at v2.6.26 12 kB view raw
1/* 2 * lib/prio_tree.c - priority search tree 3 * 4 * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> 5 * 6 * This file is released under the GPL v2. 7 * 8 * Based on the radix priority search tree proposed by Edward M. McCreight 9 * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 10 * 11 * 02Feb2004 Initial version 12 */ 13 14#include <linux/init.h> 15#include <linux/mm.h> 16#include <linux/prio_tree.h> 17 18/* 19 * A clever mix of heap and radix trees forms a radix priority search tree (PST) 20 * which is useful for storing intervals, e.g, we can consider a vma as a closed 21 * interval of file pages [offset_begin, offset_end], and store all vmas that 22 * map a file in a PST. Then, using the PST, we can answer a stabbing query, 23 * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a 24 * given input interval X (a set of consecutive file pages), in "O(log n + m)" 25 * time where 'log n' is the height of the PST, and 'm' is the number of stored 26 * intervals (vmas) that overlap (map) with the input interval X (the set of 27 * consecutive file pages). 28 * 29 * In our implementation, we store closed intervals of the form [radix_index, 30 * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST 31 * is designed for storing intervals with unique radix indices, i.e., each 32 * interval have different radix_index. However, this limitation can be easily 33 * overcome by using the size, i.e., heap_index - radix_index, as part of the 34 * index, so we index the tree using [(radix_index,size), heap_index]. 35 * 36 * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit 37 * machine, the maximum height of a PST can be 64. We can use a balanced version 38 * of the priority search tree to optimize the tree height, but the balanced 39 * tree proposed by McCreight is too complex and memory-hungry for our purpose. 40 */ 41 42/* 43 * The following macros are used for implementing prio_tree for i_mmap 44 */ 45 46#define RADIX_INDEX(vma) ((vma)->vm_pgoff) 47#define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) 48/* avoid overflow */ 49#define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) 50 51 52static void get_index(const struct prio_tree_root *root, 53 const struct prio_tree_node *node, 54 unsigned long *radix, unsigned long *heap) 55{ 56 if (root->raw) { 57 struct vm_area_struct *vma = prio_tree_entry( 58 node, struct vm_area_struct, shared.prio_tree_node); 59 60 *radix = RADIX_INDEX(vma); 61 *heap = HEAP_INDEX(vma); 62 } 63 else { 64 *radix = node->start; 65 *heap = node->last; 66 } 67} 68 69static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; 70 71void __init prio_tree_init(void) 72{ 73 unsigned int i; 74 75 for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) 76 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; 77 index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; 78} 79 80/* 81 * Maximum heap_index that can be stored in a PST with index_bits bits 82 */ 83static inline unsigned long prio_tree_maxindex(unsigned int bits) 84{ 85 return index_bits_to_maxindex[bits - 1]; 86} 87 88/* 89 * Extend a priority search tree so that it can store a node with heap_index 90 * max_heap_index. In the worst case, this algorithm takes O((log n)^2). 91 * However, this function is used rarely and the common case performance is 92 * not bad. 93 */ 94static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, 95 struct prio_tree_node *node, unsigned long max_heap_index) 96{ 97 struct prio_tree_node *first = NULL, *prev, *last = NULL; 98 99 if (max_heap_index > prio_tree_maxindex(root->index_bits)) 100 root->index_bits++; 101 102 while (max_heap_index > prio_tree_maxindex(root->index_bits)) { 103 root->index_bits++; 104 105 if (prio_tree_empty(root)) 106 continue; 107 108 if (first == NULL) { 109 first = root->prio_tree_node; 110 prio_tree_remove(root, root->prio_tree_node); 111 INIT_PRIO_TREE_NODE(first); 112 last = first; 113 } else { 114 prev = last; 115 last = root->prio_tree_node; 116 prio_tree_remove(root, root->prio_tree_node); 117 INIT_PRIO_TREE_NODE(last); 118 prev->left = last; 119 last->parent = prev; 120 } 121 } 122 123 INIT_PRIO_TREE_NODE(node); 124 125 if (first) { 126 node->left = first; 127 first->parent = node; 128 } else 129 last = node; 130 131 if (!prio_tree_empty(root)) { 132 last->left = root->prio_tree_node; 133 last->left->parent = last; 134 } 135 136 root->prio_tree_node = node; 137 return node; 138} 139 140/* 141 * Replace a prio_tree_node with a new node and return the old node 142 */ 143struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, 144 struct prio_tree_node *old, struct prio_tree_node *node) 145{ 146 INIT_PRIO_TREE_NODE(node); 147 148 if (prio_tree_root(old)) { 149 BUG_ON(root->prio_tree_node != old); 150 /* 151 * We can reduce root->index_bits here. However, it is complex 152 * and does not help much to improve performance (IMO). 