at v2.6.26 7.7 kB view raw
1/* 2 * klist.c - Routines for manipulating klists. 3 * 4 * Copyright (C) 2005 Patrick Mochel 5 * 6 * This file is released under the GPL v2. 7 * 8 * This klist interface provides a couple of structures that wrap around 9 * struct list_head to provide explicit list "head" (struct klist) and list 10 * "node" (struct klist_node) objects. For struct klist, a spinlock is 11 * included that protects access to the actual list itself. struct 12 * klist_node provides a pointer to the klist that owns it and a kref 13 * reference count that indicates the number of current users of that node 14 * in the list. 15 * 16 * The entire point is to provide an interface for iterating over a list 17 * that is safe and allows for modification of the list during the 18 * iteration (e.g. insertion and removal), including modification of the 19 * current node on the list. 20 * 21 * It works using a 3rd object type - struct klist_iter - that is declared 22 * and initialized before an iteration. klist_next() is used to acquire the 23 * next element in the list. It returns NULL if there are no more items. 24 * Internally, that routine takes the klist's lock, decrements the 25 * reference count of the previous klist_node and increments the count of 26 * the next klist_node. It then drops the lock and returns. 27 * 28 * There are primitives for adding and removing nodes to/from a klist. 29 * When deleting, klist_del() will simply decrement the reference count. 30 * Only when the count goes to 0 is the node removed from the list. 31 * klist_remove() will try to delete the node from the list and block until 32 * it is actually removed. This is useful for objects (like devices) that 33 * have been removed from the system and must be freed (but must wait until 34 * all accessors have finished). 35 */ 36 37#include <linux/klist.h> 38#include <linux/module.h> 39 40 41/** 42 * klist_init - Initialize a klist structure. 43 * @k: The klist we're initializing. 44 * @get: The get function for the embedding object (NULL if none) 45 * @put: The put function for the embedding object (NULL if none) 46 * 47 * Initialises the klist structure. If the klist_node structures are 48 * going to be embedded in refcounted objects (necessary for safe 49 * deletion) then the get/put arguments are used to initialise 50 * functions that take and release references on the embedding 51 * objects. 52 */ 53void klist_init(struct klist *k, void (*get)(struct klist_node *), 54 void (*put)(struct klist_node *)) 55{ 56 INIT_LIST_HEAD(&k->k_list); 57 spin_lock_init(&k->k_lock); 58 k->get = get; 59 k->put = put; 60} 61EXPORT_SYMBOL_GPL(klist_init); 62 63static void add_head(struct klist *k, struct klist_node *n) 64{ 65 spin_lock(&k->k_lock); 66 list_add(&n->n_node, &k->k_list); 67 spin_unlock(&k->k_lock); 68} 69 70static void add_tail(struct klist *k, struct klist_node *n) 71{ 72 spin_lock(&k->k_lock); 73 list_add_tail(&n->n_node, &k->k_list); 74 spin_unlock(&k->k_lock); 75} 76 77static void klist_node_init(struct klist *k, struct klist_node *n) 78{ 79 INIT_LIST_HEAD(&n->n_node); 80 init_completion(&n->n_removed); 81 kref_init(&n->n_ref); 82 n->n_klist = k; 83 if (k->get) 84 k->get(n); 85} 86 87/** 88 * klist_add_head - Initialize a klist_node and add it to front. 89 * @n: node we're adding. 90 * @k: klist it's going on. 91 */ 92void klist_add_head(struct klist_node *n, struct klist *k) 93{ 94 klist_node_init(k, n); 95 add_head(k, n); 96} 97EXPORT_SYMBOL_GPL(klist_add_head); 98 99/** 100 * klist_add_tail - Initialize a klist_node and add it to back. 101 * @n: node we're adding. 102 * @k: klist it's going on. 103 */ 104void klist_add_tail(struct klist_node *n, struct klist *k) 105{ 106 klist_node_init(k, n); 107 add_tail(k, n); 108} 109EXPORT_SYMBOL_GPL(klist_add_tail); 110 111/** 112 * klist_add_after - Init a klist_node and add it after an existing node 113 * @n: node we're adding. 114 * @pos: node to put @n after 115 */ 116void klist_add_after(struct klist_node *n, struct klist_node *pos) 117{ 118 struct klist *k = pos->n_klist; 119 120 klist_node_init(k, n); 121 spin_lock(&k->k_lock); 122 list_add(&n->n_node, &pos->n_node); 123 spin_unlock(&k->k_lock); 124} 125EXPORT_SYMBOL_GPL(klist_add_after); 126 127/** 128 * klist_add_before - Init a klist_node and add it before an existing node 129 * @n: node we're adding. 