at v2.6.26 247 lines 9.2 kB view raw
1#ifndef _LINUX_PTRACE_H 2#define _LINUX_PTRACE_H 3/* ptrace.h */ 4/* structs and defines to help the user use the ptrace system call. */ 5 6/* has the defines to get at the registers. */ 7 8#define PTRACE_TRACEME 0 9#define PTRACE_PEEKTEXT 1 10#define PTRACE_PEEKDATA 2 11#define PTRACE_PEEKUSR 3 12#define PTRACE_POKETEXT 4 13#define PTRACE_POKEDATA 5 14#define PTRACE_POKEUSR 6 15#define PTRACE_CONT 7 16#define PTRACE_KILL 8 17#define PTRACE_SINGLESTEP 9 18 19#define PTRACE_ATTACH 16 20#define PTRACE_DETACH 17 21 22#define PTRACE_SYSCALL 24 23 24/* 0x4200-0x4300 are reserved for architecture-independent additions. */ 25#define PTRACE_SETOPTIONS 0x4200 26#define PTRACE_GETEVENTMSG 0x4201 27#define PTRACE_GETSIGINFO 0x4202 28#define PTRACE_SETSIGINFO 0x4203 29 30/* options set using PTRACE_SETOPTIONS */ 31#define PTRACE_O_TRACESYSGOOD 0x00000001 32#define PTRACE_O_TRACEFORK 0x00000002 33#define PTRACE_O_TRACEVFORK 0x00000004 34#define PTRACE_O_TRACECLONE 0x00000008 35#define PTRACE_O_TRACEEXEC 0x00000010 36#define PTRACE_O_TRACEVFORKDONE 0x00000020 37#define PTRACE_O_TRACEEXIT 0x00000040 38 39#define PTRACE_O_MASK 0x0000007f 40 41/* Wait extended result codes for the above trace options. */ 42#define PTRACE_EVENT_FORK 1 43#define PTRACE_EVENT_VFORK 2 44#define PTRACE_EVENT_CLONE 3 45#define PTRACE_EVENT_EXEC 4 46#define PTRACE_EVENT_VFORK_DONE 5 47#define PTRACE_EVENT_EXIT 6 48 49#include <asm/ptrace.h> 50 51#ifdef __KERNEL__ 52/* 53 * Ptrace flags 54 * 55 * The owner ship rules for task->ptrace which holds the ptrace 56 * flags is simple. When a task is running it owns it's task->ptrace 57 * flags. When the a task is stopped the ptracer owns task->ptrace. 58 */ 59 60#define PT_PTRACED 0x00000001 61#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 62#define PT_TRACESYSGOOD 0x00000004 63#define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */ 64#define PT_TRACE_FORK 0x00000010 65#define PT_TRACE_VFORK 0x00000020 66#define PT_TRACE_CLONE 0x00000040 67#define PT_TRACE_EXEC 0x00000080 68#define PT_TRACE_VFORK_DONE 0x00000100 69#define PT_TRACE_EXIT 0x00000200 70 71#define PT_TRACE_MASK 0x000003f4 72 73/* single stepping state bits (used on ARM and PA-RISC) */ 74#define PT_SINGLESTEP_BIT 31 75#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 76#define PT_BLOCKSTEP_BIT 30 77#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 78 79#include <linux/compiler.h> /* For unlikely. */ 80#include <linux/sched.h> /* For struct task_struct. */ 81 82 83extern long arch_ptrace(struct task_struct *child, long request, long addr, long data); 84extern struct task_struct *ptrace_get_task_struct(pid_t pid); 85extern int ptrace_traceme(void); 86extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 87extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 88extern int ptrace_attach(struct task_struct *tsk); 89extern int ptrace_detach(struct task_struct *, unsigned int); 90extern void ptrace_disable(struct task_struct *); 91extern int ptrace_check_attach(struct task_struct *task, int kill); 92extern int ptrace_request(struct task_struct *child, long request, long addr, long data); 93extern void ptrace_notify(int exit_code); 94extern void __ptrace_link(struct task_struct *child, 95 struct task_struct *new_parent); 96extern void __ptrace_unlink(struct task_struct *child); 97extern void ptrace_untrace(struct task_struct *child); 98extern int ptrace_may_attach(struct task_struct *task); 99extern int __ptrace_may_attach(struct task_struct *task); 100 101static inline int ptrace_reparented(struct task_struct *child) 102{ 103 return child->real_parent != child->parent; 104} 105static inline void ptrace_link(struct task_struct *child, 106 struct task_struct *new_parent) 107{ 108 if (unlikely(child->ptrace)) 109 __ptrace_link(child, new_parent); 110} 111static inline void ptrace_unlink(struct task_struct *child) 112{ 113 if (unlikely(child->ptrace)) 114 __ptrace_unlink(child); 115} 116 117int generic_ptrace_peekdata(struct task_struct *tsk, long addr, long data); 118int generic_ptrace_pokedata(struct task_struct *tsk, long addr, long data); 119 120#ifndef force_successful_syscall_return 121/* 122 * System call handlers that, upon successful completion, need to return a 123 * negative value should call force_successful_syscall_return() right before 124 * returning. On architectures where the syscall convention provides for a 125 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 126 * others), this macro can be used to ensure that the error flag will not get 127 * set. On architectures which do not support a separate error flag, the macro 128 * is a no-op and the spurious error condition needs to be filtered out by some 129 * other means (e.g., in user-level, by passing an extra argument to the 130 * syscall handler, or something along those lines). 