at v2.6.26 30 kB view raw
1#ifndef _LINUX_LIST_H 2#define _LINUX_LIST_H 3 4#include <linux/stddef.h> 5#include <linux/poison.h> 6#include <linux/prefetch.h> 7#include <asm/system.h> 8 9/* 10 * Simple doubly linked list implementation. 11 * 12 * Some of the internal functions ("__xxx") are useful when 13 * manipulating whole lists rather than single entries, as 14 * sometimes we already know the next/prev entries and we can 15 * generate better code by using them directly rather than 16 * using the generic single-entry routines. 17 */ 18 19struct list_head { 20 struct list_head *next, *prev; 21}; 22 23#define LIST_HEAD_INIT(name) { &(name), &(name) } 24 25#define LIST_HEAD(name) \ 26 struct list_head name = LIST_HEAD_INIT(name) 27 28static inline void INIT_LIST_HEAD(struct list_head *list) 29{ 30 list->next = list; 31 list->prev = list; 32} 33 34/* 35 * Insert a new entry between two known consecutive entries. 36 * 37 * This is only for internal list manipulation where we know 38 * the prev/next entries already! 39 */ 40#ifndef CONFIG_DEBUG_LIST 41static inline void __list_add(struct list_head *new, 42 struct list_head *prev, 43 struct list_head *next) 44{ 45 next->prev = new; 46 new->next = next; 47 new->prev = prev; 48 prev->next = new; 49} 50#else 51extern void __list_add(struct list_head *new, 52 struct list_head *prev, 53 struct list_head *next); 54#endif 55 56/** 57 * list_add - add a new entry 58 * @new: new entry to be added 59 * @head: list head to add it after 60 * 61 * Insert a new entry after the specified head. 62 * This is good for implementing stacks. 63 */ 64#ifndef CONFIG_DEBUG_LIST 65static inline void list_add(struct list_head *new, struct list_head *head) 66{ 67 __list_add(new, head, head->next); 68} 69#else 70extern void list_add(struct list_head *new, struct list_head *head); 71#endif 72 73 74/** 75 * list_add_tail - add a new entry 76 * @new: new entry to be added 77 * @head: list head to add it before 78 * 79 * Insert a new entry before the specified head. 80 * This is useful for implementing queues. 81 */ 82static inline void list_add_tail(struct list_head *new, struct list_head *head) 83{ 84 __list_add(new, head->prev, head); 85} 86 87/* 88 * Insert a new entry between two known consecutive entries. 89 * 90 * This is only for internal list manipulation where we know 91 * the prev/next entries already! 92 */ 93static inline void __list_add_rcu(struct list_head * new, 94 struct list_head * prev, struct list_head * next) 95{ 96 new->next = next; 97 new->prev = prev; 98 smp_wmb(); 99 next->prev = new; 100 prev->next = new; 101} 102 103/** 104 * list_add_rcu - add a new entry to rcu-protected list 105 * @new: new entry to be added 106 * @head: list head to add it after 107 * 108 * Insert a new entry after the specified head. 109 * This is good for implementing stacks. 110 * 111 * The caller must take whatever precautions are necessary 112 * (such as holding appropriate locks) to avoid racing 113 * with another list-mutation primitive, such as list_add_rcu() 114 * or list_del_rcu(), running on this same list. 115 * However, it is perfectly legal to run concurrently with 116 * the _rcu list-traversal primitives, such as 117 * list_for_each_entry_rcu(). 118 */ 119static inline void list_add_rcu(struct list_head *new, struct list_head *head) 120{ 121 __list_add_rcu(new, head, head->next); 122} 123 124/** 125 * list_add_tail_rcu - add a new entry to rcu-protected list 126 * @new: new entry to be added 127 * @head: list head to add it before 128 * 129 * Insert a new entry before the specified head. 130 * This is useful for implementing queues. 131 * 132 * The caller must take whatever precautions are necessary 133 * (such as holding appropriate locks) to avoid racing 134 * with another list-mutation primitive, such as list_add_tail_rcu() 135 * or list_del_rcu(), running on this same list. 136 * However, it is perfectly legal to run concurrently with 137 * the _rcu list-traversal primitives, such as 138 * list_for_each_entry_rcu(). 