at v2.6.26 48 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/compiler.h> 19#include <linux/time.h> 20#include <linux/cache.h> 21 22#include <asm/atomic.h> 23#include <asm/types.h> 24#include <linux/spinlock.h> 25#include <linux/net.h> 26#include <linux/textsearch.h> 27#include <net/checksum.h> 28#include <linux/rcupdate.h> 29#include <linux/dmaengine.h> 30#include <linux/hrtimer.h> 31 32#define HAVE_ALLOC_SKB /* For the drivers to know */ 33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 34 35/* Don't change this without changing skb_csum_unnecessary! */ 36#define CHECKSUM_NONE 0 37#define CHECKSUM_UNNECESSARY 1 38#define CHECKSUM_COMPLETE 2 39#define CHECKSUM_PARTIAL 3 40 41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43#define SKB_WITH_OVERHEAD(X) \ 44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 45#define SKB_MAX_ORDER(X, ORDER) \ 46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 47#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 48#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 49 50/* A. Checksumming of received packets by device. 51 * 52 * NONE: device failed to checksum this packet. 53 * skb->csum is undefined. 54 * 55 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 56 * skb->csum is undefined. 57 * It is bad option, but, unfortunately, many of vendors do this. 58 * Apparently with secret goal to sell you new device, when you 59 * will add new protocol to your host. F.e. IPv6. 8) 60 * 61 * COMPLETE: the most generic way. Device supplied checksum of _all_ 62 * the packet as seen by netif_rx in skb->csum. 63 * NOTE: Even if device supports only some protocols, but 64 * is able to produce some skb->csum, it MUST use COMPLETE, 65 * not UNNECESSARY. 66 * 67 * PARTIAL: identical to the case for output below. This may occur 68 * on a packet received directly from another Linux OS, e.g., 69 * a virtualised Linux kernel on the same host. The packet can 70 * be treated in the same way as UNNECESSARY except that on 71 * output (i.e., forwarding) the checksum must be filled in 72 * by the OS or the hardware. 73 * 74 * B. Checksumming on output. 75 * 76 * NONE: skb is checksummed by protocol or csum is not required. 77 * 78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 79 * from skb->csum_start to the end and to record the checksum 80 * at skb->csum_start + skb->csum_offset. 81 * 82 * Device must show its capabilities in dev->features, set 83 * at device setup time. 84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 85 * everything. 86 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 88 * TCP/UDP over IPv4. Sigh. Vendors like this 89 * way by an unknown reason. Though, see comment above 90 * about CHECKSUM_UNNECESSARY. 8) 91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 92 * 93 * Any questions? No questions, good. --ANK 94 */ 95 96struct net_device; 97struct scatterlist; 98struct pipe_inode_info; 99 100#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 101struct nf_conntrack { 102 atomic_t use; 103}; 104#endif 105 106#ifdef CONFIG_BRIDGE_NETFILTER 107struct nf_bridge_info { 108 atomic_t use; 109 struct net_device *physindev; 110 struct net_device *physoutdev; 111 unsigned int mask; 112 unsigned long data[32 / sizeof(unsigned long)]; 113}; 114#endif 115 116struct sk_buff_head { 117 /* These two members must be first. */ 118 struct sk_buff *next; 119 struct sk_buff *prev; 120 121 __u32 qlen; 122 spinlock_t lock; 123}; 124 125struct sk_buff; 126 127/* To allow 64K frame to be packed as single skb without frag_list */ 128#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 129 130typedef struct skb_frag_struct skb_frag_t; 131 132struct skb_frag_struct { 133 struct page *page; 134 __u32 page_offset; 135 __u32 size; 136}; 137 138/* This data is invariant across clones and lives at 139 * the end of the header data, ie. at skb->end. 140 */ 141struct skb_shared_info { 142 atomic_t dataref; 143 unsigned short nr_frags; 144 unsigned short gso_size; 145 /* Warning: this field is not always filled in (UFO)! */ 146 unsigned short gso_segs; 147 unsigned short gso_type; 148 __be32 ip6_frag_id; 149 struct sk_buff *frag_list; 150 skb_frag_t frags[MAX_SKB_FRAGS]; 151}; 152 153/* We divide dataref into two halves. The higher 16 bits hold references 154 * to the payload part of skb->data. The lower 16 bits hold references to 155 * the entire skb->data. A clone of a headerless skb holds the length of 156 * the header in skb->hdr_len. 157 * 158 * All users must obey the rule that the skb->data reference count must be 159 * greater than or equal to the payload reference count. 160 * 161 * Holding a reference to the payload part means that the user does not 162 * care about modifications to the header part of skb->data. 163 */ 164#define SKB_DATAREF_SHIFT 16 165#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 166 167 168enum { 169 SKB_FCLONE_UNAVAILABLE, 170 SKB_FCLONE_ORIG, 171 SKB_FCLONE_CLONE, 172}; 173 174enum { 175 SKB_GSO_TCPV4 = 1 << 0, 176 SKB_GSO_UDP = 1 << 1, 177 178 /* This indicates the skb is from an untrusted source. */ 179 SKB_GSO_DODGY = 1 << 2, 180 181 /* This indicates the tcp segment has CWR set. */ 182 SKB_GSO_TCP_ECN = 1 << 3, 183 184 SKB_GSO_TCPV6 = 1 << 4, 185}; 186 187#if BITS_PER_LONG > 32 188#define NET_SKBUFF_DATA_USES_OFFSET 1 189#endif 190 191#ifdef NET_SKBUFF_DATA_USES_OFFSET 192typedef unsigned int sk_buff_data_t; 193#else 194typedef unsigned char *sk_buff_data_t; 195#endif 196 197/** 198 * struct sk_buff - socket buffer 199 * @next: Next buffer in list 200 * @prev: Previous buffer in list 201 * @sk: Socket we are owned by 202 * @tstamp: Time we arrived 203 * @dev: Device we arrived on/are leaving by 204 * @transport_header: Transport layer header 205 * @network_header: Network layer header 206 * @mac_header: Link layer header 207 * @dst: destination entry 208 * @sp: the security path, used for xfrm 209 * @cb: Control buffer. Free for use by every layer. Put private vars here 210 * @len: Length of actual data 211 * @data_len: Data length 212 * @mac_len: Length of link layer header 213 * @hdr_len: writable header length of cloned skb 214 * @csum: Checksum (must include start/offset pair) 215 * @csum_start: Offset from skb->head where checksumming should start 216 * @csum_offset: Offset from csum_start where checksum should be