at v2.6.26 32 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/bounds.h> 19#include <asm/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38#define MIGRATE_UNMOVABLE 0 39#define MIGRATE_RECLAIMABLE 1 40#define MIGRATE_MOVABLE 2 41#define MIGRATE_RESERVE 3 42#define MIGRATE_ISOLATE 4 /* can't allocate from here */ 43#define MIGRATE_TYPES 5 44 45#define for_each_migratetype_order(order, type) \ 46 for (order = 0; order < MAX_ORDER; order++) \ 47 for (type = 0; type < MIGRATE_TYPES; type++) 48 49extern int page_group_by_mobility_disabled; 50 51static inline int get_pageblock_migratetype(struct page *page) 52{ 53 if (unlikely(page_group_by_mobility_disabled)) 54 return MIGRATE_UNMOVABLE; 55 56 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 57} 58 59struct free_area { 60 struct list_head free_list[MIGRATE_TYPES]; 61 unsigned long nr_free; 62}; 63 64struct pglist_data; 65 66/* 67 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 68 * So add a wild amount of padding here to ensure that they fall into separate 69 * cachelines. There are very few zone structures in the machine, so space 70 * consumption is not a concern here. 71 */ 72#if defined(CONFIG_SMP) 73struct zone_padding { 74 char x[0]; 75} ____cacheline_internodealigned_in_smp; 76#define ZONE_PADDING(name) struct zone_padding name; 77#else 78#define ZONE_PADDING(name) 79#endif 80 81enum zone_stat_item { 82 /* First 128 byte cacheline (assuming 64 bit words) */ 83 NR_FREE_PAGES, 84 NR_INACTIVE, 85 NR_ACTIVE, 86 NR_ANON_PAGES, /* Mapped anonymous pages */ 87 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 88 only modified from process context */ 89 NR_FILE_PAGES, 90 NR_FILE_DIRTY, 91 NR_WRITEBACK, 92 /* Second 128 byte cacheline */ 93 NR_SLAB_RECLAIMABLE, 94 NR_SLAB_UNRECLAIMABLE, 95 NR_PAGETABLE, /* used for pagetables */ 96 NR_UNSTABLE_NFS, /* NFS unstable pages */ 97 NR_BOUNCE, 98 NR_VMSCAN_WRITE, 99 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 100#ifdef CONFIG_NUMA 101 NUMA_HIT, /* allocated in intended node */ 102 NUMA_MISS, /* allocated in non intended node */ 103 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 104 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 105 NUMA_LOCAL, /* allocation from local node */ 106 NUMA_OTHER, /* allocation from other node */ 107#endif 108 NR_VM_ZONE_STAT_ITEMS }; 109 110struct per_cpu_pages { 111 int count; /* number of pages in the list */ 112 int high; /* high watermark, emptying needed */ 113 int batch; /* chunk size for buddy add/remove */ 114 struct list_head list; /* the list of pages */ 115}; 116 117struct per_cpu_pageset { 118 struct per_cpu_pages pcp; 119#ifdef CONFIG_NUMA 120 s8 expire; 121#endif 122#ifdef CONFIG_SMP 123 s8 stat_threshold; 124 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 125#endif 126} ____cacheline_aligned_in_smp; 127 128#ifdef CONFIG_NUMA 129#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 130#else 131#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 132#endif 133 134#endif /* !__GENERATING_BOUNDS.H */ 135 136enum zone_type { 137#ifdef CONFIG_ZONE_DMA 138 /* 139 * ZONE_DMA is used when there are devices that are not able 140 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 141 * carve out the portion of memory that is needed for these devices. 142 * The range is arch specific. 143 * 144 * Some examples 145 * 146 * Architecture Limit 147 * --------------------------- 148 * parisc, ia64, sparc <4G 149 * s390 <2G 150 * arm Various 151 * alpha Unlimited or 0-16MB. 152 * 153 * i386, x86_64 and multiple other arches 154 * <16M. 155 */ 156 ZONE_DMA, 157#endif 158#ifdef CONFIG_ZONE_DMA32 159 /* 160 * x86_64 needs two ZONE_DMAs because it supports devices that are 161 * only able to do DMA to the lower 16M but also 32 bit devices that 162 * can only do DMA areas below 4G. 163 */ 164 ZONE_DMA32, 165#endif 166 /* 167 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 168 * performed on pages in ZONE_NORMAL if the DMA devices support 169 * transfers to all addressable memory. 170 */ 171 ZONE_NORMAL, 172#ifdef CONFIG_HIGHMEM 173 /* 174 * A memory area that is only addressable by the kernel through 175 * mapping portions into its own address space. This is for example 176 * used by i386 to allow the kernel to address the memory beyond 177 * 900MB. The kernel will set up special mappings (page 178 * table entries on i386) for each page that the kernel needs to 179 * access. 