at v2.6.26 64 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23 24struct usb_device; 25struct usb_driver; 26struct wusb_dev; 27 28/*-------------------------------------------------------------------------*/ 29 30/* 31 * Host-side wrappers for standard USB descriptors ... these are parsed 32 * from the data provided by devices. Parsing turns them from a flat 33 * sequence of descriptors into a hierarchy: 34 * 35 * - devices have one (usually) or more configs; 36 * - configs have one (often) or more interfaces; 37 * - interfaces have one (usually) or more settings; 38 * - each interface setting has zero or (usually) more endpoints. 39 * 40 * And there might be other descriptors mixed in with those. 41 * 42 * Devices may also have class-specific or vendor-specific descriptors. 43 */ 44 45struct ep_device; 46 47/** 48 * struct usb_host_endpoint - host-side endpoint descriptor and queue 49 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 50 * @urb_list: urbs queued to this endpoint; maintained by usbcore 51 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 52 * with one or more transfer descriptors (TDs) per urb 53 * @ep_dev: ep_device for sysfs info 54 * @extra: descriptors following this endpoint in the configuration 55 * @extralen: how many bytes of "extra" are valid 56 * @enabled: URBs may be submitted to this endpoint 57 * 58 * USB requests are always queued to a given endpoint, identified by a 59 * descriptor within an active interface in a given USB configuration. 60 */ 61struct usb_host_endpoint { 62 struct usb_endpoint_descriptor desc; 63 struct list_head urb_list; 64 void *hcpriv; 65 struct ep_device *ep_dev; /* For sysfs info */ 66 67 unsigned char *extra; /* Extra descriptors */ 68 int extralen; 69 int enabled; 70}; 71 72/* host-side wrapper for one interface setting's parsed descriptors */ 73struct usb_host_interface { 74 struct usb_interface_descriptor desc; 75 76 /* array of desc.bNumEndpoint endpoints associated with this 77 * interface setting. these will be in no particular order. 78 */ 79 struct usb_host_endpoint *endpoint; 80 81 char *string; /* iInterface string, if present */ 82 unsigned char *extra; /* Extra descriptors */ 83 int extralen; 84}; 85 86enum usb_interface_condition { 87 USB_INTERFACE_UNBOUND = 0, 88 USB_INTERFACE_BINDING, 89 USB_INTERFACE_BOUND, 90 USB_INTERFACE_UNBINDING, 91}; 92 93/** 94 * struct usb_interface - what usb device drivers talk to 95 * @altsetting: array of interface structures, one for each alternate 96 * setting that may be selected. Each one includes a set of 97 * endpoint configurations. They will be in no particular order. 98 * @cur_altsetting: the current altsetting. 99 * @num_altsetting: number of altsettings defined. 100 * @intf_assoc: interface association descriptor 101 * @minor: the minor number assigned to this interface, if this 102 * interface is bound to a driver that uses the USB major number. 103 * If this interface does not use the USB major, this field should 104 * be unused. The driver should set this value in the probe() 105 * function of the driver, after it has been assigned a minor 106 * number from the USB core by calling usb_register_dev(). 107 * @condition: binding state of the interface: not bound, binding 108 * (in probe()), bound to a driver, or unbinding (in disconnect()) 109 * @is_active: flag set when the interface is bound and not suspended. 110 * @sysfs_files_created: sysfs attributes exist 111 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 112 * capability during autosuspend. 113 * @dev: driver model's view of this device 114 * @usb_dev: if an interface is bound to the USB major, this will point 115 * to the sysfs representation for that device. 116 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not 117 * allowed unless the counter is 0. 118 * 119 * USB device drivers attach to interfaces on a physical device. Each 120 * interface encapsulates a single high level function, such as feeding 121 * an audio stream to a speaker or reporting a change in a volume control. 122 * Many USB devices only have one interface. The protocol used to talk to 123 * an interface's endpoints can be defined in a usb "class" specification, 124 * or by a product's vendor. The (default) control endpoint is part of 125 * every interface, but is never listed among the interface's descriptors. 126 * 127 * The driver that is bound to the interface can use standard driver model 128 * calls such as dev_get_drvdata() on the dev member of this structure. 129 * 130 * Each interface may have alternate settings. The initial configuration 131 * of a device sets altsetting 0, but the device driver can change 132 * that setting using usb_set_interface(). Alternate settings are often 133 * used to control the use of periodic endpoints, such as by having 134 * different endpoints use different amounts of reserved USB bandwidth. 135 * All standards-conformant USB devices that use isochronous endpoints 136 * will use them in non-default settings. 137 * 138 * The USB specification says that alternate setting numbers must run from 139 * 0 to one less than the total number of alternate settings. But some 140 * devices manage to mess this up, and the structures aren't necessarily 141 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 142 * look up an alternate setting in the altsetting array based on its number. 143 */ 144struct usb_interface { 145 /* array of alternate settings for this interface, 146 * stored in no particular order */ 147 struct usb_host_interface *altsetting; 148 149 struct usb_host_interface *cur_altsetting; /* the currently 150 * active alternate setting */ 151 unsigned num_altsetting; /* number of alternate settings */ 152 153 /* If there is an interface association descriptor then it will list 154 * the associated interfaces */ 155 struct usb_interface_assoc_descriptor *intf_assoc; 156 157 int minor; /* minor number this interface is 158 * bound to */ 159 enum usb_interface_condition condition; /* state of binding */ 160 unsigned is_active:1; /* the interface is not suspended */ 161 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 162 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 163 164 struct device dev; /* interface specific device info */ 165 struct device *usb_dev; 166 int pm_usage_cnt; /* usage counter for autosuspend */ 167}; 168#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 169#define interface_to_usbdev(intf) \ 170 container_of(intf->dev.parent, struct usb_device, dev) 171 172static inline void *usb_get_intfdata(struct usb_interface *intf) 173{ 174 return dev_get_drvdata(&intf->dev); 175} 176 177static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 178{ 179 dev_set_drvdata(&intf->dev, data); 180} 181 182struct usb_interface *usb_get_intf(struct usb_interface *intf); 183void usb_put_intf(struct usb_interface *intf); 184 185/* this maximum is arbitrary */ 186#define USB_MAXINTERFACES 32 187#define USB_MAXIADS USB_MAXINTERFACES/2 188 189/** 190 * struct usb_interface_cache - long-term representation of a device interface 191 * @num_altsetting: number of altsettings defined. 192 * @ref: reference counter. 193 * @altsetting: variable-length array of interface structures, one for 194 * each alternate setting that may be selected. Each one includes a 195 * set of endpoint configurations. They will be in no particular order. 196 * 197 * These structures persist for the lifetime of a usb_device, unlike 198 * struct usb_interface (which persists only as long as its configuration 199 * is installed). The altsetting arrays can be accessed through these 200 * structures at any time, permitting comparison of configurations and 201 * providing support for the /proc/bus/usb/devices pseudo-file. 202 */ 203struct usb_interface_cache { 204 unsigned num_altsetting; /* number of alternate settings */ 205 struct kref ref; /* reference counter */ 206 207 /* variable-length array of alternate settings for this interface, 208 * stored in no particular order */ 209 struct usb_host_interface altsetting[0]; 210}; 211#define ref_to_usb_interface_cache(r) \ 212 container_of(r, struct usb_interface_cache, ref) 213#define altsetting_to_usb_interface_cache(a) \ 214 container_of(a, struct usb_interface_cache, altsetting[0]) 215 216/** 217 * struct usb_host_config - representation of a device's configuration 218 * @desc: the device's configuration descriptor. 