139 */ 140static inline void list_add_tail_rcu(struct list_head *new, 141 struct list_head *head) 142{ 143 __list_add_rcu(new, head->prev, head); 144} 145 146/* 147 * Delete a list entry by making the prev/next entries 148 * point to each other. 149 * 150 * This is only for internal list manipulation where we know 151 * the prev/next entries already! 152 */ 153static inline void __list_del(struct list_head * prev, struct list_head * next) 154{ 155 next->prev = prev; 156 prev->next = next; 157} 158 159/** 160 * list_del - deletes entry from list. 161 * @entry: the element to delete from the list. 162 * Note: list_empty() on entry does not return true after this, the entry is 163 * in an undefined state. 164 */ 165#ifndef CONFIG_DEBUG_LIST 166static inline void list_del(struct list_head *entry) 167{ 168 __list_del(entry->prev, entry->next); 169 entry->next = LIST_POISON1; 170 entry->prev = LIST_POISON2; 171} 172#else 173extern void list_del(struct list_head *entry); 174#endif 175 176/** 177 * list_del_rcu - deletes entry from list without re-initialization 178 * @entry: the element to delete from the list. 179 * 180 * Note: list_empty() on entry does not return true after this, 181 * the entry is in an undefined state. It is useful for RCU based 182 * lockfree traversal. 183 * 184 * In particular, it means that we can not poison the forward 185 * pointers that may still be used for walking the list. 186 * 187 * The caller must take whatever precautions are necessary 188 * (such as holding appropriate locks) to avoid racing 189 * with another list-mutation primitive, such as list_del_rcu() 190 * or list_add_rcu(), running on this same list. 191 * However, it is perfectly legal to run concurrently with 192 * the _rcu list-traversal primitives, such as 193 * list_for_each_entry_rcu(). 194 * 195 * Note that the caller is not permitted to immediately free 196 * the newly deleted entry. Instead, either synchronize_rcu() 197 * or call_rcu() must be used to defer freeing until an RCU 198 * grace period has elapsed. 199 */ 200static inline void list_del_rcu(struct list_head *entry) 201{ 202 __list_del(entry->prev, entry->next); 203 entry->prev = LIST_POISON2; 204} 205 206/** 207 * list_replace - replace old entry by new one 208 * @old : the element to be replaced 209 * @new : the new element to insert 210 * 211 * If @old was empty, it will be overwritten. 212 */ 213static inline void list_replace(struct list_head *old, 214 struct list_head *new) 215{ 216 new->next = old->next; 217 new->next->prev = new; 218 new->prev = old->prev; 219 new->prev->next = new; 220} 221 222static inline void list_replace_init(struct list_head *old, 223 struct list_head *new) 224{ 225 list_replace(old, new); 226 INIT_LIST_HEAD(old); 227} 228 229/** 230 * list_replace_rcu - replace old entry by new one 231 * @old : the element to be replaced 232 * @new : the new element to insert 233 * 234 * The @old entry will be replaced with the @new entry atomically. 235 * Note: @old should not be empty. 236 */ 237static inline void list_replace_rcu(struct list_head *old, 238 struct list_head *new) 239{ 240 new->next = old->next; 241 new->prev = old->prev; 242 smp_wmb(); 243 new->next->prev = new; 244 new->prev->next = new; 245 old->prev = LIST_POISON2; 246} 247 248/** 249 * list_del_init - deletes entry from list and reinitialize it. 250 * @entry: the element to delete from the list. 251 */ 252static inline void list_del_init(struct list_head *entry) 253{ 254 __list_del(entry->prev, entry->next); 255 INIT_LIST_HEAD(entry); 256} 257 258/** 259 * list_move - delete from one list and add as another's head 260 * @list: the entry to move 261 * @head: the head that will precede our entry 262 */ 263static inline void list_move(struct list_head *list, struct list_head *head) 264{ 265 __list_del(list->prev, list->next); 266 list_add(list, head); 267} 268 269/** 270 * list_move_tail - delete from one list and add as another's tail 271 * @list: the entry to move 272 * @head: the head that will follow our entry 273 */ 