180 */ 181 ZONE_HIGHMEM, 182#endif 183 ZONE_MOVABLE, 184 __MAX_NR_ZONES 185}; 186 187#ifndef __GENERATING_BOUNDS_H 188 189/* 190 * When a memory allocation must conform to specific limitations (such 191 * as being suitable for DMA) the caller will pass in hints to the 192 * allocator in the gfp_mask, in the zone modifier bits. These bits 193 * are used to select a priority ordered list of memory zones which 194 * match the requested limits. See gfp_zone() in include/linux/gfp.h 195 */ 196 197#if MAX_NR_ZONES < 2 198#define ZONES_SHIFT 0 199#elif MAX_NR_ZONES <= 2 200#define ZONES_SHIFT 1 201#elif MAX_NR_ZONES <= 4 202#define ZONES_SHIFT 2 203#else 204#error ZONES_SHIFT -- too many zones configured adjust calculation 205#endif 206 207struct zone { 208 /* Fields commonly accessed by the page allocator */ 209 unsigned long pages_min, pages_low, pages_high; 210 /* 211 * We don't know if the memory that we're going to allocate will be freeable 212 * or/and it will be released eventually, so to avoid totally wasting several 213 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 214 * to run OOM on the lower zones despite there's tons of freeable ram 215 * on the higher zones). This array is recalculated at runtime if the 216 * sysctl_lowmem_reserve_ratio sysctl changes. 217 */ 218 unsigned long lowmem_reserve[MAX_NR_ZONES]; 219 220#ifdef CONFIG_NUMA 221 int node; 222 /* 223 * zone reclaim becomes active if more unmapped pages exist. 224 */ 225 unsigned long min_unmapped_pages; 226 unsigned long min_slab_pages; 227 struct per_cpu_pageset *pageset[NR_CPUS]; 228#else 229 struct per_cpu_pageset pageset[NR_CPUS]; 230#endif 231 /* 232 * free areas of different sizes 233 */ 234 spinlock_t lock; 235#ifdef CONFIG_MEMORY_HOTPLUG 236 /* see spanned/present_pages for more description */ 237 seqlock_t span_seqlock; 238#endif 239 struct free_area free_area[MAX_ORDER]; 240 241#ifndef CONFIG_SPARSEMEM 242 /* 243 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 244 * In SPARSEMEM, this map is stored in struct mem_section 245 */ 246 unsigned long *pageblock_flags; 247#endif /* CONFIG_SPARSEMEM */ 248 249 250 ZONE_PADDING(_pad1_) 251 252 /* Fields commonly accessed by the page reclaim scanner */ 253 spinlock_t lru_lock; 254 struct list_head active_list; 255 struct list_head inactive_list; 256 unsigned long nr_scan_active; 257 unsigned long nr_scan_inactive; 258 unsigned long pages_scanned; /* since last reclaim */ 259 unsigned long flags; /* zone flags, see below */ 260 261 /* Zone statistics */ 262 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 263 264 /* 265 * prev_priority holds the scanning priority for this zone. It is 266 * defined as the scanning priority at which we achieved our reclaim 267 * target at the previous try_to_free_pages() or balance_pgdat() 268 * invokation. 269 * 270 * We use prev_priority as a measure of how much stress page reclaim is 271 * under - it drives the swappiness decision: whether to unmap mapped 272 * pages. 273 * 274 * Access to both this field is quite racy even on uniprocessor. But 275 * it is expected to average out OK. 276 */ 277 int prev_priority; 278 279 280 ZONE_PADDING(_pad2_) 281 /* Rarely used or read-mostly fields */ 282 283 /* 284 * wait_table -- the array holding the hash table 285 * wait_table_hash_nr_entries -- the size of the hash table array 286 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 287 * 288 * The purpose of all these is to keep track of the people 289 * waiting for a page to become available and make them 290 * runnable again when possible. The trouble is that this 291 * consumes a lot of space, especially when so few things 292 * wait on pages at a given time. So instead of using 293 * per-page waitqueues, we use a waitqueue hash table. 294 * 295 * The bucket discipline is to sleep on the same queue when 296 * colliding and wake all in that wait queue when removing. 297 * When something wakes, it must check to be sure its page is 298 * truly available, a la thundering herd. The cost of a 299 * collision is great, but given the expected load of the 300 * table, they should be so rare as to be outweighed by the 301 * benefits from the saved space. 302 * 303 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 304 * primary users of these fields, and in mm/page_alloc.c 305 * free_area_init_core() performs the initialization of them. 306 */ 307 wait_queue_head_t * wait_table; 308 unsigned long wait_table_hash_nr_entries; 309 unsigned long wait_table_bits; 310 311 /* 312 * Discontig memory support fields. 