219 * @string: pointer to the cached version of the iConfiguration string, if 220 * present for this configuration. 221 * @intf_assoc: list of any interface association descriptors in this config 222 * @interface: array of pointers to usb_interface structures, one for each 223 * interface in the configuration. The number of interfaces is stored 224 * in desc.bNumInterfaces. These pointers are valid only while the 225 * the configuration is active. 226 * @intf_cache: array of pointers to usb_interface_cache structures, one 227 * for each interface in the configuration. These structures exist 228 * for the entire life of the device. 229 * @extra: pointer to buffer containing all extra descriptors associated 230 * with this configuration (those preceding the first interface 231 * descriptor). 232 * @extralen: length of the extra descriptors buffer. 233 * 234 * USB devices may have multiple configurations, but only one can be active 235 * at any time. Each encapsulates a different operational environment; 236 * for example, a dual-speed device would have separate configurations for 237 * full-speed and high-speed operation. The number of configurations 238 * available is stored in the device descriptor as bNumConfigurations. 239 * 240 * A configuration can contain multiple interfaces. Each corresponds to 241 * a different function of the USB device, and all are available whenever 242 * the configuration is active. The USB standard says that interfaces 243 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 244 * of devices get this wrong. In addition, the interface array is not 245 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 246 * look up an interface entry based on its number. 247 * 248 * Device drivers should not attempt to activate configurations. The choice 249 * of which configuration to install is a policy decision based on such 250 * considerations as available power, functionality provided, and the user's 251 * desires (expressed through userspace tools). However, drivers can call 252 * usb_reset_configuration() to reinitialize the current configuration and 253 * all its interfaces. 254 */ 255struct usb_host_config { 256 struct usb_config_descriptor desc; 257 258 char *string; /* iConfiguration string, if present */ 259 260 /* List of any Interface Association Descriptors in this 261 * configuration. */ 262 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 263 264 /* the interfaces associated with this configuration, 265 * stored in no particular order */ 266 struct usb_interface *interface[USB_MAXINTERFACES]; 267 268 /* Interface information available even when this is not the 269 * active configuration */ 270 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 271 272 unsigned char *extra; /* Extra descriptors */ 273 int extralen; 274}; 275 276int __usb_get_extra_descriptor(char *buffer, unsigned size, 277 unsigned char type, void **ptr); 278#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 279 __usb_get_extra_descriptor((ifpoint)->extra, \ 280 (ifpoint)->extralen, \ 281 type, (void **)ptr) 282 283/* ----------------------------------------------------------------------- */ 284 285/* USB device number allocation bitmap */ 286struct usb_devmap { 287 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 288}; 289 290/* 291 * Allocated per bus (tree of devices) we have: 292 */ 293struct usb_bus { 294 struct device *controller; /* host/master side hardware */ 295 int busnum; /* Bus number (in order of reg) */ 296 char *bus_name; /* stable id (PCI slot_name etc) */ 297 u8 uses_dma; /* Does the host controller use DMA? */ 298 u8 otg_port; /* 0, or number of OTG/HNP port */ 299 unsigned is_b_host:1; /* true during some HNP roleswitches */ 300 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 301 302 int devnum_next; /* Next open device number in 303 * round-robin allocation */ 304 305 struct usb_devmap devmap; /* device address allocation map */ 306 struct usb_device *root_hub; /* Root hub */ 307 struct list_head bus_list; /* list of busses */ 308 309 int bandwidth_allocated; /* on this bus: how much of the time 310 * reserved for periodic (intr/iso) 311 * requests is used, on average? 312 * Units: microseconds/frame. 313 * Limits: Full/low speed reserve 90%, 314 * while high speed reserves 80%. 315 */ 316 int bandwidth_int_reqs; /* number of Interrupt requests */ 317 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 318 319#ifdef CONFIG_USB_DEVICEFS 320 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 321#endif 322 struct device *dev; /* device for this bus */ 323 324#if defined(CONFIG_USB_MON) 325 struct mon_bus *mon_bus; /* non-null when associated */ 326 int monitored; /* non-zero when monitored */ 327#endif 328}; 329 330/* ----------------------------------------------------------------------- */ 331 332/* This is arbitrary. 333 * From USB 2.0 spec Table 11-13, offset 7, a hub can 334 * have up to 255 ports. The most yet reported is 10. 335 * 336 * Current Wireless USB host hardware (Intel i1480 for example) allows 337 * up to 22 devices to connect. Upcoming hardware might raise that 338 * limit. Because the arrays need to add a bit for hub status data, we 339 * do 31, so plus one evens out to four bytes. 340 */ 341#define USB_MAXCHILDREN (31) 342 343struct usb_tt; 344 345/** 346 * struct usb_device - kernel's representation of a USB device 347 * @devnum: device number; address on a USB bus 348 * @devpath: device ID string for use in messages (e.g., /port/...) 349 * @state: device state: configured, not attached, etc. 350 * @speed: device speed: high/full/low (or error) 351 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 352 * @ttport: device port on that tt hub 353 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 354 * @parent: our hub, unless we're the root 355 * @bus: bus we're part of 356 * @ep0: endpoint 0 data (default control pipe) 357 * @dev: generic device interface 358 * @descriptor: USB device descriptor 359 * @config: all of the device's configs 360 * @actconfig: the active configuration 361 * @ep_in: array of IN endpoints 362 * @ep_out: array of OUT endpoints 363 * @rawdescriptors: raw descriptors for each config 364 * @bus_mA: Current available from the bus 365 * @portnum: parent port number (origin 1) 366 * @level: number of USB hub ancestors 367 * @can_submit: URBs may be submitted 368 * @discon_suspended: disconnected while suspended 369 * @persist_enabled: USB_PERSIST enabled for this device 370 * @have_langid: whether string_langid is valid 371 * @authorized: policy has said we can use it; 372 * (user space) policy determines if we authorize this device to be 373 * used or not. By default, wired USB devices are authorized. 374 * WUSB devices are not, until we authorize them from user space. 375 * FIXME -- complete doc 376 * @authenticated: Crypto authentication passed 377 * @wusb: device is Wireless USB 378 * @string_langid: language ID for strings 379 * @product: iProduct string, if present (static) 380 * @manufacturer: iManufacturer string, if present (static) 381 * @serial: iSerialNumber string, if present (static) 382 * @filelist: usbfs files that are open to this device 383 * @usb_classdev: USB class device that was created for usbfs device 384 * access from userspace 385 * @usbfs_dentry: usbfs dentry entry for the device 386 * @maxchild: number of ports if hub 387 * @children: child devices - USB devices that are attached to this hub 388 * @pm_usage_cnt: usage counter for autosuspend 389 * @quirks: quirks of the whole device 390 * @urbnum: number of URBs submitted for the whole device 391 * @active_duration: total time device is not suspended 392 * @autosuspend: for delayed autosuspends 393 * @pm_mutex: protects PM operations 394 * @last_busy: time of last use 395 * @autosuspend_delay: in jiffies 396 * @connect_time: time device was first connected 397 * @auto_pm: autosuspend/resume in progress 398 * @do_remote_wakeup: remote wakeup should be enabled 399 * @reset_resume: needs reset instead of resume 400 * @autosuspend_disabled: autosuspend disabled by the user 401 * @autoresume_disabled: autoresume disabled by the user 402 * @skip_sys_resume: skip the next system resume 403 * 404 * Notes: 405 * Usbcore drivers should not set usbdev->state directly. Instead use 406 * usb_set_device_state(). 