(skb)) 1650 goto out_kfree_skb; 1651 1652 /* Fragmented skb is linearized if device does not support SG, 1653 * or if at least one of fragments is in highmem and device 1654 * does not support DMA from it. 1655 */ 1656 if (skb_shinfo(skb)->nr_frags && 1657 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1658 __skb_linearize(skb)) 1659 goto out_kfree_skb; 1660 1661 /* If packet is not checksummed and device does not support 1662 * checksumming for this protocol, complete checksumming here. 1663 */ 1664 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1665 skb_set_transport_header(skb, skb->csum_start - 1666 skb_headroom(skb)); 1667 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1668 goto out_kfree_skb; 1669 } 1670 1671gso: 1672 spin_lock_prefetch(&dev->queue_lock); 1673 1674 /* Disable soft irqs for various locks below. Also 1675 * stops preemption for RCU. 1676 */ 1677 rcu_read_lock_bh(); 1678 1679 /* Updates of qdisc are serialized by queue_lock. 1680 * The struct Qdisc which is pointed to by qdisc is now a 1681 * rcu structure - it may be accessed without acquiring 1682 * a lock (but the structure may be stale.) The freeing of the 1683 * qdisc will be deferred until it's known that there are no 1684 * more references to it. 1685 * 1686 * If the qdisc has an enqueue function, we still need to 1687 * hold the queue_lock before calling it, since queue_lock 1688 * also serializes access to the device queue. 1689 */ 1690 1691 q = rcu_dereference(dev->qdisc); 1692#ifdef CONFIG_NET_CLS_ACT 1693 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1694#endif 1695 if (q->enqueue) { 1696 /* Grab device queue */ 1697 spin_lock(&dev->queue_lock); 1698 q = dev->qdisc; 1699 if (q->enqueue) { 1700 /* reset queue_mapping to zero */ 1701 skb_set_queue_mapping(skb, 0); 1702 rc = q->enqueue(skb, q); 1703 qdisc_run(dev); 1704 spin_unlock(&dev->queue_lock); 1705 1706 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1707 goto out; 1708 } 1709 spin_unlock(&dev->queue_lock); 1710 } 1711 1712 /* The device has no queue. Common case for software devices: 1713 loopback, all the sorts of tunnels... 1714 1715 Really, it is unlikely that netif_tx_lock protection is necessary 1716 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1717 counters.) 1718 However, it is possible, that they rely on protection 1719 made by us here. 1720 1721 Check this and shot the lock. It is not prone from deadlocks. 1722 Either shot noqueue qdisc, it is even simpler 8) 1723 */ 1724 if (dev->flags & IFF_UP) { 1725 int cpu = smp_processor_id(); /* ok because BHs are off */ 1726 1727 if (dev->xmit_lock_owner != cpu) { 1728 1729 HARD_TX_LOCK(dev, cpu); 1730 1731 if (!netif_queue_stopped(dev) && 1732 !netif_subqueue_stopped(dev, skb)) { 1733 rc = 0; 1734 if (!dev_hard_start_xmit(skb, dev)) { 1735 HARD_TX_UNLOCK(dev); 1736 goto out; 1737 } 1738 } 1739 HARD_TX_UNLOCK(dev); 1740 if (net_ratelimit()) 1741 printk(KERN_CRIT "Virtual device %s asks to " 1742 "queue packet!\n", dev->name); 1743 } else { 1744 /* Recursion is detected! It is possible, 1745 * unfortunately */ 1746 if (net_ratelimit()) 1747 printk(KERN_CRIT "Dead loop on virtual device " 1748 "%s, fix it urgently!\n", dev->name); 1749 } 1750 } 1751 1752 rc = -ENETDOWN; 1753 rcu_read_unlock_bh(); 1754 1755out_kfree_skb: 1756 kfree_skb(skb); 1757 return rc; 1758out: 1759 rcu_read_unlock_bh(); 1760 return rc; 1761} 1762 1763 1764/*======================================================================= 1765 Receiver routines 1766 =======================================================================*/ 1767 1768int netdev_max_backlog __read_mostly = 1000; 1769int netdev_budget __read_mostly = 300; 1770int weight_p __read_mostly = 64; /* old backlog weight */ 1771 1772DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1773 1774 1775/** 1776 * netif_rx - post buffer to the network code 1777 * @skb: buffer to post 1778 * 1779 * This function receives a packet from a device driver and queues it for 1780 * the upper (protocol) levels to process. It always succeeds. The buffer 1781 * may be dropped during processing for congestion control or by the 1782 * protocol layers. 1783 * 1784 * return values: 1785 * NET_RX_SUCCESS (no congestion) 1786 * NET_RX_DROP (packet was dropped) 1787 * 1788 */ 1789 1790int netif_rx(struct sk_buff *skb) 1791{ 1792 struct softnet_data *queue; 1793 unsigned long flags; 1794 1795 /* if netpoll wants it, pretend we never saw it */ 1796 if (netpoll_rx(skb)) 1797 return NET_RX_DROP; 1798 1799 if (!skb->tstamp.tv64) 1800 net_timestamp(skb); 1801 1802 /* 1803 * The code is rearranged so that the path is the most 1804 * short when CPU is congested, but is still operating. 1805 */ 1806 local_irq_save(flags); 1807 queue = &__get_cpu_var(softnet_data); 1808 1809 __get_cpu_var(netdev_rx_stat).total++; 1810 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1811 if (queue->input_pkt_queue.qlen) { 1812enqueue: 1813 dev_hold(skb->dev); 1814 __skb_queue_tail(&queue->input_pkt_queue, skb); 1815 local_irq_restore(flags); 1816 return NET_RX_SUCCESS; 1817 } 1818 1819 napi_schedule(&queue->backlog); 1820 goto enqueue; 1821 } 1822 1823 __get_cpu_var(netdev_rx_stat).dropped++; 1824 local_irq_restore(flags); 1825 1826 kfree_skb(skb); 1827 return NET_RX_DROP; 1828} 1829 1830int netif_rx_ni(struct sk_buff *skb) 1831{ 1832 int err; 1833 1834 preempt_disable(); 1835 err = netif_rx(skb); 1836 if (local_softirq_pending()) 1837 do_softirq(); 1838 preempt_enable(); 1839 1840 return err; 1841} 1842 1843EXPORT_SYMBOL(netif_rx_ni); 1844 1845static inline struct net_device *skb_bond(struct sk_buff *skb) 1846{ 1847 struct net_device *dev = skb->dev; 1848 1849 if (dev->master) { 1850 if (skb_bond_should_drop(skb)) { 1851 kfree_skb(skb); 1852 return NULL; 1853 } 1854 skb->dev = dev->master; 1855 } 1856 1857 return dev; 1858} 1859 1860 1861static void net_tx_action(struct softirq_action *h) 1862{ 1863 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1864 1865 if (sd->completion_queue) { 1866 struct sk_buff *clist; 1867 1868 local_irq_disable(); 1869 clist = sd->completion_queue; 1870 sd->completion_queue = NULL; 1871 local_irq_enable(); 1872 1873 while (clist) { 1874 struct sk_buff *skb = clist; 1875 clist = clist->next; 1876 1877 BUG_TRAP(!atomic_read(&skb->users)); 1878 __kfree_skb(skb); 1879 } 1880 } 1881 1882 if (sd->output_queue) { 1883 struct net_device *head; 1884 1885 local_irq_disable(); 1886 head = sd->output_queue; 1887 sd->output_queue = NULL; 1888 local_irq_enable(); 1889 1890 while (head) { 1891 struct net_device *dev = head; 1892 head = head->next_sched; 1893 1894 smp_mb__before_clear_bit(); 1895 clear_bit(__LINK_STATE_SCHED, &dev->state); 1896 1897 if (spin_trylock(&dev->queue_lock)) { 1898 qdisc_run(dev); 1899 spin_unlock(&dev->queue_lock); 1900 } else { 1901 netif_schedule(dev); 1902 } 1903 } 1904 } 1905} 1906 1907static inline int deliver_skb(struct sk_buff *skb, 1908 struct packet_type *pt_prev, 1909 struct net_device *orig_dev) 1910{ 1911 atomic_inc(&skb->users); 1912 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1913} 1914 1915#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1916/* These hooks defined here for ATM */ 1917struct net_bridge; 1918struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1919 unsigned char *addr); 1920void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1921 1922/* 1923 * If bridge module is loaded call bridging hook. 1924 * returns NULL if packet was consumed. 1925 */ 1926struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1927 struct sk_buff *skb) __read_mostly; 1928static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1929 struct packet_type **pt_prev, int *ret, 1930 struct net_device *orig_dev) 1931{ 1932 struct net_bridge_port *port; 1933 1934 if (skb->pkt_type == PACKET_LOOPBACK || 1935 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1936 return skb; 1937 1938 if (*pt_prev) { 1939 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1940 *pt_prev = NULL; 1941 } 1942 1943 return br_handle_frame_hook(port, skb); 1944} 1945#else 1946#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1947#endif 1948 1949#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1950struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1951EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1952 1953static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1954 struct packet_type **pt_prev, 1955 int *ret, 1956 struct net_device *orig_dev) 1957{ 1958 if (skb->dev->macvlan_port == NULL) 1959 return skb; 1960 1961 if (*pt_prev) { 1962 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1963 *pt_prev = NULL; 1964 } 1965 return macvlan_handle_frame_hook(skb); 1966} 1967#else 1968#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1969#endif 1970 1971#ifdef CONFIG_NET_CLS_ACT 1972/* TODO: Maybe we should just force sch_ingress to be compiled in 1973 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1974 * a compare and 2 stores extra right now if we dont have it on 1975 * but have CONFIG_NET_CLS_ACT 1976 * NOTE: This doesnt stop any functionality; if you dont have 1977 * the ingress scheduler, you just cant add policies on ingress. 1978 * 1979 */ 1980static int ing_filter(struct sk_buff *skb) 1981{ 1982 struct Qdisc *q; 1983 struct net_device *dev = skb->dev; 1984 int result = TC_ACT_OK; 1985 u32 ttl = G_TC_RTTL(skb->tc_verd); 1986 1987 if (MAX_RED_LOOP < ttl++) { 1988 printk(KERN_WARNING 1989 "Redir loop detected Dropping packet (%d->%d)\n", 1990 skb->iif, dev->ifindex); 1991 return TC_ACT_SHOT; 1992 } 1993 1994 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 1995 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 1996 1997 spin_lock(&dev->ingress_lock); 1998 if ((q = dev->qdisc_ingress) != NULL) 1999 result = q->enqueue(skb, q); 2000 spin_unlock(&dev->ingress_lock); 2001 2002 return result; 2003} 2004 2005static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2006 struct packet_type **pt_prev, 2007 int *ret, struct net_device *orig_dev) 2008{ 2009 if (!skb->dev->qdisc_ingress) 2010 goto out; 2011 2012 if (*pt_prev) { 2013 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2014 *pt_prev = NULL; 2015 } else { 2016 /* Huh? Why does turning on AF_PACKET affect this? */ 2017 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2018 } 2019 2020 switch (ing_filter(skb)) { 2021 case TC_ACT_SHOT: 2022 case TC_ACT_STOLEN: 2023 kfree_skb(skb); 2024 return NULL; 2025 } 2026 2027out: 2028 skb->tc_verd = 0; 2029 return skb; 2030} 2031#endif 2032 2033/** 2034 * netif_receive_skb - process receive buffer from network 2035 * @skb: buffer to process 2036 * 2037 * netif_receive_skb() is the main receive data processing function. 