313 */ 314 struct pglist_data *zone_pgdat; 315 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 316 unsigned long zone_start_pfn; 317 318 /* 319 * zone_start_pfn, spanned_pages and present_pages are all 320 * protected by span_seqlock. It is a seqlock because it has 321 * to be read outside of zone->lock, and it is done in the main 322 * allocator path. But, it is written quite infrequently. 323 * 324 * The lock is declared along with zone->lock because it is 325 * frequently read in proximity to zone->lock. It's good to 326 * give them a chance of being in the same cacheline. 327 */ 328 unsigned long spanned_pages; /* total size, including holes */ 329 unsigned long present_pages; /* amount of memory (excluding holes) */ 330 331 /* 332 * rarely used fields: 333 */ 334 const char *name; 335} ____cacheline_internodealigned_in_smp; 336 337typedef enum { 338 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ 339 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 340 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 341} zone_flags_t; 342 343static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 344{ 345 set_bit(flag, &zone->flags); 346} 347 348static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 349{ 350 return test_and_set_bit(flag, &zone->flags); 351} 352 353static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 354{ 355 clear_bit(flag, &zone->flags); 356} 357 358static inline int zone_is_all_unreclaimable(const struct zone *zone) 359{ 360 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); 361} 362 363static inline int zone_is_reclaim_locked(const struct zone *zone) 364{ 365 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 366} 367 368static inline int zone_is_oom_locked(const struct zone *zone) 369{ 370 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 371} 372 373/* 374 * The "priority" of VM scanning is how much of the queues we will scan in one 375 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 376 * queues ("queue_length >> 12") during an aging round. 377 */ 378#define DEF_PRIORITY 12 379 380/* Maximum number of zones on a zonelist */ 381#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 382 383#ifdef CONFIG_NUMA 384 385/* 386 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 387 * allocations to a single node for GFP_THISNODE. 388 * 389 * [0] : Zonelist with fallback 390 * [1] : No fallback (GFP_THISNODE) 391 */ 392#define MAX_ZONELISTS 2 393 394 395/* 396 * We cache key information from each zonelist for smaller cache 397 * footprint when scanning for free pages in get_page_from_freelist(). 398 * 399 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 400 * up short of free memory since the last time (last_fullzone_zap) 401 * we zero'd fullzones. 402 * 2) The array z_to_n[] maps each zone in the zonelist to its node 403 * id, so that we can efficiently evaluate whether that node is 404 * set in the current tasks mems_allowed. 405 * 406 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 407 * indexed by a zones offset in the zonelist zones[] array. 408 * 409 * The get_page_from_freelist() routine does two scans. During the 410 * first scan, we skip zones whose corresponding bit in 'fullzones' 411 * is set or whose corresponding node in current->mems_allowed (which 412 * comes from cpusets) is not set. During the second scan, we bypass 413 * this zonelist_cache, to ensure we look methodically at each zone. 414 * 415 * Once per second, we zero out (zap) fullzones, forcing us to 416 * reconsider nodes that might have regained more free memory. 417 * The field last_full_zap is the time we last zapped fullzones. 418 * 419 * This mechanism reduces the amount of time we waste repeatedly 420 * reexaming zones for free memory when they just came up low on 421 * memory momentarilly ago. 422 * 423 * The zonelist_cache struct members logically belong in struct 424 * zonelist. However, the mempolicy zonelists constructed for 425 * MPOL_BIND are intentionally variable length (and usually much 426 * shorter). A general purpose mechanism for handling structs with 427 * multiple variable length members is more mechanism than we want 428 * here. We resort to some special case hackery instead. 429 * 430 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 431 * part because they are shorter), so we put the fixed length stuff 432 * at the front of the zonelist struct, ending in a variable length 433 * zones[], as is needed by MPOL_BIND. 434 * 435 * Then we put the optional zonelist cache on the end of the zonelist 436 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 437 * the fixed length portion at the front of the struct. This pointer 438 * both enables us to find the zonelist cache, and in the case of 439 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 440 * to know that the zonelist cache is not there. 