407 */ 408struct usb_device { 409 int devnum; 410 char devpath [16]; 411 enum usb_device_state state; 412 enum usb_device_speed speed; 413 414 struct usb_tt *tt; 415 int ttport; 416 417 unsigned int toggle[2]; 418 419 struct usb_device *parent; 420 struct usb_bus *bus; 421 struct usb_host_endpoint ep0; 422 423 struct device dev; 424 425 struct usb_device_descriptor descriptor; 426 struct usb_host_config *config; 427 428 struct usb_host_config *actconfig; 429 struct usb_host_endpoint *ep_in[16]; 430 struct usb_host_endpoint *ep_out[16]; 431 432 char **rawdescriptors; 433 434 unsigned short bus_mA; 435 u8 portnum; 436 u8 level; 437 438 unsigned can_submit:1; 439 unsigned discon_suspended:1; 440 unsigned persist_enabled:1; 441 unsigned have_langid:1; 442 unsigned authorized:1; 443 unsigned authenticated:1; 444 unsigned wusb:1; 445 int string_langid; 446 447 /* static strings from the device */ 448 char *product; 449 char *manufacturer; 450 char *serial; 451 452 struct list_head filelist; 453#ifdef CONFIG_USB_DEVICE_CLASS 454 struct device *usb_classdev; 455#endif 456#ifdef CONFIG_USB_DEVICEFS 457 struct dentry *usbfs_dentry; 458#endif 459 460 int maxchild; 461 struct usb_device *children[USB_MAXCHILDREN]; 462 463 int pm_usage_cnt; 464 u32 quirks; 465 atomic_t urbnum; 466 467 unsigned long active_duration; 468 469#ifdef CONFIG_PM 470 struct delayed_work autosuspend; 471 struct mutex pm_mutex; 472 473 unsigned long last_busy; 474 int autosuspend_delay; 475 unsigned long connect_time; 476 477 unsigned auto_pm:1; 478 unsigned do_remote_wakeup:1; 479 unsigned reset_resume:1; 480 unsigned autosuspend_disabled:1; 481 unsigned autoresume_disabled:1; 482 unsigned skip_sys_resume:1; 483#endif 484 struct wusb_dev *wusb_dev; 485}; 486#define to_usb_device(d) container_of(d, struct usb_device, dev) 487 488extern struct usb_device *usb_get_dev(struct usb_device *dev); 489extern void usb_put_dev(struct usb_device *dev); 490 491/* USB device locking */ 492#define usb_lock_device(udev) down(&(udev)->dev.sem) 493#define usb_unlock_device(udev) up(&(udev)->dev.sem) 494#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 495extern int usb_lock_device_for_reset(struct usb_device *udev, 496 const struct usb_interface *iface); 497 498/* USB port reset for device reinitialization */ 499extern int usb_reset_device(struct usb_device *dev); 500extern int usb_reset_composite_device(struct usb_device *dev, 501 struct usb_interface *iface); 502 503extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 504 505/* USB autosuspend and autoresume */ 506#ifdef CONFIG_USB_SUSPEND 507extern int usb_autopm_set_interface(struct usb_interface *intf); 508extern int usb_autopm_get_interface(struct usb_interface *intf); 509extern void usb_autopm_put_interface(struct usb_interface *intf); 510 511static inline void usb_autopm_enable(struct usb_interface *intf) 512{ 513 intf->pm_usage_cnt = 0; 514 usb_autopm_set_interface(intf); 515} 516 517static inline void usb_autopm_disable(struct usb_interface *intf) 518{ 519 intf->pm_usage_cnt = 1; 520 usb_autopm_set_interface(intf); 521} 522 523static inline void usb_mark_last_busy(struct usb_device *udev) 524{ 525 udev->last_busy = jiffies; 526} 527 528#else 529 530static inline int usb_autopm_set_interface(struct usb_interface *intf) 531{ return 0; } 532 533static inline int usb_autopm_get_interface(struct usb_interface *intf) 534{ return 0; } 535 536static inline void usb_autopm_put_interface(struct usb_interface *intf) 537{ } 538static inline void usb_autopm_enable(struct usb_interface *intf) 539{ } 540static inline void usb_autopm_disable(struct usb_interface *intf) 541{ } 542static inline void usb_mark_last_busy(struct usb_device *udev) 543{ } 544#endif 545 546/*-------------------------------------------------------------------------*/ 547 548/* for drivers using iso endpoints */ 549extern int usb_get_current_frame_number(struct usb_device *usb_dev); 550 551/* used these for multi-interface device registration */ 552extern int usb_driver_claim_interface(struct usb_driver *driver, 553 struct usb_interface *iface, void *priv); 554 555/** 556 * usb_interface_claimed - returns true iff an interface is claimed 557 * @iface: the interface being checked 558 * 559 * Returns true (nonzero) iff the interface is claimed, else false (zero). 560 * Callers must own the driver model's usb bus readlock. So driver 561 * probe() entries don't need extra locking, but other call contexts 562 * may need to explicitly claim that lock. 563 * 564 */ 565static inline int usb_interface_claimed(struct usb_interface *iface) 566{ 567 return (iface->dev.driver != NULL); 568} 569 570extern void usb_driver_release_interface(struct usb_driver *driver, 571 struct usb_interface *iface); 572const struct usb_device_id *usb_match_id(struct usb_interface *interface, 573 const struct usb_device_id *id); 574extern int usb_match_one_id(struct usb_interface *interface, 575 const struct usb_device_id *id); 576 577extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 578 int minor); 579extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 580 unsigned ifnum); 581extern struct usb_host_interface *usb_altnum_to_altsetting( 582 const struct usb_interface *intf, unsigned int altnum); 583 584 585/** 586 * usb_make_path - returns stable device path in the usb tree 587 * @dev: the device whose path is being constructed 588 * @buf: where to put the string 589 * @size: how big is "buf"? 590 * 591 * Returns length of the string (> 0) or negative if size was too small. 592 * 593 * This identifier is intended to be "stable", reflecting physical paths in 594 * hardware such as physical bus addresses for host controllers or ports on 595 * USB hubs. That makes it stay the same until systems are physically 596 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 597 * controllers. Adding and removing devices, including virtual root hubs 598 * in host controller driver modules, does not change these path identifers; 599 * neither does rebooting or re-enumerating. These are more useful identifiers 600 * than changeable ("unstable") ones like bus numbers or device addresses. 601 * 602 * With a partial exception for devices connected to USB 2.0 root hubs, these 603 * identifiers are also predictable. So long as the device tree isn't changed, 604 * plugging any USB device into a given hub port always gives it the same path. 605 * Because of the use of "companion" controllers, devices connected to ports on 606 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 607 * high speed, and a different one if they are full or low speed. 608 */ 609static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 610{ 611 int actual; 612 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 613 dev->devpath); 614 return (actual >= (int)size) ? -1 : actual; 615} 616 617/*-------------------------------------------------------------------------*/ 618 619/** 620 * usb_endpoint_num - get the endpoint's number 621 * @epd: endpoint to be checked 622 * 623 * Returns @epd's number: 0 to 15. 624 */ 625static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) 626{ 627 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 628} 629 630/** 631 * usb_endpoint_type - get the endpoint's transfer type 632 * @epd: endpoint to be checked 633 * 634 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according 635 * to @epd's transfer type. 636 */ 637static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) 638{ 639 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 640} 641 642/** 643 * usb_endpoint_dir_in - check if the endpoint has IN direction 644 * @epd: endpoint to be checked 645 * 646 * Returns true if the endpoint is of type IN, otherwise it returns false. 647 */ 648static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) 649{ 650 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); 651} 652 653/** 654 * usb_endpoint_dir_out - check if the endpoint has OUT direction 655 * @epd: endpoint to be checked 656 * 657 * Returns true if the endpoint is of type OUT, otherwise it returns false. 658 */ 659static inline int usb_endpoint_dir_out( 660 const struct usb_endpoint_descriptor *epd) 661{ 662 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); 663} 664 665/** 666 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type 667 * @epd: endpoint to be checked 668 * 669 * Returns true if the endpoint is of type bulk, otherwise it returns false. 