153 */ 154 node->parent = node; 155 root->prio_tree_node = node; 156 } else { 157 node->parent = old->parent; 158 if (old->parent->left == old) 159 old->parent->left = node; 160 else 161 old->parent->right = node; 162 } 163 164 if (!prio_tree_left_empty(old)) { 165 node->left = old->left; 166 old->left->parent = node; 167 } 168 169 if (!prio_tree_right_empty(old)) { 170 node->right = old->right; 171 old->right->parent = node; 172 } 173 174 return old; 175} 176 177/* 178 * Insert a prio_tree_node @node into a radix priority search tree @root. The 179 * algorithm typically takes O(log n) time where 'log n' is the number of bits 180 * required to represent the maximum heap_index. In the worst case, the algo 181 * can take O((log n)^2) - check prio_tree_expand. 182 * 183 * If a prior node with same radix_index and heap_index is already found in 184 * the tree, then returns the address of the prior node. Otherwise, inserts 185 * @node into the tree and returns @node. 186 */ 187struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, 188 struct prio_tree_node *node) 189{ 190 struct prio_tree_node *cur, *res = node; 191 unsigned long radix_index, heap_index; 192 unsigned long r_index, h_index, index, mask; 193 int size_flag = 0; 194 195 get_index(root, node, &radix_index, &heap_index); 196 197 if (prio_tree_empty(root) || 198 heap_index > prio_tree_maxindex(root->index_bits)) 199 return prio_tree_expand(root, node, heap_index); 200 201 cur = root->prio_tree_node; 202 mask = 1UL << (root->index_bits - 1); 203 204 while (mask) { 205 get_index(root, cur, &r_index, &h_index); 206 207 if (r_index == radix_index && h_index == heap_index) 208 return cur; 209 210 if (h_index < heap_index || 211 (h_index == heap_index && r_index > radix_index)) { 212 struct prio_tree_node *tmp = node; 213 node = prio_tree_replace(root, cur, node); 214 cur = tmp; 215 /* swap indices */ 216 index = r_index; 217 r_index = radix_index; 218 radix_index = index; 219 index = h_index; 220 h_index = heap_index; 221 heap_index = index; 222 } 223 224 if (size_flag) 225 index = heap_index - radix_index; 226 else 227 index = radix_index; 228 229 if (index & mask) { 230 if (prio_tree_right_empty(cur)) { 231 INIT_PRIO_TREE_NODE(node); 232 cur->right = node; 233 node->parent = cur; 234 return res; 235 } else 236 cur = cur->right; 237 } else { 238 if (prio_tree_left_empty(cur)) { 239 INIT_PRIO_TREE_NODE(node); 240 cur->left = node; 241 node->parent = cur; 242 return res; 243 } else 244 cur = cur->left; 245 } 246 247 mask >>= 1; 248 249 if (!mask) { 250 mask = 1UL << (BITS_PER_LONG - 1); 251 size_flag = 1; 252 } 253 } 254 /* Should not reach here */ 255 BUG(); 256 return NULL; 257} 258 259/* 260 * Remove a prio_tree_node @node from a radix priority search tree @root. The 261 * algorithm takes O(log n) time where 'log n' is the number of bits required 262 * to represent the maximum heap_index. 263 */ 264void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) 265{ 266 struct prio_tree_node *cur; 267 unsigned long r_index, h_index_right, h_index_left; 268 269 cur = node; 270 271 while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { 272 if (!prio_tree_left_empty(cur)) 273 get_index(root, cur->left, &r_index, &h_index_left); 274 else { 275 cur = cur->right; 276 continue; 277 } 278 279 if (!prio_tree_right_empty(cur)) 280 get_index(root, cur->right, &r_index, &h_index_right); 281 else { 282 cur = cur->left; 283 continue; 284 } 285 286 /* both h_index_left and h_index_right cannot be 0 */ 287 if (h_index_left >= h_index_right) 288 cur = cur->left; 289 else 290 cur = cur->right; 291 } 292 293 if (prio_tree_root(cur)) { 294 BUG_ON(root->prio_tree_node != cur); 295 __INIT_PRIO_TREE_ROOT(root, root->raw); 296 return; 297 } 298 299 if (cur->parent->right == cur) 300 cur->parent->right = cur->parent; 301 else 302 cur->parent->left = cur->parent; 303 304 while (cur != node) 305 cur = prio_tree_replace(root, cur->parent, cur); 306} 307 308/* 309 * Following