stored 217 * @local_df: allow local fragmentation 218 * @cloned: Head may be cloned (check refcnt to be sure) 219 * @nohdr: Payload reference only, must not modify header 220 * @pkt_type: Packet class 221 * @fclone: skbuff clone status 222 * @ip_summed: Driver fed us an IP checksum 223 * @priority: Packet queueing priority 224 * @users: User count - see {datagram,tcp}.c 225 * @protocol: Packet protocol from driver 226 * @truesize: Buffer size 227 * @head: Head of buffer 228 * @data: Data head pointer 229 * @tail: Tail pointer 230 * @end: End pointer 231 * @destructor: Destruct function 232 * @mark: Generic packet mark 233 * @nfct: Associated connection, if any 234 * @ipvs_property: skbuff is owned by ipvs 235 * @peeked: this packet has been seen already, so stats have been 236 * done for it, don't do them again 237 * @nf_trace: netfilter packet trace flag 238 * @nfctinfo: Relationship of this skb to the connection 239 * @nfct_reasm: netfilter conntrack re-assembly pointer 240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 241 * @iif: ifindex of device we arrived on 242 * @queue_mapping: Queue mapping for multiqueue devices 243 * @tc_index: Traffic control index 244 * @tc_verd: traffic control verdict 245 * @ndisc_nodetype: router type (from link layer) 246 * @dma_cookie: a cookie to one of several possible DMA operations 247 * done by skb DMA functions 248 * @secmark: security marking 249 */ 250 251struct sk_buff { 252 /* These two members must be first. */ 253 struct sk_buff *next; 254 struct sk_buff *prev; 255 256 struct sock *sk; 257 ktime_t tstamp; 258 struct net_device *dev; 259 260 union { 261 struct dst_entry *dst; 262 struct rtable *rtable; 263 }; 264 struct sec_path *sp; 265 266 /* 267 * This is the control buffer. It is free to use for every 268 * layer. Please put your private variables there. If you 269 * want to keep them across layers you have to do a skb_clone() 270 * first. This is owned by whoever has the skb queued ATM. 271 */ 272 char cb[48]; 273 274 unsigned int len, 275 data_len; 276 __u16 mac_len, 277 hdr_len; 278 union { 279 __wsum csum; 280 struct { 281 __u16 csum_start; 282 __u16 csum_offset; 283 }; 284 }; 285 __u32 priority; 286 __u8 local_df:1, 287 cloned:1, 288 ip_summed:2, 289 nohdr:1, 290 nfctinfo:3; 291 __u8 pkt_type:3, 292 fclone:2, 293 ipvs_property:1, 294 peeked:1, 295 nf_trace:1; 296 __be16 protocol; 297 298 void (*destructor)(struct sk_buff *skb); 299#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 300 struct nf_conntrack *nfct; 301 struct sk_buff *nfct_reasm; 302#endif 303#ifdef CONFIG_BRIDGE_NETFILTER 304 struct nf_bridge_info *nf_bridge; 305#endif 306 307 int iif; 308#ifdef CONFIG_NETDEVICES_MULTIQUEUE 309 __u16 queue_mapping; 310#endif 311#ifdef CONFIG_NET_SCHED 312 __u16 tc_index; /* traffic control index */ 313#ifdef CONFIG_NET_CLS_ACT 314 __u16 tc_verd; /* traffic control verdict */ 315#endif 316#endif 317#ifdef CONFIG_IPV6_NDISC_NODETYPE 318 __u8 ndisc_nodetype:2; 319#endif 320 /* 14 bit hole */ 321 322#ifdef CONFIG_NET_DMA 323 dma_cookie_t dma_cookie; 324#endif 325#ifdef CONFIG_NETWORK_SECMARK 326 __u32 secmark; 327#endif 328 329 __u32 mark; 330 331 sk_buff_data_t transport_header; 332 sk_buff_data_t network_header; 333 sk_buff_data_t mac_header; 334 /* These elements must be at the end, see alloc_skb() for details. */ 335 sk_buff_data_t tail; 336 sk_buff_data_t end; 337 unsigned char *head, 338 *data; 339 unsigned int truesize; 340 atomic_t users; 341}; 342 343#ifdef __KERNEL__ 344/* 345 * Handling routines are only of interest to the kernel 346 */ 347#include <linux/slab.h> 348 349#include <asm/system.h> 350 351extern void kfree_skb(struct sk_buff *skb); 352extern void __kfree_skb(struct sk_buff *skb); 353extern struct sk_buff *__alloc_skb(unsigned int size, 354 gfp_t priority, int fclone, int node); 355static inline struct sk_buff *alloc_skb(unsigned int size, 356 gfp_t priority) 357{ 358 return __alloc_skb(size, priority, 0, -1); 359} 360 361static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 362 gfp_t priority) 363{ 364 return __alloc_skb(size, priority, 1, -1); 365} 366 367extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 368extern struct sk_buff *skb_clone(struct sk_buff *skb, 369 gfp_t priority); 370extern struct sk_buff *skb_copy(const struct sk_buff *skb, 371 gfp_t priority); 372extern struct sk_buff *pskb_copy(struct sk_buff *skb, 373 gfp_t gfp_mask); 374extern int pskb_expand_head(struct sk_buff *skb, 375 int nhead, int ntail, 376 gfp_t gfp_mask); 377extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 378 unsigned int headroom); 379extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 380 int newheadroom, int newtailroom, 381 gfp_t priority); 382extern int skb_to_sgvec(struct sk_buff *skb, 383 struct scatterlist *sg, int offset, 384 int len); 385extern int skb_cow_data(struct sk_buff *skb, int tailbits, 386 struct sk_buff **trailer); 387extern int skb_pad(struct sk_buff *skb, int pad); 388#define dev_kfree_skb(a) kfree_skb(a) 389extern void skb_over_panic(struct sk_buff *skb, int len, 390 void *here); 391extern void skb_under_panic(struct sk_buff *skb, int len, 392 void *here); 393extern void skb_truesize_bug(struct sk_buff *skb); 394 395static inline void skb_truesize_check(struct sk_buff *skb) 396{ 397 int len = sizeof(struct sk_buff) + skb->len; 398 399 if (unlikely((int)skb->truesize < len)) 400 skb_truesize_bug(skb); 401} 402 403extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 404 int getfrag(void *from, char *to, int offset, 405 int len,int odd, struct sk_buff *skb), 406 void *from, int length); 407 408struct skb_seq_state 409{ 410 __u32 lower_offset; 411 __u32 upper_offset; 412 __u32 frag_idx; 413 __u32 stepped_offset; 414 struct sk_buff *root_skb; 415 struct sk_buff *cur_skb; 416 __u8 *frag_data; 417}; 418 419extern void skb_prepare_seq_read(struct sk_buff *skb, 420 unsigned int from, unsigned int to, 421 struct skb_seq_state *st); 422extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 423 struct skb_seq_state *st); 424extern void skb_abort_seq_read(struct skb_seq_state *st); 425 426extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 427 unsigned int to, struct ts_config *config, 428 struct ts_state *state); 429 430#ifdef NET_SKBUFF_DATA_USES_OFFSET 431static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 432{ 433 return skb->head + skb->end; 434} 435#else 436static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 437{ 438 return skb->end; 439} 440#endif 441 442/* Internal */ 443#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 444 445/** 446 * skb_queue_empty - check if a queue is empty 447 * @list: queue head 448 * 449 * Returns true if the queue is empty, false otherwise. 