274static inline void list_move_tail(struct list_head *list, 275 struct list_head *head) 276{ 277 __list_del(list->prev, list->next); 278 list_add_tail(list, head); 279} 280 281/** 282 * list_is_last - tests whether @list is the last entry in list @head 283 * @list: the entry to test 284 * @head: the head of the list 285 */ 286static inline int list_is_last(const struct list_head *list, 287 const struct list_head *head) 288{ 289 return list->next == head; 290} 291 292/** 293 * list_empty - tests whether a list is empty 294 * @head: the list to test. 295 */ 296static inline int list_empty(const struct list_head *head) 297{ 298 return head->next == head; 299} 300 301/** 302 * list_empty_careful - tests whether a list is empty and not being modified 303 * @head: the list to test 304 * 305 * Description: 306 * tests whether a list is empty _and_ checks that no other CPU might be 307 * in the process of modifying either member (next or prev) 308 * 309 * NOTE: using list_empty_careful() without synchronization 310 * can only be safe if the only activity that can happen 311 * to the list entry is list_del_init(). Eg. it cannot be used 312 * if another CPU could re-list_add() it. 313 */ 314static inline int list_empty_careful(const struct list_head *head) 315{ 316 struct list_head *next = head->next; 317 return (next == head) && (next == head->prev); 318} 319 320/** 321 * list_is_singular - tests whether a list has just one entry. 322 * @head: the list to test. 323 */ 324static inline int list_is_singular(const struct list_head *head) 325{ 326 return !list_empty(head) && (head->next == head->prev); 327} 328 329static inline void __list_splice(const struct list_head *list, 330 struct list_head *head) 331{ 332 struct list_head *first = list->next; 333 struct list_head *last = list->prev; 334 struct list_head *at = head->next; 335 336 first->prev = head; 337 head->next = first; 338 339 last->next = at; 340 at->prev = last; 341} 342 343/** 344 * list_splice - join two lists 345 * @list: the new list to add. 346 * @head: the place to add it in the first list. 347 */ 348static inline void list_splice(const struct list_head *list, 349 struct list_head *head) 350{ 351 if (!list_empty(list)) 352 __list_splice(list, head); 353} 354 355/** 356 * list_splice_init - join two lists and reinitialise the emptied list. 357 * @list: the new list to add. 358 * @head: the place to add it in the first list. 359 * 360 * The list at @list is reinitialised 361 */ 362static inline void list_splice_init(struct list_head *list, 363 struct list_head *head) 364{ 365 if (!list_empty(list)) { 366 __list_splice(list, head); 367 INIT_LIST_HEAD(list); 368 } 369} 370 371/** 372 * list_splice_init_rcu - splice an RCU-protected list into an existing list. 373 * @list: the RCU-protected list to splice 374 * @head: the place in the list to splice the first list into 375 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ... 376 * 377 * @head can be RCU-read traversed concurrently with this function. 378 * 379 * Note that this function blocks. 380 * 381 * Important note: the caller must take whatever action is necessary to 382 * prevent any other updates to @head. In principle, it is possible 383 * to modify the list as soon as sync() begins execution. 384 * If this sort of thing becomes necessary, an alternative version 385 * based on call_rcu() could be created. But only if -really- 386 * needed -- there is no shortage of RCU API members. 387 */ 388static inline void list_splice_init_rcu(struct list_head *list, 389 struct list_head *head, 390 void (*sync)(void)) 391{ 392 struct list_head *first = list->next; 393 struct list_head *last = list->prev; 394 struct list_head *at = head->next; 395 396 if (list_empty(head)) 397 return; 398 399 /* "first" and "last" tracking list, so initialize it. */ 400 401 INIT_LIST_HEAD(list); 402 403 /* 404 * At this point, the list body still points to the source list. 405 * Wait for any readers to finish using the list before splicing 406 * the list body into the new list. Any new readers will see 407 * an empty list. 408 */ 409 410 sync(); 411 412 /* 413 * Readers are finished with the source list, so perform splice. 