130 * @pos: node to put @n after 131 */ 132void klist_add_before(struct klist_node *n, struct klist_node *pos) 133{ 134 struct klist *k = pos->n_klist; 135 136 klist_node_init(k, n); 137 spin_lock(&k->k_lock); 138 list_add_tail(&n->n_node, &pos->n_node); 139 spin_unlock(&k->k_lock); 140} 141EXPORT_SYMBOL_GPL(klist_add_before); 142 143static void klist_release(struct kref *kref) 144{ 145 struct klist_node *n = container_of(kref, struct klist_node, n_ref); 146 147 list_del(&n->n_node); 148 complete(&n->n_removed); 149 n->n_klist = NULL; 150} 151 152static int klist_dec_and_del(struct klist_node *n) 153{ 154 return kref_put(&n->n_ref, klist_release); 155} 156 157/** 158 * klist_del - Decrement the reference count of node and try to remove. 159 * @n: node we're deleting. 160 */ 161void klist_del(struct klist_node *n) 162{ 163 struct klist *k = n->n_klist; 164 void (*put)(struct klist_node *) = k->put; 165 166 spin_lock(&k->k_lock); 167 if (!klist_dec_and_del(n)) 168 put = NULL; 169 spin_unlock(&k->k_lock); 170 if (put) 171 put(n); 172} 173EXPORT_SYMBOL_GPL(klist_del); 174 175/** 176 * klist_remove - Decrement the refcount of node and wait for it to go away. 177 * @n: node we're removing. 178 */ 179void klist_remove(struct klist_node *n) 180{ 181 klist_del(n); 182 wait_for_completion(&n->n_removed); 183} 184EXPORT_SYMBOL_GPL(klist_remove); 185 186/** 187 * klist_node_attached - Say whether a node is bound to a list or not. 188 * @n: Node that we're testing. 189 */ 190int klist_node_attached(struct klist_node *n) 191{ 192 return (n->n_klist != NULL); 193} 194EXPORT_SYMBOL_GPL(klist_node_attached); 195 196/** 197 * klist_iter_init_node - Initialize a klist_iter structure. 198 * @k: klist we're iterating. 199 * @i: klist_iter we're filling. 200 * @n: node to start with. 201 * 202 * Similar to klist_iter_init(), but starts the action off with @n, 203 * instead of with the list head. 204 */ 205void klist_iter_init_node(struct klist *k, struct klist_iter *i, 206 struct klist_node *n) 207{ 208 i->i_klist = k; 209 i->i_head = &k->k_list; 210 i->i_cur = n; 211 if (n) 212 kref_get(&n->n_ref); 213} 214EXPORT_SYMBOL_GPL(klist_iter_init_node); 215 216/** 217 * klist_iter_init - Iniitalize a klist_iter structure. 218 * @k: klist we're iterating. 219 * @i: klist_iter structure we're filling. 220 * 221 * Similar to klist_iter_init_node(), but start with the list head. 222 */ 223void klist_iter_init(struct klist *k, struct klist_iter *i) 224{ 225 klist_iter_init_node(k, i, NULL); 226} 227EXPORT_SYMBOL_GPL(klist_iter_init); 228 229/** 230 * klist_iter_exit - Finish a list iteration. 231 * @i: Iterator structure. 232 * 233 * Must be called when done iterating over list, as it decrements the 234 * refcount of the current node. Necessary in case iteration exited before 235 * the end of the list was reached, and always good form. 236 */ 237void klist_iter_exit(struct klist_iter *i) 238{ 239 if (i->i_cur) { 240 klist_del(i->i_cur); 241 i->i_cur = NULL; 242 } 243} 244EXPORT_SYMBOL_GPL(klist_iter_exit); 245 246static struct klist_node *to_klist_node(struct list_head *n) 247{ 248 return container_of(n, struct klist_node, n_node); 249} 250 251/** 252 * klist_next - Ante up next node in list. 253 * @i: Iterator structure. 254 * 255 * First grab list lock. Decrement the reference count of the previous 256 * node, if there was one. Grab the next node, increment its reference 257 * count, drop the lock, and return that next node. 258 */ 259struct klist_node *klist_next(struct klist_iter *i) 260{ 261 struct list_head *next; 262 struct klist_node *lnode = i->i_cur; 263 struct klist_node *knode = NULL; 264 void (*put)(struct klist_node *) = i->i_klist->put; 265 266 spin_lock(&i->i_klist->k_lock); 267 if (lnode) { 268 next = lnode->n_node.next; 269 if (!klist_dec_and_del(lnode)) 270 put = NULL; 271 } else 272 next = i->i_head->next; 273 274 if (next != i->i_head) { 275 knode = to_klist_node(next); 276 kref_get(&knode->n_ref); 277 } 278 i->i_cur = knode; 279 spin_unlock(&i->i_klist->k_lock); 280 if (put && lnode) 281 put(lnode); 282 return knode; 283} 284EXPORT_SYMBOL_GPL(klist_next);