2038 * It always succeeds. The buffer may be dropped during processing 2039 * for congestion control or by the protocol layers. 2040 * 2041 * This function may only be called from softirq context and interrupts 2042 * should be enabled. 2043 * 2044 * Return values (usually ignored): 2045 * NET_RX_SUCCESS: no congestion 2046 * NET_RX_DROP: packet was dropped 2047 */ 2048int netif_receive_skb(struct sk_buff *skb) 2049{ 2050 struct packet_type *ptype, *pt_prev; 2051 struct net_device *orig_dev; 2052 int ret = NET_RX_DROP; 2053 __be16 type; 2054 2055 /* if we've gotten here through NAPI, check netpoll */ 2056 if (netpoll_receive_skb(skb)) 2057 return NET_RX_DROP; 2058 2059 if (!skb->tstamp.tv64) 2060 net_timestamp(skb); 2061 2062 if (!skb->iif) 2063 skb->iif = skb->dev->ifindex; 2064 2065 orig_dev = skb_bond(skb); 2066 2067 if (!orig_dev) 2068 return NET_RX_DROP; 2069 2070 __get_cpu_var(netdev_rx_stat).total++; 2071 2072 skb_reset_network_header(skb); 2073 skb_reset_transport_header(skb); 2074 skb->mac_len = skb->network_header - skb->mac_header; 2075 2076 pt_prev = NULL; 2077 2078 rcu_read_lock(); 2079 2080 /* Don't receive packets in an exiting network namespace */ 2081 if (!net_alive(dev_net(skb->dev))) 2082 goto out; 2083 2084#ifdef CONFIG_NET_CLS_ACT 2085 if (skb->tc_verd & TC_NCLS) { 2086 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2087 goto ncls; 2088 } 2089#endif 2090 2091 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2092 if (!ptype->dev || ptype->dev == skb->dev) { 2093 if (pt_prev) 2094 ret = deliver_skb(skb, pt_prev, orig_dev); 2095 pt_prev = ptype; 2096 } 2097 } 2098 2099#ifdef CONFIG_NET_CLS_ACT 2100 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2101 if (!skb) 2102 goto out; 2103ncls: 2104#endif 2105 2106 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2107 if (!skb) 2108 goto out; 2109 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2110 if (!skb) 2111 goto out; 2112 2113 type = skb->protocol; 2114 list_for_each_entry_rcu(ptype, 2115 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2116 if (ptype->type == type && 2117 (!ptype->dev || ptype->dev == skb->dev)) { 2118 if (pt_prev) 2119 ret = deliver_skb(skb, pt_prev, orig_dev); 2120 pt_prev = ptype; 2121 } 2122 } 2123 2124 if (pt_prev) { 2125 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2126 } else { 2127 kfree_skb(skb); 2128 /* Jamal, now you will not able to escape explaining 2129 * me how you were going to use this. :-) 2130 */ 2131 ret = NET_RX_DROP; 2132 } 2133 2134out: 2135 rcu_read_unlock(); 2136 return ret; 2137} 2138 2139static int process_backlog(struct napi_struct *napi, int quota) 2140{ 2141 int work = 0; 2142 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2143 unsigned long start_time = jiffies; 2144 2145 napi->weight = weight_p; 2146 do { 2147 struct sk_buff *skb; 2148 struct net_device *dev; 2149 2150 local_irq_disable(); 2151 skb = __skb_dequeue(&queue->input_pkt_queue); 2152 if (!skb) { 2153 __napi_complete(napi); 2154 local_irq_enable(); 2155 break; 2156 } 2157 2158 local_irq_enable(); 2159 2160 dev = skb->dev; 2161 2162 netif_receive_skb(skb); 2163 2164 dev_put(dev); 2165 } while (++work < quota && jiffies == start_time); 2166 2167 return work; 2168} 2169 2170/** 2171 * __napi_schedule - schedule for receive 2172 * @n: entry to schedule 2173 * 2174 * The entry's receive function will be scheduled to run 2175 */ 2176void __napi_schedule(struct napi_struct *n) 2177{ 2178 unsigned long flags; 2179 2180 local_irq_save(flags); 2181 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2182 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2183 local_irq_restore(flags); 2184} 2185EXPORT_SYMBOL(__napi_schedule); 2186 2187 2188static void net_rx_action(struct softirq_action *h) 2189{ 2190 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2191 unsigned long start_time = jiffies; 2192 int budget = netdev_budget; 2193 void *have; 2194 2195 local_irq_disable(); 2196 2197 while (!list_empty(list)) { 2198 struct napi_struct *n; 2199 int work, weight; 2200 2201 /* If softirq window is exhuasted then punt. 2202 * 2203 * Note that this is a slight policy change from the 2204 * previous NAPI code, which would allow up to 2 2205 * jiffies to pass before breaking out. The test 2206 * used to be "jiffies - start_time > 1". 2207 */ 2208 if (unlikely(budget <= 0 || jiffies != start_time)) 2209 goto softnet_break; 2210 2211 local_irq_enable(); 2212 2213 /* Even though interrupts have been re-enabled, this 2214 * access is safe because interrupts can only add new 2215 * entries to the tail of this list, and only ->poll() 2216 * calls can remove this head entry from the list. 2217 */ 2218 n = list_entry(list->next, struct napi_struct, poll_list); 2219 2220 have = netpoll_poll_lock(n); 2221 2222 weight = n->weight; 2223 2224 /* This NAPI_STATE_SCHED test is for avoiding a race 2225 * with netpoll's poll_napi(). Only the entity which 2226 * obtains the lock and sees NAPI_STATE_SCHED set will 2227 * actually make the ->poll() call. Therefore we avoid 2228 * accidently calling ->poll() when NAPI is not scheduled. 2229 */ 2230 work = 0; 2231 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2232 work = n->poll(n, weight); 2233 2234 WARN_ON_ONCE(work > weight); 2235 2236 budget -= work; 2237 2238 local_irq_disable(); 2239 2240 /* Drivers must not modify the NAPI state if they 2241 * consume the entire weight. In such cases this code 2242 * still "owns" the NAPI instance and therefore can 2243 * move the instance around on the list at-will. 2244 */ 2245 if (unlikely(work == weight)) { 2246 if (unlikely(napi_disable_pending(n))) 2247 __napi_complete(n); 2248 else 2249 list_move_tail(&n->poll_list, list); 2250 } 2251 2252 netpoll_poll_unlock(have); 2253 } 2254out: 2255 local_irq_enable(); 2256 2257#ifdef CONFIG_NET_DMA 2258 /* 2259 * There may not be any more sk_buffs coming right now, so push 2260 * any pending DMA copies to hardware 2261 */ 2262 if (!cpus_empty(net_dma.channel_mask)) { 2263 int chan_idx; 2264 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2265 struct dma_chan *chan = net_dma.channels[chan_idx]; 2266 if (chan) 2267 dma_async_memcpy_issue_pending(chan); 2268 } 2269 } 2270#endif 2271 2272 return; 2273 2274softnet_break: 2275 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2276 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2277 goto out; 2278} 2279 2280static gifconf_func_t * gifconf_list [NPROTO]; 2281 2282/** 2283 * register_gifconf - register a SIOCGIF handler 2284 * @family: Address family 2285 * @gifconf: Function handler 2286 * 2287 * Register protocol dependent address dumping routines. The handler 2288 * that is passed must not be freed or reused until it has been replaced 2289 * by another handler. 2290 */ 2291int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2292{ 2293 if (family >= NPROTO) 2294 return -EINVAL; 2295 gifconf_list[family] = gifconf; 2296 return 0; 2297} 2298 2299 2300/* 2301 * Map an interface index to its name (SIOCGIFNAME) 2302 */ 2303 2304/* 2305 * We need this ioctl for efficient implementation of the 2306 * if_indextoname() function required by the IPv6 API. Without 2307 * it, we would have to search all the interfaces to find a 2308 * match. --pb 2309 */ 2310 2311static int dev_ifname(struct net *net, struct ifreq __user *arg) 2312{ 2313 struct net_device *dev; 2314 struct ifreq ifr; 2315 2316 /* 2317 * Fetch the caller's info block. 2318 */ 2319 2320 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2321 return -EFAULT; 2322 2323 read_lock(&dev_base_lock); 2324 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2325 if (!dev) { 2326 read_unlock(&dev_base_lock); 2327 return -ENODEV; 2328 } 2329 2330 strcpy(ifr.ifr_name, dev->name); 2331 read_unlock(&dev_base_lock); 2332 2333 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2334 return -EFAULT; 2335 return 0; 2336} 2337 2338/* 2339 * Perform a SIOCGIFCONF call. This structure will change 2340 * size eventually, and there is nothing I can do about it. 2341 * Thus we will need a 'compatibility mode'. 2342 */ 2343 2344static int dev_ifconf(struct net *net, char __user *arg) 2345{ 2346 struct ifconf ifc; 2347 struct net_device *dev; 2348 char __user *pos; 2349 int len; 2350 int total; 2351 int i; 2352 2353 /* 2354 * Fetch the caller's info block. 2355 */ 2356 2357 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2358 return -EFAULT; 2359 2360 pos = ifc.ifc_buf; 2361 len = ifc.ifc_len; 2362 2363 /* 2364 * Loop over the interfaces, and write an info block for each. 2365 */ 2366 2367 total = 0; 2368 for_each_netdev(net, dev) { 2369 for (i = 0; i < NPROTO; i++) { 2370 if (gifconf_list[i]) { 2371 int done; 2372 if (!pos) 2373 done = gifconf_list[i](dev, NULL, 0); 2374 else 2375 done = gifconf_list[i](dev, pos + total, 2376 len - total); 2377 if (done < 0) 2378 return -EFAULT; 2379 total += done; 2380 } 2381 } 2382 } 2383 2384 /* 2385 * All done. Write the updated control block back to the caller. 2386 */ 2387 ifc.ifc_len = total; 2388 2389 /* 2390 * Both BSD and Solaris return 0 here, so we do too. 2391 */ 2392 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2393} 2394 2395#ifdef CONFIG_PROC_FS 2396/* 2397 * This is invoked by the /proc filesystem handler to display a device 2398 * in detail. 