414 * The order is important if the new list is global and accessible 415 * to concurrent RCU readers. Note that RCU readers are not 416 * permitted to traverse the prev pointers without excluding 417 * this function. 418 */ 419 420 last->next = at; 421 smp_wmb(); 422 head->next = first; 423 first->prev = head; 424 at->prev = last; 425} 426 427/** 428 * list_entry - get the struct for this entry 429 * @ptr: the &struct list_head pointer. 430 * @type: the type of the struct this is embedded in. 431 * @member: the name of the list_struct within the struct. 432 */ 433#define list_entry(ptr, type, member) \ 434 container_of(ptr, type, member) 435 436/** 437 * list_first_entry - get the first element from a list 438 * @ptr: the list head to take the element from. 439 * @type: the type of the struct this is embedded in. 440 * @member: the name of the list_struct within the struct. 441 * 442 * Note, that list is expected to be not empty. 443 */ 444#define list_first_entry(ptr, type, member) \ 445 list_entry((ptr)->next, type, member) 446 447/** 448 * list_for_each - iterate over a list 449 * @pos: the &struct list_head to use as a loop cursor. 450 * @head: the head for your list. 451 */ 452#define list_for_each(pos, head) \ 453 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 454 pos = pos->next) 455 456/** 457 * __list_for_each - iterate over a list 458 * @pos: the &struct list_head to use as a loop cursor. 459 * @head: the head for your list. 460 * 461 * This variant differs from list_for_each() in that it's the 462 * simplest possible list iteration code, no prefetching is done. 463 * Use this for code that knows the list to be very short (empty 464 * or 1 entry) most of the time. 465 */ 466#define __list_for_each(pos, head) \ 467 for (pos = (head)->next; pos != (head); pos = pos->next) 468 469/** 470 * list_for_each_prev - iterate over a list backwards 471 * @pos: the &struct list_head to use as a loop cursor. 472 * @head: the head for your list. 473 */ 474#define list_for_each_prev(pos, head) \ 475 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 476 pos = pos->prev) 477 478/** 479 * list_for_each_safe - iterate over a list safe against removal of list entry 480 * @pos: the &struct list_head to use as a loop cursor. 481 * @n: another &struct list_head to use as temporary storage 482 * @head: the head for your list. 483 */ 484#define list_for_each_safe(pos, n, head) \ 485 for (pos = (head)->next, n = pos->next; pos != (head); \ 486 pos = n, n = pos->next) 487 488/** 489 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 490 * @pos: the &struct list_head to use as a loop cursor. 491 * @n: another &struct list_head to use as temporary storage 492 * @head: the head for your list. 493 */ 494#define list_for_each_prev_safe(pos, n, head) \ 495 for (pos = (head)->prev, n = pos->prev; \ 496 prefetch(pos->prev), pos != (head); \ 497 pos = n, n = pos->prev) 498 499/** 500 * list_for_each_entry - iterate over list of given type 501 * @pos: the type * to use as a loop cursor. 502 * @head: the head for your list. 503 * @member: the name of the list_struct within the struct. 504 */ 505#define list_for_each_entry(pos, head, member) \ 506 for (pos = list_entry((head)->next, typeof(*pos), member); \ 507 prefetch(pos->member.next), &pos->member != (head); \ 508 pos = list_entry(pos->member.next, typeof(*pos), member)) 509 510/** 511 * list_for_each_entry_reverse - iterate backwards over list of given type. 512 * @pos: the type * to use as a loop cursor. 513 * @head: the head for your list. 514 * @member: the name of the list_struct within the struct. 515 */ 516#define list_for_each_entry_reverse(pos, head, member) \ 517 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 518 prefetch(pos->member.prev), &pos->member != (head); \ 519 pos = list_entry(pos->member.prev, typeof(*pos), member)) 520 521/** 522 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 523 * @pos: the type * to use as a start point 524 * @head: the head of the list 525 * @member: the name of the list_struct within the struct. 