at v2.6.26 2230 lines 66 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29#define CLONE_NEWNET 0x40000000 /* New network namespace */ 30#define CLONE_IO 0x80000000 /* Clone io context */ 31 32/* 33 * Scheduling policies 34 */ 35#define SCHED_NORMAL 0 36#define SCHED_FIFO 1 37#define SCHED_RR 2 38#define SCHED_BATCH 3 39/* SCHED_ISO: reserved but not implemented yet */ 40#define SCHED_IDLE 5 41 42#ifdef __KERNEL__ 43 44struct sched_param { 45 int sched_priority; 46}; 47 48#include <asm/param.h> /* for HZ */ 49 50#include <linux/capability.h> 51#include <linux/threads.h> 52#include <linux/kernel.h> 53#include <linux/types.h> 54#include <linux/timex.h> 55#include <linux/jiffies.h> 56#include <linux/rbtree.h> 57#include <linux/thread_info.h> 58#include <linux/cpumask.h> 59#include <linux/errno.h> 60#include <linux/nodemask.h> 61#include <linux/mm_types.h> 62 63#include <asm/system.h> 64#include <asm/page.h> 65#include <asm/ptrace.h> 66#include <asm/cputime.h> 67 68#include <linux/smp.h> 69#include <linux/sem.h> 70#include <linux/signal.h> 71#include <linux/fs_struct.h> 72#include <linux/compiler.h> 73#include <linux/completion.h> 74#include <linux/pid.h> 75#include <linux/percpu.h> 76#include <linux/topology.h> 77#include <linux/proportions.h> 78#include <linux/seccomp.h> 79#include <linux/rcupdate.h> 80#include <linux/rtmutex.h> 81 82#include <linux/time.h> 83#include <linux/param.h> 84#include <linux/resource.h> 85#include <linux/timer.h> 86#include <linux/hrtimer.h> 87#include <linux/task_io_accounting.h> 88#include <linux/kobject.h> 89#include <linux/latencytop.h> 90 91#include <asm/processor.h> 92 93struct mem_cgroup; 94struct exec_domain; 95struct futex_pi_state; 96struct robust_list_head; 97struct bio; 98 99/* 100 * List of flags we want to share for kernel threads, 101 * if only because they are not used by them anyway. 102 */ 103#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 104 105/* 106 * These are the constant used to fake the fixed-point load-average 107 * counting. Some notes: 108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 109 * a load-average precision of 10 bits integer + 11 bits fractional 110 * - if you want to count load-averages more often, you need more 111 * precision, or rounding will get you. With 2-second counting freq, 112 * the EXP_n values would be 1981, 2034 and 2043 if still using only 113 * 11 bit fractions. 114 */ 115extern unsigned long avenrun[]; /* Load averages */ 116 117#define FSHIFT 11 /* nr of bits of precision */ 118#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 119#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 120#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 121#define EXP_5 2014 /* 1/exp(5sec/5min) */ 122#define EXP_15 2037 /* 1/exp(5sec/15min) */ 123 124#define CALC_LOAD(load,exp,n) \ 125 load *= exp; \ 126 load += n*(FIXED_1-exp); \ 127 load >>= FSHIFT; 128 129extern unsigned long total_forks; 130extern int nr_threads; 131DECLARE_PER_CPU(unsigned long, process_counts); 132extern int nr_processes(void); 133extern unsigned long nr_running(void); 134extern unsigned long nr_uninterruptible(void); 135extern unsigned long nr_active(void); 136extern unsigned long nr_iowait(void); 137extern unsigned long weighted_cpuload(const int cpu); 138 139struct seq_file; 140struct cfs_rq; 141struct task_group; 142#ifdef CONFIG_SCHED_DEBUG 143extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 144extern void proc_sched_set_task(struct task_struct *p); 145extern void 146print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 147#else 148static inline void 149proc_sched_show_task(struct task_struct *p, struct seq_file *m) 150{ 151} 152static inline void proc_sched_set_task(struct task_struct *p) 153{ 154} 155static inline void 156print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 157{ 158} 159#endif 160 161extern unsigned long long time_sync_thresh; 162 163/* 164 * Task state bitmask. NOTE! These bits are also 165 * encoded in fs/proc/array.c: get_task_state(). 166 * 167 * We have two separate sets of flags: task->state 168 * is about runnability, while task->exit_state are 169 * about the task exiting. Confusing, but this way 170 * modifying one set can't modify the other one by 171 * mistake. 172 */ 173#define TASK_RUNNING 0 174#define TASK_INTERRUPTIBLE 1 175#define TASK_UNINTERRUPTIBLE 2 176#define __TASK_STOPPED 4 177#define __TASK_TRACED 8 178/* in tsk->exit_state */ 179#define EXIT_ZOMBIE 16 180#define EXIT_DEAD 32 181/* in tsk->state again */ 182#define TASK_DEAD 64 183#define TASK_WAKEKILL 128 184 185/* Convenience macros for the sake of set_task_state */ 186#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 187#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 188#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 189 190/* Convenience macros for the sake of wake_up */ 191#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 192#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 193 194/* get_task_state() */ 195#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 197 __TASK_TRACED) 198 199#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 200#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 201#define task_is_stopped_or_traced(task) \ 202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 203#define task_contributes_to_load(task) \ 204 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 205 206#define __set_task_state(tsk, state_value) \ 207 do { (tsk)->state = (state_value); } while (0) 208#define set_task_state(tsk, state_value) \ 209 set_mb((tsk)->state, (state_value)) 210 211/* 212 * set_current_state() includes a barrier so that the write of current->state 213 * is correctly serialised wrt the caller's subsequent test of whether to 214 * actually sleep: 215 * 216 * set_current_state(TASK_UNINTERRUPTIBLE); 217 * if (do_i_need_to_sleep()) 218 * schedule(); 219 * 220 * If the caller does not need such serialisation then use __set_current_state() 221 */ 222#define __set_current_state(state_value) \ 223 do { current->state = (state_value); } while (0) 224#define set_current_state(state_value) \ 225 set_mb(current->state, (state_value)) 226 227/* Task command name length */ 228#define TASK_COMM_LEN 16 229 230#include <linux/spinlock.h> 231 232/* 233 * This serializes "schedule()" and also protects 234 * the run-queue from deletions/modifications (but 235 * _adding_ to the beginning of the run-queue has 236 * a separate lock). 237 */ 238extern rwlock_t tasklist_lock; 239extern spinlock_t mmlist_lock; 240 241struct task_struct; 242 243extern void sched_init(void); 244extern void sched_init_smp(void); 245extern asmlinkage void schedule_tail(struct task_struct *prev); 246extern void init_idle(struct task_struct *idle, int cpu); 247extern void init_idle_bootup_task(struct task_struct *idle); 248 249extern cpumask_t nohz_cpu_mask; 250#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 251extern int select_nohz_load_balancer(int cpu); 252#else 253static inline int select_nohz_load_balancer(int cpu) 254{ 255 return 0; 256} 257#endif 258 259extern unsigned long rt_needs_cpu(int cpu); 260 261/* 262 * Only dump TASK_* tasks. (0 for all tasks) 263 */ 264extern void show_state_filter(unsigned long state_filter); 265 266static inline void show_state(void) 267{ 268 show_state_filter(0); 269} 270 271extern void show_regs(struct pt_regs *); 272 273/* 274 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 275 * task), SP is the stack pointer of the first frame that should be shown in the back 276 * trace (or NULL if the entire call-chain of the task should be shown). 