441 * 442 * The end result is that struct zonelists come in two flavors: 443 * 1) The full, fixed length version, shown below, and 444 * 2) The custom zonelists for MPOL_BIND. 445 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 446 * 447 * Even though there may be multiple CPU cores on a node modifying 448 * fullzones or last_full_zap in the same zonelist_cache at the same 449 * time, we don't lock it. This is just hint data - if it is wrong now 450 * and then, the allocator will still function, perhaps a bit slower. 451 */ 452 453 454struct zonelist_cache { 455 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 456 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 457 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 458}; 459#else 460#define MAX_ZONELISTS 1 461struct zonelist_cache; 462#endif 463 464/* 465 * This struct contains information about a zone in a zonelist. It is stored 466 * here to avoid dereferences into large structures and lookups of tables 467 */ 468struct zoneref { 469 struct zone *zone; /* Pointer to actual zone */ 470 int zone_idx; /* zone_idx(zoneref->zone) */ 471}; 472 473/* 474 * One allocation request operates on a zonelist. A zonelist 475 * is a list of zones, the first one is the 'goal' of the 476 * allocation, the other zones are fallback zones, in decreasing 477 * priority. 478 * 479 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 480 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 481 * * 482 * To speed the reading of the zonelist, the zonerefs contain the zone index 483 * of the entry being read. Helper functions to access information given 484 * a struct zoneref are 485 * 486 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 487 * zonelist_zone_idx() - Return the index of the zone for an entry 488 * zonelist_node_idx() - Return the index of the node for an entry 489 */ 490struct zonelist { 491 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 492 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 493#ifdef CONFIG_NUMA 494 struct zonelist_cache zlcache; // optional ... 495#endif 496}; 497 498#ifdef CONFIG_ARCH_POPULATES_NODE_MAP 499struct node_active_region { 500 unsigned long start_pfn; 501 unsigned long end_pfn; 502 int nid; 503}; 504#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 505 506#ifndef CONFIG_DISCONTIGMEM 507/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 508extern struct page *mem_map; 509#endif 510 511/* 512 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 513 * (mostly NUMA machines?) to denote a higher-level memory zone than the 514 * zone denotes. 515 * 516 * On NUMA machines, each NUMA node would have a pg_data_t to describe 517 * it's memory layout. 518 * 519 * Memory statistics and page replacement data structures are maintained on a 520 * per-zone basis. 521 */ 522struct bootmem_data; 523typedef struct pglist_data { 524 struct zone node_zones[MAX_NR_ZONES]; 525 struct zonelist node_zonelists[MAX_ZONELISTS]; 526 int nr_zones; 527#ifdef CONFIG_FLAT_NODE_MEM_MAP 528 struct page *node_mem_map; 529#endif 530 struct bootmem_data *bdata; 531#ifdef CONFIG_MEMORY_HOTPLUG 532 /* 533 * Must be held any time you expect node_start_pfn, node_present_pages 534 * or node_spanned_pages stay constant. Holding this will also 535 * guarantee that any pfn_valid() stays that way. 536 * 537 * Nests above zone->lock and zone->size_seqlock. 538 */ 539 spinlock_t node_size_lock; 540#endif 541 unsigned long node_start_pfn; 542 unsigned long node_present_pages; /* total number of physical pages */ 543 unsigned long node_spanned_pages; /* total size of physical page 544 range, including holes */ 545 int node_id; 546 wait_queue_head_t kswapd_wait; 547 struct task_struct *kswapd; 548 int kswapd_max_order; 549} pg_data_t; 550 551#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 552#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 553#ifdef CONFIG_FLAT_NODE_MEM_MAP 554#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 555#else 556#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 557#endif 558#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 559 560#include <linux/memory_hotplug.h> 561 562void get_zone_counts(unsigned long *active, unsigned long *inactive, 563 unsigned long *free); 564void build_all_zonelists(void); 565void wakeup_kswapd(struct zone *zone, int order); 566int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 567 int classzone_idx, int alloc_flags); 568enum memmap_context { 569 