450 */ 451static inline int skb_queue_empty(const struct sk_buff_head *list) 452{ 453 return list->next == (struct sk_buff *)list; 454} 455 456/** 457 * skb_get - reference buffer 458 * @skb: buffer to reference 459 * 460 * Makes another reference to a socket buffer and returns a pointer 461 * to the buffer. 462 */ 463static inline struct sk_buff *skb_get(struct sk_buff *skb) 464{ 465 atomic_inc(&skb->users); 466 return skb; 467} 468 469/* 470 * If users == 1, we are the only owner and are can avoid redundant 471 * atomic change. 472 */ 473 474/** 475 * skb_cloned - is the buffer a clone 476 * @skb: buffer to check 477 * 478 * Returns true if the buffer was generated with skb_clone() and is 479 * one of multiple shared copies of the buffer. Cloned buffers are 480 * shared data so must not be written to under normal circumstances. 481 */ 482static inline int skb_cloned(const struct sk_buff *skb) 483{ 484 return skb->cloned && 485 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 486} 487 488/** 489 * skb_header_cloned - is the header a clone 490 * @skb: buffer to check 491 * 492 * Returns true if modifying the header part of the buffer requires 493 * the data to be copied. 494 */ 495static inline int skb_header_cloned(const struct sk_buff *skb) 496{ 497 int dataref; 498 499 if (!skb->cloned) 500 return 0; 501 502 dataref = atomic_read(&skb_shinfo(skb)->dataref); 503 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 504 return dataref != 1; 505} 506 507/** 508 * skb_header_release - release reference to header 509 * @skb: buffer to operate on 510 * 511 * Drop a reference to the header part of the buffer. This is done 512 * by acquiring a payload reference. You must not read from the header 513 * part of skb->data after this. 514 */ 515static inline void skb_header_release(struct sk_buff *skb) 516{ 517 BUG_ON(skb->nohdr); 518 skb->nohdr = 1; 519 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 520} 521 522/** 523 * skb_shared - is the buffer shared 524 * @skb: buffer to check 525 * 526 * Returns true if more than one person has a reference to this 527 * buffer. 528 */ 529static inline int skb_shared(const struct sk_buff *skb) 530{ 531 return atomic_read(&skb->users) != 1; 532} 533 534/** 535 * skb_share_check - check if buffer is shared and if so clone it 536 * @skb: buffer to check 537 * @pri: priority for memory allocation 538 * 539 * If the buffer is shared the buffer is cloned and the old copy 540 * drops a reference. A new clone with a single reference is returned. 541 * If the buffer is not shared the original buffer is returned. When 542 * being called from interrupt status or with spinlocks held pri must 543 * be GFP_ATOMIC. 544 * 545 * NULL is returned on a memory allocation failure. 546 */ 547static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 548 gfp_t pri) 549{ 550 might_sleep_if(pri & __GFP_WAIT); 551 if (skb_shared(skb)) { 552 struct sk_buff *nskb = skb_clone(skb, pri); 553 kfree_skb(skb); 554 skb = nskb; 555 } 556 return skb; 557} 558 559/* 560 * Copy shared buffers into a new sk_buff. We effectively do COW on 561 * packets to handle cases where we have a local reader and forward 562 * and a couple of other messy ones. The normal one is tcpdumping 563 * a packet thats being forwarded. 564 */ 565 566/** 567 * skb_unshare - make a copy of a shared buffer 568 * @skb: buffer to check 569 * @pri: priority for memory allocation 570 * 571 * If the socket buffer is a clone then this function creates a new 572 * copy of the data, drops a reference count on the old copy and returns 573 * the new copy with the reference count at 1. If the buffer is not a clone 574 * the original buffer is returned. When called with a spinlock held or 575 * from interrupt state @pri must be %GFP_ATOMIC 576 * 577 * %NULL is returned on a memory allocation failure. 578 */ 579static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 580 gfp_t pri) 581{ 582 might_sleep_if(pri & __GFP_WAIT); 583 if (skb_cloned(skb)) { 584 struct sk_buff *nskb = skb_copy(skb, pri); 585 kfree_skb(skb); /* Free our shared copy */ 586 skb = nskb; 587 } 588 return skb; 589} 590 591/** 592 * skb_peek 593 * @list_: list to peek at 594 * 595 * Peek an &sk_buff. Unlike most other operations you _MUST_ 596 * be careful with this one. A peek leaves the buffer on the 597 * list and someone else may run off with it. You must hold 598 * the appropriate locks or have a private queue to do this. 599 * 600 * Returns %NULL for an empty list or a pointer to the head element. 601 * The reference count is not incremented and the reference is therefore 602 * volatile. Use with caution. 603 */ 604static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 605{ 606 struct sk_buff *list = ((struct sk_buff *)list_)->next; 607 if (list == (struct sk_buff *)list_) 608 list = NULL; 609 return list; 610} 611 612/** 613 * skb_peek_tail 614 * @list_: list to peek at 615 * 616 * Peek an &sk_buff. Unlike most other operations you _MUST_ 617 * be careful with this one. A peek leaves the buffer on the 618 * list and someone else may run off with it. You must hold 619 * the appropriate locks or have a private queue to do this. 620 * 621 * Returns %NULL for an empty list or a pointer to the tail element. 622 * The reference count is not incremented and the reference is therefore 623 * volatile. Use with caution. 624 */ 625static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 626{ 627 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 628 if (list == (struct sk_buff *)list_) 629 list = NULL; 630 return list; 631} 632 633/** 634 * skb_queue_len - get queue length 635 * @list_: list to measure 636 * 637 * Return the length of an &sk_buff queue. 