277 */ 278extern void show_stack(struct task_struct *task, unsigned long *sp); 279 280void io_schedule(void); 281long io_schedule_timeout(long timeout); 282 283extern void cpu_init (void); 284extern void trap_init(void); 285extern void account_process_tick(struct task_struct *task, int user); 286extern void update_process_times(int user); 287extern void scheduler_tick(void); 288extern void hrtick_resched(void); 289 290extern void sched_show_task(struct task_struct *p); 291 292#ifdef CONFIG_DETECT_SOFTLOCKUP 293extern void softlockup_tick(void); 294extern void spawn_softlockup_task(void); 295extern void touch_softlockup_watchdog(void); 296extern void touch_all_softlockup_watchdogs(void); 297extern unsigned long softlockup_thresh; 298extern unsigned long sysctl_hung_task_check_count; 299extern unsigned long sysctl_hung_task_timeout_secs; 300extern unsigned long sysctl_hung_task_warnings; 301#else 302static inline void softlockup_tick(void) 303{ 304} 305static inline void spawn_softlockup_task(void) 306{ 307} 308static inline void touch_softlockup_watchdog(void) 309{ 310} 311static inline void touch_all_softlockup_watchdogs(void) 312{ 313} 314#endif 315 316 317/* Attach to any functions which should be ignored in wchan output. */ 318#define __sched __attribute__((__section__(".sched.text"))) 319 320/* Linker adds these: start and end of __sched functions */ 321extern char __sched_text_start[], __sched_text_end[]; 322 323/* Is this address in the __sched functions? */ 324extern int in_sched_functions(unsigned long addr); 325 326#define MAX_SCHEDULE_TIMEOUT LONG_MAX 327extern signed long schedule_timeout(signed long timeout); 328extern signed long schedule_timeout_interruptible(signed long timeout); 329extern signed long schedule_timeout_killable(signed long timeout); 330extern signed long schedule_timeout_uninterruptible(signed long timeout); 331asmlinkage void schedule(void); 332 333struct nsproxy; 334struct user_namespace; 335 336/* Maximum number of active map areas.. This is a random (large) number */ 337#define DEFAULT_MAX_MAP_COUNT 65536 338 339extern int sysctl_max_map_count; 340 341#include <linux/aio.h> 342 343extern unsigned long 344arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 345 unsigned long, unsigned long); 346extern unsigned long 347arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 348 unsigned long len, unsigned long pgoff, 349 unsigned long flags); 350extern void arch_unmap_area(struct mm_struct *, unsigned long); 351extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 352 353#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 354/* 355 * The mm counters are not protected by its page_table_lock, 356 * so must be incremented atomically. 357 */ 358#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 359#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 360#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 361#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 362#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 363 364#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 365/* 366 * The mm counters are protected by its page_table_lock, 367 * so can be incremented directly. 368 */ 369#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 370#define get_mm_counter(mm, member) ((mm)->_##member) 371#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 372#define inc_mm_counter(mm, member) (mm)->_##member++ 373#define dec_mm_counter(mm, member) (mm)->_##member-- 374 375#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 376 377#define get_mm_rss(mm) \ 378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 379#define update_hiwater_rss(mm) do { \ 380 unsigned long _rss = get_mm_rss(mm); \ 381 if ((mm)->hiwater_rss < _rss) \ 382 (mm)->hiwater_rss = _rss; \ 383} while (0) 384#define update_hiwater_vm(mm) do { \ 385 if ((mm)->hiwater_vm < (mm)->total_vm) \ 386 (mm)->hiwater_vm = (mm)->total_vm; \ 387} while (0) 388 389extern void set_dumpable(struct mm_struct *mm, int value); 390extern int get_dumpable(struct mm_struct *mm); 391 392/* mm flags */ 393/* dumpable bits */ 394#define MMF_DUMPABLE 0 /* core dump is permitted */ 395#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 396#define MMF_DUMPABLE_BITS 2 397 398/* coredump filter bits */ 399#define MMF_DUMP_ANON_PRIVATE 2 400#define MMF_DUMP_ANON_SHARED 3 401#define MMF_DUMP_MAPPED_PRIVATE 4 402#define MMF_DUMP_MAPPED_SHARED 5 403#define MMF_DUMP_ELF_HEADERS 6 404#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 405#define MMF_DUMP_FILTER_BITS 5 406#define MMF_DUMP_FILTER_MASK \ 407 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 408#define MMF_DUMP_FILTER_DEFAULT \ 409 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED)) 410 411struct sighand_struct { 412 atomic_t count; 413 struct k_sigaction action[_NSIG]; 414 spinlock_t siglock; 415 wait_queue_head_t signalfd_wqh; 416}; 417 418struct pacct_struct { 419 int ac_flag; 420 long ac_exitcode; 421 unsigned long ac_mem; 422 cputime_t ac_utime, ac_stime; 423 unsigned long ac_minflt, ac_majflt; 424}; 425 426/* 427 * NOTE! "signal_struct" does not have it's own 428 * locking, because a shared signal_struct always 429 * implies a shared sighand_struct, so locking 430 * sighand_struct is always a proper superset of 431 * the locking of signal_struct. 432 */ 433struct signal_struct { 434 atomic_t count; 435 atomic_t live; 436 437 wait_queue_head_t wait_chldexit; /* for wait4() */ 438 439 /* current thread group signal load-balancing target: */ 440 struct task_struct *curr_target; 441 442 /* shared signal handling: */ 443 struct sigpending shared_pending; 444 445 /* thread group exit support */ 446 int group_exit_code; 447 /* overloaded: 448 * - notify group_exit_task when ->count is equal to notify_count 449 * - everyone except group_exit_task is stopped during signal delivery 450 * of fatal signals, group_exit_task processes the signal. 451 */ 452 struct task_struct *group_exit_task; 453 int notify_count; 454 455 /* thread group stop support, overloads group_exit_code too */ 456 int group_stop_count; 457 unsigned int flags; /* see SIGNAL_* flags below */ 458 459 /* POSIX.1b Interval Timers */ 460 struct list_head posix_timers; 461 462 /* ITIMER_REAL timer for the process */ 463 struct hrtimer real_timer; 464 struct pid *leader_pid; 465 ktime_t it_real_incr; 466 467 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 468 cputime_t it_prof_expires, it_virt_expires; 469 cputime_t it_prof_incr, it_virt_incr; 470 471 /* job control IDs */ 472 473 /* 474 * pgrp and session fields are deprecated. 475 * use the task_session_Xnr and task_pgrp_Xnr routines below 476 */ 477 478 union { 479 pid_t pgrp __deprecated; 480 pid_t __pgrp; 481 }; 482 483 struct pid *tty_old_pgrp; 484 485 union { 486 pid_t session __deprecated; 487 pid_t __session; 488 }; 489 490 /* boolean value for session group leader */ 491 int leader; 492 493 struct tty_struct *tty; /* NULL if no tty */ 494 495 /* 496 * Cumulative resource counters for dead threads in the group, 497 * and for reaped dead child processes forked by this group. 498 * Live threads maintain their own counters and add to these 499 * in __exit_signal, except for the group leader. 500 */ 501 cputime_t utime, stime, cutime, cstime; 502 cputime_t gtime; 503 cputime_t cgtime; 504 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 505 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 506 unsigned long inblock, oublock, cinblock, coublock; 507 508 /* 509 * Cumulative ns of scheduled CPU time for dead threads in the 510 * group, not including a zombie group leader. (This only differs 511 * from jiffies_to_ns(utime + stime) if sched_clock uses something 512 * other than jiffies.) 513 */ 514 unsigned long long sum_sched_runtime; 515 516 /* 517 * We don't bother to synchronize most readers of this at all, 518 * because there is no reader checking a limit that actually needs 519 * to get both rlim_cur and rlim_max atomically, and either one 520 * alone is a single word that can safely be read normally. 521 * getrlimit/setrlimit use task_lock(current->group_leader) to 522 * protect this instead of the siglock, because they really 523 * have no need to disable irqs. 524 */ 525 struct rlimit rlim[RLIM_NLIMITS]; 526 527 struct list_head cpu_timers[3]; 528 529 /* keep the process-shared keyrings here so that they do the right 530 * thing in threads created with CLONE_THREAD */ 531#ifdef CONFIG_KEYS 532 struct key *session_keyring; /* keyring inherited over fork */ 533 struct key *process_keyring; /* keyring private to this process */ 534#endif 535#ifdef CONFIG_BSD_PROCESS_ACCT 536 struct pacct_struct pacct; /* per-process accounting information */ 537#endif 538#ifdef CONFIG_TASKSTATS 539 struct taskstats *stats; 540#endif 541#ifdef CONFIG_AUDIT 542 unsigned audit_tty; 543 struct tty_audit_buf *tty_audit_buf; 544#endif 545}; 546 547/* Context switch must be unlocked if interrupts are to be enabled */ 548#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 549# define __ARCH_WANT_UNLOCKED_CTXSW 550#endif 551 552/* 553 * Bits in flags field of signal_struct. 554 */ 555#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 556#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 557#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 558#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 559/* 560 * Pending notifications to parent. 561 */ 562#define SIGNAL_CLD_STOPPED 0x00000010 563#define SIGNAL_CLD_CONTINUED 0x00000020 564#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 565 566#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 567 568/* If true, all threads except ->group_exit_task have pending SIGKILL */ 569static inline int signal_group_exit(const struct signal_struct *sig) 570{ 571 return (sig->flags & SIGNAL_GROUP_EXIT) || 572 (sig->group_exit_task != NULL); 573} 574 575/* 576 * Some day this will be a full-fledged user tracking system.. 