670 */ 671static inline int usb_endpoint_xfer_bulk( 672 const struct usb_endpoint_descriptor *epd) 673{ 674 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 675 USB_ENDPOINT_XFER_BULK); 676} 677 678/** 679 * usb_endpoint_xfer_control - check if the endpoint has control transfer type 680 * @epd: endpoint to be checked 681 * 682 * Returns true if the endpoint is of type control, otherwise it returns false. 683 */ 684static inline int usb_endpoint_xfer_control( 685 const struct usb_endpoint_descriptor *epd) 686{ 687 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 688 USB_ENDPOINT_XFER_CONTROL); 689} 690 691/** 692 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type 693 * @epd: endpoint to be checked 694 * 695 * Returns true if the endpoint is of type interrupt, otherwise it returns 696 * false. 697 */ 698static inline int usb_endpoint_xfer_int( 699 const struct usb_endpoint_descriptor *epd) 700{ 701 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 702 USB_ENDPOINT_XFER_INT); 703} 704 705/** 706 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type 707 * @epd: endpoint to be checked 708 * 709 * Returns true if the endpoint is of type isochronous, otherwise it returns 710 * false. 711 */ 712static inline int usb_endpoint_xfer_isoc( 713 const struct usb_endpoint_descriptor *epd) 714{ 715 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 716 USB_ENDPOINT_XFER_ISOC); 717} 718 719/** 720 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN 721 * @epd: endpoint to be checked 722 * 723 * Returns true if the endpoint has bulk transfer type and IN direction, 724 * otherwise it returns false. 725 */ 726static inline int usb_endpoint_is_bulk_in( 727 const struct usb_endpoint_descriptor *epd) 728{ 729 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd)); 730} 731 732/** 733 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT 734 * @epd: endpoint to be checked 735 * 736 * Returns true if the endpoint has bulk transfer type and OUT direction, 737 * otherwise it returns false. 738 */ 739static inline int usb_endpoint_is_bulk_out( 740 const struct usb_endpoint_descriptor *epd) 741{ 742 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd)); 743} 744 745/** 746 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN 747 * @epd: endpoint to be checked 748 * 749 * Returns true if the endpoint has interrupt transfer type and IN direction, 750 * otherwise it returns false. 751 */ 752static inline int usb_endpoint_is_int_in( 753 const struct usb_endpoint_descriptor *epd) 754{ 755 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd)); 756} 757 758/** 759 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT 760 * @epd: endpoint to be checked 761 * 762 * Returns true if the endpoint has interrupt transfer type and OUT direction, 763 * otherwise it returns false. 764 */ 765static inline int usb_endpoint_is_int_out( 766 const struct usb_endpoint_descriptor *epd) 767{ 768 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd)); 769} 770 771/** 772 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN 773 * @epd: endpoint to be checked 774 * 775 * Returns true if the endpoint has isochronous transfer type and IN direction, 776 * otherwise it returns false. 777 */ 778static inline int usb_endpoint_is_isoc_in( 779 const struct usb_endpoint_descriptor *epd) 780{ 781 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd)); 782} 783 784/** 785 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT 786 * @epd: endpoint to be checked 787 * 788 * Returns true if the endpoint has isochronous transfer type and OUT direction, 789 * otherwise it returns false. 790 */ 791static inline int usb_endpoint_is_isoc_out( 792 const struct usb_endpoint_descriptor *epd) 793{ 794 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd)); 795} 796 797/*-------------------------------------------------------------------------*/ 798 799#define USB_DEVICE_ID_MATCH_DEVICE \ 800 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 801#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 802 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 803#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 804 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 805#define USB_DEVICE_ID_MATCH_DEV_INFO \ 806 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 807 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 808 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 809#define USB_DEVICE_ID_MATCH_INT_INFO \ 810 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 811 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 812 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 813 814/** 815 * USB_DEVICE - macro used to describe a specific usb device 816 * @vend: the 16 bit USB Vendor ID 817 * @prod: the 16 bit USB Product ID 818 * 819 * This macro is used to create a struct usb_device_id that matches a 820 * specific device. 821 */ 822#define USB_DEVICE(vend,prod) \ 823 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 824 .idVendor = (vend), \ 825 .idProduct = (prod) 826/** 827 * USB_DEVICE_VER - describe a specific usb device with a version range 828 * @vend: the 16 bit USB Vendor ID 829 * @prod: the 16 bit USB Product ID 830 * @lo: the bcdDevice_lo value 831 * @hi: the bcdDevice_hi value 832 * 833 * This macro is used to create a struct usb_device_id that matches a 834 * specific device, with a version range. 835 */ 836#define USB_DEVICE_VER(vend, prod, lo, hi) \ 837 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 838 .idVendor = (vend), \ 839 .idProduct = (prod), \ 840 .bcdDevice_lo = (lo), \ 841 .bcdDevice_hi = (hi) 842 843/** 844 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 845 * @vend: the 16 bit USB Vendor ID 846 * @prod: the 16 bit USB Product ID 847 * @pr: bInterfaceProtocol value 848 * 849 * This macro is used to create a struct usb_device_id that matches a 850 * specific interface protocol of devices. 851 */ 852#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 853 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 854 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 855 .idVendor = (vend), \ 856 .idProduct = (prod), \ 857 .bInterfaceProtocol = (pr) 858 859/** 860 * USB_DEVICE_INFO - macro used to describe a class of usb devices 861 * @cl: bDeviceClass value 862 * @sc: bDeviceSubClass value 863 * @pr: bDeviceProtocol value 864 * 865 * This macro is used to create a struct usb_device_id that matches a 866 * specific class of devices. 867 */ 868#define USB_DEVICE_INFO(cl, sc, pr) \ 869 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 870 .bDeviceClass = (cl), \ 871 .bDeviceSubClass = (sc), \ 872 .bDeviceProtocol = (pr) 873 874/** 875 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 876 * @cl: bInterfaceClass value 877 * @sc: bInterfaceSubClass value 878 * @pr: bInterfaceProtocol value 879 * 880 * This macro is used to create a struct usb_device_id that matches a 881 * specific class of interfaces. 882 */ 883#define USB_INTERFACE_INFO(cl, sc, pr) \ 884 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 885 .bInterfaceClass = (cl), \ 886 .bInterfaceSubClass = (sc), \ 887 .bInterfaceProtocol = (pr) 888 889/** 890 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 891 * @vend: the 16 bit USB Vendor ID 892 * @prod: the 16 bit USB Product ID 893 * @cl: bInterfaceClass value 894 * @sc: bInterfaceSubClass value 895 * @pr: bInterfaceProtocol value 896 * 897 * This macro is used to create a struct usb_device_id that matches a 898 * specific device with a specific class of interfaces. 899 * 900 * This is especially useful when explicitly matching devices that have 901 * vendor specific bDeviceClass values, but standards-compliant interfaces. 902 */ 903#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 904 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 905 | USB_DEVICE_ID_MATCH_DEVICE, \ 906 .idVendor = (vend), \ 907 .idProduct = (prod), \ 908 .bInterfaceClass = (cl), \ 909 .bInterfaceSubClass = (sc), \ 910 .bInterfaceProtocol = (pr) 911 912/* ----------------------------------------------------------------------- */ 913 914/* Stuff for dynamic usb ids */ 915struct usb_dynids { 916 spinlock_t lock; 917 struct list_head list; 918}; 919 920struct usb_dynid { 921 struct list_head node; 922 struct usb_device_id id; 923}; 924 925extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 926 struct device_driver *driver, 927 const char *buf, size_t count); 928 929/** 930 * struct usbdrv_wrap - wrapper for driver-model structure 931 * @driver: The driver-model core driver structure. 