526 * 527 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 528 */ 529#define list_prepare_entry(pos, head, member) \ 530 ((pos) ? : list_entry(head, typeof(*pos), member)) 531 532/** 533 * list_for_each_entry_continue - continue iteration over list of given type 534 * @pos: the type * to use as a loop cursor. 535 * @head: the head for your list. 536 * @member: the name of the list_struct within the struct. 537 * 538 * Continue to iterate over list of given type, continuing after 539 * the current position. 540 */ 541#define list_for_each_entry_continue(pos, head, member) \ 542 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 543 prefetch(pos->member.next), &pos->member != (head); \ 544 pos = list_entry(pos->member.next, typeof(*pos), member)) 545 546/** 547 * list_for_each_entry_continue_reverse - iterate backwards from the given point 548 * @pos: the type * to use as a loop cursor. 549 * @head: the head for your list. 550 * @member: the name of the list_struct within the struct. 551 * 552 * Start to iterate over list of given type backwards, continuing after 553 * the current position. 554 */ 555#define list_for_each_entry_continue_reverse(pos, head, member) \ 556 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \ 557 prefetch(pos->member.prev), &pos->member != (head); \ 558 pos = list_entry(pos->member.prev, typeof(*pos), member)) 559 560/** 561 * list_for_each_entry_from - iterate over list of given type from the current point 562 * @pos: the type * to use as a loop cursor. 563 * @head: the head for your list. 564 * @member: the name of the list_struct within the struct. 565 * 566 * Iterate over list of given type, continuing from current position. 567 */ 568#define list_for_each_entry_from(pos, head, member) \ 569 for (; prefetch(pos->member.next), &pos->member != (head); \ 570 pos = list_entry(pos->member.next, typeof(*pos), member)) 571 572/** 573 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 574 * @pos: the type * to use as a loop cursor. 575 * @n: another type * to use as temporary storage 576 * @head: the head for your list. 577 * @member: the name of the list_struct within the struct. 578 */ 579#define list_for_each_entry_safe(pos, n, head, member) \ 580 for (pos = list_entry((head)->next, typeof(*pos), member), \ 581 n = list_entry(pos->member.next, typeof(*pos), member); \ 582 &pos->member != (head); \ 583 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 584 585/** 586 * list_for_each_entry_safe_continue 587 * @pos: the type * to use as a loop cursor. 588 * @n: another type * to use as temporary storage 589 * @head: the head for your list. 590 * @member: the name of the list_struct within the struct. 591 * 592 * Iterate over list of given type, continuing after current point, 593 * safe against removal of list entry. 594 */ 595#define list_for_each_entry_safe_continue(pos, n, head, member) \ 596 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 597 n = list_entry(pos->member.next, typeof(*pos), member); \ 598 &pos->member != (head); \ 599 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 600 601/** 602 * list_for_each_entry_safe_from 603 * @pos: the type * to use as a loop cursor. 604 * @n: another type * to use as temporary storage 605 * @head: the head for your list. 606 * @member: the name of the list_struct within the struct. 607 * 608 * Iterate over list of given type from current point, safe against 609 * removal of list entry. 610 */ 611#define list_for_each_entry_safe_from(pos, n, head, member) \ 612 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 613 &pos->member != (head); \ 614 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 615 616/** 617 * list_for_each_entry_safe_reverse 618 * @pos: the type * to use as a loop cursor. 