at v2.6.26 1092 lines 34 kB view raw
1/* 2 * include/asm-s390/pgtable.h 3 * 4 * S390 version 5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Hartmut Penner (hp@de.ibm.com) 7 * Ulrich Weigand (weigand@de.ibm.com) 8 * Martin Schwidefsky (schwidefsky@de.ibm.com) 9 * 10 * Derived from "include/asm-i386/pgtable.h" 11 */ 12 13#ifndef _ASM_S390_PGTABLE_H 14#define _ASM_S390_PGTABLE_H 15 16/* 17 * The Linux memory management assumes a three-level page table setup. For 18 * s390 31 bit we "fold" the mid level into the top-level page table, so 19 * that we physically have the same two-level page table as the s390 mmu 20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 21 * the hardware provides (region first and region second tables are not 22 * used). 23 * 24 * The "pgd_xxx()" functions are trivial for a folded two-level 25 * setup: the pgd is never bad, and a pmd always exists (as it's folded 26 * into the pgd entry) 27 * 28 * This file contains the functions and defines necessary to modify and use 29 * the S390 page table tree. 30 */ 31#ifndef __ASSEMBLY__ 32#include <linux/mm_types.h> 33#include <asm/bitops.h> 34#include <asm/bug.h> 35#include <asm/processor.h> 36 37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 38extern void paging_init(void); 39extern void vmem_map_init(void); 40 41/* 42 * The S390 doesn't have any external MMU info: the kernel page 43 * tables contain all the necessary information. 44 */ 45#define update_mmu_cache(vma, address, pte) do { } while (0) 46 47/* 48 * ZERO_PAGE is a global shared page that is always zero: used 49 * for zero-mapped memory areas etc.. 50 */ 51extern char empty_zero_page[PAGE_SIZE]; 52#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 53#endif /* !__ASSEMBLY__ */ 54 55/* 56 * PMD_SHIFT determines the size of the area a second-level page 57 * table can map 58 * PGDIR_SHIFT determines what a third-level page table entry can map 59 */ 60#ifndef __s390x__ 61# define PMD_SHIFT 20 62# define PUD_SHIFT 20 63# define PGDIR_SHIFT 20 64#else /* __s390x__ */ 65# define PMD_SHIFT 20 66# define PUD_SHIFT 31 67# define PGDIR_SHIFT 42 68#endif /* __s390x__ */ 69 70#define PMD_SIZE (1UL << PMD_SHIFT) 71#define PMD_MASK (~(PMD_SIZE-1)) 72#define PUD_SIZE (1UL << PUD_SHIFT) 73#define PUD_MASK (~(PUD_SIZE-1)) 74#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 75#define PGDIR_MASK (~(PGDIR_SIZE-1)) 76 77/* 78 * entries per page directory level: the S390 is two-level, so 79 * we don't really have any PMD directory physically. 80 * for S390 segment-table entries are combined to one PGD 81 * that leads to 1024 pte per pgd 82 */ 83#define PTRS_PER_PTE 256 84#ifndef __s390x__ 85#define PTRS_PER_PMD 1 86#define PTRS_PER_PUD 1 87#else /* __s390x__ */ 88#define PTRS_PER_PMD 2048 89#define PTRS_PER_PUD 2048 90#endif /* __s390x__ */ 91#define PTRS_PER_PGD 2048 92 93#define FIRST_USER_ADDRESS 0 94 95#define pte_ERROR(e) \ 96 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 97#define pmd_ERROR(e) \ 98 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 99#define pud_ERROR(e) \ 100 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 101#define pgd_ERROR(e) \ 102 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 103 104#ifndef __ASSEMBLY__ 105/* 106 * The vmalloc area will always be on the topmost area of the kernel 107 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc, 108 * which should be enough for any sane case. 109 * By putting vmalloc at the top, we maximise the gap between physical 110 * memory and vmalloc to catch misplaced memory accesses. As a side 111 * effect, this also makes sure that 64 bit module code cannot be used 112 * as system call address. 113 */ 114#ifndef __s390x__ 115#define VMALLOC_START 0x78000000UL 116#define VMALLOC_END 0x7e000000UL 117#define VMEM_MAP_END 0x80000000UL 118#else /* __s390x__ */ 119#define VMALLOC_START 0x3e000000000UL 120#define VMALLOC_END 0x3e040000000UL 121#define VMEM_MAP_END 0x40000000000UL 122#endif /* __s390x__ */ 123 124/* 125 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1 126 * mapping. This needs to be calculated at compile time since the size of the 127 * VMEM_MAP is static but the size of struct page can change. 