638 */ 639static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 640{ 641 return list_->qlen; 642} 643 644/* 645 * This function creates a split out lock class for each invocation; 646 * this is needed for now since a whole lot of users of the skb-queue 647 * infrastructure in drivers have different locking usage (in hardirq) 648 * than the networking core (in softirq only). In the long run either the 649 * network layer or drivers should need annotation to consolidate the 650 * main types of usage into 3 classes. 651 */ 652static inline void skb_queue_head_init(struct sk_buff_head *list) 653{ 654 spin_lock_init(&list->lock); 655 list->prev = list->next = (struct sk_buff *)list; 656 list->qlen = 0; 657} 658 659static inline void skb_queue_head_init_class(struct sk_buff_head *list, 660 struct lock_class_key *class) 661{ 662 skb_queue_head_init(list); 663 lockdep_set_class(&list->lock, class); 664} 665 666/* 667 * Insert an sk_buff on a list. 668 * 669 * The "__skb_xxxx()" functions are the non-atomic ones that 670 * can only be called with interrupts disabled. 671 */ 672extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 673static inline void __skb_insert(struct sk_buff *newsk, 674 struct sk_buff *prev, struct sk_buff *next, 675 struct sk_buff_head *list) 676{ 677 newsk->next = next; 678 newsk->prev = prev; 679 next->prev = prev->next = newsk; 680 list->qlen++; 681} 682 683/** 684 * __skb_queue_after - queue a buffer at the list head 685 * @list: list to use 686 * @prev: place after this buffer 687 * @newsk: buffer to queue 688 * 689 * Queue a buffer int the middle of a list. This function takes no locks 690 * and you must therefore hold required locks before calling it. 691 * 692 * A buffer cannot be placed on two lists at the same time. 693 */ 694static inline void __skb_queue_after(struct sk_buff_head *list, 695 struct sk_buff *prev, 696 struct sk_buff *newsk) 697{ 698 __skb_insert(newsk, prev, prev->next, list); 699} 700 701extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 702 struct sk_buff_head *list); 703 704static inline void __skb_queue_before(struct sk_buff_head *list, 705 struct sk_buff *next, 706 struct sk_buff *newsk) 707{ 708 __skb_insert(newsk, next->prev, next, list); 709} 710 711/** 712 * __skb_queue_head - queue a buffer at the list head 713 * @list: list to use 714 * @newsk: buffer to queue 715 * 716 * Queue a buffer at the start of a list. This function takes no locks 717 * and you must therefore hold required locks before calling it. 718 * 719 * A buffer cannot be placed on two lists at the same time. 720 */ 721extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 722static inline void __skb_queue_head(struct sk_buff_head *list, 723 struct sk_buff *newsk) 724{ 725 __skb_queue_after(list, (struct sk_buff *)list, newsk); 726} 727 728/** 729 * __skb_queue_tail - queue a buffer at the list tail 730 * @list: list to use 731 * @newsk: buffer to queue 732 * 733 * Queue a buffer at the end of a list. This function takes no locks 734 * and you must therefore hold required locks before calling it. 735 * 736 * A buffer cannot be placed on two lists at the same time. 737 */ 738extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 739static inline void __skb_queue_tail(struct sk_buff_head *list, 740 struct sk_buff *newsk) 741{ 742 __skb_queue_before(list, (struct sk_buff *)list, newsk); 743} 744 745/* 746 * remove sk_buff from list. _Must_ be called atomically, and with 747 * the list known.. 748 */ 749extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 750static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 751{ 752 struct sk_buff *next, *prev; 753 754 list->qlen--; 755 next = skb->next; 756 prev = skb->prev; 757 skb->next = skb->prev = NULL; 758 next->prev = prev; 759 prev->next = next; 760} 761 762/** 763 * __skb_dequeue - remove from the head of the queue 764 * @list: list to dequeue from 765 * 766 * Remove the head of the list. This function does not take any locks 767 * so must be used with appropriate locks held only. The head item is 768 * returned or %NULL if the list is empty. 769 */ 770extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 771static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 772{ 773 struct sk_buff *skb = skb_peek(list); 774 if (skb) 775 __skb_unlink(skb, list); 776 return skb; 777} 778 779/** 780 * __skb_dequeue_tail - remove from the tail of the queue 781 * @list: list to dequeue from 782 * 783 * Remove the tail of the list. This function does not take any locks 784 * so must be used with appropriate locks held only. The tail item is 785 * returned or %NULL if the list is empty. 786 */ 787extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 788static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 789{ 790 struct sk_buff *skb = skb_peek_tail(list); 791 if (skb) 792 __skb_unlink(skb, list); 793 return skb; 794} 795 796 797static inline int skb_is_nonlinear(const struct sk_buff *skb) 798{ 799 return skb->data_len; 800} 801 802static inline unsigned int skb_headlen(const struct sk_buff *skb) 803{ 804 return skb->len - skb->data_len; 805} 806 807static inline int skb_pagelen(const struct sk_buff *skb) 808{ 809 int i, len = 0; 810 811 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 812 len += skb_shinfo(skb)->frags[i].size; 813 return len + skb_headlen(skb); 814} 815 816static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 817 struct page *page, int off, int size) 818{ 819 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 820 821 frag->page = page; 822 frag->page_offset = off; 823 frag->size = size; 824 skb_shinfo(skb)->nr_frags = i + 1; 825} 826 827#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 828#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 829#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 830 831#ifdef NET_SKBUFF_DATA_USES_OFFSET 832static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 833{ 834 return skb->head + skb->tail; 835} 836 837static inline void skb_reset_tail_pointer(struct sk_buff *skb) 838{ 839 skb->tail = skb->data - skb->head; 840} 841 842static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 843{ 844 skb_reset_tail_pointer(skb); 845 skb->tail += offset; 846} 847#else /* NET_SKBUFF_DATA_USES_OFFSET */ 848static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 849{ 850 return skb->tail; 851} 852 853static inline void skb_reset_tail_pointer(struct sk_buff *skb) 854{ 855 skb->tail = skb->data; 856} 857 858static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 859{ 860 skb->tail = skb->data + offset; 861} 862 863#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 864 865/* 866 * Add data to an sk_buff 867 */ 868extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 869static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 870{ 871 unsigned char *tmp = skb_tail_pointer(skb); 872 SKB_LINEAR_ASSERT(skb); 873 skb->tail += len; 874 skb->len += len; 875 return tmp; 876} 877 878extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 879static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 880{ 881 skb->data -= len; 882 skb->len += len; 883 return skb->data; 884} 885 886extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 887static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 888{ 889 skb->len -= len; 890 BUG_ON(skb->len < skb->data_len); 891 return skb->data += len; 892} 893 894extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 895 896static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 897{ 898 if (len > skb_headlen(skb) && 899 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 900 return NULL; 901 skb->len -= len; 902 return skb->data += len; 903} 904 905static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 906{ 907 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 908} 909 910static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 911{ 912 if (likely(len <= skb_headlen(skb))) 913 return 1; 914 if (unlikely(len > skb->len)) 915 return 0; 916 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 917} 918 919/** 920 * skb_headroom - bytes at buffer head 921 * @skb: buffer to check 922 * 923 * Return the number of bytes of free space at the head of an &sk_buff. 924 */ 925static inline unsigned int skb_headroom(const struct sk_buff *skb) 926{ 927 return skb->data - skb->head; 928} 929 930/** 931 * skb_tailroom - bytes at buffer end 932 * @skb: buffer to check 933 * 934 * Return the number of bytes of free space at the tail of an sk_buff 935 */ 936static inline int skb_tailroom(const struct sk_buff *skb) 937{ 938 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 939} 940 941/** 942 * skb_reserve - adjust headroom 943 * @skb: buffer to alter 944 * @len: bytes to move 945 * 946 * Increase the headroom of an empty &sk_buff by reducing the tail 947 * room. This is only allowed for an empty buffer. 948 */ 949static inline void skb_reserve(struct sk_buff *skb, int len) 950{ 951 skb->data += len; 952 skb->tail += len; 953} 954 955#ifdef NET_SKBUFF_DATA_USES_OFFSET 956static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 957{ 958 return skb->head + skb->transport_header; 959} 960 961static inline void skb_reset_transport_header(struct sk_buff *skb) 962{ 963 skb->transport_header = skb->data - skb->head; 964} 965 966static inline void skb_set_transport_header(struct sk_buff *skb, 967 const int offset) 968{ 969 skb_reset_transport_header(skb); 970 skb->transport_header += offset; 971} 972 973static inline unsigned char *skb_network_header(const struct sk_buff *skb) 974{ 975 return skb->head + skb->network_header; 976} 977 978static inline void skb_reset_network_header(struct sk_buff *skb) 979{ 980 skb->network_header = skb->data - skb->head; 981} 982 983static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 984{ 985 skb_reset_network_header(skb); 986 skb->network_header += offset; 987} 988 989static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 990{ 991 return skb->head + skb->mac_header; 992} 993 994static inline int skb_mac_header_was_set(const struct sk_buff *skb) 995{ 996 return skb->mac_header != ~0U; 997} 998 999static inline void skb_reset_mac_header(struct sk_buff *skb) 1000{ 1001 skb->mac_header = skb->data - skb->head; 1002} 1003 1004static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1005{ 1006 skb_reset_mac_header(skb); 1007 skb->mac_header += offset; 1008} 1009 1010#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1011 1012static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1013{ 1014 return skb->transport_header; 1015} 1016 1017static inline void skb_reset_transport_header(struct sk_buff *skb) 1018{ 1019 skb->transport_header = skb->data; 1020} 1021 1022static inline void skb_set_transport_header(struct sk_buff *skb, 1023 const int offset) 1024{ 1025 skb->transport_header = skb->data + offset; 1026} 1027 1028static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1029{ 1030 return skb->network_header; 1031} 1032 1033static inline void skb_reset_network_header(struct sk_buff *skb) 1034{ 1035 skb->network_header = skb->data; 1036} 1037 1038static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1039{ 1040 skb->network_header = skb->data + offset; 1041} 1042 1043static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1044{ 1045 return skb->mac_header; 1046} 1047 1048static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1049{ 1050 return skb->mac_header != NULL; 1051} 1052 1053static inline void skb_reset_mac_header(struct sk_buff *skb) 1054{ 1055 skb->mac_header = skb->data; 1056} 1057 1058static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1059{ 1060 skb->mac_header = skb->data + offset; 1061} 1062#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1063 1064static inline int skb_transport_offset(const struct sk_buff *skb) 1065{ 1066 return skb_transport_header(skb) - skb->data; 1067} 1068 1069static inline u32 skb_network_header_len(const struct sk_buff *skb) 1070{ 1071 return skb->transport_header - skb->network_header; 1072} 1073 1074static inline int skb_network_offset(const struct sk_buff *skb) 1075{ 1076 return skb_network_header(skb) - skb->data; 1077} 1078 1079/* 1080 * CPUs often take a performance hit when accessing unaligned memory 1081 * locations. The actual performance hit varies, it can be small if the 1082 * hardware handles it or large if we have to take an exception and fix it 1083 * in software. 1084 * 1085 * Since an ethernet header is 14 bytes network drivers often end up with 1086 * the IP header at an unaligned offset. The IP header can be aligned by 1087 * shifting the start of the packet by 2 bytes. Drivers should do this 1088 * with: 1089 * 1090 * skb_reserve(NET_IP_ALIGN); 1091 * 1092 * The downside to this alignment of the IP header is that the DMA is now 1093 * unaligned. On some architectures the cost of an unaligned DMA is high 1094 * and this cost outweighs the gains made by aligning the IP header. 