577 */ 578struct user_struct { 579 atomic_t __count; /* reference count */ 580 atomic_t processes; /* How many processes does this user have? */ 581 atomic_t files; /* How many open files does this user have? */ 582 atomic_t sigpending; /* How many pending signals does this user have? */ 583#ifdef CONFIG_INOTIFY_USER 584 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 585 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 586#endif 587#ifdef CONFIG_POSIX_MQUEUE 588 /* protected by mq_lock */ 589 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 590#endif 591 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 592 593#ifdef CONFIG_KEYS 594 struct key *uid_keyring; /* UID specific keyring */ 595 struct key *session_keyring; /* UID's default session keyring */ 596#endif 597 598 /* Hash table maintenance information */ 599 struct hlist_node uidhash_node; 600 uid_t uid; 601 602#ifdef CONFIG_USER_SCHED 603 struct task_group *tg; 604#ifdef CONFIG_SYSFS 605 struct kobject kobj; 606 struct work_struct work; 607#endif 608#endif 609}; 610 611extern int uids_sysfs_init(void); 612 613extern struct user_struct *find_user(uid_t); 614 615extern struct user_struct root_user; 616#define INIT_USER (&root_user) 617 618struct backing_dev_info; 619struct reclaim_state; 620 621#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 622struct sched_info { 623 /* cumulative counters */ 624 unsigned long pcount; /* # of times run on this cpu */ 625 unsigned long long cpu_time, /* time spent on the cpu */ 626 run_delay; /* time spent waiting on a runqueue */ 627 628 /* timestamps */ 629 unsigned long long last_arrival,/* when we last ran on a cpu */ 630 last_queued; /* when we were last queued to run */ 631#ifdef CONFIG_SCHEDSTATS 632 /* BKL stats */ 633 unsigned int bkl_count; 634#endif 635}; 636#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 637 638#ifdef CONFIG_SCHEDSTATS 639extern const struct file_operations proc_schedstat_operations; 640#endif /* CONFIG_SCHEDSTATS */ 641 642#ifdef CONFIG_TASK_DELAY_ACCT 643struct task_delay_info { 644 spinlock_t lock; 645 unsigned int flags; /* Private per-task flags */ 646 647 /* For each stat XXX, add following, aligned appropriately 648 * 649 * struct timespec XXX_start, XXX_end; 650 * u64 XXX_delay; 651 * u32 XXX_count; 652 * 653 * Atomicity of updates to XXX_delay, XXX_count protected by 654 * single lock above (split into XXX_lock if contention is an issue). 655 */ 656 657 /* 658 * XXX_count is incremented on every XXX operation, the delay 659 * associated with the operation is added to XXX_delay. 660 * XXX_delay contains the accumulated delay time in nanoseconds. 661 */ 662 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 663 u64 blkio_delay; /* wait for sync block io completion */ 664 u64 swapin_delay; /* wait for swapin block io completion */ 665 u32 blkio_count; /* total count of the number of sync block */ 666 /* io operations performed */ 667 u32 swapin_count; /* total count of the number of swapin block */ 668 /* io operations performed */ 669}; 670#endif /* CONFIG_TASK_DELAY_ACCT */ 671 672static inline int sched_info_on(void) 673{ 674#ifdef CONFIG_SCHEDSTATS 675 return 1; 676#elif defined(CONFIG_TASK_DELAY_ACCT) 677 extern int delayacct_on; 678 return delayacct_on; 679#else 680 return 0; 681#endif 682} 683 684enum cpu_idle_type { 685 CPU_IDLE, 686 CPU_NOT_IDLE, 687 CPU_NEWLY_IDLE, 688 CPU_MAX_IDLE_TYPES 689}; 690 691/* 692 * sched-domains (multiprocessor balancing) declarations: 693 */ 694 695/* 696 * Increase resolution of nice-level calculations: 697 */ 698#define SCHED_LOAD_SHIFT 10 699#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 700 701#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 702 703#ifdef CONFIG_SMP 704#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 705#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 706#define SD_BALANCE_EXEC 4 /* Balance on exec */ 707#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 708#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 709#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 710#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 711#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 712#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 713#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 714#define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 715#define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */ 716 717#define BALANCE_FOR_MC_POWER \ 718 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 719 720#define BALANCE_FOR_PKG_POWER \ 721 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 722 SD_POWERSAVINGS_BALANCE : 0) 723 724#define test_sd_parent(sd, flag) ((sd->parent && \ 725 (sd->parent->flags & flag)) ? 1 : 0) 726 727 728struct sched_group { 729 struct sched_group *next; /* Must be a circular list */ 730 cpumask_t cpumask; 731 732 /* 733 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 734 * single CPU. This is read only (except for setup, hotplug CPU). 735 * Note : Never change cpu_power without recompute its reciprocal 736 */ 737 unsigned int __cpu_power; 738 /* 739 * reciprocal value of cpu_power to avoid expensive divides 740 * (see include/linux/reciprocal_div.h) 741 */ 742 u32 reciprocal_cpu_power; 743}; 744 745enum sched_domain_level { 746 SD_LV_NONE = 0, 747 SD_LV_SIBLING, 748 SD_LV_MC, 749 SD_LV_CPU, 750 SD_LV_NODE, 751 SD_LV_ALLNODES, 752 SD_LV_MAX 753}; 754 755struct sched_domain_attr { 756 int relax_domain_level; 757}; 758 759#define SD_ATTR_INIT (struct sched_domain_attr) { \ 760 .relax_domain_level = -1, \ 761} 762 763struct sched_domain { 764 /* These fields must be setup */ 765 struct sched_domain *parent; /* top domain must be null terminated */ 766 struct sched_domain *child; /* bottom domain must be null terminated */ 767 struct sched_group *groups; /* the balancing groups of the domain */ 768 cpumask_t span; /* span of all CPUs in this domain */ 769 unsigned long min_interval; /* Minimum balance interval ms */ 770 unsigned long max_interval; /* Maximum balance interval ms */ 771 unsigned int busy_factor; /* less balancing by factor if busy */ 772 unsigned int imbalance_pct; /* No balance until over watermark */ 773 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 774 unsigned int busy_idx; 775 unsigned int idle_idx; 776 unsigned int newidle_idx; 777 unsigned int wake_idx; 778 unsigned int forkexec_idx; 779 int flags; /* See SD_* */ 780 enum sched_domain_level level; 781 782 /* Runtime fields. */ 783 unsigned long last_balance; /* init to jiffies. units in jiffies */ 784 unsigned int balance_interval; /* initialise to 1. units in ms. */ 785 unsigned int nr_balance_failed; /* initialise to 0 */ 786 787#ifdef CONFIG_SCHEDSTATS 788 /* load_balance() stats */ 789 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 790 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 791 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 792 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 793 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 794 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 795 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 796 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 797 798 /* Active load balancing */ 799 unsigned int alb_count; 800 unsigned int alb_failed; 801 unsigned int alb_pushed; 802 803 /* SD_BALANCE_EXEC stats */ 804 unsigned int sbe_count; 805 unsigned int sbe_balanced; 806 unsigned int sbe_pushed; 807 808 /* SD_BALANCE_FORK stats */ 809 unsigned int sbf_count; 810 unsigned int sbf_balanced; 811 unsigned int sbf_pushed; 812 813 /* try_to_wake_up() stats */ 814 unsigned int ttwu_wake_remote; 815 unsigned int ttwu_move_affine; 816 unsigned int ttwu_move_balance; 817#endif 818}; 819 820extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 821 struct sched_domain_attr *dattr_new); 822extern int arch_reinit_sched_domains(void); 823 824#endif /* CONFIG_SMP */ 825 826/* 827 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of 828 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a 829 * task of nice 0 or enough lower priority tasks to bring up the 830 * weighted_cpuload 831 */ 832static inline int above_background_load(void) 833{ 834 unsigned long cpu; 835 836 for_each_online_cpu(cpu) { 837 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE) 838 return 1; 839 } 840 return 0; 841} 842 843struct io_context; /* See