619 * @n: another type * to use as temporary storage 620 * @head: the head for your list. 621 * @member: the name of the list_struct within the struct. 622 * 623 * Iterate backwards over list of given type, safe against removal 624 * of list entry. 625 */ 626#define list_for_each_entry_safe_reverse(pos, n, head, member) \ 627 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 628 n = list_entry(pos->member.prev, typeof(*pos), member); \ 629 &pos->member != (head); \ 630 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 631 632/** 633 * list_for_each_rcu - iterate over an rcu-protected list 634 * @pos: the &struct list_head to use as a loop cursor. 635 * @head: the head for your list. 636 * 637 * This list-traversal primitive may safely run concurrently with 638 * the _rcu list-mutation primitives such as list_add_rcu() 639 * as long as the traversal is guarded by rcu_read_lock(). 640 */ 641#define list_for_each_rcu(pos, head) \ 642 for (pos = rcu_dereference((head)->next); \ 643 prefetch(pos->next), pos != (head); \ 644 pos = rcu_dereference(pos->next)) 645 646#define __list_for_each_rcu(pos, head) \ 647 for (pos = rcu_dereference((head)->next); \ 648 pos != (head); \ 649 pos = rcu_dereference(pos->next)) 650 651/** 652 * list_for_each_entry_rcu - iterate over rcu list of given type 653 * @pos: the type * to use as a loop cursor. 654 * @head: the head for your list. 655 * @member: the name of the list_struct within the struct. 656 * 657 * This list-traversal primitive may safely run concurrently with 658 * the _rcu list-mutation primitives such as list_add_rcu() 659 * as long as the traversal is guarded by rcu_read_lock(). 660 */ 661#define list_for_each_entry_rcu(pos, head, member) \ 662 for (pos = list_entry(rcu_dereference((head)->next), typeof(*pos), member); \ 663 prefetch(pos->member.next), &pos->member != (head); \ 664 pos = list_entry(rcu_dereference(pos->member.next), typeof(*pos), member)) 665 666 667/** 668 * list_for_each_continue_rcu 669 * @pos: the &struct list_head to use as a loop cursor. 670 * @head: the head for your list. 671 * 672 * Iterate over an rcu-protected list, continuing after current point. 673 * 674 * This list-traversal primitive may safely run concurrently with 675 * the _rcu list-mutation primitives such as list_add_rcu() 676 * as long as the traversal is guarded by rcu_read_lock(). 677 */ 678#define list_for_each_continue_rcu(pos, head) \ 679 for ((pos) = rcu_dereference((pos)->next); \ 680 prefetch((pos)->next), (pos) != (head); \ 681 (pos) = rcu_dereference((pos)->next)) 682 683/* 684 * Double linked lists with a single pointer list head. 685 * Mostly useful for hash tables where the two pointer list head is 686 * too wasteful. 687 * You lose the ability to access the tail in O(1). 688 */ 689 690struct hlist_head { 691 struct hlist_node *first; 692}; 693 694struct hlist_node { 695 struct hlist_node *next, **pprev; 696}; 697 698#define HLIST_HEAD_INIT { .first = NULL } 699#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 700#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 701static inline void INIT_HLIST_NODE(struct hlist_node *h) 702{ 703 h->next = NULL; 704 h->pprev = NULL; 705} 706 707static inline int hlist_unhashed(const struct hlist_node *h) 708{ 709 return !h->pprev; 710} 711 712static inline int hlist_empty(const struct hlist_head *h) 713{ 714 return !h->first; 715} 716 717static inline void __hlist_del(struct hlist_node *n) 718{ 719 struct hlist_node *next = n->next; 720 struct hlist_node **pprev = n->pprev; 721 *pprev = next; 722 if (next) 723 next->pprev = pprev; 724} 725 726static inline void hlist_del(struct hlist_node *n) 727{ 728 __hlist_del(n); 729 n->next = LIST_POISON1; 730 n->pprev = LIST_POISON2; 731} 732 733/** 734 * hlist_del_rcu - deletes entry from hash list without re-initialization 735 * @n: the element to delete from the hash list. 736 * 737 * Note: list_unhashed() on entry does not return true after this, 738 * the entry is in an undefined state. It is useful for RCU based 739 * lockfree traversal. 