932 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 933 */ 934struct usbdrv_wrap { 935 struct device_driver driver; 936 int for_devices; 937}; 938 939/** 940 * struct usb_driver - identifies USB interface driver to usbcore 941 * @name: The driver name should be unique among USB drivers, 942 * and should normally be the same as the module name. 943 * @probe: Called to see if the driver is willing to manage a particular 944 * interface on a device. If it is, probe returns zero and uses 945 * usb_set_intfdata() to associate driver-specific data with the 946 * interface. It may also use usb_set_interface() to specify the 947 * appropriate altsetting. If unwilling to manage the interface, 948 * return -ENODEV, if genuine IO errors occured, an appropriate 949 * negative errno value. 950 * @disconnect: Called when the interface is no longer accessible, usually 951 * because its device has been (or is being) disconnected or the 952 * driver module is being unloaded. 953 * @ioctl: Used for drivers that want to talk to userspace through 954 * the "usbfs" filesystem. This lets devices provide ways to 955 * expose information to user space regardless of where they 956 * do (or don't) show up otherwise in the filesystem. 957 * @suspend: Called when the device is going to be suspended by the system. 958 * @resume: Called when the device is being resumed by the system. 959 * @reset_resume: Called when the suspended device has been reset instead 960 * of being resumed. 961 * @pre_reset: Called by usb_reset_composite_device() when the device 962 * is about to be reset. 963 * @post_reset: Called by usb_reset_composite_device() after the device 964 * has been reset 965 * @id_table: USB drivers use ID table to support hotplugging. 966 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 967 * or your driver's probe function will never get called. 968 * @dynids: used internally to hold the list of dynamically added device 969 * ids for this driver. 970 * @drvwrap: Driver-model core structure wrapper. 971 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 972 * added to this driver by preventing the sysfs file from being created. 973 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 974 * for interfaces bound to this driver. 975 * 976 * USB interface drivers must provide a name, probe() and disconnect() 977 * methods, and an id_table. Other driver fields are optional. 978 * 979 * The id_table is used in hotplugging. It holds a set of descriptors, 980 * and specialized data may be associated with each entry. That table 981 * is used by both user and kernel mode hotplugging support. 982 * 983 * The probe() and disconnect() methods are called in a context where 984 * they can sleep, but they should avoid abusing the privilege. Most 985 * work to connect to a device should be done when the device is opened, 986 * and undone at the last close. The disconnect code needs to address 987 * concurrency issues with respect to open() and close() methods, as 988 * well as forcing all pending I/O requests to complete (by unlinking 989 * them as necessary, and blocking until the unlinks complete). 990 */ 991struct usb_driver { 992 const char *name; 993 994 int (*probe) (struct usb_interface *intf, 995 const struct usb_device_id *id); 996 997 void (*disconnect) (struct usb_interface *intf); 998 999 int (*ioctl) (struct usb_interface *intf, unsigned int code, 1000 void *buf); 1001 1002 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1003 int (*resume) (struct usb_interface *intf); 1004 int (*reset_resume)(struct usb_interface *intf); 1005 1006 int (*pre_reset)(struct usb_interface *intf); 1007 int (*post_reset)(struct usb_interface *intf); 1008 1009 const struct usb_device_id *id_table; 1010 1011 struct usb_dynids dynids; 1012 struct usbdrv_wrap drvwrap; 1013 unsigned int no_dynamic_id:1; 1014 unsigned int supports_autosuspend:1; 1015}; 1016#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1017 1018/** 1019 * struct usb_device_driver - identifies USB device driver to usbcore 1020 * @name: The driver name should be unique among USB drivers, 1021 * and should normally be the same as the module name. 1022 * @probe: Called to see if the driver is willing to manage a particular 1023 * device. If it is, probe returns zero and uses dev_set_drvdata() 1024 * to associate driver-specific data with the device. If unwilling 1025 * to manage the device, return a negative errno value. 1026 * @disconnect: Called when the device is no longer accessible, usually 1027 * because it has been (or is being) disconnected or the driver's 1028 * module is being unloaded. 1029 * @suspend: Called when the device is going to be suspended by the system. 1030 * @resume: Called when the device is being resumed by the system. 1031 * @drvwrap: Driver-model core structure wrapper. 1032 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1033 * for devices bound to this driver. 1034 * 1035 * USB drivers must provide all the fields listed above except drvwrap. 1036 */ 1037struct usb_device_driver { 1038 const char *name; 1039 1040 int (*probe) (struct usb_device *udev); 1041 void (*disconnect) (struct usb_device *udev); 1042 1043 int (*suspend) (struct usb_device *udev, pm_message_t message); 1044 int (*resume) (struct usb_device *udev); 1045 struct usbdrv_wrap drvwrap; 1046 unsigned int supports_autosuspend:1; 1047}; 1048#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1049 drvwrap.driver) 1050 1051extern struct bus_type usb_bus_type; 1052 1053/** 1054 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1055 * @name: the usb class device name for this driver. Will show up in sysfs. 1056 * @fops: pointer to the struct file_operations of this driver. 1057 * @minor_base: the start of the minor range for this driver. 1058 * 1059 * This structure is used for the usb_register_dev() and 1060 * usb_unregister_dev() functions, to consolidate a number of the 1061 * parameters used for them. 1062 */ 1063struct usb_class_driver { 1064 char *name; 1065 const struct file_operations *fops; 1066 int minor_base; 1067}; 1068 1069/* 1070 * use these in module_init()/module_exit() 1071 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1072 */ 1073extern int usb_register_driver(struct usb_driver *, struct module *, 1074 const char *); 1075static inline int usb_register(struct usb_driver *driver) 1076{ 1077 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME); 1078} 1079extern void usb_deregister(struct usb_driver *); 1080 1081extern int usb_register_device_driver(struct usb_device_driver *, 1082 struct module *); 1083extern void usb_deregister_device_driver(struct usb_device_driver *); 1084 1085extern int usb_register_dev(struct usb_interface *intf, 1086 struct usb_class_driver *class_driver); 1087extern void usb_deregister_dev(struct usb_interface *intf, 1088 struct usb_class_driver *class_driver); 1089 1090extern int usb_disabled(void); 1091 1092/* ----------------------------------------------------------------------- */ 1093 1094/* 1095 * URB support, for asynchronous request completions 1096 */ 1097 1098/* 1099 * urb->transfer_flags: 1100 * 1101 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1102 */ 1103#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1104#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1105 * ignored */ 1106#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1107#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 1108#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1109#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1110#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1111 * needed */ 1112#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1113 1114#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1115#define URB_DIR_OUT 0 1116#define URB_DIR_MASK URB_DIR_IN 1117 1118struct usb_iso_packet_descriptor { 1119 unsigned int offset; 1120 unsigned int length; /* expected length */ 1121 unsigned int actual_length; 1122 int status; 1123}; 1124 1125struct urb; 1126 1127struct usb_anchor { 1128 struct list_head urb_list; 1129 wait_queue_head_t wait; 1130 spinlock_t lock; 1131}; 1132 1133static inline void init_usb_anchor(struct usb_anchor *anchor) 1134{ 1135 INIT_LIST_HEAD(&anchor->urb_list); 1136 init_waitqueue_head(&anchor->wait); 1137 spin_lock_init(&anchor->lock); 1138} 1139 1140typedef void (*usb_complete_t)(struct urb *); 1141 1142/** 1143 * struct urb - USB Request Block 1144 * @urb_list: For use by current owner of the URB. 1145 * @anchor_list: membership in the list of an anchor 1146 * @anchor: to anchor URBs to a common mooring 1147 * @ep: Points to the endpoint's data structure. Will eventually 1148 * replace @pipe. 1149 * @pipe: Holds endpoint number, direction, type, and more. 1150 * Create these values with the eight macros available; 1151 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1152 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1153 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1154 * numbers range from zero to fifteen. Note that "in" endpoint two 1155 * is a different endpoint (and pipe) from "out" endpoint two. 1156 * The current configuration controls the existence, type, and 1157 * maximum packet size of any given endpoint. 