MEMMAP_EARLY, 570 MEMMAP_HOTPLUG, 571}; 572extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 573 unsigned long size, 574 enum memmap_context context); 575 576#ifdef CONFIG_HAVE_MEMORY_PRESENT 577void memory_present(int nid, unsigned long start, unsigned long end); 578#else 579static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 580#endif 581 582#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 583unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 584#endif 585 586/* 587 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 588 */ 589#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 590 591static inline int populated_zone(struct zone *zone) 592{ 593 return (!!zone->present_pages); 594} 595 596extern int movable_zone; 597 598static inline int zone_movable_is_highmem(void) 599{ 600#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 601 return movable_zone == ZONE_HIGHMEM; 602#else 603 return 0; 604#endif 605} 606 607static inline int is_highmem_idx(enum zone_type idx) 608{ 609#ifdef CONFIG_HIGHMEM 610 return (idx == ZONE_HIGHMEM || 611 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 612#else 613 return 0; 614#endif 615} 616 617static inline int is_normal_idx(enum zone_type idx) 618{ 619 return (idx == ZONE_NORMAL); 620} 621 622/** 623 * is_highmem - helper function to quickly check if a struct zone is a 624 * highmem zone or not. This is an attempt to keep references 625 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 626 * @zone - pointer to struct zone variable 627 */ 628static inline int is_highmem(struct zone *zone) 629{ 630#ifdef CONFIG_HIGHMEM 631 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 632 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 633 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 634 zone_movable_is_highmem()); 635#else 636 return 0; 637#endif 638} 639 640static inline int is_normal(struct zone *zone) 641{ 642 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 643} 644 645static inline int is_dma32(struct zone *zone) 646{ 647#ifdef CONFIG_ZONE_DMA32 648 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 649#else 650 return 0; 651#endif 652} 653 654static inline int is_dma(struct zone *zone) 655{ 656#ifdef CONFIG_ZONE_DMA 657 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 658#else 659 return 0; 660#endif 661} 662 663/* These two functions are used to setup the per zone pages min values */ 664struct ctl_table; 665struct file; 666int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 667 void __user *, size_t *, loff_t *); 668extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 669int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 670 void __user *, size_t *, loff_t *); 671int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 672 void __user *, size_t *, loff_t *); 673int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 674 struct file *, void __user *, size_t *, loff_t *); 675int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 676 struct file *, void __user *, size_t *, loff_t *); 677 678extern int numa_zonelist_order_handler(struct ctl_table *, int, 679 struct file *, void __user *, size_t *, loff_t *); 680extern char numa_zonelist_order[]; 681#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 682 683#include <linux/topology.h> 684/* Returns the number of the current Node. */ 685#ifndef numa_node_id 686#define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 687#endif 688 689#ifndef CONFIG_NEED_MULTIPLE_NODES 690 691extern struct pglist_data contig_page_data; 692#define NODE_DATA(nid) (&contig_page_data) 693#define NODE_MEM_MAP(nid) mem_map 694 695#else /* CONFIG_NEED_MULTIPLE_NODES */ 696 697#include <asm/mmzone.h> 698 699#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 700 701extern struct pglist_data *first_online_pgdat(void); 702extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 703extern struct zone *next_zone(struct zone *zone); 704 705/** 706 * for_each_online_pgdat - helper macro to iterate over all online nodes 707 * @pgdat - pointer to a pg_data_t variable 708 */ 709#define for_each_online_pgdat(pgdat) \ 710 for (pgdat = first_online_pgdat(); \ 711 pgdat; \ 712 pgdat = next_online_pgdat(pgdat)) 713/** 714 * for_each_zone - helper macro to iterate over all memory zones 715 * @zone - pointer to struct zone variable 716 * 717 * The user only needs to declare the zone variable, for_each_zone 718 * fills it in. 719 */ 720#define for_each_zone(zone) \ 721 for (zone = (first_online_pgdat())->node_zones; \ 722 zone; \ 723 zone = next_zone(zone)) 724 725static