740 * 741 * In particular, it means that we can not poison the forward 742 * pointers that may still be used for walking the hash list. 743 * 744 * The caller must take whatever precautions are necessary 745 * (such as holding appropriate locks) to avoid racing 746 * with another list-mutation primitive, such as hlist_add_head_rcu() 747 * or hlist_del_rcu(), running on this same list. 748 * However, it is perfectly legal to run concurrently with 749 * the _rcu list-traversal primitives, such as 750 * hlist_for_each_entry(). 751 */ 752static inline void hlist_del_rcu(struct hlist_node *n) 753{ 754 __hlist_del(n); 755 n->pprev = LIST_POISON2; 756} 757 758static inline void hlist_del_init(struct hlist_node *n) 759{ 760 if (!hlist_unhashed(n)) { 761 __hlist_del(n); 762 INIT_HLIST_NODE(n); 763 } 764} 765 766/** 767 * hlist_replace_rcu - replace old entry by new one 768 * @old : the element to be replaced 769 * @new : the new element to insert 770 * 771 * The @old entry will be replaced with the @new entry atomically. 772 */ 773static inline void hlist_replace_rcu(struct hlist_node *old, 774 struct hlist_node *new) 775{ 776 struct hlist_node *next = old->next; 777 778 new->next = next; 779 new->pprev = old->pprev; 780 smp_wmb(); 781 if (next) 782 new->next->pprev = &new->next; 783 *new->pprev = new; 784 old->pprev = LIST_POISON2; 785} 786 787static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 788{ 789 struct hlist_node *first = h->first; 790 n->next = first; 791 if (first) 792 first->pprev = &n->next; 793 h->first = n; 794 n->pprev = &h->first; 795} 796 797 798/** 799 * hlist_add_head_rcu 800 * @n: the element to add to the hash list. 801 * @h: the list to add to. 802 * 803 * Description: 804 * Adds the specified element to the specified hlist, 805 * while permitting racing traversals. 806 * 807 * The caller must take whatever precautions are necessary 808 * (such as holding appropriate locks) to avoid racing 809 * with another list-mutation primitive, such as hlist_add_head_rcu() 810 * or hlist_del_rcu(), running on this same list. 811 * However, it is perfectly legal to run concurrently with 812 * the _rcu list-traversal primitives, such as 813 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 814 * problems on Alpha CPUs. Regardless of the type of CPU, the 815 * list-traversal primitive must be guarded by rcu_read_lock(). 816 */ 817static inline void hlist_add_head_rcu(struct hlist_node *n, 818 struct hlist_head *h) 819{ 820 struct hlist_node *first = h->first; 821 n->next = first; 822 n->pprev = &h->first; 823 smp_wmb(); 824 if (first) 825 first->pprev = &n->next; 826 h->first = n; 827} 828 829/* next must be != NULL */ 830static inline void hlist_add_before(struct hlist_node *n, 831 struct hlist_node *next) 832{ 833 n->pprev = next->pprev; 834 n->next = next; 835 next->pprev = &n->next; 836 *(n->pprev) = n; 837} 838 839static inline void hlist_add_after(struct hlist_node *n, 840 struct hlist_node *next) 841{ 842 next->next = n->next; 843 n->next = next; 844 next->pprev = &n->next; 845 846 if(next->next) 847 next->next->pprev = &next->next; 848} 849 850/** 851 * hlist_add_before_rcu 852 * @n: the new element to add to the hash list. 853 * @next: the existing element to add the new element before. 854 * 855 * Description: 856 * Adds the specified element to the specified hlist 857 * before the specified node while permitting racing traversals. 858 * 859 * The caller must take whatever precautions are necessary 860 * (such as holding appropriate locks) to avoid racing 861 * with another list-mutation primitive, such as hlist_add_head_rcu() 862 * or hlist_del_rcu(), running on this same list. 863 * However, it is perfectly legal to run concurrently with 864 * the _rcu list-traversal primitives, such as 865 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 866 * problems on Alpha CPUs. 867 */ 868static inline void hlist_add_before_rcu(struct hlist_node *n, 869 struct hlist_node *next) 870{ 871 n->pprev = next->pprev; 872 n->next = next; 873 smp_wmb(); 874 next->pprev = &n->next; 875 *(n->pprev) = n; 876} 877 878/** 879 * hlist_add_after_rcu 880 * @prev: the existing element to add the new element after. 