1158 * @dev: Identifies the USB device to perform the request. 1159 * @status: This is read in non-iso completion functions to get the 1160 * status of the particular request. ISO requests only use it 1161 * to tell whether the URB was unlinked; detailed status for 1162 * each frame is in the fields of the iso_frame-desc. 1163 * @transfer_flags: A variety of flags may be used to affect how URB 1164 * submission, unlinking, or operation are handled. Different 1165 * kinds of URB can use different flags. 1166 * @transfer_buffer: This identifies the buffer to (or from) which 1167 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 1168 * is set). This buffer must be suitable for DMA; allocate it with 1169 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1170 * of this buffer will be modified. This buffer is used for the data 1171 * stage of control transfers. 1172 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1173 * the device driver is saying that it provided this DMA address, 1174 * which the host controller driver should use in preference to the 1175 * transfer_buffer. 1176 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1177 * be broken up into chunks according to the current maximum packet 1178 * size for the endpoint, which is a function of the configuration 1179 * and is encoded in the pipe. When the length is zero, neither 1180 * transfer_buffer nor transfer_dma is used. 1181 * @actual_length: This is read in non-iso completion functions, and 1182 * it tells how many bytes (out of transfer_buffer_length) were 1183 * transferred. It will normally be the same as requested, unless 1184 * either an error was reported or a short read was performed. 1185 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1186 * short reads be reported as errors. 1187 * @setup_packet: Only used for control transfers, this points to eight bytes 1188 * of setup data. Control transfers always start by sending this data 1189 * to the device. Then transfer_buffer is read or written, if needed. 1190 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 1191 * device driver has provided this DMA address for the setup packet. 1192 * The host controller driver should use this in preference to 1193 * setup_packet. 1194 * @start_frame: Returns the initial frame for isochronous transfers. 1195 * @number_of_packets: Lists the number of ISO transfer buffers. 1196 * @interval: Specifies the polling interval for interrupt or isochronous 1197 * transfers. The units are frames (milliseconds) for for full and low 1198 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 1199 * @error_count: Returns the number of ISO transfers that reported errors. 1200 * @context: For use in completion functions. This normally points to 1201 * request-specific driver context. 1202 * @complete: Completion handler. This URB is passed as the parameter to the 1203 * completion function. The completion function may then do what 1204 * it likes with the URB, including resubmitting or freeing it. 1205 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1206 * collect the transfer status for each buffer. 1207 * 1208 * This structure identifies USB transfer requests. URBs must be allocated by 1209 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1210 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1211 * are submitted using usb_submit_urb(), and pending requests may be canceled 1212 * using usb_unlink_urb() or usb_kill_urb(). 1213 * 1214 * Data Transfer Buffers: 1215 * 1216 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1217 * taken from the general page pool. That is provided by transfer_buffer 1218 * (control requests also use setup_packet), and host controller drivers 1219 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1220 * mapping operations can be expensive on some platforms (perhaps using a dma 1221 * bounce buffer or talking to an IOMMU), 1222 * although they're cheap on commodity x86 and ppc hardware. 1223 * 1224 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 1225 * which tell the host controller driver that no such mapping is needed since 1226 * the device driver is DMA-aware. For example, a device driver might 1227 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 1228 * When these transfer flags are provided, host controller drivers will 1229 * attempt to use the dma addresses found in the transfer_dma and/or 1230 * setup_dma fields rather than determining a dma address themselves. (Note 1231 * that transfer_buffer and setup_packet must still be set because not all 1232 * host controllers use DMA, nor do virtual root hubs). 1233 * 1234 * Initialization: 1235 * 1236 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1237 * zero), and complete fields. All URBs must also initialize 1238 * transfer_buffer and transfer_buffer_length. They may provide the 1239 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1240 * to be treated as errors; that flag is invalid for write requests. 1241 * 1242 * Bulk URBs may 1243 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1244 * should always terminate with a short packet, even if it means adding an 1245 * extra zero length packet. 1246 * 1247 * Control URBs must provide a setup_packet. The setup_packet and 1248 * transfer_buffer may each be mapped for DMA or not, independently of 1249 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 1250 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 1251 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 1252 * 1253 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1254 * or, for highspeed devices, 125 microsecond units) 1255 * to poll for transfers. After the URB has been submitted, the interval 1256 * field reflects how the transfer was actually scheduled. 1257 * The polling interval may be more frequent than requested. 1258 * For example, some controllers have a maximum interval of 32 milliseconds, 1259 * while others support intervals of up to 1024 milliseconds. 1260 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1261 * endpoints, as well as high speed interrupt endpoints, the encoding of 1262 * the transfer interval in the endpoint descriptor is logarithmic. 1263 * Device drivers must convert that value to linear units themselves.) 1264 * 1265 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1266 * the host controller to schedule the transfer as soon as bandwidth 1267 * utilization allows, and then set start_frame to reflect the actual frame 1268 * selected during submission. Otherwise drivers must specify the start_frame 1269 * and handle the case where the transfer can't begin then. However, drivers 1270 * won't know how bandwidth is currently allocated, and while they can 1271 * find the current frame using usb_get_current_frame_number () they can't 1272 * know the range for that frame number. (Ranges for frame counter values 1273 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1274 * 1275 * Isochronous URBs have a different data transfer model, in part because 1276 * the quality of service is only "best effort". Callers provide specially 1277 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1278 * at the end. Each such packet is an individual ISO transfer. Isochronous 1279 * URBs are normally queued, submitted by drivers to arrange that 1280 * transfers are at least double buffered, and then explicitly resubmitted 1281 * in completion handlers, so 1282 * that data (such as audio or video) streams at as constant a rate as the 1283 * host controller scheduler can support. 