2399 */ 2400void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2401 __acquires(dev_base_lock) 2402{ 2403 struct net *net = seq_file_net(seq); 2404 loff_t off; 2405 struct net_device *dev; 2406 2407 read_lock(&dev_base_lock); 2408 if (!*pos) 2409 return SEQ_START_TOKEN; 2410 2411 off = 1; 2412 for_each_netdev(net, dev) 2413 if (off++ == *pos) 2414 return dev; 2415 2416 return NULL; 2417} 2418 2419void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2420{ 2421 struct net *net = seq_file_net(seq); 2422 ++*pos; 2423 return v == SEQ_START_TOKEN ? 2424 first_net_device(net) : next_net_device((struct net_device *)v); 2425} 2426 2427void dev_seq_stop(struct seq_file *seq, void *v) 2428 __releases(dev_base_lock) 2429{ 2430 read_unlock(&dev_base_lock); 2431} 2432 2433static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2434{ 2435 struct net_device_stats *stats = dev->get_stats(dev); 2436 2437 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2438 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2439 dev->name, stats->rx_bytes, stats->rx_packets, 2440 stats->rx_errors, 2441 stats->rx_dropped + stats->rx_missed_errors, 2442 stats->rx_fifo_errors, 2443 stats->rx_length_errors + stats->rx_over_errors + 2444 stats->rx_crc_errors + stats->rx_frame_errors, 2445 stats->rx_compressed, stats->multicast, 2446 stats->tx_bytes, stats->tx_packets, 2447 stats->tx_errors, stats->tx_dropped, 2448 stats->tx_fifo_errors, stats->collisions, 2449 stats->tx_carrier_errors + 2450 stats->tx_aborted_errors + 2451 stats->tx_window_errors + 2452 stats->tx_heartbeat_errors, 2453 stats->tx_compressed); 2454} 2455 2456/* 2457 * Called from the PROCfs module. This now uses the new arbitrary sized 2458 * /proc/net interface to create /proc/net/dev 2459 */ 2460static int dev_seq_show(struct seq_file *seq, void *v) 2461{ 2462 if (v == SEQ_START_TOKEN) 2463 seq_puts(seq, "Inter-| Receive " 2464 " | Transmit\n" 2465 " face |bytes packets errs drop fifo frame " 2466 "compressed multicast|bytes packets errs " 2467 "drop fifo colls carrier compressed\n"); 2468 else 2469 dev_seq_printf_stats(seq, v); 2470 return 0; 2471} 2472 2473static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2474{ 2475 struct netif_rx_stats *rc = NULL; 2476 2477 while (*pos < nr_cpu_ids) 2478 if (cpu_online(*pos)) { 2479 rc = &per_cpu(netdev_rx_stat, *pos); 2480 break; 2481 } else 2482 ++*pos; 2483 return rc; 2484} 2485 2486static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2487{ 2488 return softnet_get_online(pos); 2489} 2490 2491static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2492{ 2493 ++*pos; 2494 return softnet_get_online(pos); 2495} 2496 2497static void softnet_seq_stop(struct seq_file *seq, void *v) 2498{ 2499} 2500 2501static int softnet_seq_show(struct seq_file *seq, void *v) 2502{ 2503 struct netif_rx_stats *s = v; 2504 2505 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2506 s->total, s->dropped, s->time_squeeze, 0, 2507 0, 0, 0, 0, /* was fastroute */ 2508 s->cpu_collision ); 2509 return 0; 2510} 2511 2512static const struct seq_operations dev_seq_ops = { 2513 .start = dev_seq_start, 2514 .next = dev_seq_next, 2515 .stop = dev_seq_stop, 2516 .show = dev_seq_show, 2517}; 2518 2519static int dev_seq_open(struct inode *inode, struct file *file) 2520{ 2521 return seq_open_net(inode, file, &dev_seq_ops, 2522 sizeof(struct seq_net_private)); 2523} 2524 2525static const struct file_operations dev_seq_fops = { 2526 .owner = THIS_MODULE, 2527 .open = dev_seq_open, 2528 .read = seq_read, 2529 .llseek = seq_lseek, 2530 .release = seq_release_net, 2531}; 2532 2533static const struct seq_operations softnet_seq_ops = { 2534 .start = softnet_seq_start, 2535 .next = softnet_seq_next, 2536 .stop = softnet_seq_stop, 2537 .show = softnet_seq_show, 2538}; 2539 2540static int softnet_seq_open(struct inode *inode, struct file *file) 2541{ 2542 return seq_open(file, &softnet_seq_ops); 2543} 2544 2545static const struct file_operations softnet_seq_fops = { 2546 .owner = THIS_MODULE, 2547 .open = softnet_seq_open, 2548 .read = seq_read, 2549 .llseek = seq_lseek, 2550 .release = seq_release, 2551}; 2552 2553static void *ptype_get_idx(loff_t pos) 2554{ 2555 struct packet_type *pt = NULL; 2556 loff_t i = 0; 2557 int t; 2558 2559 list_for_each_entry_rcu(pt, &ptype_all, list) { 2560 if (i == pos) 2561 return pt; 2562 ++i; 2563 } 2564 2565 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2566 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2567 if (i == pos) 2568 return pt; 2569 ++i; 2570 } 2571 } 2572 return NULL; 2573} 2574 2575static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2576 __acquires(RCU) 2577{ 2578 rcu_read_lock(); 2579 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2580} 2581 2582static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2583{ 2584 struct packet_type *pt; 2585 struct list_head *nxt; 2586 int hash; 2587 2588 ++*pos; 2589 if (v == SEQ_START_TOKEN) 2590 return ptype_get_idx(0); 2591 2592 pt = v; 2593 nxt = pt->list.next; 2594 if (pt->type == htons(ETH_P_ALL)) { 2595 if (nxt != &ptype_all) 2596 goto found; 2597 hash = 0; 2598 nxt = ptype_base[0].next; 2599 } else 2600 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2601 2602 while (nxt == &ptype_base[hash]) { 2603 if (++hash >= PTYPE_HASH_SIZE) 2604 return NULL; 2605 nxt = ptype_base[hash].next; 2606 } 2607found: 2608 return list_entry(nxt, struct packet_type, list); 2609} 2610 2611static void ptype_seq_stop(struct seq_file *seq, void *v) 2612 __releases(RCU) 2613{ 2614 rcu_read_unlock(); 2615} 2616 2617static void ptype_seq_decode(struct seq_file *seq, void *sym) 2618{ 2619#ifdef CONFIG_KALLSYMS 2620 unsigned long offset = 0, symsize; 2621 const char *symname; 2622 char *modname; 2623 char namebuf[128]; 2624 2625 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2626 &modname, namebuf); 2627 2628 if (symname) { 2629 char *delim = ":"; 2630 2631 if (!modname) 2632 modname = delim = ""; 2633 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2634 symname, offset); 2635 return; 2636 } 2637#endif 2638 2639 seq_printf(seq, "[%p]", sym); 2640} 2641 2642static int ptype_seq_show(struct seq_file *seq, void *v) 2643{ 2644 struct packet_type *pt = v; 2645 2646 if (v == SEQ_START_TOKEN) 2647 seq_puts(seq, "Type Device Function\n"); 2648 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2649 if (pt->type == htons(ETH_P_ALL)) 2650 seq_puts(seq, "ALL "); 2651 else 2652 seq_printf(seq, "%04x", ntohs(pt->type)); 2653 2654 seq_printf(seq, " %-8s ", 2655 pt->dev ? pt->dev->name : ""); 2656 ptype_seq_decode(seq, pt->func); 2657 seq_putc(seq, '\n'); 2658 } 2659 2660 return 0; 2661} 2662 2663static const struct seq_operations ptype_seq_ops = { 2664 .start = ptype_seq_start, 2665 .next = ptype_seq_next, 2666 .stop = ptype_seq_stop, 2667 .show = ptype_seq_show, 2668}; 2669 2670static int ptype_seq_open(struct inode *inode, struct file *file) 2671{ 2672 return seq_open_net(inode, file, &ptype_seq_ops, 2673 sizeof(struct seq_net_private)); 2674} 2675 2676static const struct file_operations ptype_seq_fops = { 2677 .owner = THIS_MODULE, 2678 .open = ptype_seq_open, 2679 .read = seq_read, 2680 .llseek = seq_lseek, 2681 .release = seq_release_net, 2682}; 2683 2684 2685static int __net_init dev_proc_net_init(struct net *net) 2686{ 2687 int rc = -ENOMEM; 2688 2689 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2690 goto out; 2691 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2692 goto out_dev; 2693 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2694 goto out_softnet; 2695 2696 if (wext_proc_init(net)) 2697 goto out_ptype; 2698 rc = 0; 2699out: 2700 return rc; 2701out_ptype: 2702 proc_net_remove(net, "ptype"); 2703out_softnet: 2704 proc_net_remove(net, "softnet_stat"); 2705out_dev: 2706 proc_net_remove(net, "dev"); 2707 goto out; 2708} 2709 2710static void __net_exit dev_proc_net_exit(struct net *net) 2711{ 2712 wext_proc_exit(net); 2713 2714 proc_net_remove(net, "ptype"); 2715 proc_net_remove(net, "softnet_stat"); 2716 proc_net_remove(net, "dev"); 2717} 2718 2719static struct pernet_operations __net_initdata dev_proc_ops = { 2720 .init = dev_proc_net_init, 2721 .exit = dev_proc_net_exit, 2722}; 2723 2724static int __init dev_proc_init(void) 2725{ 2726 return register_pernet_subsys(&dev_proc_ops); 2727} 2728#else 2729#define dev_proc_init() 0 2730#endif /* CONFIG_PROC_FS */ 2731 2732 2733/** 2734 * netdev_set_master - set up master/slave pair 2735 * @slave: slave device 2736 * @master: new master device 2737 * 2738 * Changes the master device of the slave. Pass %NULL to break the 2739 * bonding. The caller must hold the RTNL semaphore. On a failure 2740 * a negative errno code is returned. On success the reference counts 2741 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2742 * function returns zero. 2743 */ 2744int netdev_set_master(struct net_device *slave, struct net_device *master) 2745{ 2746 struct net_device *old = slave->master; 2747 2748 ASSERT_RTNL(); 2749 2750 if (master) { 2751 if (old) 2752 return -EBUSY; 2753 dev_hold(master); 2754 } 2755 2756 slave->master = master; 2757 2758 synchronize_net(); 2759 2760 if (old) 2761 dev_put(old); 2762 2763 if (master) 2764 slave->flags |= IFF_SLAVE; 2765 else 2766 slave->flags &= ~IFF_SLAVE; 2767 2768 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2769 return 0; 2770} 2771 2772static void __dev_set_promiscuity(struct net_device *dev, int inc) 2773{ 2774 unsigned short old_flags = dev->flags; 2775 2776 ASSERT_RTNL(); 2777 2778 if ((dev->promiscuity += inc) == 0) 2779 dev->flags &= ~IFF_PROMISC; 2780 else 2781 dev->flags |= IFF_PROMISC; 2782 if (dev->flags != old_flags) { 2783 printk(KERN_INFO "device %s %s promiscuous mode\n", 2784 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2785 "left"); 2786 if (audit_enabled) 2787 audit_log(current->audit_context, GFP_ATOMIC, 2788 AUDIT_ANOM_PROMISCUOUS, 2789 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2790 dev->name, (dev->flags & IFF_PROMISC), 2791 (old_flags & IFF_PROMISC), 2792 audit_get_loginuid(current), 2793 current->uid, current->gid, 2794 audit_get_sessionid(current)); 2795 2796 if (dev->change_rx_flags) 2797 dev->change_rx_flags(dev, IFF_PROMISC); 2798 } 2799} 2800 2801/** 2802 * dev_set_promiscuity - update promiscuity count on a device 2803 * @dev: device 2804 * @inc: modifier 2805 * 2806 * Add or remove promiscuity from a device. While the count in the device 2807 * remains above zero the interface remains promiscuous. Once it hits zero 2808 * the device reverts back to normal filtering operation. A negative inc 2809 * value is used to drop promiscuity on the device. 