1095 * 1096 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1097 * to be overridden. 1098 */ 1099#ifndef NET_IP_ALIGN 1100#define NET_IP_ALIGN 2 1101#endif 1102 1103/* 1104 * The networking layer reserves some headroom in skb data (via 1105 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1106 * the header has to grow. In the default case, if the header has to grow 1107 * 16 bytes or less we avoid the reallocation. 1108 * 1109 * Unfortunately this headroom changes the DMA alignment of the resulting 1110 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1111 * on some architectures. An architecture can override this value, 1112 * perhaps setting it to a cacheline in size (since that will maintain 1113 * cacheline alignment of the DMA). It must be a power of 2. 1114 * 1115 * Various parts of the networking layer expect at least 16 bytes of 1116 * headroom, you should not reduce this. 1117 */ 1118#ifndef NET_SKB_PAD 1119#define NET_SKB_PAD 16 1120#endif 1121 1122extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1123 1124static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1125{ 1126 if (unlikely(skb->data_len)) { 1127 WARN_ON(1); 1128 return; 1129 } 1130 skb->len = len; 1131 skb_set_tail_pointer(skb, len); 1132} 1133 1134extern void skb_trim(struct sk_buff *skb, unsigned int len); 1135 1136static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1137{ 1138 if (skb->data_len) 1139 return ___pskb_trim(skb, len); 1140 __skb_trim(skb, len); 1141 return 0; 1142} 1143 1144static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1145{ 1146 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1147} 1148 1149/** 1150 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1151 * @skb: buffer to alter 1152 * @len: new length 1153 * 1154 * This is identical to pskb_trim except that the caller knows that 1155 * the skb is not cloned so we should never get an error due to out- 1156 * of-memory. 1157 */ 1158static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1159{ 1160 int err = pskb_trim(skb, len); 1161 BUG_ON(err); 1162} 1163 1164/** 1165 * skb_orphan - orphan a buffer 1166 * @skb: buffer to orphan 1167 * 1168 * If a buffer currently has an owner then we call the owner's 1169 * destructor function and make the @skb unowned. The buffer continues 1170 * to exist but is no longer charged to its former owner. 1171 */ 1172static inline void skb_orphan(struct sk_buff *skb) 1173{ 1174 if (skb->destructor) 1175 skb->destructor(skb); 1176 skb->destructor = NULL; 1177 skb->sk = NULL; 1178} 1179 1180/** 1181 * __skb_queue_purge - empty a list 1182 * @list: list to empty 1183 * 1184 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1185 * the list and one reference dropped. This function does not take the 1186 * list lock and the caller must hold the relevant locks to use it. 1187 */ 1188extern void skb_queue_purge(struct sk_buff_head *list); 1189static inline void __skb_queue_purge(struct sk_buff_head *list) 1190{ 1191 struct sk_buff *skb; 1192 while ((skb = __skb_dequeue(list)) != NULL) 1193 kfree_skb(skb); 1194} 1195 1196/** 1197 * __dev_alloc_skb - allocate an skbuff for receiving 1198 * @length: length to allocate 1199 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1200 * 1201 * Allocate a new &sk_buff and assign it a usage count of one. The 1202 * buffer has unspecified headroom built in. Users should allocate 1203 * the headroom they think they need without accounting for the 1204 * built in space. The built in space is used for optimisations. 1205 * 1206 * %NULL is returned if there is no free memory. 1207 */ 1208static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1209 gfp_t gfp_mask) 1210{ 1211 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); 1212 if (likely(skb)) 1213 skb_reserve(skb, NET_SKB_PAD); 1214 return skb; 1215} 1216 1217extern struct sk_buff *dev_alloc_skb(unsigned int length); 1218 1219extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1220 unsigned int length, gfp_t gfp_mask); 1221 1222/** 1223 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1224 * @dev: network device to receive on 1225 * @length: length to allocate 1226 * 1227 * Allocate a new &sk_buff and assign it a usage count of one. The 1228 * buffer has unspecified headroom built in. Users should allocate 1229 * the headroom they think they need without accounting for the 1230 * built in space. The built in space is used for optimisations. 1231 * 1232 * %NULL is returned if there is no free memory. Although this function 1233 * allocates memory it can be called from an interrupt. 1234 */ 1235static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1236 unsigned int length) 1237{ 1238 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1239} 1240 1241/** 1242 * skb_clone_writable - is the header of a clone writable 1243 * @skb: buffer to check 1244 * @len: length up to which to write 1245 * 1246 * Returns true if modifying the header part of the cloned buffer 1247 * does not requires the data to be copied. 1248 */ 1249static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len) 1250{ 1251 return !skb_header_cloned(skb) && 1252 skb_headroom(skb) + len <= skb->hdr_len; 1253} 1254 1255static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 1256 int cloned) 1257{ 1258 int delta = 0; 1259 1260 if (headroom < NET_SKB_PAD) 1261 headroom = NET_SKB_PAD; 1262 if (headroom > skb_headroom(skb)) 1263 delta = headroom - skb_headroom(skb); 1264 1265 if (delta || cloned) 1266 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 1267 GFP_ATOMIC); 1268 return 0; 1269} 1270 1271/** 1272 * skb_cow - copy header of skb when it is required 1273 * @skb: buffer to cow 1274 * @headroom: needed headroom 1275 * 1276 * If the skb passed lacks sufficient headroom or its data part 1277 * is shared, data is reallocated. If reallocation fails, an error 1278 * is returned and original skb is not changed. 