functions help to enumerate all prio_tree_nodes in the tree that 310 * overlap with the input interval X [radix_index, heap_index]. The enumeration 311 * takes O(log n + m) time where 'log n' is the height of the tree (which is 312 * proportional to # of bits required to represent the maximum heap_index) and 313 * 'm' is the number of prio_tree_nodes that overlap the interval X. 314 */ 315 316static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, 317 unsigned long *r_index, unsigned long *h_index) 318{ 319 if (prio_tree_left_empty(iter->cur)) 320 return NULL; 321 322 get_index(iter->root, iter->cur->left, r_index, h_index); 323 324 if (iter->r_index <= *h_index) { 325 iter->cur = iter->cur->left; 326 iter->mask >>= 1; 327 if (iter->mask) { 328 if (iter->size_level) 329 iter->size_level++; 330 } else { 331 if (iter->size_level) { 332 BUG_ON(!prio_tree_left_empty(iter->cur)); 333 BUG_ON(!prio_tree_right_empty(iter->cur)); 334 iter->size_level++; 335 iter->mask = ULONG_MAX; 336 } else { 337 iter->size_level = 1; 338 iter->mask = 1UL << (BITS_PER_LONG - 1); 339 } 340 } 341 return iter->cur; 342 } 343 344 return NULL; 345} 346 347static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, 348 unsigned long *r_index, unsigned long *h_index) 349{ 350 unsigned long value; 351 352 if (prio_tree_right_empty(iter->cur)) 353 return NULL; 354 355 if (iter->size_level) 356 value = iter->value; 357 else 358 value = iter->value | iter->mask; 359 360 if (iter->h_index < value) 361 return NULL; 362 363 get_index(iter->root, iter->cur->right, r_index, h_index); 364 365 if (iter->r_index <= *h_index) { 366 iter->cur = iter->cur->right; 367 iter->mask >>= 1; 368 iter->value = value; 369 if (iter->mask) { 370 if (iter->size_level) 371 iter->size_level++; 372 } else { 373 if (iter->size_level) { 374 BUG_ON(!prio_tree_left_empty(iter->cur)); 375 BUG_ON(!prio_tree_right_empty(iter->cur)); 376 iter->size_level++; 377 iter->mask = ULONG_MAX; 378 } else { 379 iter->size_level = 1; 380 iter->mask = 1UL << (BITS_PER_LONG - 1); 381 } 382 } 383 return iter->cur; 384 } 385 386 return NULL; 387} 388 389static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) 390{ 391 iter->cur = iter->cur->parent; 392 if (iter->mask == ULONG_MAX) 393 iter->mask = 1UL; 394 else if (iter->size_level == 1) 395 iter->mask = 1UL; 396 else 397 iter->mask <<= 1; 398 if (iter->size_level) 399 iter->size_level--; 400 if (!iter->size_level && (iter->value & iter->mask)) 401 iter->value ^= iter->mask; 402 return iter->cur; 403} 404 405static inline int overlap(struct prio_tree_iter *iter, 406 unsigned long r_index, unsigned long h_index) 407{ 408 return iter->h_index >= r_index && iter->r_index <= h_index; 409} 410 411/* 412 * prio_tree_first: 413 * 414 * Get the first prio_tree_node that overlaps with the interval [radix_index, 415 * heap_index]. Note that always radix_index <= heap_index. We do a pre-order 416 * traversal of the tree. 417 */ 418static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) 419{ 420 struct prio_tree_root *root; 421 unsigned long r_index, h_index; 422 423 INIT_PRIO_TREE_ITER(iter); 424 425 root = iter->root; 426 if (prio_tree_empty(root)) 427 return NULL; 428 429 get_index(root, root->prio_tree_node, &r_index, &h_index); 430 431 if (iter->r_index > h_index) 432 return NULL; 433 434 iter->mask = 1UL << (root->index_bits - 1); 435 iter->cur = root->prio_tree_node; 436 437 while (1) { 438 if (overlap(iter, r_index, h_index)) 439 return iter->cur; 440 441 if (prio_tree_left(iter, &r_index, &h_index)) 442 continue; 443 444 if (prio_tree_right(iter, &r_index, &h_index)) 445 continue; 446 447 break; 448 } 449 return NULL; 450} 451 452/* 453 * prio_tree_next: 454 * 455 * Get the next prio_tree_node that overlaps with the input interval in iter 456 */ 457struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) 458{ 459 unsigned long r_index, h_index; 460 461 if (iter->cur == NULL) 462 return prio_tree_first(iter); 463 464repeat: 465 while (prio_tree_left(iter, &r_index, &h_index)) 466 if (overlap(iter, r_index, h_index)) 467 return iter->cur; 468 469 while (!prio_tree_right(iter, &r_index, &h_index)) { 470 while (!prio_tree_root(iter->cur) && 471 iter->cur->parent->right == iter->cur) 472 prio_tree_parent(iter); 473 474 if (prio_tree_root(iter->cur)) 475 return NULL; 476 477 prio_tree_parent(iter); 478 } 479 480 if (overlap(iter, r_index, h_index)) 481 return iter->cur; 482 483 goto repeat; 484}