blkdev.h */ 844#define NGROUPS_SMALL 32 845#define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t))) 846struct group_info { 847 int ngroups; 848 atomic_t usage; 849 gid_t small_block[NGROUPS_SMALL]; 850 int nblocks; 851 gid_t *blocks[0]; 852}; 853 854/* 855 * get_group_info() must be called with the owning task locked (via task_lock()) 856 * when task != current. The reason being that the vast majority of callers are 857 * looking at current->group_info, which can not be changed except by the 858 * current task. Changing current->group_info requires the task lock, too. 859 */ 860#define get_group_info(group_info) do { \ 861 atomic_inc(&(group_info)->usage); \ 862} while (0) 863 864#define put_group_info(group_info) do { \ 865 if (atomic_dec_and_test(&(group_info)->usage)) \ 866 groups_free(group_info); \ 867} while (0) 868 869extern struct group_info *groups_alloc(int gidsetsize); 870extern void groups_free(struct group_info *group_info); 871extern int set_current_groups(struct group_info *group_info); 872extern int groups_search(struct group_info *group_info, gid_t grp); 873/* access the groups "array" with this macro */ 874#define GROUP_AT(gi, i) \ 875 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 876 877#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 878extern void prefetch_stack(struct task_struct *t); 879#else 880static inline void prefetch_stack(struct task_struct *t) { } 881#endif 882 883struct audit_context; /* See audit.c */ 884struct mempolicy; 885struct pipe_inode_info; 886struct uts_namespace; 887 888struct rq; 889struct sched_domain; 890 891struct sched_class { 892 const struct sched_class *next; 893 894 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 895 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 896 void (*yield_task) (struct rq *rq); 897 int (*select_task_rq)(struct task_struct *p, int sync); 898 899 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p); 900 901 struct task_struct * (*pick_next_task) (struct rq *rq); 902 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 903 904#ifdef CONFIG_SMP 905 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 906 struct rq *busiest, unsigned long max_load_move, 907 struct sched_domain *sd, enum cpu_idle_type idle, 908 int *all_pinned, int *this_best_prio); 909 910 int (*move_one_task) (struct rq *this_rq, int this_cpu, 911 struct rq *busiest, struct sched_domain *sd, 912 enum cpu_idle_type idle); 913 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 914 void (*post_schedule) (struct rq *this_rq); 915 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 916#endif 917 918 void (*set_curr_task) (struct rq *rq); 919 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 920 void (*task_new) (struct rq *rq, struct task_struct *p); 921 void (*set_cpus_allowed)(struct task_struct *p, 922 const cpumask_t *newmask); 923 924 void (*join_domain)(struct rq *rq); 925 void (*leave_domain)(struct rq *rq); 926 927 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 928 int running); 929 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 930 int running); 931 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 932 int oldprio, int running); 933 934#ifdef CONFIG_FAIR_GROUP_SCHED 935 void (*moved_group) (struct task_struct *p); 936#endif 937}; 938 939struct load_weight { 940 unsigned long weight, inv_weight; 941}; 942 943/* 944 * CFS stats for a schedulable entity (task, task-group etc) 945 * 946 * Current field usage histogram: 947 * 948 * 4 se->block_start 949 * 4 se->run_node 950 * 4 se->sleep_start 951 * 6 se->load.weight 952 */ 953struct sched_entity { 954 struct load_weight load; /* for load-balancing */ 955 struct rb_node run_node; 956 struct list_head group_node; 957 unsigned int on_rq; 958 959 u64 exec_start; 960 u64 sum_exec_runtime; 961 u64 vruntime; 962 u64 prev_sum_exec_runtime; 963 964 u64 last_wakeup; 965 u64 avg_overlap; 966 967#ifdef CONFIG_SCHEDSTATS 968 u64 wait_start; 969 u64 wait_max; 970 u64 wait_count; 971 u64 wait_sum; 972 973 u64 sleep_start; 974 u64 sleep_max; 975 s64 sum_sleep_runtime; 976 977 u64 block_start; 978 u64 block_max; 979 u64 exec_max; 980 u64 slice_max; 981 982 u64 nr_migrations; 983 u64 nr_migrations_cold; 984 u64 nr_failed_migrations_affine; 985 u64 nr_failed_migrations_running; 986 u64 nr_failed_migrations_hot; 987 u64 nr_forced_migrations; 988 u64 nr_forced2_migrations; 989 990 u64 nr_wakeups; 991 u64 nr_wakeups_sync; 992 u64 nr_wakeups_migrate; 993 u64 nr_wakeups_local; 994 u64 nr_wakeups_remote; 995 u64 nr_wakeups_affine; 996 u64 nr_wakeups_affine_attempts; 997 u64 nr_wakeups_passive; 998 u64 nr_wakeups_idle; 999#endif 1000 1001#ifdef CONFIG_FAIR_GROUP_SCHED 1002 struct sched_entity *parent; 1003 /* rq on which this entity is (to be) queued: */ 1004 struct cfs_rq *cfs_rq; 1005 /* rq "owned" by this entity/group: */ 1006 struct cfs_rq *my_q; 1007#endif 1008}; 1009 1010struct sched_rt_entity { 1011 struct list_head run_list; 1012 unsigned int time_slice; 1013 unsigned long timeout; 1014 int nr_cpus_allowed; 1015 1016 struct sched_rt_entity *back; 1017#ifdef CONFIG_RT_GROUP_SCHED 1018 struct sched_rt_entity *parent; 1019 /* rq on which this entity is (to be) queued: */ 1020 struct rt_rq *rt_rq; 1021 /* rq "owned" by this entity/group: */ 1022 struct rt_rq *my_q; 1023#endif 1024}; 1025 1026struct task_struct { 1027 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1028 void *stack; 1029 atomic_t usage; 1030 unsigned int flags; /* per process flags, defined below */ 1031 unsigned int ptrace; 1032 1033 int lock_depth; /* BKL lock depth */ 1034 1035#ifdef CONFIG_SMP 1036#ifdef __ARCH_WANT_UNLOCKED_CTXSW 1037 int oncpu; 1038#endif 1039#endif 1040 1041 int prio, static_prio, normal_prio; 1042 const struct sched_class *sched_class; 1043 struct sched_entity se; 1044 struct sched_rt_entity rt; 1045 1046#ifdef CONFIG_PREEMPT_NOTIFIERS 1047 /* list of struct preempt_notifier: */ 1048 struct hlist_head preempt_notifiers; 1049#endif 1050 1051 /* 1052 * fpu_counter contains the number of consecutive context switches 1053 * that the FPU is used. If this is over a threshold, the lazy fpu 1054 * saving becomes unlazy to save the trap. This is an unsigned char 1055 * so that after 256 times the counter wraps and the behavior turns 1056 * lazy again; this to deal with bursty apps that only use FPU for 1057 * a short time 1058 */ 1059 unsigned char fpu_counter; 1060 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1061#ifdef CONFIG_BLK_DEV_IO_TRACE 1062 unsigned int btrace_seq; 1063#endif 1064 1065 unsigned int policy; 1066 cpumask_t cpus_allowed; 1067 1068#ifdef CONFIG_PREEMPT_RCU 1069 int rcu_read_lock_nesting; 1070 int rcu_flipctr_idx; 1071#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1072 1073#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1074 struct sched_info sched_info; 1075#endif 1076 1077 struct list_head tasks; 1078 /* 1079 * ptrace_list/ptrace_children forms the list of my children 1080 * that were stolen by a ptracer. 1081 */ 1082 struct list_head ptrace_children; 1083 struct list_head ptrace_list; 1084 1085 struct mm_struct *mm, *active_mm; 1086 1087/* task state */ 1088 struct linux_binfmt *binfmt; 1089 int exit_state; 1090 int exit_code, exit_signal; 1091 int pdeath_signal; /* The signal sent when the parent dies */ 1092 /* ??? */ 1093 unsigned int personality; 1094 unsigned did_exec:1; 1095 pid_t pid; 1096 pid_t tgid; 1097 1098#ifdef CONFIG_CC_STACKPROTECTOR 1099 /* Canary value for the -fstack-protector gcc feature */ 1100 unsigned long stack_canary; 1101#endif 1102 /* 1103 * pointers to (original) parent process, youngest child, younger sibling, 1104 * older sibling, respectively. (p->father can be replaced with 1105 * p->parent->pid) 1106 */ 1107 struct task_struct *real_parent; /* real parent process (when being debugged) */ 1108 struct task_struct *parent; /* parent process */ 1109 /* 1110 * children/sibling forms the list of my children plus the 1111 * tasks I'm ptracing. 