2810 */ 2811void dev_set_promiscuity(struct net_device *dev, int inc) 2812{ 2813 unsigned short old_flags = dev->flags; 2814 2815 __dev_set_promiscuity(dev, inc); 2816 if (dev->flags != old_flags) 2817 dev_set_rx_mode(dev); 2818} 2819 2820/** 2821 * dev_set_allmulti - update allmulti count on a device 2822 * @dev: device 2823 * @inc: modifier 2824 * 2825 * Add or remove reception of all multicast frames to a device. While the 2826 * count in the device remains above zero the interface remains listening 2827 * to all interfaces. Once it hits zero the device reverts back to normal 2828 * filtering operation. A negative @inc value is used to drop the counter 2829 * when releasing a resource needing all multicasts. 2830 */ 2831 2832void dev_set_allmulti(struct net_device *dev, int inc) 2833{ 2834 unsigned short old_flags = dev->flags; 2835 2836 ASSERT_RTNL(); 2837 2838 dev->flags |= IFF_ALLMULTI; 2839 if ((dev->allmulti += inc) == 0) 2840 dev->flags &= ~IFF_ALLMULTI; 2841 if (dev->flags ^ old_flags) { 2842 if (dev->change_rx_flags) 2843 dev->change_rx_flags(dev, IFF_ALLMULTI); 2844 dev_set_rx_mode(dev); 2845 } 2846} 2847 2848/* 2849 * Upload unicast and multicast address lists to device and 2850 * configure RX filtering. When the device doesn't support unicast 2851 * filtering it is put in promiscuous mode while unicast addresses 2852 * are present. 2853 */ 2854void __dev_set_rx_mode(struct net_device *dev) 2855{ 2856 /* dev_open will call this function so the list will stay sane. */ 2857 if (!(dev->flags&IFF_UP)) 2858 return; 2859 2860 if (!netif_device_present(dev)) 2861 return; 2862 2863 if (dev->set_rx_mode) 2864 dev->set_rx_mode(dev); 2865 else { 2866 /* Unicast addresses changes may only happen under the rtnl, 2867 * therefore calling __dev_set_promiscuity here is safe. 2868 */ 2869 if (dev->uc_count > 0 && !dev->uc_promisc) { 2870 __dev_set_promiscuity(dev, 1); 2871 dev->uc_promisc = 1; 2872 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2873 __dev_set_promiscuity(dev, -1); 2874 dev->uc_promisc = 0; 2875 } 2876 2877 if (dev->set_multicast_list) 2878 dev->set_multicast_list(dev); 2879 } 2880} 2881 2882void dev_set_rx_mode(struct net_device *dev) 2883{ 2884 netif_tx_lock_bh(dev); 2885 __dev_set_rx_mode(dev); 2886 netif_tx_unlock_bh(dev); 2887} 2888 2889int __dev_addr_delete(struct dev_addr_list **list, int *count, 2890 void *addr, int alen, int glbl) 2891{ 2892 struct dev_addr_list *da; 2893 2894 for (; (da = *list) != NULL; list = &da->next) { 2895 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2896 alen == da->da_addrlen) { 2897 if (glbl) { 2898 int old_glbl = da->da_gusers; 2899 da->da_gusers = 0; 2900 if (old_glbl == 0) 2901 break; 2902 } 2903 if (--da->da_users) 2904 return 0; 2905 2906 *list = da->next; 2907 kfree(da); 2908 (*count)--; 2909 return 0; 2910 } 2911 } 2912 return -ENOENT; 2913} 2914 2915int __dev_addr_add(struct dev_addr_list **list, int *count, 2916 void *addr, int alen, int glbl) 2917{ 2918 struct dev_addr_list *da; 2919 2920 for (da = *list; da != NULL; da = da->next) { 2921 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2922 da->da_addrlen == alen) { 2923 if (glbl) { 2924 int old_glbl = da->da_gusers; 2925 da->da_gusers = 1; 2926 if (old_glbl) 2927 return 0; 2928 } 2929 da->da_users++; 2930 return 0; 2931 } 2932 } 2933 2934 da = kzalloc(sizeof(*da), GFP_ATOMIC); 2935 if (da == NULL) 2936 return -ENOMEM; 2937 memcpy(da->da_addr, addr, alen); 2938 da->da_addrlen = alen; 2939 da->da_users = 1; 2940 da->da_gusers = glbl ? 1 : 0; 2941 da->next = *list; 2942 *list = da; 2943 (*count)++; 2944 return 0; 2945} 2946 2947/** 2948 * dev_unicast_delete - Release secondary unicast address. 2949 * @dev: device 2950 * @addr: address to delete 2951 * @alen: length of @addr 2952 * 2953 * Release reference to a secondary unicast address and remove it 2954 * from the device if the reference count drops to zero. 2955 * 2956 * The caller must hold the rtnl_mutex. 2957 */ 2958int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2959{ 2960 int err; 2961 2962 ASSERT_RTNL(); 2963 2964 netif_tx_lock_bh(dev); 2965 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2966 if (!err) 2967 __dev_set_rx_mode(dev); 2968 netif_tx_unlock_bh(dev); 2969 return err; 2970} 2971EXPORT_SYMBOL(dev_unicast_delete); 2972 2973/** 2974 * dev_unicast_add - add a secondary unicast address 2975 * @dev: device 2976 * @addr: address to add 2977 * @alen: length of @addr 2978 * 2979 * Add a secondary unicast address to the device or increase 2980 * the reference count if it already exists. 2981 * 2982 * The caller must hold the rtnl_mutex. 2983 */ 2984int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2985{ 2986 int err; 2987 2988 ASSERT_RTNL(); 2989 2990 netif_tx_lock_bh(dev); 2991 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2992 if (!err) 2993 __dev_set_rx_mode(dev); 2994 netif_tx_unlock_bh(dev); 2995 return err; 2996} 2997EXPORT_SYMBOL(dev_unicast_add); 2998 2999int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3000 struct dev_addr_list **from, int *from_count) 3001{ 3002 struct dev_addr_list *da, *next; 3003 int err = 0; 3004 3005 da = *from; 3006 while (da != NULL) { 3007 next = da->next; 3008 if (!da->da_synced) { 3009 err = __dev_addr_add(to, to_count, 3010 da->da_addr, da->da_addrlen, 0); 3011 if (err < 0) 3012 break; 3013 da->da_synced = 1; 3014 da->da_users++; 3015 } else if (da->da_users == 1) { 3016 __dev_addr_delete(to, to_count, 3017 da->da_addr, da->da_addrlen, 0); 3018 __dev_addr_delete(from, from_count, 3019 da->da_addr, da->da_addrlen, 0); 3020 } 3021 da = next; 3022 } 3023 return err; 3024} 3025 3026void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3027 struct dev_addr_list **from, int *from_count) 3028{ 3029 struct dev_addr_list *da, *next; 3030 3031 da = *from; 3032 while (da != NULL) { 3033 next = da->next; 3034 if (da->da_synced) { 3035 __dev_addr_delete(to, to_count, 3036 da->da_addr, da->da_addrlen, 0); 3037 da->da_synced = 0; 3038 __dev_addr_delete(from, from_count, 3039 da->da_addr, da->da_addrlen, 0); 3040 } 3041 da = next; 3042 } 3043} 3044 3045/** 3046 * dev_unicast_sync - Synchronize device's unicast list to another device 3047 * @to: destination device 3048 * @from: source device 3049 * 3050 * Add newly added addresses to the destination device and release 3051 * addresses that have no users left. The source device must be 3052 * locked by netif_tx_lock_bh. 3053 * 3054 * This function is intended to be called from the dev->set_rx_mode 3055 * function of layered software devices. 3056 */ 3057int dev_unicast_sync(struct net_device *to, struct net_device *from) 3058{ 3059 int err = 0; 3060 3061 netif_tx_lock_bh(to); 3062 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3063 &from->uc_list, &from->uc_count); 3064 if (!err) 3065 __dev_set_rx_mode(to); 3066 netif_tx_unlock_bh(to); 3067 return err; 3068} 3069EXPORT_SYMBOL(dev_unicast_sync); 3070 3071/** 3072 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3073 * @to: destination device 3074 * @from: source device 3075 * 3076 * Remove all addresses that were added to the destination device by 3077 * dev_unicast_sync(). This function is intended to be called from the 3078 * dev->stop function of layered software devices. 3079 */ 3080void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3081{ 3082 netif_tx_lock_bh(from); 3083 netif_tx_lock_bh(to); 3084 3085 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3086 &from->uc_list, &from->uc_count); 3087 __dev_set_rx_mode(to); 3088 3089 netif_tx_unlock_bh(to); 3090 netif_tx_unlock_bh(from); 3091} 3092EXPORT_SYMBOL(dev_unicast_unsync); 3093 3094static void __dev_addr_discard(struct dev_addr_list **list) 3095{ 3096 struct dev_addr_list *tmp; 3097 3098 while (*list != NULL) { 3099 tmp = *list; 3100 *list = tmp->next; 3101 if (tmp->da_users > tmp->da_gusers) 3102 printk("__dev_addr_discard: address leakage! " 3103 "da_users=%d\n", tmp->da_users); 3104 kfree(tmp); 3105 } 3106} 3107 3108static void dev_addr_discard(struct net_device *dev) 3109{ 3110 netif_tx_lock_bh(dev); 3111 3112 __dev_addr_discard(&dev->uc_list); 3113 dev->uc_count = 0; 3114 3115 __dev_addr_discard(&dev->mc_list); 3116 dev->mc_count = 0; 3117 3118 netif_tx_unlock_bh(dev); 3119} 3120 3121unsigned dev_get_flags(const struct net_device *dev) 3122{ 3123 unsigned flags; 3124 3125 flags = (dev->flags & ~(IFF_PROMISC | 3126 IFF_ALLMULTI | 3127 IFF_RUNNING | 3128 IFF_LOWER_UP | 3129 IFF_DORMANT)) | 3130 (dev->gflags & (IFF_PROMISC | 3131 IFF_ALLMULTI)); 3132 3133 if (netif_running(dev)) { 3134 if (netif_oper_up(dev)) 3135 flags |= IFF_RUNNING; 3136 if (netif_carrier_ok(dev)) 3137 flags |= IFF_LOWER_UP; 3138 if (netif_dormant(dev)) 3139 flags |= IFF_DORMANT; 3140 } 3141 3142 return flags; 3143} 3144 3145int dev_change_flags(struct net_device *dev, unsigned flags) 3146{ 3147 int ret, changes; 3148 int old_flags = dev->flags; 3149 3150 ASSERT_RTNL(); 3151 3152 /* 3153 * Set the flags on our device. 3154 */ 3155 3156 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3157 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3158 IFF_AUTOMEDIA)) | 3159 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3160 IFF_ALLMULTI)); 3161 3162 /* 3163 * Load in the correct multicast list now the flags have changed. 