1279 * 1280 * The result is skb with writable area skb->head...skb->tail 1281 * and at least @headroom of space at head. 1282 */ 1283static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1284{ 1285 return __skb_cow(skb, headroom, skb_cloned(skb)); 1286} 1287 1288/** 1289 * skb_cow_head - skb_cow but only making the head writable 1290 * @skb: buffer to cow 1291 * @headroom: needed headroom 1292 * 1293 * This function is identical to skb_cow except that we replace the 1294 * skb_cloned check by skb_header_cloned. It should be used when 1295 * you only need to push on some header and do not need to modify 1296 * the data. 1297 */ 1298static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 1299{ 1300 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 1301} 1302 1303/** 1304 * skb_padto - pad an skbuff up to a minimal size 1305 * @skb: buffer to pad 1306 * @len: minimal length 1307 * 1308 * Pads up a buffer to ensure the trailing bytes exist and are 1309 * blanked. If the buffer already contains sufficient data it 1310 * is untouched. Otherwise it is extended. Returns zero on 1311 * success. The skb is freed on error. 1312 */ 1313 1314static inline int skb_padto(struct sk_buff *skb, unsigned int len) 1315{ 1316 unsigned int size = skb->len; 1317 if (likely(size >= len)) 1318 return 0; 1319 return skb_pad(skb, len-size); 1320} 1321 1322static inline int skb_add_data(struct sk_buff *skb, 1323 char __user *from, int copy) 1324{ 1325 const int off = skb->len; 1326 1327 if (skb->ip_summed == CHECKSUM_NONE) { 1328 int err = 0; 1329 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 1330 copy, 0, &err); 1331 if (!err) { 1332 skb->csum = csum_block_add(skb->csum, csum, off); 1333 return 0; 1334 } 1335 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1336 return 0; 1337 1338 __skb_trim(skb, off); 1339 return -EFAULT; 1340} 1341 1342static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1343 struct page *page, int off) 1344{ 1345 if (i) { 1346 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1347 1348 return page == frag->page && 1349 off == frag->page_offset + frag->size; 1350 } 1351 return 0; 1352} 1353 1354static inline int __skb_linearize(struct sk_buff *skb) 1355{ 1356 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 1357} 1358 1359/** 1360 * skb_linearize - convert paged skb to linear one 1361 * @skb: buffer to linarize 1362 * 1363 * If there is no free memory -ENOMEM is returned, otherwise zero 1364 * is returned and the old skb data released. 1365 */ 1366static inline int skb_linearize(struct sk_buff *skb) 1367{ 1368 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 1369} 1370 1371/** 1372 * skb_linearize_cow - make sure skb is linear and writable 1373 * @skb: buffer to process 1374 * 1375 * If there is no free memory -ENOMEM is returned, otherwise zero 1376 * is returned and the old skb data released. 1377 */ 1378static inline int skb_linearize_cow(struct sk_buff *skb) 1379{ 1380 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 1381 __skb_linearize(skb) : 0; 1382} 1383 1384/** 1385 * skb_postpull_rcsum - update checksum for received skb after pull 1386 * @skb: buffer to update 1387 * @start: start of data before pull 1388 * @len: length of data pulled 1389 * 1390 * After doing a pull on a received packet, you need to call this to 1391 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 1392 * CHECKSUM_NONE so that it can be recomputed from scratch. 1393 */ 1394 1395static inline void skb_postpull_rcsum(struct sk_buff *skb, 1396 const void *start, unsigned int len) 1397{ 1398 if (skb->ip_summed == CHECKSUM_COMPLETE) 1399 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1400} 1401 1402unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 1403 1404/** 1405 * pskb_trim_rcsum - trim received skb and update checksum 1406 * @skb: buffer to trim 1407 * @len: new length 1408 * 1409 * This is exactly the same as pskb_trim except that it ensures the 1410 * checksum of received packets are still valid after the operation. 1411 */ 1412 1413static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1414{ 1415 if (likely(len >= skb->len)) 1416 return 0; 1417 if (skb->ip_summed == CHECKSUM_COMPLETE) 1418 skb->ip_summed = CHECKSUM_NONE; 1419 return __pskb_trim(skb, len); 1420} 1421 1422#define skb_queue_walk(queue, skb) \ 1423 for (skb = (queue)->next; \ 1424 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1425 skb = skb->next) 1426 1427#define skb_queue_walk_safe(queue, skb, tmp) \ 1428 for (skb = (queue)->next, tmp = skb->next; \ 1429 skb != (struct sk_buff *)(queue); \ 1430 skb = tmp, tmp = skb->next) 1431 1432#define skb_queue_reverse_walk(queue, skb) \ 1433 for (skb = (queue)->prev; \ 1434 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ 1435 skb = skb->prev) 1436 1437 1438extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 1439 int *peeked, int *err); 1440extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1441 int noblock, int *err); 1442extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1443 struct poll_table_struct *wait); 1444extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1445 int offset, struct iovec *to, 1446 int size); 1447extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 1448 int hlen, 1449 struct iovec *iov); 1450extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1451extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 1452 unsigned int flags); 1453extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 1454 int len, __wsum csum); 1455extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1456 void *to, int len); 1457extern int skb_store_bits(struct sk_buff *skb, int offset, 1458 const void *from, int len); 1459extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 1460 int offset, u8 *to, int len, 1461 __wsum csum); 1462extern int skb_splice_bits(struct sk_buff *skb, 1463 unsigned int offset, 1464 struct pipe_inode_info *pipe, 1465 unsigned int len, 1466 unsigned int flags); 1467extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1468extern void skb_split(struct sk_buff *skb, 1469 struct sk_buff *skb1, const u32 len); 1470 1471extern struct sk_buff *skb_segment(struct sk_buff *skb, int features); 1472 1473static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1474 int len, void *buffer) 1475{ 1476 int hlen = skb_headlen(skb); 1477 1478 if (hlen - offset >= len) 1479 return skb->data + offset; 1480 1481 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1482 return NULL; 1483 1484 return buffer; 1485} 1486 1487static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 1488 void *to, 1489 const unsigned int len) 1490{ 1491 memcpy(to, skb->data, len); 1492} 1493 1494static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 1495 const int offset, void *to, 1496 const unsigned int len) 1497{ 1498 memcpy(to, skb->data + offset, len); 1499} 1500 1501static inline void skb_copy_to_linear_data(struct sk_buff *skb, 1502 const void *from, 1503 const unsigned int len) 1504{ 1505 memcpy(skb->data, from, len); 1506} 1507 1508static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 1509 const int offset, 1510 const void *from, 1511 const unsigned int len) 1512{ 1513 memcpy(skb->data + offset, from, len); 1514} 1515 1516extern void skb_init(void); 1517 1518/** 1519 * skb_get_timestamp - get timestamp from a skb 1520 * @skb: skb to get stamp from 1521 * @stamp: pointer to struct timeval to store stamp in 1522 * 1523 * Timestamps are stored in the skb as offsets to a base timestamp. 