128 */ 129#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page)) 130#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES) 131#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1)) 132#define vmemmap ((struct page *) VMALLOC_END) 133 134/* 135 * A 31 bit pagetable entry of S390 has following format: 136 * | PFRA | | OS | 137 * 0 0IP0 138 * 00000000001111111111222222222233 139 * 01234567890123456789012345678901 140 * 141 * I Page-Invalid Bit: Page is not available for address-translation 142 * P Page-Protection Bit: Store access not possible for page 143 * 144 * A 31 bit segmenttable entry of S390 has following format: 145 * | P-table origin | |PTL 146 * 0 IC 147 * 00000000001111111111222222222233 148 * 01234567890123456789012345678901 149 * 150 * I Segment-Invalid Bit: Segment is not available for address-translation 151 * C Common-Segment Bit: Segment is not private (PoP 3-30) 152 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 153 * 154 * The 31 bit segmenttable origin of S390 has following format: 155 * 156 * |S-table origin | | STL | 157 * X **GPS 158 * 00000000001111111111222222222233 159 * 01234567890123456789012345678901 160 * 161 * X Space-Switch event: 162 * G Segment-Invalid Bit: * 163 * P Private-Space Bit: Segment is not private (PoP 3-30) 164 * S Storage-Alteration: 165 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 166 * 167 * A 64 bit pagetable entry of S390 has following format: 168 * | PFRA |0IP0| OS | 169 * 0000000000111111111122222222223333333333444444444455555555556666 170 * 0123456789012345678901234567890123456789012345678901234567890123 171 * 172 * I Page-Invalid Bit: Page is not available for address-translation 173 * P Page-Protection Bit: Store access not possible for page 174 * 175 * A 64 bit segmenttable entry of S390 has following format: 176 * | P-table origin | TT 177 * 0000000000111111111122222222223333333333444444444455555555556666 178 * 0123456789012345678901234567890123456789012345678901234567890123 179 * 180 * I Segment-Invalid Bit: Segment is not available for address-translation 181 * C Common-Segment Bit: Segment is not private (PoP 3-30) 182 * P Page-Protection Bit: Store access not possible for page 183 * TT Type 00 184 * 185 * A 64 bit region table entry of S390 has following format: 186 * | S-table origin | TF TTTL 187 * 0000000000111111111122222222223333333333444444444455555555556666 188 * 0123456789012345678901234567890123456789012345678901234567890123 189 * 190 * I Segment-Invalid Bit: Segment is not available for address-translation 191 * TT Type 01 192 * TF 193 * TL Table length 194 * 195 * The 64 bit regiontable origin of S390 has following format: 196 * | region table origon | DTTL 197 * 0000000000111111111122222222223333333333444444444455555555556666 198 * 0123456789012345678901234567890123456789012345678901234567890123 199 * 200 * X Space-Switch event: 201 * G Segment-Invalid Bit: 202 * P Private-Space Bit: 203 * S Storage-Alteration: 204 * R Real space 205 * TL Table-Length: 206 * 207 * A storage key has the following format: 208 * | ACC |F|R|C|0| 209 * 0 3 4 5 6 7 210 * ACC: access key 211 * F : fetch protection bit 212 * R : referenced bit 213 * C : changed bit 214 */ 215 216/* Hardware bits in the page table entry */ 217#define _PAGE_RO 0x200 /* HW read-only bit */ 218#define _PAGE_INVALID 0x400 /* HW invalid bit */ 219 220/* Software bits in the page table entry */ 221#define _PAGE_SWT 0x001 /* SW pte type bit t */ 222#define _PAGE_SWX 0x002 /* SW pte type bit x */ 223#define _PAGE_SPECIAL 0x004 /* SW associated with special page */ 224#define __HAVE_ARCH_PTE_SPECIAL 225 226/* Set of bits not changed in pte_modify */ 227#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL) 228 229/* Six different types of pages. */ 230#define _PAGE_TYPE_EMPTY 0x400 231#define _PAGE_TYPE_NONE 0x401 232#define _PAGE_TYPE_SWAP 0x403 233#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */ 234#define _PAGE_TYPE_RO 0x200 235#define _PAGE_TYPE_RW 0x000 236#define _PAGE_TYPE_EX_RO 0x202 237#define _PAGE_TYPE_EX_RW 0x002 238 239/* 240 * Only four types for huge pages, using the invalid bit and protection bit 241 * of a segment table entry. 