1112 */ 1113 struct list_head children; /* list of my children */ 1114 struct list_head sibling; /* linkage in my parent's children list */ 1115 struct task_struct *group_leader; /* threadgroup leader */ 1116 1117 /* PID/PID hash table linkage. */ 1118 struct pid_link pids[PIDTYPE_MAX]; 1119 struct list_head thread_group; 1120 1121 struct completion *vfork_done; /* for vfork() */ 1122 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1123 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1124 1125 unsigned int rt_priority; 1126 cputime_t utime, stime, utimescaled, stimescaled; 1127 cputime_t gtime; 1128 cputime_t prev_utime, prev_stime; 1129 unsigned long nvcsw, nivcsw; /* context switch counts */ 1130 struct timespec start_time; /* monotonic time */ 1131 struct timespec real_start_time; /* boot based time */ 1132/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1133 unsigned long min_flt, maj_flt; 1134 1135 cputime_t it_prof_expires, it_virt_expires; 1136 unsigned long long it_sched_expires; 1137 struct list_head cpu_timers[3]; 1138 1139/* process credentials */ 1140 uid_t uid,euid,suid,fsuid; 1141 gid_t gid,egid,sgid,fsgid; 1142 struct group_info *group_info; 1143 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset; 1144 unsigned securebits; 1145 struct user_struct *user; 1146#ifdef CONFIG_KEYS 1147 struct key *request_key_auth; /* assumed request_key authority */ 1148 struct key *thread_keyring; /* keyring private to this thread */ 1149 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1150#endif 1151 char comm[TASK_COMM_LEN]; /* executable name excluding path 1152 - access with [gs]et_task_comm (which lock 1153 it with task_lock()) 1154 - initialized normally by flush_old_exec */ 1155/* file system info */ 1156 int link_count, total_link_count; 1157#ifdef CONFIG_SYSVIPC 1158/* ipc stuff */ 1159 struct sysv_sem sysvsem; 1160#endif 1161#ifdef CONFIG_DETECT_SOFTLOCKUP 1162/* hung task detection */ 1163 unsigned long last_switch_timestamp; 1164 unsigned long last_switch_count; 1165#endif 1166/* CPU-specific state of this task */ 1167 struct thread_struct thread; 1168/* filesystem information */ 1169 struct fs_struct *fs; 1170/* open file information */ 1171 struct files_struct *files; 1172/* namespaces */ 1173 struct nsproxy *nsproxy; 1174/* signal handlers */ 1175 struct signal_struct *signal; 1176 struct sighand_struct *sighand; 1177 1178 sigset_t blocked, real_blocked; 1179 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1180 struct sigpending pending; 1181 1182 unsigned long sas_ss_sp; 1183 size_t sas_ss_size; 1184 int (*notifier)(void *priv); 1185 void *notifier_data; 1186 sigset_t *notifier_mask; 1187#ifdef CONFIG_SECURITY 1188 void *security; 1189#endif 1190 struct audit_context *audit_context; 1191#ifdef CONFIG_AUDITSYSCALL 1192 uid_t loginuid; 1193 unsigned int sessionid; 1194#endif 1195 seccomp_t seccomp; 1196 1197/* Thread group tracking */ 1198 u32 parent_exec_id; 1199 u32 self_exec_id; 1200/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1201 spinlock_t alloc_lock; 1202 1203 /* Protection of the PI data structures: */ 1204 spinlock_t pi_lock; 1205 1206#ifdef CONFIG_RT_MUTEXES 1207 /* PI waiters blocked on a rt_mutex held by this task */ 1208 struct plist_head pi_waiters; 1209 /* Deadlock detection and priority inheritance handling */ 1210 struct rt_mutex_waiter *pi_blocked_on; 1211#endif 1212 1213#ifdef CONFIG_DEBUG_MUTEXES 1214 /* mutex deadlock detection */ 1215 struct mutex_waiter *blocked_on; 1216#endif 1217#ifdef CONFIG_TRACE_IRQFLAGS 1218 unsigned int irq_events; 1219 int hardirqs_enabled; 1220 unsigned long hardirq_enable_ip; 1221 unsigned int hardirq_enable_event; 1222 unsigned long hardirq_disable_ip; 1223 unsigned int hardirq_disable_event; 1224 int softirqs_enabled; 1225 unsigned long softirq_disable_ip; 1226 unsigned int softirq_disable_event; 1227 unsigned long softirq_enable_ip; 1228 unsigned int softirq_enable_event; 1229 int hardirq_context; 1230 int softirq_context; 1231#endif 1232#ifdef CONFIG_LOCKDEP 1233# define MAX_LOCK_DEPTH 48UL 1234 u64 curr_chain_key; 1235 int lockdep_depth; 1236 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1237 unsigned int lockdep_recursion; 1238#endif 1239 1240/* journalling filesystem info */ 1241 void *journal_info; 1242 1243/* stacked block device info */ 1244 struct bio *bio_list, **bio_tail; 1245 1246/* VM state */ 1247 struct reclaim_state *reclaim_state; 1248 1249 struct backing_dev_info *backing_dev_info; 1250 1251 struct io_context *io_context; 1252 1253 unsigned long ptrace_message; 1254 siginfo_t *last_siginfo; /* For ptrace use. */ 1255#ifdef CONFIG_TASK_XACCT 1256/* i/o counters(bytes read/written, #syscalls */ 1257 u64 rchar, wchar, syscr, syscw; 1258#endif 1259 struct task_io_accounting ioac; 1260#if defined(CONFIG_TASK_XACCT) 1261 u64 acct_rss_mem1; /* accumulated rss usage */ 1262 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1263 cputime_t acct_stimexpd;/* stime since last update */ 1264#endif 1265#ifdef CONFIG_NUMA 1266 struct mempolicy *mempolicy; 1267 short il_next; 1268#endif 1269#ifdef CONFIG_CPUSETS 1270 nodemask_t mems_allowed; 1271 int cpuset_mems_generation; 1272 int cpuset_mem_spread_rotor; 1273#endif 1274#ifdef CONFIG_CGROUPS 1275 /* Control Group info protected by css_set_lock */ 1276 struct css_set *cgroups; 1277 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1278 struct list_head cg_list; 1279#endif 1280#ifdef CONFIG_FUTEX 1281 struct robust_list_head __user *robust_list; 1282#ifdef CONFIG_COMPAT 1283 struct compat_robust_list_head __user *compat_robust_list; 1284#endif 1285 struct list_head pi_state_list; 1286 struct futex_pi_state *pi_state_cache; 1287#endif 1288 atomic_t fs_excl; /* holding fs exclusive resources */ 1289 struct rcu_head rcu; 1290 1291 /* 1292 * cache last used pipe for splice 1293 */ 1294 struct pipe_inode_info *splice_pipe; 1295#ifdef CONFIG_TASK_DELAY_ACCT 1296 struct task_delay_info *delays; 1297#endif 1298#ifdef CONFIG_FAULT_INJECTION 1299 int make_it_fail; 1300#endif 1301 struct prop_local_single dirties; 1302#ifdef CONFIG_LATENCYTOP 1303 int latency_record_count; 1304 struct latency_record latency_record[LT_SAVECOUNT]; 1305#endif 1306}; 1307 1308/* 1309 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1310 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1311 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1312 * values are inverted: lower p->prio value means higher priority. 1313 * 1314 * The MAX_USER_RT_PRIO value allows the actual maximum 1315 * RT priority to be separate from the value exported to 1316 * user-space. This allows kernel threads to set their 1317 * priority to a value higher than any user task. Note: 1318 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1319 */ 1320 1321#define MAX_USER_RT_PRIO 100 1322#define MAX_RT_PRIO MAX_USER_RT_PRIO 1323 1324#define MAX_PRIO (MAX_RT_PRIO + 40) 1325#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1326 1327static inline int rt_prio(int prio) 1328{ 1329 if (unlikely(prio < MAX_RT_PRIO)) 1330 return 1; 1331 return 0; 1332} 1333 1334static inline int rt_task(struct task_struct *p) 1335{ 1336 return rt_prio(p->prio); 1337} 1338 1339static inline void set_task_session(struct task_struct *tsk, pid_t session) 1340{ 1341 tsk->signal->__session = session; 1342} 1343 1344static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1345{ 1346 tsk->signal->__pgrp = pgrp; 1347} 1348 1349static inline struct pid *task_pid(struct task_struct *task) 1350{ 1351 return task->pids[PIDTYPE_PID].pid; 1352} 1353 1354static inline struct pid *task_tgid(struct task_struct *task) 1355{ 1356 return task->group_leader->pids[PIDTYPE_PID].pid; 1357} 1358 1359static inline struct pid *task_pgrp(struct task_struct *task) 1360{ 1361 return task->group_leader->pids[PIDTYPE_PGID].pid; 1362} 1363 1364static inline struct pid *task_session(struct task_struct *task) 1365{ 1366 return task->group_leader->pids[PIDTYPE_SID].pid; 1367} 1368 1369struct pid_namespace; 1370 1371/* 1372 * the helpers to get the task's different pids as they are seen 1373 * from various namespaces 1374 * 1375 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1376 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1377 * current. 1378 * task_xid_nr_ns() : id seen from the ns specified; 1379 * 1380 * set_task_vxid() : assigns a virtual id to a task; 1381 * 1382 * see also pid_nr() etc in include/linux/pid.h 1383 */ 1384 1385static inline pid_t task_pid_nr(struct task_struct *tsk) 1386{ 1387 return tsk->pid; 1388} 1389 1390pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1391 1392static inline pid_t task_pid_vnr(struct task_struct *tsk) 1393{ 1394 return pid_vnr(task_pid(tsk)); 1395} 1396 1397 1398static inline pid_t task_tgid_nr(struct task_struct *tsk) 1399{ 1400 return tsk->tgid; 1401} 1402 1403pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1404 1405static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1406{ 1407 return pid_vnr(task_tgid(tsk)); 1408} 1409 1410 1411static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1412{ 1413 return tsk->signal->__pgrp; 1414} 1415 1416pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1417 1418static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1419{ 1420 return pid_vnr(task_pgrp(tsk)); 1421} 1422 1423 1424static inline pid_t task_session_nr(struct task_struct *tsk) 1425{ 1426 return tsk->signal->__session; 1427} 1428 1429pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1430 1431static inline pid_t task_session_vnr(struct task_struct *tsk) 1432{ 1433 return pid_vnr(task_session(tsk)); 1434} 1435 1436 1437/** 1438 * pid_alive - check that a task structure is not stale 1439 * @p: Task structure to be checked. 