1524 * This function converts the offset back to a struct timeval and stores 1525 * it in stamp. 1526 */ 1527static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1528{ 1529 *stamp = ktime_to_timeval(skb->tstamp); 1530} 1531 1532static inline void __net_timestamp(struct sk_buff *skb) 1533{ 1534 skb->tstamp = ktime_get_real(); 1535} 1536 1537static inline ktime_t net_timedelta(ktime_t t) 1538{ 1539 return ktime_sub(ktime_get_real(), t); 1540} 1541 1542static inline ktime_t net_invalid_timestamp(void) 1543{ 1544 return ktime_set(0, 0); 1545} 1546 1547extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 1548extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 1549 1550static inline int skb_csum_unnecessary(const struct sk_buff *skb) 1551{ 1552 return skb->ip_summed & CHECKSUM_UNNECESSARY; 1553} 1554 1555/** 1556 * skb_checksum_complete - Calculate checksum of an entire packet 1557 * @skb: packet to process 1558 * 1559 * This function calculates the checksum over the entire packet plus 1560 * the value of skb->csum. The latter can be used to supply the 1561 * checksum of a pseudo header as used by TCP/UDP. It returns the 1562 * checksum. 1563 * 1564 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 1565 * this function can be used to verify that checksum on received 1566 * packets. In that case the function should return zero if the 1567 * checksum is correct. In particular, this function will return zero 1568 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 1569 * hardware has already verified the correctness of the checksum. 1570 */ 1571static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 1572{ 1573 return skb_csum_unnecessary(skb) ? 1574 0 : __skb_checksum_complete(skb); 1575} 1576 1577#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1578extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 1579static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1580{ 1581 if (nfct && atomic_dec_and_test(&nfct->use)) 1582 nf_conntrack_destroy(nfct); 1583} 1584static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1585{ 1586 if (nfct) 1587 atomic_inc(&nfct->use); 1588} 1589static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 1590{ 1591 if (skb) 1592 atomic_inc(&skb->users); 1593} 1594static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 1595{ 1596 if (skb) 1597 kfree_skb(skb); 1598} 1599#endif 1600#ifdef CONFIG_BRIDGE_NETFILTER 1601static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1602{ 1603 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1604 kfree(nf_bridge); 1605} 1606static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1607{ 1608 if (nf_bridge) 1609 atomic_inc(&nf_bridge->use); 1610} 1611#endif /* CONFIG_BRIDGE_NETFILTER */ 1612static inline void nf_reset(struct sk_buff *skb) 1613{ 1614#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1615 nf_conntrack_put(skb->nfct); 1616 skb->nfct = NULL; 1617 nf_conntrack_put_reasm(skb->nfct_reasm); 1618 skb->nfct_reasm = NULL; 1619#endif 1620#ifdef CONFIG_BRIDGE_NETFILTER 1621 nf_bridge_put(skb->nf_bridge); 1622 skb->nf_bridge = NULL; 1623#endif 1624} 1625 1626/* Note: This doesn't put any conntrack and bridge info in dst. */ 1627static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1628{ 1629#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1630 dst->nfct = src->nfct; 1631 nf_conntrack_get(src->nfct); 1632 dst->nfctinfo = src->nfctinfo; 1633 dst->nfct_reasm = src->nfct_reasm; 1634 nf_conntrack_get_reasm(src->nfct_reasm); 1635#endif 1636#ifdef CONFIG_BRIDGE_NETFILTER 1637 dst->nf_bridge = src->nf_bridge; 1638 nf_bridge_get(src->nf_bridge); 1639#endif 1640} 1641 1642static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 1643{ 1644#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 1645 nf_conntrack_put(dst->nfct); 1646 nf_conntrack_put_reasm(dst->nfct_reasm); 1647#endif 1648#ifdef CONFIG_BRIDGE_NETFILTER 1649 nf_bridge_put(dst->nf_bridge); 1650#endif 1651 __nf_copy(dst, src); 1652} 1653 1654#ifdef CONFIG_NETWORK_SECMARK 1655static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1656{ 1657 to->secmark = from->secmark; 1658} 1659 1660static inline void skb_init_secmark(struct sk_buff *skb) 1661{ 1662 skb->secmark = 0; 1663} 1664#else 1665static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 1666{ } 1667 1668static inline void skb_init_secmark(struct sk_buff *skb) 1669{ } 1670#endif 1671 1672static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 1673{ 1674#ifdef CONFIG_NETDEVICES_MULTIQUEUE 1675 skb->queue_mapping = queue_mapping; 1676#endif 1677} 1678 1679static inline u16 skb_get_queue_mapping(struct sk_buff *skb) 1680{ 1681#ifdef CONFIG_NETDEVICES_MULTIQUEUE 1682 return skb->queue_mapping; 1683#else 1684 return 0; 1685#endif 1686} 1687 1688static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 1689{ 1690#ifdef CONFIG_NETDEVICES_MULTIQUEUE 1691 to->queue_mapping = from->queue_mapping; 1692#endif 1693} 1694 1695static inline int skb_is_gso(const struct sk_buff *skb) 1696{ 1697 return skb_shinfo(skb)->gso_size; 1698} 1699 1700static inline int skb_is_gso_v6(const struct sk_buff *skb) 1701{ 1702 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 1703} 1704 1705static inline void skb_forward_csum(struct sk_buff *skb) 1706{ 1707 /* Unfortunately we don't support this one. Any brave souls? */ 1708 if (skb->ip_summed == CHECKSUM_COMPLETE) 1709 skb->ip_summed = CHECKSUM_NONE; 1710} 1711 1712bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 1713#endif /* __KERNEL__ */ 1714#endif /* _LINUX_SKBUFF_H */