1284 * 1285 * Completion Callbacks: 1286 * 1287 * The completion callback is made in_interrupt(), and one of the first 1288 * things that a completion handler should do is check the status field. 1289 * The status field is provided for all URBs. It is used to report 1290 * unlinked URBs, and status for all non-ISO transfers. It should not 1291 * be examined before the URB is returned to the completion handler. 1292 * 1293 * The context field is normally used to link URBs back to the relevant 1294 * driver or request state. 1295 * 1296 * When the completion callback is invoked for non-isochronous URBs, the 1297 * actual_length field tells how many bytes were transferred. This field 1298 * is updated even when the URB terminated with an error or was unlinked. 1299 * 1300 * ISO transfer status is reported in the status and actual_length fields 1301 * of the iso_frame_desc array, and the number of errors is reported in 1302 * error_count. Completion callbacks for ISO transfers will normally 1303 * (re)submit URBs to ensure a constant transfer rate. 1304 * 1305 * Note that even fields marked "public" should not be touched by the driver 1306 * when the urb is owned by the hcd, that is, since the call to 1307 * usb_submit_urb() till the entry into the completion routine. 1308 */ 1309struct urb { 1310 /* private: usb core and host controller only fields in the urb */ 1311 struct kref kref; /* reference count of the URB */ 1312 void *hcpriv; /* private data for host controller */ 1313 atomic_t use_count; /* concurrent submissions counter */ 1314 u8 reject; /* submissions will fail */ 1315 int unlinked; /* unlink error code */ 1316 1317 /* public: documented fields in the urb that can be used by drivers */ 1318 struct list_head urb_list; /* list head for use by the urb's 1319 * current owner */ 1320 struct list_head anchor_list; /* the URB may be anchored */ 1321 struct usb_anchor *anchor; 1322 struct usb_device *dev; /* (in) pointer to associated device */ 1323 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1324 unsigned int pipe; /* (in) pipe information */ 1325 int status; /* (return) non-ISO status */ 1326 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1327 void *transfer_buffer; /* (in) associated data buffer */ 1328 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1329 int transfer_buffer_length; /* (in) data buffer length */ 1330 int actual_length; /* (return) actual transfer length */ 1331 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1332 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1333 int start_frame; /* (modify) start frame (ISO) */ 1334 int number_of_packets; /* (in) number of ISO packets */ 1335 int interval; /* (modify) transfer interval 1336 * (INT/ISO) */ 1337 int error_count; /* (return) number of ISO errors */ 1338 void *context; /* (in) context for completion */ 1339 usb_complete_t complete; /* (in) completion routine */ 1340 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1341 /* (in) ISO ONLY */ 1342}; 1343 1344/* ----------------------------------------------------------------------- */ 1345 1346/** 1347 * usb_fill_control_urb - initializes a control urb 1348 * @urb: pointer to the urb to initialize. 1349 * @dev: pointer to the struct usb_device for this urb. 1350 * @pipe: the endpoint pipe 1351 * @setup_packet: pointer to the setup_packet buffer 1352 * @transfer_buffer: pointer to the transfer buffer 1353 * @buffer_length: length of the transfer buffer 1354 * @complete_fn: pointer to the usb_complete_t function 1355 * @context: what to set the urb context to. 1356 * 1357 * Initializes a control urb with the proper information needed to submit 1358 * it to a device. 1359 */ 1360static inline void usb_fill_control_urb(struct urb *urb, 1361 struct usb_device *dev, 1362 unsigned int pipe, 1363 unsigned char *setup_packet, 1364 void *transfer_buffer, 1365 int buffer_length, 1366 usb_complete_t complete_fn, 1367 void *context) 1368{ 1369 urb->dev = dev; 1370 urb->pipe = pipe; 1371 urb->setup_packet = setup_packet; 1372 urb->transfer_buffer = transfer_buffer; 1373 urb->transfer_buffer_length = buffer_length; 1374 urb->complete = complete_fn; 1375 urb->context = context; 1376} 1377 1378/** 1379 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1380 * @urb: pointer to the urb to initialize. 1381 * @dev: pointer to the struct usb_device for this urb. 1382 * @pipe: the endpoint pipe 1383 * @transfer_buffer: pointer to the transfer buffer 1384 * @buffer_length: length of the transfer buffer 1385 * @complete_fn: pointer to the usb_complete_t function 1386 * @context: what to set the urb context to. 1387 * 1388 * Initializes a bulk urb with the proper information needed to submit it 1389 * to a device. 1390 */ 1391static inline void usb_fill_bulk_urb(struct urb *urb, 1392 struct usb_device *dev, 1393 unsigned int pipe, 1394 void *transfer_buffer, 1395 int buffer_length, 1396 usb_complete_t complete_fn, 1397 void *context) 1398{ 1399 urb->dev = dev; 1400 urb->pipe = pipe; 1401 urb->transfer_buffer = transfer_buffer; 1402 urb->transfer_buffer_length = buffer_length; 1403 urb->complete = complete_fn; 1404 urb->context = context; 1405} 1406 1407/** 1408 * usb_fill_int_urb - macro to help initialize a interrupt urb 1409 * @urb: pointer to the urb to initialize. 1410 * @dev: pointer to the struct usb_device for this urb. 1411 * @pipe: the endpoint pipe 1412 * @transfer_buffer: pointer to the transfer buffer 1413 * @buffer_length: length of the transfer buffer 1414 * @complete_fn: pointer to the usb_complete_t function 1415 * @context: what to set the urb context to. 1416 * @interval: what to set the urb interval to, encoded like 1417 * the endpoint descriptor's bInterval value. 1418 * 1419 * Initializes a interrupt urb with the proper information needed to submit 1420 * it to a device. 1421 * Note that high speed interrupt endpoints use a logarithmic encoding of 1422 * the endpoint interval, and express polling intervals in microframes 1423 * (eight per millisecond) rather than in frames (one per millisecond). 1424 */ 1425static inline void usb_fill_int_urb(struct urb *urb, 1426 struct usb_device *dev, 1427 unsigned int pipe, 1428 void *transfer_buffer, 1429 int buffer_length, 1430 usb_complete_t complete_fn, 1431 void *context, 1432 int interval) 1433{ 1434 urb->dev = dev; 1435 urb->pipe = pipe; 1436 urb->transfer_buffer = transfer_buffer; 1437 urb->transfer_buffer_length = buffer_length; 1438 urb->complete = complete_fn; 1439 urb->context = context; 1440 if (dev->speed == USB_SPEED_HIGH) 1441 urb->interval = 1 << (interval - 1); 1442 else 1443 urb->interval = interval; 1444 urb->start_frame = -1; 1445} 1446 1447extern void usb_init_urb(struct urb *urb); 1448extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1449extern void usb_free_urb(struct urb *urb); 1450#define usb_put_urb usb_free_urb 1451extern struct urb *usb_get_urb(struct urb *urb); 1452extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1453extern int usb_unlink_urb(struct urb *urb); 1454extern void usb_kill_urb(struct urb *urb); 1455extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1456extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1457extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1458extern void usb_unanchor_urb(struct urb *urb); 1459extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1460 unsigned int timeout); 1461 1462/** 1463 * usb_urb_dir_in - check if an URB describes an IN transfer 1464 * @urb: URB to be checked 1465 * 1466 * Returns 1 if @urb describes an IN transfer (device-to-host), 1467 * otherwise 0. 1468 */ 1469static inline int usb_urb_dir_in(struct urb *urb) 1470{ 1471 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1472} 1473 1474/** 1475 * usb_urb_dir_out - check if an URB describes an OUT transfer 1476 * @urb: URB to be checked 1477 * 1478 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1479 * otherwise 0. 