1440 * 1441 * Test if a process is not yet dead (at most zombie state) 1442 * If pid_alive fails, then pointers within the task structure 1443 * can be stale and must not be dereferenced. 1444 */ 1445static inline int pid_alive(struct task_struct *p) 1446{ 1447 return p->pids[PIDTYPE_PID].pid != NULL; 1448} 1449 1450/** 1451 * is_global_init - check if a task structure is init 1452 * @tsk: Task structure to be checked. 1453 * 1454 * Check if a task structure is the first user space task the kernel created. 1455 */ 1456static inline int is_global_init(struct task_struct *tsk) 1457{ 1458 return tsk->pid == 1; 1459} 1460 1461/* 1462 * is_container_init: 1463 * check whether in the task is init in its own pid namespace. 1464 */ 1465extern int is_container_init(struct task_struct *tsk); 1466 1467extern struct pid *cad_pid; 1468 1469extern void free_task(struct task_struct *tsk); 1470#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1471 1472extern void __put_task_struct(struct task_struct *t); 1473 1474static inline void put_task_struct(struct task_struct *t) 1475{ 1476 if (atomic_dec_and_test(&t->usage)) 1477 __put_task_struct(t); 1478} 1479 1480/* 1481 * Per process flags 1482 */ 1483#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1484 /* Not implemented yet, only for 486*/ 1485#define PF_STARTING 0x00000002 /* being created */ 1486#define PF_EXITING 0x00000004 /* getting shut down */ 1487#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1488#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1489#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1490#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1491#define PF_DUMPCORE 0x00000200 /* dumped core */ 1492#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1493#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1494#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1495#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1496#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1497#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1498#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1499#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1500#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1501#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1502#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1503#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1504#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1505#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1506#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1507#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1508#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1509#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1510 1511/* 1512 * Only the _current_ task can read/write to tsk->flags, but other 1513 * tasks can access tsk->flags in readonly mode for example 1514 * with tsk_used_math (like during threaded core dumping). 1515 * There is however an exception to this rule during ptrace 1516 * or during fork: the ptracer task is allowed to write to the 1517 * child->flags of its traced child (same goes for fork, the parent 1518 * can write to the child->flags), because we're guaranteed the 1519 * child is not running and in turn not changing child->flags 1520 * at the same time the parent does it. 1521 */ 1522#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1523#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1524#define clear_used_math() clear_stopped_child_used_math(current) 1525#define set_used_math() set_stopped_child_used_math(current) 1526#define conditional_stopped_child_used_math(condition, child) \ 1527 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1528#define conditional_used_math(condition) \ 1529 conditional_stopped_child_used_math(condition, current) 1530#define copy_to_stopped_child_used_math(child) \ 1531 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1532/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1533#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1534#define used_math() tsk_used_math(current) 1535 1536#ifdef CONFIG_SMP 1537extern int set_cpus_allowed_ptr(struct task_struct *p, 1538 const cpumask_t *new_mask); 1539#else 1540static inline int set_cpus_allowed_ptr(struct task_struct *p, 1541 const cpumask_t *new_mask) 1542{ 1543 if (!cpu_isset(0, *new_mask)) 1544 return -EINVAL; 1545 return 0; 1546} 1547#endif 1548static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1549{ 1550 return set_cpus_allowed_ptr(p, &new_mask); 1551} 1552 1553extern unsigned long long sched_clock(void); 1554 1555#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1556static inline void sched_clock_init(void) 1557{ 1558} 1559 1560static inline u64 sched_clock_cpu(int cpu) 1561{ 1562 return sched_clock(); 1563} 1564 1565static inline void sched_clock_tick(void) 1566{ 1567} 1568 1569static inline void sched_clock_idle_sleep_event(void) 1570{ 1571} 1572 1573static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1574{ 1575} 1576#else 1577extern void sched_clock_init(void); 1578extern u64 sched_clock_cpu(int cpu); 1579extern void sched_clock_tick(void); 1580extern void sched_clock_idle_sleep_event(void); 1581extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1582#endif 1583 1584/* 1585 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1586 * clock constructed from sched_clock(): 1587 */ 1588extern unsigned long long cpu_clock(int cpu); 1589 1590extern unsigned long long 1591task_sched_runtime(struct task_struct *task); 1592 1593/* sched_exec is called by processes performing an exec */ 1594#ifdef CONFIG_SMP 1595extern void sched_exec(void); 1596#else 1597#define sched_exec() {} 1598#endif 1599 1600extern void sched_clock_idle_sleep_event(void); 1601extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1602 1603#ifdef CONFIG_HOTPLUG_CPU 1604extern void idle_task_exit(void); 1605#else 1606static inline void idle_task_exit(void) {} 1607#endif 1608 1609extern void sched_idle_next(void); 1610 1611#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1612extern void wake_up_idle_cpu(int cpu); 1613#else 1614static inline void wake_up_idle_cpu(int cpu) { } 1615#endif 1616 1617#ifdef CONFIG_SCHED_DEBUG 1618extern unsigned int sysctl_sched_latency; 1619extern unsigned int sysctl_sched_min_granularity; 1620extern unsigned int sysctl_sched_wakeup_granularity; 1621extern unsigned int sysctl_sched_child_runs_first; 1622extern unsigned int sysctl_sched_features; 1623extern unsigned int sysctl_sched_migration_cost; 1624extern unsigned int sysctl_sched_nr_migrate; 1625 1626int sched_nr_latency_handler(struct ctl_table *table, int write, 1627 struct file *file, void __user *buffer, size_t *length, 1628 loff_t *ppos); 1629#endif 1630extern unsigned int sysctl_sched_rt_period; 1631extern int sysctl_sched_rt_runtime; 1632 1633int sched_rt_handler(struct ctl_table *table, int write, 1634 struct file *filp, void __user *buffer, size_t *lenp, 1635 loff_t *ppos); 1636 1637extern unsigned int sysctl_sched_compat_yield; 1638 1639#ifdef CONFIG_RT_MUTEXES 1640extern int rt_mutex_getprio(struct task_struct *p); 1641extern void rt_mutex_setprio(struct task_struct *p, int prio); 1642extern void rt_mutex_adjust_pi(struct task_struct *p); 1643#else 1644static inline int rt_mutex_getprio(struct task_struct *p) 1645{ 1646 return p->normal_prio; 1647} 1648# define rt_mutex_adjust_pi(p) do { } while (0) 1649#endif 1650 1651extern void set_user_nice(struct task_struct *p, long nice); 1652extern int task_prio(const struct task_struct *p); 1653extern int task_nice(const struct task_struct *p); 1654extern int can_nice(const struct task_struct *p, const int nice); 1655extern int task_curr(const struct task_struct *p); 1656extern int idle_cpu(int cpu); 1657extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1658extern struct task_struct *idle_task(int cpu); 1659extern struct task_struct *curr_task(int cpu); 1660extern void set_curr_task(int cpu, struct task_struct *p); 1661 1662void yield(void); 1663 1664/* 1665 * The default (Linux) execution domain. 