3164 */ 3165 3166 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST) 3167 dev->change_rx_flags(dev, IFF_MULTICAST); 3168 3169 dev_set_rx_mode(dev); 3170 3171 /* 3172 * Have we downed the interface. We handle IFF_UP ourselves 3173 * according to user attempts to set it, rather than blindly 3174 * setting it. 3175 */ 3176 3177 ret = 0; 3178 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3179 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3180 3181 if (!ret) 3182 dev_set_rx_mode(dev); 3183 } 3184 3185 if (dev->flags & IFF_UP && 3186 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3187 IFF_VOLATILE))) 3188 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3189 3190 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3191 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3192 dev->gflags ^= IFF_PROMISC; 3193 dev_set_promiscuity(dev, inc); 3194 } 3195 3196 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3197 is important. Some (broken) drivers set IFF_PROMISC, when 3198 IFF_ALLMULTI is requested not asking us and not reporting. 3199 */ 3200 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3201 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3202 dev->gflags ^= IFF_ALLMULTI; 3203 dev_set_allmulti(dev, inc); 3204 } 3205 3206 /* Exclude state transition flags, already notified */ 3207 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3208 if (changes) 3209 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3210 3211 return ret; 3212} 3213 3214int dev_set_mtu(struct net_device *dev, int new_mtu) 3215{ 3216 int err; 3217 3218 if (new_mtu == dev->mtu) 3219 return 0; 3220 3221 /* MTU must be positive. */ 3222 if (new_mtu < 0) 3223 return -EINVAL; 3224 3225 if (!netif_device_present(dev)) 3226 return -ENODEV; 3227 3228 err = 0; 3229 if (dev->change_mtu) 3230 err = dev->change_mtu(dev, new_mtu); 3231 else 3232 dev->mtu = new_mtu; 3233 if (!err && dev->flags & IFF_UP) 3234 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3235 return err; 3236} 3237 3238int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3239{ 3240 int err; 3241 3242 if (!dev->set_mac_address) 3243 return -EOPNOTSUPP; 3244 if (sa->sa_family != dev->type) 3245 return -EINVAL; 3246 if (!netif_device_present(dev)) 3247 return -ENODEV; 3248 err = dev->set_mac_address(dev, sa); 3249 if (!err) 3250 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3251 return err; 3252} 3253 3254/* 3255 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3256 */ 3257static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3258{ 3259 int err; 3260 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3261 3262 if (!dev) 3263 return -ENODEV; 3264 3265 switch (cmd) { 3266 case SIOCGIFFLAGS: /* Get interface flags */ 3267 ifr->ifr_flags = dev_get_flags(dev); 3268 return 0; 3269 3270 case SIOCGIFMETRIC: /* Get the metric on the interface 3271 (currently unused) */ 3272 ifr->ifr_metric = 0; 3273 return 0; 3274 3275 case SIOCGIFMTU: /* Get the MTU of a device */ 3276 ifr->ifr_mtu = dev->mtu; 3277 return 0; 3278 3279 case SIOCGIFHWADDR: 3280 if (!dev->addr_len) 3281 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3282 else 3283 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3284 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3285 ifr->ifr_hwaddr.sa_family = dev->type; 3286 return 0; 3287 3288 case SIOCGIFSLAVE: 3289 err = -EINVAL; 3290 break; 3291 3292 case SIOCGIFMAP: 3293 ifr->ifr_map.mem_start = dev->mem_start; 3294 ifr->ifr_map.mem_end = dev->mem_end; 3295 ifr->ifr_map.base_addr = dev->base_addr; 3296 ifr->ifr_map.irq = dev->irq; 3297 ifr->ifr_map.dma = dev->dma; 3298 ifr->ifr_map.port = dev->if_port; 3299 return 0; 3300 3301 case SIOCGIFINDEX: 3302 ifr->ifr_ifindex = dev->ifindex; 3303 return 0; 3304 3305 case SIOCGIFTXQLEN: 3306 ifr->ifr_qlen = dev->tx_queue_len; 3307 return 0; 3308 3309 default: 3310 /* dev_ioctl() should ensure this case 3311 * is never reached 3312 */ 3313 WARN_ON(1); 3314 err = -EINVAL; 3315 break; 3316 3317 } 3318 return err; 3319} 3320 3321/* 3322 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3323 */ 3324static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3325{ 3326 int err; 3327 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3328 3329 if (!dev) 3330 return -ENODEV; 3331 3332 switch (cmd) { 3333 case SIOCSIFFLAGS: /* Set interface flags */ 3334 return dev_change_flags(dev, ifr->ifr_flags); 3335 3336 case SIOCSIFMETRIC: /* Set the metric on the interface 3337 (currently unused) */ 3338 return -EOPNOTSUPP; 3339 3340 case SIOCSIFMTU: /* Set the MTU of a device */ 3341 return dev_set_mtu(dev, ifr->ifr_mtu); 3342 3343 case SIOCSIFHWADDR: 3344 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3345 3346 case SIOCSIFHWBROADCAST: 3347 if (ifr->ifr_hwaddr.sa_family != dev->type) 3348 return -EINVAL; 3349 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3350 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3351 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3352 return 0; 3353 3354 case SIOCSIFMAP: 3355 if (dev->set_config) { 3356 if (!netif_device_present(dev)) 3357 return -ENODEV; 3358 return dev->set_config(dev, &ifr->ifr_map); 3359 } 3360 return -EOPNOTSUPP; 3361 3362 case SIOCADDMULTI: 3363 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3364 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3365 return -EINVAL; 3366 if (!netif_device_present(dev)) 3367 return -ENODEV; 3368 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3369 dev->addr_len, 1); 3370 3371 case SIOCDELMULTI: 3372 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3373 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3374 return -EINVAL; 3375 if (!netif_device_present(dev)) 3376 return -ENODEV; 3377 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3378 dev->addr_len, 1); 3379 3380 case SIOCSIFTXQLEN: 3381 if (ifr->ifr_qlen < 0) 3382 return -EINVAL; 3383 dev->tx_queue_len = ifr->ifr_qlen; 3384 return 0; 3385 3386 case SIOCSIFNAME: 3387 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3388 return dev_change_name(dev, ifr->ifr_newname); 3389 3390 /* 3391 * Unknown or private ioctl 3392 */ 3393 3394 default: 3395 if ((cmd >= SIOCDEVPRIVATE && 3396 cmd <= SIOCDEVPRIVATE + 15) || 3397 cmd == SIOCBONDENSLAVE || 3398 cmd == SIOCBONDRELEASE || 3399 cmd == SIOCBONDSETHWADDR || 3400 cmd == SIOCBONDSLAVEINFOQUERY || 3401 cmd == SIOCBONDINFOQUERY || 3402 cmd == SIOCBONDCHANGEACTIVE || 3403 cmd == SIOCGMIIPHY || 3404 cmd == SIOCGMIIREG || 3405 cmd == SIOCSMIIREG || 3406 cmd == SIOCBRADDIF || 3407 cmd == SIOCBRDELIF || 3408 cmd == SIOCWANDEV) { 3409 err = -EOPNOTSUPP; 3410 if (dev->do_ioctl) { 3411 if (netif_device_present(dev)) 3412 err = dev->do_ioctl(dev, ifr, 3413 cmd); 3414 else 3415 err = -ENODEV; 3416 } 3417 } else 3418 err = -EINVAL; 3419 3420 } 3421 return err; 3422} 3423 3424/* 3425 * This function handles all "interface"-type I/O control requests. The actual 3426 * 'doing' part of this is dev_ifsioc above. 3427 */ 3428 3429/** 3430 * dev_ioctl - network device ioctl 3431 * @net: the applicable net namespace 3432 * @cmd: command to issue 3433 * @arg: pointer to a struct ifreq in user space 3434 * 3435 * Issue ioctl functions to devices. This is normally called by the 3436 * user space syscall interfaces but can sometimes be useful for 3437 * other purposes. The return value is the return from the syscall if 3438 * positive or a negative errno code on error. 3439 */ 3440 3441int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3442{ 3443 struct ifreq ifr; 3444 int ret; 3445 char *colon; 3446 3447 /* One special case: SIOCGIFCONF takes ifconf argument 3448 and requires shared lock, because it sleeps writing 3449 to user space. 3450 */ 3451 3452 if (cmd == SIOCGIFCONF) { 3453 rtnl_lock(); 3454 ret = dev_ifconf(net, (char __user *) arg); 3455 rtnl_unlock(); 3456 return ret; 3457 } 3458 if (cmd == SIOCGIFNAME) 3459 return dev_ifname(net, (struct ifreq __user *)arg); 3460 3461 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3462 return -EFAULT; 3463 3464 ifr.ifr_name[IFNAMSIZ-1] = 0; 3465 3466 colon = strchr(ifr.ifr_name, ':'); 3467 if (colon) 3468 *colon = 0; 3469 3470 /* 3471 * See which interface the caller is talking about. 3472 */ 3473 3474 switch (cmd) { 3475 /* 3476 * These ioctl calls: 3477 * - can be done by all. 3478 * - atomic and do not require locking. 3479 * - return a value 3480 */ 3481 case SIOCGIFFLAGS: 3482 case SIOCGIFMETRIC: 3483 case SIOCGIFMTU: 3484 case SIOCGIFHWADDR: 3485 case SIOCGIFSLAVE: 3486 case SIOCGIFMAP: 3487 case SIOCGIFINDEX: 3488 case SIOCGIFTXQLEN: 3489 dev_load(net, ifr.ifr_name); 3490 read_lock(&dev_base_lock); 3491 ret = dev_ifsioc_locked(net, &ifr, cmd); 3492 read_unlock(&dev_base_lock); 3493 if (!ret) { 3494 if (colon) 3495 *colon = ':'; 3496 if (copy_to_user(arg, &ifr, 3497 sizeof(struct ifreq))) 3498 ret = -EFAULT; 3499 } 3500 return ret; 3501 3502 case SIOCETHTOOL: 3503 dev_load(net, ifr.ifr_name); 3504 rtnl_lock(); 3505 ret = dev_ethtool(net, &ifr); 3506 rtnl_unlock(); 3507 if (!ret) { 3508 if (colon) 3509 *colon = ':'; 3510 if (copy_to_user(arg, &ifr, 3511 sizeof(struct ifreq))) 3512 ret = -EFAULT; 3513 } 3514 return ret; 3515 3516 /* 3517 * These ioctl calls: 3518 * - require superuser power. 3519 * - require strict serialization. 3520 * - return a value 3521 */ 3522 case SIOCGMIIPHY: 3523 case SIOCGMIIREG: 3524 case SIOCSIFNAME: 3525 if (!capable(CAP_NET_ADMIN)) 3526 return -EPERM; 3527 dev_load(net, ifr.ifr_name); 3528 rtnl_lock(); 3529 ret = dev_ifsioc(net, &ifr, cmd); 3530 rtnl_unlock(); 3531 if (!ret) { 3532 if (colon) 3533 *colon = ':'; 3534 if (copy_to_user(arg, &ifr, 3535 sizeof(struct ifreq))) 3536 ret = -EFAULT; 3537 } 3538 return ret; 3539 3540 /* 3541 * These ioctl calls: 3542 * - require superuser power. 3543 * - require strict serialization. 3544 * - do not return a value 3545 */ 3546 case SIOCSIFFLAGS: 3547 case SIOCSIFMETRIC: 3548 case SIOCSIFMTU: 3549 case SIOCSIFMAP: 3550 case SIOCSIFHWADDR: 3551 case SIOCSIFSLAVE: 3552 case SIOCADDMULTI: 3553 case SIOCDELMULTI: 3554 case SIOCSIFHWBROADCAST: 3555 case SIOCSIFTXQLEN: 3556 case SIOCSMIIREG: 3557 case SIOCBONDENSLAVE: 3558 case SIOCBONDRELEASE: 3559 case SIOCBONDSETHWADDR: 3560 case SIOCBONDCHANGEACTIVE: 3561 case SIOCBRADDIF: 3562 case SIOCBRDELIF: 3563 if (!capable(CAP_NET_ADMIN)) 3564 return -EPERM; 3565 /* fall through */ 3566 case SIOCBONDSLAVEINFOQUERY: 3567 case SIOCBONDINFOQUERY: 3568 dev_load(net, ifr.ifr_name); 3569 rtnl_lock(); 3570 ret = dev_ifsioc(net, &ifr, cmd); 3571 rtnl_unlock(); 3572 return ret; 3573 3574 case SIOCGIFMEM: 3575 /* Get the per device memory space. We can add this but 3576 * currently do not support it */ 3577 case SIOCSIFMEM: 3578 /* Set the per device memory buffer space. 