131 */ 132#define force_successful_syscall_return() do { } while (0) 133#endif 134 135/* 136 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 137 * 138 * These do-nothing inlines are used when the arch does not 139 * implement single-step. The kerneldoc comments are here 140 * to document the interface for all arch definitions. 141 */ 142 143#ifndef arch_has_single_step 144/** 145 * arch_has_single_step - does this CPU support user-mode single-step? 146 * 147 * If this is defined, then there must be function declarations or 148 * inlines for user_enable_single_step() and user_disable_single_step(). 149 * arch_has_single_step() should evaluate to nonzero iff the machine 150 * supports instruction single-step for user mode. 151 * It can be a constant or it can test a CPU feature bit. 152 */ 153#define arch_has_single_step() (0) 154 155/** 156 * user_enable_single_step - single-step in user-mode task 157 * @task: either current or a task stopped in %TASK_TRACED 158 * 159 * This can only be called when arch_has_single_step() has returned nonzero. 160 * Set @task so that when it returns to user mode, it will trap after the 161 * next single instruction executes. If arch_has_block_step() is defined, 162 * this must clear the effects of user_enable_block_step() too. 163 */ 164static inline void user_enable_single_step(struct task_struct *task) 165{ 166 BUG(); /* This can never be called. */ 167} 168 169/** 170 * user_disable_single_step - cancel user-mode single-step 171 * @task: either current or a task stopped in %TASK_TRACED 172 * 173 * Clear @task of the effects of user_enable_single_step() and 174 * user_enable_block_step(). This can be called whether or not either 175 * of those was ever called on @task, and even if arch_has_single_step() 176 * returned zero. 177 */ 178static inline void user_disable_single_step(struct task_struct *task) 179{ 180} 181#endif /* arch_has_single_step */ 182 183#ifndef arch_has_block_step 184/** 185 * arch_has_block_step - does this CPU support user-mode block-step? 186 * 187 * If this is defined, then there must be a function declaration or inline 188 * for user_enable_block_step(), and arch_has_single_step() must be defined 189 * too. arch_has_block_step() should evaluate to nonzero iff the machine 190 * supports step-until-branch for user mode. It can be a constant or it 191 * can test a CPU feature bit. 192 */ 193#define arch_has_block_step() (0) 194 195/** 196 * user_enable_block_step - step until branch in user-mode task 197 * @task: either current or a task stopped in %TASK_TRACED 198 * 199 * This can only be called when arch_has_block_step() has returned nonzero, 200 * and will never be called when single-instruction stepping is being used. 201 * Set @task so that when it returns to user mode, it will trap after the 202 * next branch or trap taken. 203 */ 204static inline void user_enable_block_step(struct task_struct *task) 205{ 206 BUG(); /* This can never be called. */ 207} 208#endif /* arch_has_block_step */ 209 210#ifndef arch_ptrace_stop_needed 211/** 212 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 213 * @code: current->exit_code value ptrace will stop with 214 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 215 * 216 * This is called with the siglock held, to decide whether or not it's 217 * necessary to release the siglock and call arch_ptrace_stop() with the 218 * same @code and @info arguments. It can be defined to a constant if 219 * arch_ptrace_stop() is never required, or always is. On machines where 220 * this makes sense, it should be defined to a quick test to optimize out 221 * calling arch_ptrace_stop() when it would be superfluous. For example, 222 * if the thread has not been back to user mode since the last stop, the 223 * thread state might indicate that nothing needs to be done. 224 */ 225#define arch_ptrace_stop_needed(code, info) (0) 226#endif 227 228#ifndef arch_ptrace_stop 229/** 230 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 231 * @code: current->exit_code value ptrace will stop with 232 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 233 * 234 * This is called with no locks held when arch_ptrace_stop_needed() has 235 * just returned nonzero. It is allowed to block, e.g. for user memory 236 * access. The arch can have machine-specific work to be done before 237 * ptrace stops. On ia64, register backing store gets written back to user 238 * memory here. Since this can be costly (requires dropping the siglock), 239 * we only do it when the arch requires it for this particular stop, as 240 * indicated by arch_ptrace_stop_needed(). 241 */ 242#define arch_ptrace_stop(code, info) do { } while (0) 243#endif 244 245#endif 246 247#endif