1666 */ 1667extern struct exec_domain default_exec_domain; 1668 1669union thread_union { 1670 struct thread_info thread_info; 1671 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1672}; 1673 1674#ifndef __HAVE_ARCH_KSTACK_END 1675static inline int kstack_end(void *addr) 1676{ 1677 /* Reliable end of stack detection: 1678 * Some APM bios versions misalign the stack 1679 */ 1680 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1681} 1682#endif 1683 1684extern union thread_union init_thread_union; 1685extern struct task_struct init_task; 1686 1687extern struct mm_struct init_mm; 1688 1689extern struct pid_namespace init_pid_ns; 1690 1691/* 1692 * find a task by one of its numerical ids 1693 * 1694 * find_task_by_pid_type_ns(): 1695 * it is the most generic call - it finds a task by all id, 1696 * type and namespace specified 1697 * find_task_by_pid_ns(): 1698 * finds a task by its pid in the specified namespace 1699 * find_task_by_vpid(): 1700 * finds a task by its virtual pid 1701 * find_task_by_pid(): 1702 * finds a task by its global pid 1703 * 1704 * see also find_pid() etc in include/linux/pid.h 1705 */ 1706 1707extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1708 struct pid_namespace *ns); 1709 1710static inline struct task_struct *__deprecated find_task_by_pid(pid_t nr) 1711{ 1712 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns); 1713} 1714extern struct task_struct *find_task_by_vpid(pid_t nr); 1715extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1716 struct pid_namespace *ns); 1717 1718extern void __set_special_pids(struct pid *pid); 1719 1720/* per-UID process charging. */ 1721extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1722static inline struct user_struct *get_uid(struct user_struct *u) 1723{ 1724 atomic_inc(&u->__count); 1725 return u; 1726} 1727extern void free_uid(struct user_struct *); 1728extern void switch_uid(struct user_struct *); 1729extern void release_uids(struct user_namespace *ns); 1730 1731#include <asm/current.h> 1732 1733extern void do_timer(unsigned long ticks); 1734 1735extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1736extern int wake_up_process(struct task_struct *tsk); 1737extern void wake_up_new_task(struct task_struct *tsk, 1738 unsigned long clone_flags); 1739#ifdef CONFIG_SMP 1740 extern void kick_process(struct task_struct *tsk); 1741#else 1742 static inline void kick_process(struct task_struct *tsk) { } 1743#endif 1744extern void sched_fork(struct task_struct *p, int clone_flags); 1745extern void sched_dead(struct task_struct *p); 1746 1747extern int in_group_p(gid_t); 1748extern int in_egroup_p(gid_t); 1749 1750extern void proc_caches_init(void); 1751extern void flush_signals(struct task_struct *); 1752extern void ignore_signals(struct task_struct *); 1753extern void flush_signal_handlers(struct task_struct *, int force_default); 1754extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1755 1756static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1757{ 1758 unsigned long flags; 1759 int ret; 1760 1761 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1762 ret = dequeue_signal(tsk, mask, info); 1763 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1764 1765 return ret; 1766} 1767 1768extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1769 sigset_t *mask); 1770extern void unblock_all_signals(void); 1771extern void release_task(struct task_struct * p); 1772extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1773extern int force_sigsegv(int, struct task_struct *); 1774extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1775extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1776extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1777extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1778extern int kill_pgrp(struct pid *pid, int sig, int priv); 1779extern int kill_pid(struct pid *pid, int sig, int priv); 1780extern int kill_proc_info(int, struct siginfo *, pid_t); 1781extern void do_notify_parent(struct task_struct *, int); 1782extern void force_sig(int, struct task_struct *); 1783extern void force_sig_specific(int, struct task_struct *); 1784extern int send_sig(int, struct task_struct *, int); 1785extern void zap_other_threads(struct task_struct *p); 1786extern int kill_proc(pid_t, int, int); 1787extern struct sigqueue *sigqueue_alloc(void); 1788extern void sigqueue_free(struct sigqueue *); 1789extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 1790extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1791extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1792 1793static inline int kill_cad_pid(int sig, int priv) 1794{ 1795 return kill_pid(cad_pid, sig, priv); 1796} 1797 1798/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1799#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1800#define SEND_SIG_PRIV ((struct siginfo *) 1) 1801#define SEND_SIG_FORCED ((struct siginfo *) 2) 1802 1803static inline int is_si_special(const struct siginfo *info) 1804{ 1805 return info <= SEND_SIG_FORCED; 1806} 1807 1808/* True if we are on the alternate signal stack. */ 1809 1810static inline int on_sig_stack(unsigned long sp) 1811{ 1812 return (sp - current->sas_ss_sp < current->sas_ss_size); 1813} 1814 1815static inline int sas_ss_flags(unsigned long sp) 1816{ 1817 return (current->sas_ss_size == 0 ? SS_DISABLE 1818 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1819} 1820 1821/* 1822 * Routines for handling mm_structs 1823 */ 1824extern struct mm_struct * mm_alloc(void); 1825 1826/* mmdrop drops the mm and the page tables */ 1827extern void __mmdrop(struct mm_struct *); 1828static inline void mmdrop(struct mm_struct * mm) 1829{ 1830 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1831 __mmdrop(mm); 1832} 1833 1834/* mmput gets rid of the mappings and all user-space */ 1835extern void mmput(struct mm_struct *); 1836/* Grab a reference to a task's mm, if it is not already going away */ 1837extern struct mm_struct *get_task_mm(struct task_struct *task); 1838/* Remove the current tasks stale references to the old mm_struct */ 1839extern void mm_release(struct task_struct *, struct mm_struct *); 1840/* Allocate a new mm structure and copy contents from tsk->mm */ 1841extern struct mm_struct *dup_mm(struct task_struct *tsk); 1842 1843extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1844extern void flush_thread(void); 1845extern void exit_thread(void); 1846 1847extern void exit_files(struct task_struct *); 1848extern void __cleanup_signal(struct signal_struct *); 1849extern void __cleanup_sighand(struct sighand_struct *); 1850 1851extern void exit_itimers(struct signal_struct *); 1852extern void flush_itimer_signals(void); 1853 1854extern NORET_TYPE void do_group_exit(int); 1855 1856extern void daemonize(const char *, ...); 1857extern int allow_signal(int); 1858extern int disallow_signal(int); 1859 1860extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1861extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1862struct task_struct *fork_idle(int); 1863 1864extern void set_task_comm(struct task_struct *tsk, char *from); 1865extern char *get_task_comm(char *to, struct task_struct *tsk); 1866 1867#ifdef CONFIG_SMP 1868extern void wait_task_inactive(struct task_struct * p); 1869#else 1870#define wait_task_inactive(p) do { } while (0) 1871#endif 1872 1873#define remove_parent(p) list_del_init(&(p)->sibling) 1874#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1875 1876#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1877 1878#define for_each_process(p) \ 1879 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1880 1881/* 1882 * Careful: do_each_thread/while_each_thread is a double loop so 1883 * 'break' will not work as expected - use goto instead. 1884 */ 1885#define do_each_thread(g, t) \ 1886 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1887 1888#define while_each_thread(g, t) \ 1889 while ((t = next_thread(t)) != g) 1890 1891/* de_thread depends on thread_group_leader not being a pid based check */ 1892#define thread_group_leader(p) (p == p->group_leader) 1893 1894/* Do to the insanities of de_thread it is possible for a process 1895 * to have the pid of the thread group leader without actually being 1896 * the thread group leader. For iteration through the pids in proc 1897 * all we care about is that we have a task with the appropriate 1898 * pid, we don't actually care if we have the right task. 1899 */ 1900static inline int has_group_leader_pid(struct task_struct *p) 1901{ 1902 return p->pid == p->tgid; 1903} 1904 1905static inline 1906int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1907{ 1908 return p1->tgid == p2->tgid; 1909} 1910 1911static inline struct task_struct *next_thread(const struct task_struct *p) 1912{ 1913 return list_entry(rcu_dereference(p->thread_group.next), 1914 struct task_struct, thread_group); 1915} 1916 1917static inline int thread_group_empty(struct task_struct *p) 1918{ 1919 return list_empty(&p->thread_group); 1920} 1921 1922#define delay_group_leader(p) \ 1923 (thread_group_leader(p) && !thread_group_empty(p)) 1924 1925/* 1926 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1927 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1928 * pins the final release of task.io_context. Also protects ->cpuset and 1929 * ->cgroup.subsys[]. 