3579 * Not applicable in our case */ 3580 case SIOCSIFLINK: 3581 return -EINVAL; 3582 3583 /* 3584 * Unknown or private ioctl. 3585 */ 3586 default: 3587 if (cmd == SIOCWANDEV || 3588 (cmd >= SIOCDEVPRIVATE && 3589 cmd <= SIOCDEVPRIVATE + 15)) { 3590 dev_load(net, ifr.ifr_name); 3591 rtnl_lock(); 3592 ret = dev_ifsioc(net, &ifr, cmd); 3593 rtnl_unlock(); 3594 if (!ret && copy_to_user(arg, &ifr, 3595 sizeof(struct ifreq))) 3596 ret = -EFAULT; 3597 return ret; 3598 } 3599 /* Take care of Wireless Extensions */ 3600 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3601 return wext_handle_ioctl(net, &ifr, cmd, arg); 3602 return -EINVAL; 3603 } 3604} 3605 3606 3607/** 3608 * dev_new_index - allocate an ifindex 3609 * @net: the applicable net namespace 3610 * 3611 * Returns a suitable unique value for a new device interface 3612 * number. The caller must hold the rtnl semaphore or the 3613 * dev_base_lock to be sure it remains unique. 3614 */ 3615static int dev_new_index(struct net *net) 3616{ 3617 static int ifindex; 3618 for (;;) { 3619 if (++ifindex <= 0) 3620 ifindex = 1; 3621 if (!__dev_get_by_index(net, ifindex)) 3622 return ifindex; 3623 } 3624} 3625 3626/* Delayed registration/unregisteration */ 3627static DEFINE_SPINLOCK(net_todo_list_lock); 3628static LIST_HEAD(net_todo_list); 3629 3630static void net_set_todo(struct net_device *dev) 3631{ 3632 spin_lock(&net_todo_list_lock); 3633 list_add_tail(&dev->todo_list, &net_todo_list); 3634 spin_unlock(&net_todo_list_lock); 3635} 3636 3637static void rollback_registered(struct net_device *dev) 3638{ 3639 BUG_ON(dev_boot_phase); 3640 ASSERT_RTNL(); 3641 3642 /* Some devices call without registering for initialization unwind. */ 3643 if (dev->reg_state == NETREG_UNINITIALIZED) { 3644 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3645 "was registered\n", dev->name, dev); 3646 3647 WARN_ON(1); 3648 return; 3649 } 3650 3651 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3652 3653 /* If device is running, close it first. */ 3654 dev_close(dev); 3655 3656 /* And unlink it from device chain. */ 3657 unlist_netdevice(dev); 3658 3659 dev->reg_state = NETREG_UNREGISTERING; 3660 3661 synchronize_net(); 3662 3663 /* Shutdown queueing discipline. */ 3664 dev_shutdown(dev); 3665 3666 3667 /* Notify protocols, that we are about to destroy 3668 this device. They should clean all the things. 3669 */ 3670 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3671 3672 /* 3673 * Flush the unicast and multicast chains 3674 */ 3675 dev_addr_discard(dev); 3676 3677 if (dev->uninit) 3678 dev->uninit(dev); 3679 3680 /* Notifier chain MUST detach us from master device. */ 3681 BUG_TRAP(!dev->master); 3682 3683 /* Remove entries from kobject tree */ 3684 netdev_unregister_kobject(dev); 3685 3686 synchronize_net(); 3687 3688 dev_put(dev); 3689} 3690 3691/** 3692 * register_netdevice - register a network device 3693 * @dev: device to register 3694 * 3695 * Take a completed network device structure and add it to the kernel 3696 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3697 * chain. 0 is returned on success. A negative errno code is returned 3698 * on a failure to set up the device, or if the name is a duplicate. 3699 * 3700 * Callers must hold the rtnl semaphore. You may want 3701 * register_netdev() instead of this. 3702 * 3703 * BUGS: 3704 * The locking appears insufficient to guarantee two parallel registers 3705 * will not get the same name. 3706 */ 3707 3708int register_netdevice(struct net_device *dev) 3709{ 3710 struct hlist_head *head; 3711 struct hlist_node *p; 3712 int ret; 3713 struct net *net; 3714 3715 BUG_ON(dev_boot_phase); 3716 ASSERT_RTNL(); 3717 3718 might_sleep(); 3719 3720 /* When net_device's are persistent, this will be fatal. */ 3721 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3722 BUG_ON(!dev_net(dev)); 3723 net = dev_net(dev); 3724 3725 spin_lock_init(&dev->queue_lock); 3726 spin_lock_init(&dev->_xmit_lock); 3727 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3728 dev->xmit_lock_owner = -1; 3729 spin_lock_init(&dev->ingress_lock); 3730 3731 dev->iflink = -1; 3732 3733 /* Init, if this function is available */ 3734 if (dev->init) { 3735 ret = dev->init(dev); 3736 if (ret) { 3737 if (ret > 0) 3738 ret = -EIO; 3739 goto out; 3740 } 3741 } 3742 3743 if (!dev_valid_name(dev->name)) { 3744 ret = -EINVAL; 3745 goto err_uninit; 3746 } 3747 3748 dev->ifindex = dev_new_index(net); 3749 if (dev->iflink == -1) 3750 dev->iflink = dev->ifindex; 3751 3752 /* Check for existence of name */ 3753 head = dev_name_hash(net, dev->name); 3754 hlist_for_each(p, head) { 3755 struct net_device *d 3756 = hlist_entry(p, struct net_device, name_hlist); 3757 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3758 ret = -EEXIST; 3759 goto err_uninit; 3760 } 3761 } 3762 3763 /* Fix illegal checksum combinations */ 3764 if ((dev->features & NETIF_F_HW_CSUM) && 3765 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3766 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3767 dev->name); 3768 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3769 } 3770 3771 if ((dev->features & NETIF_F_NO_CSUM) && 3772 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3773 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3774 dev->name); 3775 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3776 } 3777 3778 3779 /* Fix illegal SG+CSUM combinations. */ 3780 if ((dev->features & NETIF_F_SG) && 3781 !(dev->features & NETIF_F_ALL_CSUM)) { 3782 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3783 dev->name); 3784 dev->features &= ~NETIF_F_SG; 3785 } 3786 3787 /* TSO requires that SG is present as well. */ 3788 if ((dev->features & NETIF_F_TSO) && 3789 !(dev->features & NETIF_F_SG)) { 3790 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3791 dev->name); 3792 dev->features &= ~NETIF_F_TSO; 3793 } 3794 if (dev->features & NETIF_F_UFO) { 3795 if (!(dev->features & NETIF_F_HW_CSUM)) { 3796 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3797 "NETIF_F_HW_CSUM feature.\n", 3798 dev->name); 3799 dev->features &= ~NETIF_F_UFO; 3800 } 3801 if (!(dev->features & NETIF_F_SG)) { 3802 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3803 "NETIF_F_SG feature.\n", 3804 dev->name); 3805 dev->features &= ~NETIF_F_UFO; 3806 } 3807 } 3808 3809 netdev_initialize_kobject(dev); 3810 ret = netdev_register_kobject(dev); 3811 if (ret) 3812 goto err_uninit; 3813 dev->reg_state = NETREG_REGISTERED; 3814 3815 /* 3816 * Default initial state at registry is that the 3817 * device is present. 3818 */ 3819 3820 set_bit(__LINK_STATE_PRESENT, &dev->state); 3821 3822 dev_init_scheduler(dev); 3823 dev_hold(dev); 3824 list_netdevice(dev); 3825 3826 /* Notify protocols, that a new device appeared. */ 3827 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 3828 ret = notifier_to_errno(ret); 3829 if (ret) { 3830 rollback_registered(dev); 3831 dev->reg_state = NETREG_UNREGISTERED; 3832 } 3833 3834out: 3835 return ret; 3836 3837err_uninit: 3838 if (dev->uninit) 3839 dev->uninit(dev); 3840 goto out; 3841} 3842 3843/** 3844 * register_netdev - register a network device 3845 * @dev: device to register 3846 * 3847 * Take a completed network device structure and add it to the kernel 3848 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3849 * chain. 0 is returned on success. A negative errno code is returned 3850 * on a failure to set up the device, or if the name is a duplicate. 3851 * 3852 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3853 * and expands the device name if you passed a format string to 3854 * alloc_netdev. 3855 */ 3856int register_netdev(struct net_device *dev) 3857{ 3858 int err; 3859 3860 rtnl_lock(); 3861 3862 /* 3863 * If the name is a format string the caller wants us to do a 3864 * name allocation. 3865 */ 3866 if (strchr(dev->name, '%')) { 3867 err = dev_alloc_name(dev, dev->name); 3868 if (err < 0) 3869 goto out; 3870 } 3871 3872 err = register_netdevice(dev); 3873out: 3874 rtnl_unlock(); 3875 return err; 3876} 3877EXPORT_SYMBOL(register_netdev); 3878 3879/* 3880 * netdev_wait_allrefs - wait until all references are gone. 3881 * 3882 * This is called when unregistering network devices. 3883 * 3884 * Any protocol or device that holds a reference should register 3885 * for netdevice notification, and cleanup and put back the 3886 * reference if they receive an UNREGISTER event. 3887 * We can get stuck here if buggy protocols don't correctly 3888 * call dev_put. 3889 */ 3890static void netdev_wait_allrefs(struct net_device *dev) 3891{ 3892 unsigned long rebroadcast_time, warning_time; 3893 3894 rebroadcast_time = warning_time = jiffies; 3895 while (atomic_read(&dev->refcnt) != 0) { 3896 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3897 rtnl_lock(); 3898 3899 /* Rebroadcast unregister notification */ 3900 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3901 3902 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3903 &dev->state)) { 3904 /* We must not have linkwatch events 3905 * pending on unregister. If this 3906 * happens, we simply run the queue 3907 * unscheduled, resulting in a noop 3908 * for this device. 3909 */ 3910 linkwatch_run_queue(); 3911 } 3912 3913 __rtnl_unlock(); 3914 3915 rebroadcast_time = jiffies; 3916 } 3917 3918 msleep(250); 3919 3920 if (time_after(jiffies, warning_time + 10 * HZ)) { 3921 printk(KERN_EMERG "unregister_netdevice: " 3922 "waiting for %s to become free. Usage " 3923 "count = %d\n", 3924 dev->name, atomic_read(&dev->refcnt)); 3925 warning_time = jiffies; 3926 } 3927 } 3928} 3929 3930/* The sequence is: 3931 * 3932 * rtnl_lock(); 3933 * ... 3934 * register_netdevice(x1); 3935 * register_netdevice(x2); 3936 * ... 