881 * @n: the new element to add to the hash list. 882 * 883 * Description: 884 * Adds the specified element to the specified hlist 885 * after the specified node while permitting racing traversals. 886 * 887 * The caller must take whatever precautions are necessary 888 * (such as holding appropriate locks) to avoid racing 889 * with another list-mutation primitive, such as hlist_add_head_rcu() 890 * or hlist_del_rcu(), running on this same list. 891 * However, it is perfectly legal to run concurrently with 892 * the _rcu list-traversal primitives, such as 893 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 894 * problems on Alpha CPUs. 895 */ 896static inline void hlist_add_after_rcu(struct hlist_node *prev, 897 struct hlist_node *n) 898{ 899 n->next = prev->next; 900 n->pprev = &prev->next; 901 smp_wmb(); 902 prev->next = n; 903 if (n->next) 904 n->next->pprev = &n->next; 905} 906 907#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 908 909#define hlist_for_each(pos, head) \ 910 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 911 pos = pos->next) 912 913#define hlist_for_each_safe(pos, n, head) \ 914 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 915 pos = n) 916 917/** 918 * hlist_for_each_entry - iterate over list of given type 919 * @tpos: the type * to use as a loop cursor. 920 * @pos: the &struct hlist_node to use as a loop cursor. 921 * @head: the head for your list. 922 * @member: the name of the hlist_node within the struct. 923 */ 924#define hlist_for_each_entry(tpos, pos, head, member) \ 925 for (pos = (head)->first; \ 926 pos && ({ prefetch(pos->next); 1;}) && \ 927 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 928 pos = pos->next) 929 930/** 931 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 932 * @tpos: the type * to use as a loop cursor. 933 * @pos: the &struct hlist_node to use as a loop cursor. 934 * @member: the name of the hlist_node within the struct. 935 */ 936#define hlist_for_each_entry_continue(tpos, pos, member) \ 937 for (pos = (pos)->next; \ 938 pos && ({ prefetch(pos->next); 1;}) && \ 939 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 940 pos = pos->next) 941 942/** 943 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 944 * @tpos: the type * to use as a loop cursor. 945 * @pos: the &struct hlist_node to use as a loop cursor. 946 * @member: the name of the hlist_node within the struct. 947 */ 948#define hlist_for_each_entry_from(tpos, pos, member) \ 949 for (; pos && ({ prefetch(pos->next); 1;}) && \ 950 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 951 pos = pos->next) 952 953/** 954 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 955 * @tpos: the type * to use as a loop cursor. 956 * @pos: the &struct hlist_node to use as a loop cursor. 957 * @n: another &struct hlist_node to use as temporary storage 958 * @head: the head for your list. 959 * @member: the name of the hlist_node within the struct. 960 */ 961#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 962 for (pos = (head)->first; \ 963 pos && ({ n = pos->next; 1; }) && \ 964 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 965 pos = n) 966 967/** 968 * hlist_for_each_entry_rcu - iterate over rcu list of given type 969 * @tpos: the type * to use as a loop cursor. 970 * @pos: the &struct hlist_node to use as a loop cursor. 971 * @head: the head for your list. 972 * @member: the name of the hlist_node within the struct. 973 * 974 * This list-traversal primitive may safely run concurrently with 975 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 976 * as long as the traversal is guarded by rcu_read_lock(). 977 */ 978#define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 979 for (pos = rcu_dereference((head)->first); \ 980 pos && ({ prefetch(pos->next); 1;}) && \ 981 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 982 pos = rcu_dereference(pos->next)) 983 984#endif