242 */ 243#define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */ 244#define _HPAGE_TYPE_NONE 0x220 245#define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */ 246#define _HPAGE_TYPE_RW 0x000 247 248/* 249 * PTE type bits are rather complicated. handle_pte_fault uses pte_present, 250 * pte_none and pte_file to find out the pte type WITHOUT holding the page 251 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to 252 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs 253 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards. 254 * This change is done while holding the lock, but the intermediate step 255 * of a previously valid pte with the hw invalid bit set can be observed by 256 * handle_pte_fault. That makes it necessary that all valid pte types with 257 * the hw invalid bit set must be distinguishable from the four pte types 258 * empty, none, swap and file. 259 * 260 * irxt ipte irxt 261 * _PAGE_TYPE_EMPTY 1000 -> 1000 262 * _PAGE_TYPE_NONE 1001 -> 1001 263 * _PAGE_TYPE_SWAP 1011 -> 1011 264 * _PAGE_TYPE_FILE 11?1 -> 11?1 265 * _PAGE_TYPE_RO 0100 -> 1100 266 * _PAGE_TYPE_RW 0000 -> 1000 267 * _PAGE_TYPE_EX_RO 0110 -> 1110 268 * _PAGE_TYPE_EX_RW 0010 -> 1010 269 * 270 * pte_none is true for bits combinations 1000, 1010, 1100, 1110 271 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001 272 * pte_file is true for bits combinations 1101, 1111 273 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid. 274 */ 275 276/* Page status table bits for virtualization */ 277#define RCP_PCL_BIT 55 278#define RCP_HR_BIT 54 279#define RCP_HC_BIT 53 280#define RCP_GR_BIT 50 281#define RCP_GC_BIT 49 282 283#ifndef __s390x__ 284 285/* Bits in the segment table address-space-control-element */ 286#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */ 287#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */ 288#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 289#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 290#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */ 291 292/* Bits in the segment table entry */ 293#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */ 294#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 295#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */ 296#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */ 297 298#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL) 299#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 300 301#else /* __s390x__ */ 302 303/* Bits in the segment/region table address-space-control-element */ 304#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ 305#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 306#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 307#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 308#define _ASCE_REAL_SPACE 0x20 /* real space control */ 309#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 310#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 311#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 312#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 313#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 314#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 315 316/* Bits in the region table entry */ 317#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 318#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */ 319#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 320#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 321#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 322#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 323#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 324 325#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 326#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV) 327#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 328#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV) 329#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 330#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV) 331 332/* Bits in the segment table entry */ 333#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ 334#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */ 335#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */ 336 337#define _SEGMENT_ENTRY (0) 338#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV) 339 340#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */ 341#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */ 342 343#endif /* __s390x__ */ 344 345/* 346 * A user page table pointer has the space-switch-event bit, the 347 * private-space-control bit and the storage-alteration-event-control 348 * bit set. A kernel page table pointer doesn't need them. 349 */ 350#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 351 _ASCE_ALT_EVENT) 352 353/* Bits int the storage key */ 354#define _PAGE_CHANGED 0x02 /* HW changed bit */ 355#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 356 357/* 358 * Page protection definitions. 