inline struct zone *zonelist_zone(struct zoneref *zoneref) 726{ 727 return zoneref->zone; 728} 729 730static inline int zonelist_zone_idx(struct zoneref *zoneref) 731{ 732 return zoneref->zone_idx; 733} 734 735static inline int zonelist_node_idx(struct zoneref *zoneref) 736{ 737#ifdef CONFIG_NUMA 738 /* zone_to_nid not available in this context */ 739 return zoneref->zone->node; 740#else 741 return 0; 742#endif /* CONFIG_NUMA */ 743} 744 745/** 746 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 747 * @z - The cursor used as a starting point for the search 748 * @highest_zoneidx - The zone index of the highest zone to return 749 * @nodes - An optional nodemask to filter the zonelist with 750 * @zone - The first suitable zone found is returned via this parameter 751 * 752 * This function returns the next zone at or below a given zone index that is 753 * within the allowed nodemask using a cursor as the starting point for the 754 * search. The zoneref returned is a cursor that is used as the next starting 755 * point for future calls to next_zones_zonelist(). 756 */ 757struct zoneref *next_zones_zonelist(struct zoneref *z, 758 enum zone_type highest_zoneidx, 759 nodemask_t *nodes, 760 struct zone **zone); 761 762/** 763 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 764 * @zonelist - The zonelist to search for a suitable zone 765 * @highest_zoneidx - The zone index of the highest zone to return 766 * @nodes - An optional nodemask to filter the zonelist with 767 * @zone - The first suitable zone found is returned via this parameter 768 * 769 * This function returns the first zone at or below a given zone index that is 770 * within the allowed nodemask. The zoneref returned is a cursor that can be 771 * used to iterate the zonelist with next_zones_zonelist. The cursor should 772 * not be used by the caller as it does not match the value of the zone 773 * returned. 774 */ 775static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 776 enum zone_type highest_zoneidx, 777 nodemask_t *nodes, 778 struct zone **zone) 779{ 780 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 781 zone); 782} 783 784/** 785 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 786 * @zone - The current zone in the iterator 787 * @z - The current pointer within zonelist->zones being iterated 788 * @zlist - The zonelist being iterated 789 * @highidx - The zone index of the highest zone to return 790 * @nodemask - Nodemask allowed by the allocator 791 * 792 * This iterator iterates though all zones at or below a given zone index and 793 * within a given nodemask 794 */ 795#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 796 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 797 zone; \ 798 z = next_zones_zonelist(z, highidx, nodemask, &zone)) \ 799 800/** 801 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 802 * @zone - The current zone in the iterator 803 * @z - The current pointer within zonelist->zones being iterated 804 * @zlist - The zonelist being iterated 805 * @highidx - The zone index of the highest zone to return 806 * 807 * This iterator iterates though all zones at or below a given zone index. 808 */ 809#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 810 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 811 812#ifdef CONFIG_SPARSEMEM 813#include <asm/sparsemem.h> 814#endif 815 816#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 817 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 818static inline unsigned long early_pfn_to_nid(unsigned long pfn) 819{ 820 return 0; 821} 822#endif 823 824#ifdef CONFIG_FLATMEM 825#define pfn_to_nid(pfn) (0) 826#endif 827 828#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 829#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 830 831#ifdef CONFIG_SPARSEMEM 832 833/* 834 * SECTION_SHIFT #bits space required to store a section # 835 * 836 * PA_SECTION_SHIFT physical address to/from section number 837 * PFN_SECTION_SHIFT pfn to/from section number 838 */ 839#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 840 841#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 842#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 843 844#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 845 846#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 847#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 848 849#define SECTION_BLOCKFLAGS_BITS \ 850 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 851 852#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 853#error Allocator MAX_ORDER exceeds SECTION_SIZE 854#endif 855 856struct page; 857struct mem_section { 858 /* 859 * This is, logically, a pointer to an array of struct 860 * pages. However, it is stored with some other magic. 