3937 * unregister_netdevice(y1); 3938 * unregister_netdevice(y2); 3939 * ... 3940 * rtnl_unlock(); 3941 * free_netdev(y1); 3942 * free_netdev(y2); 3943 * 3944 * We are invoked by rtnl_unlock() after it drops the semaphore. 3945 * This allows us to deal with problems: 3946 * 1) We can delete sysfs objects which invoke hotplug 3947 * without deadlocking with linkwatch via keventd. 3948 * 2) Since we run with the RTNL semaphore not held, we can sleep 3949 * safely in order to wait for the netdev refcnt to drop to zero. 3950 */ 3951static DEFINE_MUTEX(net_todo_run_mutex); 3952void netdev_run_todo(void) 3953{ 3954 struct list_head list; 3955 3956 /* Need to guard against multiple cpu's getting out of order. */ 3957 mutex_lock(&net_todo_run_mutex); 3958 3959 /* Not safe to do outside the semaphore. We must not return 3960 * until all unregister events invoked by the local processor 3961 * have been completed (either by this todo run, or one on 3962 * another cpu). 3963 */ 3964 if (list_empty(&net_todo_list)) 3965 goto out; 3966 3967 /* Snapshot list, allow later requests */ 3968 spin_lock(&net_todo_list_lock); 3969 list_replace_init(&net_todo_list, &list); 3970 spin_unlock(&net_todo_list_lock); 3971 3972 while (!list_empty(&list)) { 3973 struct net_device *dev 3974 = list_entry(list.next, struct net_device, todo_list); 3975 list_del(&dev->todo_list); 3976 3977 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3978 printk(KERN_ERR "network todo '%s' but state %d\n", 3979 dev->name, dev->reg_state); 3980 dump_stack(); 3981 continue; 3982 } 3983 3984 dev->reg_state = NETREG_UNREGISTERED; 3985 3986 netdev_wait_allrefs(dev); 3987 3988 /* paranoia */ 3989 BUG_ON(atomic_read(&dev->refcnt)); 3990 BUG_TRAP(!dev->ip_ptr); 3991 BUG_TRAP(!dev->ip6_ptr); 3992 BUG_TRAP(!dev->dn_ptr); 3993 3994 if (dev->destructor) 3995 dev->destructor(dev); 3996 3997 /* Free network device */ 3998 kobject_put(&dev->dev.kobj); 3999 } 4000 4001out: 4002 mutex_unlock(&net_todo_run_mutex); 4003} 4004 4005static struct net_device_stats *internal_stats(struct net_device *dev) 4006{ 4007 return &dev->stats; 4008} 4009 4010/** 4011 * alloc_netdev_mq - allocate network device 4012 * @sizeof_priv: size of private data to allocate space for 4013 * @name: device name format string 4014 * @setup: callback to initialize device 4015 * @queue_count: the number of subqueues to allocate 4016 * 4017 * Allocates a struct net_device with private data area for driver use 4018 * and performs basic initialization. Also allocates subquue structs 4019 * for each queue on the device at the end of the netdevice. 4020 */ 4021struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4022 void (*setup)(struct net_device *), unsigned int queue_count) 4023{ 4024 void *p; 4025 struct net_device *dev; 4026 int alloc_size; 4027 4028 BUG_ON(strlen(name) >= sizeof(dev->name)); 4029 4030 alloc_size = sizeof(struct net_device) + 4031 sizeof(struct net_device_subqueue) * (queue_count - 1); 4032 if (sizeof_priv) { 4033 /* ensure 32-byte alignment of private area */ 4034 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4035 alloc_size += sizeof_priv; 4036 } 4037 /* ensure 32-byte alignment of whole construct */ 4038 alloc_size += NETDEV_ALIGN_CONST; 4039 4040 p = kzalloc(alloc_size, GFP_KERNEL); 4041 if (!p) { 4042 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4043 return NULL; 4044 } 4045 4046 dev = (struct net_device *) 4047 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4048 dev->padded = (char *)dev - (char *)p; 4049 dev_net_set(dev, &init_net); 4050 4051 if (sizeof_priv) { 4052 dev->priv = ((char *)dev + 4053 ((sizeof(struct net_device) + 4054 (sizeof(struct net_device_subqueue) * 4055 (queue_count - 1)) + NETDEV_ALIGN_CONST) 4056 & ~NETDEV_ALIGN_CONST)); 4057 } 4058 4059 dev->egress_subqueue_count = queue_count; 4060 dev->gso_max_size = GSO_MAX_SIZE; 4061 4062 dev->get_stats = internal_stats; 4063 netpoll_netdev_init(dev); 4064 setup(dev); 4065 strcpy(dev->name, name); 4066 return dev; 4067} 4068EXPORT_SYMBOL(alloc_netdev_mq); 4069 4070/** 4071 * free_netdev - free network device 4072 * @dev: device 4073 * 4074 * This function does the last stage of destroying an allocated device 4075 * interface. The reference to the device object is released. 4076 * If this is the last reference then it will be freed. 4077 */ 4078void free_netdev(struct net_device *dev) 4079{ 4080 release_net(dev_net(dev)); 4081 4082 /* Compatibility with error handling in drivers */ 4083 if (dev->reg_state == NETREG_UNINITIALIZED) { 4084 kfree((char *)dev - dev->padded); 4085 return; 4086 } 4087 4088 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4089 dev->reg_state = NETREG_RELEASED; 4090 4091 /* will free via device release */ 4092 put_device(&dev->dev); 4093} 4094 4095/* Synchronize with packet receive processing. */ 4096void synchronize_net(void) 4097{ 4098 might_sleep(); 4099 synchronize_rcu(); 4100} 4101 4102/** 4103 * unregister_netdevice - remove device from the kernel 4104 * @dev: device 4105 * 4106 * This function shuts down a device interface and removes it 4107 * from the kernel tables. 4108 * 4109 * Callers must hold the rtnl semaphore. You may want 4110 * unregister_netdev() instead of this. 4111 */ 4112 4113void unregister_netdevice(struct net_device *dev) 4114{ 4115 ASSERT_RTNL(); 4116 4117 rollback_registered(dev); 4118 /* Finish processing unregister after unlock */ 4119 net_set_todo(dev); 4120} 4121 4122/** 4123 * unregister_netdev - remove device from the kernel 4124 * @dev: device 4125 * 4126 * This function shuts down a device interface and removes it 4127 * from the kernel tables. 4128 * 4129 * This is just a wrapper for unregister_netdevice that takes 4130 * the rtnl semaphore. In general you want to use this and not 4131 * unregister_netdevice. 4132 */ 4133void unregister_netdev(struct net_device *dev) 4134{ 4135 rtnl_lock(); 4136 unregister_netdevice(dev); 4137 rtnl_unlock(); 4138} 4139 4140EXPORT_SYMBOL(unregister_netdev); 4141 4142/** 4143 * dev_change_net_namespace - move device to different nethost namespace 4144 * @dev: device 4145 * @net: network namespace 4146 * @pat: If not NULL name pattern to try if the current device name 4147 * is already taken in the destination network namespace. 4148 * 4149 * This function shuts down a device interface and moves it 4150 * to a new network namespace. On success 0 is returned, on 4151 * a failure a netagive errno code is returned. 4152 * 4153 * Callers must hold the rtnl semaphore. 4154 */ 4155 4156int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4157{ 4158 char buf[IFNAMSIZ]; 4159 const char *destname; 4160 int err; 4161 4162 ASSERT_RTNL(); 4163 4164 /* Don't allow namespace local devices to be moved. */ 4165 err = -EINVAL; 4166 if (dev->features & NETIF_F_NETNS_LOCAL) 4167 goto out; 4168 4169 /* Ensure the device has been registrered */ 4170 err = -EINVAL; 4171 if (dev->reg_state != NETREG_REGISTERED) 4172 goto out; 4173 4174 /* Get out if there is nothing todo */ 4175 err = 0; 4176 if (net_eq(dev_net(dev), net)) 4177 goto out; 4178 4179 /* Pick the destination device name, and ensure 4180 * we can use it in the destination network namespace. 4181 */ 4182 err = -EEXIST; 4183 destname = dev->name; 4184 if (__dev_get_by_name(net, destname)) { 4185 /* We get here if we can't use the current device name */ 4186 if (!pat) 4187 goto out; 4188 if (!dev_valid_name(pat)) 4189 goto out; 4190 if (strchr(pat, '%')) { 4191 if (__dev_alloc_name(net, pat, buf) < 0) 4192 goto out; 4193 destname = buf; 4194 } else 4195 destname = pat; 4196 if (__dev_get_by_name(net, destname)) 4197 goto out; 4198 } 4199 4200 /* 4201 * And now a mini version of register_netdevice unregister_netdevice. 4202 */ 4203 4204 /* If device is running close it first. */ 4205 dev_close(dev); 4206 4207 /* And unlink it from device chain */ 4208 err = -ENODEV; 4209 unlist_netdevice(dev); 4210 4211 synchronize_net(); 4212 4213 /* Shutdown queueing discipline. */ 4214 dev_shutdown(dev); 4215 4216 /* Notify protocols, that we are about to destroy 4217 this device. They should clean all the things. 4218 */ 4219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4220 4221 /* 4222 * Flush the unicast and multicast chains 4223 */ 4224 dev_addr_discard(dev); 4225 4226 /* Actually switch the network namespace */ 4227 dev_net_set(dev, net); 4228 4229 /* Assign the new device name */ 4230 if (destname != dev->name) 4231 strcpy(dev->name, destname); 4232 4233 /* If there is an ifindex conflict assign a new one */ 4234 if (__dev_get_by_index(net, dev->ifindex)) { 4235 int iflink = (dev->iflink == dev->ifindex); 4236 dev->ifindex = dev_new_index(net); 4237 if (iflink) 4238 dev->iflink = dev->ifindex; 4239 } 4240 4241 /* Fixup kobjects */ 4242 netdev_unregister_kobject(dev); 4243 err = netdev_register_kobject(dev); 4244 WARN_ON(err); 4245 4246 /* Add the device back in the hashes */ 4247 list_netdevice(dev); 4248 4249 /* Notify protocols, that a new device appeared. */ 4250 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4251 4252 synchronize_net(); 4253 err = 0; 4254out: 4255 return err; 4256} 4257 4258static int dev_cpu_callback(struct notifier_block *nfb, 4259 unsigned long action, 4260 void *ocpu) 4261{ 4262 struct sk_buff **list_skb; 4263 struct net_device **list_net; 4264 struct sk_buff *skb; 4265 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4266 struct softnet_data *sd, *oldsd; 4267 4268 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4269 return NOTIFY_OK; 4270 4271 local_irq_disable(); 4272 cpu = smp_processor_id(); 4273 sd = &per_cpu(softnet_data, cpu); 4274 oldsd = &per_cpu(softnet_data, oldcpu); 4275 4276 /* Find end of our completion_queue. */ 4277 list_skb = &sd->completion_queue; 4278 while (*list_skb) 4279 list_skb = &(*list_skb)->next; 4280 /* Append completion queue from offline CPU. */ 4281 *list_skb = oldsd->completion_queue; 4282 oldsd->completion_queue = NULL; 4283 4284 /* Find end of our output_queue. */ 4285 list_net = &sd->output_queue; 4286 while (*list_net) 4287 list_net = &(*list_net)->next_sched; 4288 /* Append output queue from offline CPU. */ 4289 *list_net = oldsd->output_queue; 4290 oldsd->output_queue = NULL; 4291 4292 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4293 local_irq_enable(); 4294 4295 /* Process offline CPU's input_pkt_queue */ 4296 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4297 netif_rx(skb); 4298 4299 return NOTIFY_OK; 4300} 4301 4302#ifdef CONFIG_NET_DMA 4303/** 4304 * net_dma_rebalance - try to maintain one DMA channel per CPU 4305 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4306 * 4307 * This is called when the number of channels allocated to the net_dma client 4308 * changes. The net_dma client tries to have one DMA channel per CPU. 4309 */ 4310 4311static void net_dma_rebalance(struct net_dma *net_dma) 4312{ 4313 unsigned int cpu, i, n, chan_idx; 4314 struct dma_chan *chan; 4315 4316 if (cpus_empty(net_dma->channel_mask)) { 4317 for_each_online_cpu(cpu) 4318 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4319 return; 4320 } 4321 4322 i = 0; 4323 cpu = first_cpu(cpu_online_map); 4324 4325 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 4326 chan = net_dma->channels[chan_idx]; 4327 4328 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4329 + (i < (num_online_cpus() % 4330 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4331 4332 while(n) { 4333 per_cpu(softnet_data, cpu).net_dma = chan; 4334 cpu = next_cpu(cpu, cpu_online_map); 4335 n--; 4336 } 4337 i++; 4338 } 4339} 4340 4341/** 4342 * netdev_dma_event - event callback for the net_dma_client 4343 * @client: should always be net_dma_client 4344 * @chan: DMA channel for the event 4345 * @state: DMA state to be handled 4346 */ 4347static enum dma_state_client 4348netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4349 enum dma_state state) 4350{ 4351 int i, found = 0, pos = -1; 4352 struct net_dma *net_dma = 4353 container_of(client, struct net_dma, client); 4354 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4355 4356 spin_lock(&net_dma->lock); 4357 switch (state) { 4358 case DMA_RESOURCE_AVAILABLE: 4359 for (i = 0; i < nr_cpu_ids; i++) 4360 if (net_dma->channels[i] == chan) { 4361 found = 1; 4362 break; 4363 } else if (net_dma->channels[i] == NULL && pos < 0) 4364 pos = i; 4365 4366 if (!found && pos >= 0) { 4367 ack = DMA_ACK; 4368 net_dma->channels[pos] = chan; 4369 cpu_set(pos, net_dma->channel_mask); 4370 net_dma_rebalance(net_dma); 4371 } 4372 break; 4373 case DMA_RESOURCE_REMOVED: 4374 for (i = 0; i < nr_cpu_ids; i++) 4375 if (net_dma->channels[i] == chan) { 4376 found = 1; 4377 pos = i; 4378 break; 4379 } 4380 4381 if (found) { 4382 ack = DMA_ACK; 4383 cpu_clear(pos, net_dma->channel_mask); 4384 net_dma->channels[i] = NULL; 4385 net_dma_rebalance(net_dma); 4386 } 4387 break; 4388 default: 4389 break; 4390 } 4391 spin_unlock(&net_dma->lock); 4392 4393 return ack; 4394} 4395 4396/** 4397 * netdev_dma_regiser - register the networking subsystem as a DMA client 4398 */ 4399static int __init netdev_dma_register(void) 4400{ 4401 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4402 GFP_KERNEL); 4403 if (unlikely(!net_dma.channels)) { 4404 printk(KERN_NOTICE 4405 "netdev_dma: no memory for net_dma.channels\n"); 4406 return -ENOMEM; 4407 } 4408 spin_lock_init(&net_dma.lock); 4409 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4410 dma_async_client_register(&net_dma.client); 4411 dma_async_client_chan_request(&net_dma.client); 4412 return 0; 4413} 4414 4415#else 4416static int __init netdev_dma_register(void) { return -ENODEV; } 4417#endif /* CONFIG_NET_DMA */ 4418 4419/** 4420 * netdev_compute_feature - compute conjunction of two feature sets 4421 * @all: first feature set 4422 * @one: second feature set 4423 * 4424 * Computes a new feature set after adding a device with feature set 4425 * @one to the master device with current feature set @all. Returns 4426 * the new feature set. 4427 */ 4428int netdev_compute_features(unsigned long all, unsigned long one) 4429{ 4430 /* if device needs checksumming, downgrade to hw checksumming */ 4431 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4432 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4433 4434 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4435 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4436 all ^= NETIF_F_HW_CSUM 4437 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4438 4439 if (one & NETIF_F_GSO) 4440 one |= NETIF_F_GSO_SOFTWARE; 4441 one |= NETIF_F_GSO; 4442 4443 /* If even one device supports robust GSO, enable it for all. */ 4444 if (one & NETIF_F_GSO_ROBUST) 4445 all |= NETIF_F_GSO_ROBUST; 4446 4447 all &= one | NETIF_F_LLTX; 4448 4449 if (!(all & NETIF_F_ALL_CSUM)) 4450 all &= ~NETIF_F_SG; 4451 if (!(all & NETIF_F_SG)) 4452 all &= ~NETIF_F_GSO_MASK; 4453 4454 return all; 4455} 4456EXPORT_SYMBOL(netdev_compute_features); 4457 4458static struct hlist_head *netdev_create_hash(void) 4459{ 4460 int i; 4461 struct hlist_head *hash; 4462 4463 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4464 if (hash != NULL) 4465 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4466 INIT_HLIST_HEAD(&hash[i]); 4467 4468 return hash; 4469} 4470 4471/* Initialize per network namespace state */ 4472static int __net_init netdev_init(struct net *net) 4473{ 4474 INIT_LIST_HEAD(&net->dev_base_head); 4475 4476 net->dev_name_head = netdev_create_hash(); 4477 if (net->dev_name_head == NULL) 4478 goto err_name; 4479 4480 net->dev_index_head = netdev_create_hash(); 4481 if (net->dev_index_head == NULL) 4482 goto err_idx; 4483 4484 return 0; 4485 4486err_idx: 4487 kfree(net->dev_name_head); 4488err_name: 4489 return -ENOMEM; 4490} 4491 4492static void __net_exit netdev_exit(struct net *net) 4493{ 4494 kfree(net->dev_name_head); 4495 kfree(net->dev_index_head); 4496} 4497 4498static struct pernet_operations __net_initdata netdev_net_ops = { 4499 .init = netdev_init, 4500 .exit = netdev_exit, 4501}; 4502 4503static void __net_exit default_device_exit(struct net *net) 4504{ 4505 struct net_device *dev, *next; 4506 /* 4507 * Push all migratable of the network devices back to the 4508 * initial network namespace 4509 */ 4510 rtnl_lock(); 4511 for_each_netdev_safe(net, dev, next) { 4512 int err; 4513 char fb_name[IFNAMSIZ]; 4514 4515 /* Ignore unmoveable devices (i.e. loopback) */ 4516 if (dev->features & NETIF_F_NETNS_LOCAL) 4517 continue; 4518 4519 /* Push remaing network devices to init_net */ 4520 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4521 err = dev_change_net_namespace(dev, &init_net, fb_name); 4522 if (err) { 4523 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4524 __func__, dev->name, err); 4525 BUG(); 4526 } 4527 } 4528 rtnl_unlock(); 4529} 4530 4531static struct pernet_operations __net_initdata default_device_ops = { 4532 .exit = default_device_exit, 4533}; 4534 4535/* 4536 * Initialize the DEV module. At boot time this walks the device list and 4537 * unhooks any devices that fail to initialise (normally hardware not 4538 * present) and leaves us with a valid list of present and active devices. 4539 * 4540 */ 4541 4542/* 4543 * This is called single threaded during boot, so no need 4544 * to take the rtnl semaphore. 4545 */ 4546static int __init net_dev_init(void) 4547{ 4548 int i, rc = -ENOMEM; 4549 4550 BUG_ON(!dev_boot_phase); 4551 4552 if (dev_proc_init()) 4553 goto out; 4554 4555 if (netdev_kobject_init()) 4556 goto out; 4557 4558 INIT_LIST_HEAD(&ptype_all); 4559 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4560 INIT_LIST_HEAD(&ptype_base[i]); 4561 4562 if (register_pernet_subsys(&netdev_net_ops)) 4563 goto out; 4564 4565 if (register_pernet_device(&default_device_ops)) 4566 goto out; 4567 4568 /* 4569 * Initialise the packet receive queues. 4570 */ 4571 4572 for_each_possible_cpu(i) { 4573 struct softnet_data *queue; 4574 4575 queue = &per_cpu(softnet_data, i); 4576 skb_queue_head_init(&queue->input_pkt_queue); 4577 queue->completion_queue = NULL; 4578 INIT_LIST_HEAD(&queue->poll_list); 4579 4580 queue->backlog.poll = process_backlog; 4581 queue->backlog.weight = weight_p; 4582 } 4583 4584 netdev_dma_register(); 4585 4586 dev_boot_phase = 0; 4587 4588 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4589 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4590 4591 hotcpu_notifier(dev_cpu_callback, 0); 4592 dst_init(); 4593 dev_mcast_init(); 4594 rc = 0; 4595out: 4596 return rc; 4597} 4598 4599subsys_initcall(net_dev_init); 4600 4601EXPORT_SYMBOL(__dev_get_by_index); 4602EXPORT_SYMBOL(__dev_get_by_name); 4603EXPORT_SYMBOL(__dev_remove_pack); 4604EXPORT_SYMBOL(dev_valid_name); 4605EXPORT_SYMBOL(dev_add_pack); 4606EXPORT_SYMBOL(dev_alloc_name); 4607EXPORT_SYMBOL(dev_close); 4608EXPORT_SYMBOL(dev_get_by_flags); 4609EXPORT_SYMBOL(dev_get_by_index); 4610EXPORT_SYMBOL(dev_get_by_name); 4611EXPORT_SYMBOL(dev_open); 4612EXPORT_SYMBOL(dev_queue_xmit); 4613EXPORT_SYMBOL(dev_remove_pack); 4614EXPORT_SYMBOL(dev_set_allmulti); 4615EXPORT_SYMBOL(dev_set_promiscuity); 4616EXPORT_SYMBOL(dev_change_flags); 4617EXPORT_SYMBOL(dev_set_mtu); 4618EXPORT_SYMBOL(dev_set_mac_address); 4619EXPORT_SYMBOL(free_netdev); 4620EXPORT_SYMBOL(netdev_boot_setup_check); 4621EXPORT_SYMBOL(netdev_set_master); 4622EXPORT_SYMBOL(netdev_state_change); 4623EXPORT_SYMBOL(netif_receive_skb); 4624EXPORT_SYMBOL(netif_rx); 4625EXPORT_SYMBOL(register_gifconf); 4626EXPORT_SYMBOL(register_netdevice); 4627EXPORT_SYMBOL(register_netdevice_notifier); 4628EXPORT_SYMBOL(skb_checksum_help); 4629EXPORT_SYMBOL(synchronize_net); 4630EXPORT_SYMBOL(unregister_netdevice); 4631EXPORT_SYMBOL(unregister_netdevice_notifier); 4632EXPORT_SYMBOL(net_enable_timestamp); 4633EXPORT_SYMBOL(net_disable_timestamp); 4634EXPORT_SYMBOL(dev_get_flags); 4635 4636#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4637EXPORT_SYMBOL(br_handle_frame_hook); 4638EXPORT_SYMBOL(br_fdb_get_hook); 4639EXPORT_SYMBOL(br_fdb_put_hook); 4640#endif 4641 4642#ifdef CONFIG_KMOD 4643EXPORT_SYMBOL(dev_load); 4644#endif 4645 4646EXPORT_PER_CPU_SYMBOL(softnet_data);