1930 * 1931 * Nests both inside and outside of read_lock(&tasklist_lock). 1932 * It must not be nested with write_lock_irq(&tasklist_lock), 1933 * neither inside nor outside. 1934 */ 1935static inline void task_lock(struct task_struct *p) 1936{ 1937 spin_lock(&p->alloc_lock); 1938} 1939 1940static inline void task_unlock(struct task_struct *p) 1941{ 1942 spin_unlock(&p->alloc_lock); 1943} 1944 1945extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1946 unsigned long *flags); 1947 1948static inline void unlock_task_sighand(struct task_struct *tsk, 1949 unsigned long *flags) 1950{ 1951 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1952} 1953 1954#ifndef __HAVE_THREAD_FUNCTIONS 1955 1956#define task_thread_info(task) ((struct thread_info *)(task)->stack) 1957#define task_stack_page(task) ((task)->stack) 1958 1959static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1960{ 1961 *task_thread_info(p) = *task_thread_info(org); 1962 task_thread_info(p)->task = p; 1963} 1964 1965static inline unsigned long *end_of_stack(struct task_struct *p) 1966{ 1967 return (unsigned long *)(task_thread_info(p) + 1); 1968} 1969 1970#endif 1971 1972extern void thread_info_cache_init(void); 1973 1974/* set thread flags in other task's structures 1975 * - see asm/thread_info.h for TIF_xxxx flags available 1976 */ 1977static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1978{ 1979 set_ti_thread_flag(task_thread_info(tsk), flag); 1980} 1981 1982static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1983{ 1984 clear_ti_thread_flag(task_thread_info(tsk), flag); 1985} 1986 1987static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1988{ 1989 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1990} 1991 1992static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1993{ 1994 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1995} 1996 1997static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1998{ 1999 return test_ti_thread_flag(task_thread_info(tsk), flag); 2000} 2001 2002static inline void set_tsk_need_resched(struct task_struct *tsk) 2003{ 2004 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2005} 2006 2007static inline void clear_tsk_need_resched(struct task_struct *tsk) 2008{ 2009 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2010} 2011 2012static inline int test_tsk_need_resched(struct task_struct *tsk) 2013{ 2014 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2015} 2016 2017static inline int signal_pending(struct task_struct *p) 2018{ 2019 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2020} 2021 2022extern int __fatal_signal_pending(struct task_struct *p); 2023 2024static inline int fatal_signal_pending(struct task_struct *p) 2025{ 2026 return signal_pending(p) && __fatal_signal_pending(p); 2027} 2028 2029static inline int signal_pending_state(long state, struct task_struct *p) 2030{ 2031 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2032 return 0; 2033 if (!signal_pending(p)) 2034 return 0; 2035 2036 if (state & (__TASK_STOPPED | __TASK_TRACED)) 2037 return 0; 2038 2039 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2040} 2041 2042static inline int need_resched(void) 2043{ 2044 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2045} 2046 2047/* 2048 * cond_resched() and cond_resched_lock(): latency reduction via 2049 * explicit rescheduling in places that are safe. The return 2050 * value indicates whether a reschedule was done in fact. 2051 * cond_resched_lock() will drop the spinlock before scheduling, 2052 * cond_resched_softirq() will enable bhs before scheduling. 2053 */ 2054extern int _cond_resched(void); 2055#ifdef CONFIG_PREEMPT_BKL 2056static inline int cond_resched(void) 2057{ 2058 return 0; 2059} 2060#else 2061static inline int cond_resched(void) 2062{ 2063 return _cond_resched(); 2064} 2065#endif 2066extern int cond_resched_lock(spinlock_t * lock); 2067extern int cond_resched_softirq(void); 2068static inline int cond_resched_bkl(void) 2069{ 2070 return _cond_resched(); 2071} 2072 2073/* 2074 * Does a critical section need to be broken due to another 2075 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2076 * but a general need for low latency) 2077 */ 2078static inline int spin_needbreak(spinlock_t *lock) 2079{ 2080#ifdef CONFIG_PREEMPT 2081 return spin_is_contended(lock); 2082#else 2083 return 0; 2084#endif 2085} 2086 2087/* 2088 * Reevaluate whether the task has signals pending delivery. 2089 * Wake the task if so. 2090 * This is required every time the blocked sigset_t changes. 2091 * callers must hold sighand->siglock. 2092 */ 2093extern void recalc_sigpending_and_wake(struct task_struct *t); 2094extern void recalc_sigpending(void); 2095 2096extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2097 2098/* 2099 * Wrappers for p->thread_info->cpu access. No-op on UP. 2100 */ 2101#ifdef CONFIG_SMP 2102 2103static inline unsigned int task_cpu(const struct task_struct *p) 2104{ 2105 return task_thread_info(p)->cpu; 2106} 2107 2108extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2109 2110#else 2111 2112static inline unsigned int task_cpu(const struct task_struct *p) 2113{ 2114 return 0; 2115} 2116 2117static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2118{ 2119} 2120 2121#endif /* CONFIG_SMP */ 2122 2123#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 2124extern void arch_pick_mmap_layout(struct mm_struct *mm); 2125#else 2126static inline void arch_pick_mmap_layout(struct mm_struct *mm) 2127{ 2128 mm->mmap_base = TASK_UNMAPPED_BASE; 2129 mm->get_unmapped_area = arch_get_unmapped_area; 2130 mm->unmap_area = arch_unmap_area; 2131} 2132#endif 2133 2134extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask); 2135extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 2136 2137extern int sched_mc_power_savings, sched_smt_power_savings; 2138 2139extern void normalize_rt_tasks(void); 2140 2141#ifdef CONFIG_GROUP_SCHED 2142 2143extern struct task_group init_task_group; 2144#ifdef CONFIG_USER_SCHED 2145extern struct task_group root_task_group; 2146#endif 2147 2148extern struct task_group *sched_create_group(struct task_group *parent); 2149extern void sched_destroy_group(struct task_group *tg); 2150extern void sched_move_task(struct task_struct *tsk); 2151#ifdef CONFIG_FAIR_GROUP_SCHED 2152extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2153extern unsigned long sched_group_shares(struct task_group *tg); 2154#endif 2155#ifdef CONFIG_RT_GROUP_SCHED 2156extern int sched_group_set_rt_runtime(struct task_group *tg, 2157 long rt_runtime_us); 2158extern long sched_group_rt_runtime(struct task_group *tg); 2159extern int sched_group_set_rt_period(struct task_group *tg, 2160 long rt_period_us); 2161extern long sched_group_rt_period(struct task_group *tg); 2162#endif 2163#endif 2164 2165#ifdef CONFIG_TASK_XACCT 2166static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2167{ 2168 tsk->rchar += amt; 2169} 2170 2171static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2172{ 2173 tsk->wchar += amt; 2174} 2175 2176static inline void inc_syscr(struct task_struct *tsk) 2177{ 2178 tsk->syscr++; 2179} 2180 2181static inline void inc_syscw(struct task_struct *tsk) 2182{ 2183 tsk->syscw++; 2184} 2185#else 2186static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2187{ 2188} 2189 2190static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2191{ 2192} 2193 2194static inline void inc_syscr(struct task_struct *tsk) 2195{ 2196} 2197 2198static inline void inc_syscw(struct task_struct *tsk) 2199{ 2200} 2201#endif 2202 2203#ifdef CONFIG_SMP 2204void migration_init(void); 2205#else 2206static inline void migration_init(void) 2207{ 2208} 2209#endif 2210 2211#ifndef TASK_SIZE_OF 2212#define TASK_SIZE_OF(tsk) TASK_SIZE 2213#endif 2214 2215#ifdef CONFIG_MM_OWNER 2216extern void mm_update_next_owner(struct mm_struct *mm); 2217extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2218#else 2219static inline void mm_update_next_owner(struct mm_struct *mm) 2220{ 2221} 2222 2223static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2224{ 2225} 2226#endif /* CONFIG_MM_OWNER */ 2227 2228#endif /* __KERNEL__ */ 2229 2230#endif