861 * (see sparse.c::sparse_init_one_section()) 862 * 863 * Additionally during early boot we encode node id of 864 * the location of the section here to guide allocation. 865 * (see sparse.c::memory_present()) 866 * 867 * Making it a UL at least makes someone do a cast 868 * before using it wrong. 869 */ 870 unsigned long section_mem_map; 871 872 /* See declaration of similar field in struct zone */ 873 unsigned long *pageblock_flags; 874}; 875 876#ifdef CONFIG_SPARSEMEM_EXTREME 877#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 878#else 879#define SECTIONS_PER_ROOT 1 880#endif 881 882#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 883#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 884#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 885 886#ifdef CONFIG_SPARSEMEM_EXTREME 887extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 888#else 889extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 890#endif 891 892static inline struct mem_section *__nr_to_section(unsigned long nr) 893{ 894 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 895 return NULL; 896 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 897} 898extern int __section_nr(struct mem_section* ms); 899extern unsigned long usemap_size(void); 900 901/* 902 * We use the lower bits of the mem_map pointer to store 903 * a little bit of information. There should be at least 904 * 3 bits here due to 32-bit alignment. 905 */ 906#define SECTION_MARKED_PRESENT (1UL<<0) 907#define SECTION_HAS_MEM_MAP (1UL<<1) 908#define SECTION_MAP_LAST_BIT (1UL<<2) 909#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 910#define SECTION_NID_SHIFT 2 911 912static inline struct page *__section_mem_map_addr(struct mem_section *section) 913{ 914 unsigned long map = section->section_mem_map; 915 map &= SECTION_MAP_MASK; 916 return (struct page *)map; 917} 918 919static inline int present_section(struct mem_section *section) 920{ 921 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 922} 923 924static inline int present_section_nr(unsigned long nr) 925{ 926 return present_section(__nr_to_section(nr)); 927} 928 929static inline int valid_section(struct mem_section *section) 930{ 931 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 932} 933 934static inline int valid_section_nr(unsigned long nr) 935{ 936 return valid_section(__nr_to_section(nr)); 937} 938 939static inline struct mem_section *__pfn_to_section(unsigned long pfn) 940{ 941 return __nr_to_section(pfn_to_section_nr(pfn)); 942} 943 944static inline int pfn_valid(unsigned long pfn) 945{ 946 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 947 return 0; 948 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 949} 950 951static inline int pfn_present(unsigned long pfn) 952{ 953 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 954 return 0; 955 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 956} 957 958/* 959 * These are _only_ used during initialisation, therefore they 960 * can use __initdata ... They could have names to indicate 961 * this restriction. 962 */ 963#ifdef CONFIG_NUMA 964#define pfn_to_nid(pfn) \ 965({ \ 966 unsigned long __pfn_to_nid_pfn = (pfn); \ 967 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 968}) 969#else 970#define pfn_to_nid(pfn) (0) 971#endif 972 973#define early_pfn_valid(pfn) pfn_valid(pfn) 974void sparse_init(void); 975#else 976#define sparse_init() do {} while (0) 977#define sparse_index_init(_sec, _nid) do {} while (0) 978#endif /* CONFIG_SPARSEMEM */ 979 980#ifdef CONFIG_NODES_SPAN_OTHER_NODES 981#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 982#else 983#define early_pfn_in_nid(pfn, nid) (1) 984#endif 985 986#ifndef early_pfn_valid 987#define early_pfn_valid(pfn) (1) 988#endif 989 990void memory_present(int nid, unsigned long start, unsigned long end); 991unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 992 993/* 994 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 995 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 996 * pfn_valid_within() should be used in this case; we optimise this away 997 * when we have no holes within a MAX_ORDER_NR_PAGES block. 998 */ 999#ifdef CONFIG_HOLES_IN_ZONE 1000#define pfn_valid_within(pfn) pfn_valid(pfn) 1001#else 1002#define pfn_valid_within(pfn) (1) 1003#endif 1004 1005#endif /* !__GENERATING_BOUNDS.H */ 1006#endif /* !__ASSEMBLY__ */ 1007#endif /* _LINUX_MMZONE_H */