1480 */ 1481static inline int usb_urb_dir_out(struct urb *urb) 1482{ 1483 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1484} 1485 1486void *usb_buffer_alloc(struct usb_device *dev, size_t size, 1487 gfp_t mem_flags, dma_addr_t *dma); 1488void usb_buffer_free(struct usb_device *dev, size_t size, 1489 void *addr, dma_addr_t dma); 1490 1491#if 0 1492struct urb *usb_buffer_map(struct urb *urb); 1493void usb_buffer_dmasync(struct urb *urb); 1494void usb_buffer_unmap(struct urb *urb); 1495#endif 1496 1497struct scatterlist; 1498int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1499 struct scatterlist *sg, int nents); 1500#if 0 1501void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1502 struct scatterlist *sg, int n_hw_ents); 1503#endif 1504void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1505 struct scatterlist *sg, int n_hw_ents); 1506 1507/*-------------------------------------------------------------------* 1508 * SYNCHRONOUS CALL SUPPORT * 1509 *-------------------------------------------------------------------*/ 1510 1511extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1512 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1513 void *data, __u16 size, int timeout); 1514extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1515 void *data, int len, int *actual_length, int timeout); 1516extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1517 void *data, int len, int *actual_length, 1518 int timeout); 1519 1520/* wrappers around usb_control_msg() for the most common standard requests */ 1521extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1522 unsigned char descindex, void *buf, int size); 1523extern int usb_get_status(struct usb_device *dev, 1524 int type, int target, void *data); 1525extern int usb_string(struct usb_device *dev, int index, 1526 char *buf, size_t size); 1527 1528/* wrappers that also update important state inside usbcore */ 1529extern int usb_clear_halt(struct usb_device *dev, int pipe); 1530extern int usb_reset_configuration(struct usb_device *dev); 1531extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1532 1533/* this request isn't really synchronous, but it belongs with the others */ 1534extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1535 1536/* 1537 * timeouts, in milliseconds, used for sending/receiving control messages 1538 * they typically complete within a few frames (msec) after they're issued 1539 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1540 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1541 */ 1542#define USB_CTRL_GET_TIMEOUT 5000 1543#define USB_CTRL_SET_TIMEOUT 5000 1544 1545 1546/** 1547 * struct usb_sg_request - support for scatter/gather I/O 1548 * @status: zero indicates success, else negative errno 1549 * @bytes: counts bytes transferred. 1550 * 1551 * These requests are initialized using usb_sg_init(), and then are used 1552 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1553 * members of the request object aren't for driver access. 1554 * 1555 * The status and bytecount values are valid only after usb_sg_wait() 1556 * returns. If the status is zero, then the bytecount matches the total 1557 * from the request. 1558 * 1559 * After an error completion, drivers may need to clear a halt condition 1560 * on the endpoint. 1561 */ 1562struct usb_sg_request { 1563 int status; 1564 size_t bytes; 1565 1566 /* 1567 * members below are private: to usbcore, 1568 * and are not provided for driver access! 1569 */ 1570 spinlock_t lock; 1571 1572 struct usb_device *dev; 1573 int pipe; 1574 struct scatterlist *sg; 1575 int nents; 1576 1577 int entries; 1578 struct urb **urbs; 1579 1580 int count; 1581 struct completion complete; 1582}; 1583 1584int usb_sg_init( 1585 struct usb_sg_request *io, 1586 struct usb_device *dev, 1587 unsigned pipe, 1588 unsigned period, 1589 struct scatterlist *sg, 1590 int nents, 1591 size_t length, 1592 gfp_t mem_flags 1593); 1594void usb_sg_cancel(struct usb_sg_request *io); 1595void usb_sg_wait(struct usb_sg_request *io); 1596 1597 1598/* ----------------------------------------------------------------------- */ 1599 1600/* 1601 * For various legacy reasons, Linux has a small cookie that's paired with 1602 * a struct usb_device to identify an endpoint queue. Queue characteristics 1603 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1604 * an unsigned int encoded as: 1605 * 1606 * - direction: bit 7 (0 = Host-to-Device [Out], 1607 * 1 = Device-to-Host [In] ... 1608 * like endpoint bEndpointAddress) 1609 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1610 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1611 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1612 * 10 = control, 11 = bulk) 1613 * 1614 * Given the device address and endpoint descriptor, pipes are redundant. 1615 */ 1616 1617/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1618/* (yet ... they're the values used by usbfs) */ 1619#define PIPE_ISOCHRONOUS 0 1620#define PIPE_INTERRUPT 1 1621#define PIPE_CONTROL 2 1622#define PIPE_BULK 3 1623 1624#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1625#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1626 1627#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1628#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1629 1630#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1631#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1632#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1633#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1634#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1635 1636/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1637#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1638#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1639#define usb_settoggle(dev, ep, out, bit) \ 1640 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1641 ((bit) << (ep))) 1642 1643 1644static inline unsigned int __create_pipe(struct usb_device *dev, 1645 unsigned int endpoint) 1646{ 1647 return (dev->devnum << 8) | (endpoint << 15); 1648} 1649 1650/* Create various pipes... */ 1651#define usb_sndctrlpipe(dev,endpoint) \ 1652 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1653#define usb_rcvctrlpipe(dev,endpoint) \ 1654 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1655#define usb_sndisocpipe(dev,endpoint) \ 1656 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1657#define usb_rcvisocpipe(dev,endpoint) \ 1658 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1659#define usb_sndbulkpipe(dev,endpoint) \ 1660 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1661#define usb_rcvbulkpipe(dev,endpoint) \ 1662 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1663#define usb_sndintpipe(dev,endpoint) \ 1664 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1665#define usb_rcvintpipe(dev,endpoint) \ 1666 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1667 1668/*-------------------------------------------------------------------------*/ 1669 1670static inline __u16 1671usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1672{ 1673 struct usb_host_endpoint *ep; 1674 unsigned epnum = usb_pipeendpoint(pipe); 1675 1676 if (is_out) { 1677 WARN_ON(usb_pipein(pipe)); 1678 ep = udev->ep_out[epnum]; 1679 } else { 1680 WARN_ON(usb_pipeout(pipe)); 1681 ep = udev->ep_in[epnum]; 1682 } 1683 if (!ep) 1684 return 0; 1685 1686 /* NOTE: only 0x07ff bits are for packet size... */ 1687 return le16_to_cpu(ep->desc.wMaxPacketSize); 1688} 1689 1690/* ----------------------------------------------------------------------- */ 1691 1692/* Events from the usb core */ 1693#define USB_DEVICE_ADD 0x0001 1694#define USB_DEVICE_REMOVE 0x0002 1695#define USB_BUS_ADD 0x0003 1696#define USB_BUS_REMOVE 0x0004 1697extern void usb_register_notify(struct notifier_block *nb); 1698extern void usb_unregister_notify(struct notifier_block *nb); 1699 1700#ifdef DEBUG 1701#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1702 __FILE__ , ## arg) 1703#else 1704#define dbg(format, arg...) do {} while (0) 1705#endif 1706 1707#define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \ 1708 format "\n" , ## arg) 1709#define info(format, arg...) printk(KERN_INFO KBUILD_MODNAME ": " \ 1710 format "\n" , ## arg) 1711#define warn(format, arg...) printk(KERN_WARNING KBUILD_MODNAME ": " \ 1712 format "\n" , ## arg) 1713 1714#endif /* __KERNEL__ */ 1715 1716#endif