359 */ 360#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE) 361#define PAGE_RO __pgprot(_PAGE_TYPE_RO) 362#define PAGE_RW __pgprot(_PAGE_TYPE_RW) 363#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO) 364#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW) 365 366#define PAGE_KERNEL PAGE_RW 367#define PAGE_COPY PAGE_RO 368 369/* 370 * Dependent on the EXEC_PROTECT option s390 can do execute protection. 371 * Write permission always implies read permission. In theory with a 372 * primary/secondary page table execute only can be implemented but 373 * it would cost an additional bit in the pte to distinguish all the 374 * different pte types. To avoid that execute permission currently 375 * implies read permission as well. 376 */ 377 /*xwr*/ 378#define __P000 PAGE_NONE 379#define __P001 PAGE_RO 380#define __P010 PAGE_RO 381#define __P011 PAGE_RO 382#define __P100 PAGE_EX_RO 383#define __P101 PAGE_EX_RO 384#define __P110 PAGE_EX_RO 385#define __P111 PAGE_EX_RO 386 387#define __S000 PAGE_NONE 388#define __S001 PAGE_RO 389#define __S010 PAGE_RW 390#define __S011 PAGE_RW 391#define __S100 PAGE_EX_RO 392#define __S101 PAGE_EX_RO 393#define __S110 PAGE_EX_RW 394#define __S111 PAGE_EX_RW 395 396#ifndef __s390x__ 397# define PxD_SHADOW_SHIFT 1 398#else /* __s390x__ */ 399# define PxD_SHADOW_SHIFT 2 400#endif /* __s390x__ */ 401 402static inline void *get_shadow_table(void *table) 403{ 404 unsigned long addr, offset; 405 struct page *page; 406 407 addr = (unsigned long) table; 408 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1); 409 page = virt_to_page((void *)(addr ^ offset)); 410 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL); 411} 412 413/* 414 * Certain architectures need to do special things when PTEs 415 * within a page table are directly modified. Thus, the following 416 * hook is made available. 417 */ 418static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 419 pte_t *ptep, pte_t entry) 420{ 421 *ptep = entry; 422 if (mm->context.noexec) { 423 if (!(pte_val(entry) & _PAGE_INVALID) && 424 (pte_val(entry) & _PAGE_SWX)) 425 pte_val(entry) |= _PAGE_RO; 426 else 427 pte_val(entry) = _PAGE_TYPE_EMPTY; 428 ptep[PTRS_PER_PTE] = entry; 429 } 430} 431 432/* 433 * pgd/pmd/pte query functions 434 */ 435#ifndef __s390x__ 436 437static inline int pgd_present(pgd_t pgd) { return 1; } 438static inline int pgd_none(pgd_t pgd) { return 0; } 439static inline int pgd_bad(pgd_t pgd) { return 0; } 440 441static inline int pud_present(pud_t pud) { return 1; } 442static inline int pud_none(pud_t pud) { return 0; } 443static inline int pud_bad(pud_t pud) { return 0; } 444 445#else /* __s390x__ */ 446 447static inline int pgd_present(pgd_t pgd) 448{ 449 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 450 return 1; 451 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 452} 453 454static inline int pgd_none(pgd_t pgd) 455{ 456 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 457 return 0; 458 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL; 459} 460 461static inline int pgd_bad(pgd_t pgd) 462{ 463 /* 464 * With dynamic page table levels the pgd can be a region table 465 * entry or a segment table entry. Check for the bit that are 466 * invalid for either table entry. 467 */ 468 unsigned long mask = 469 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 470 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 471 return (pgd_val(pgd) & mask) != 0; 472} 473 474static inline int pud_present(pud_t pud) 475{ 476 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 477 return 1; 478 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 479} 480 481static inline int pud_none(pud_t pud) 482{ 483 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 484 return 0; 485 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL; 486} 487 488static inline int pud_bad(pud_t pud) 489{ 490 /* 491 * With dynamic page table levels the pud can be a region table 492 * entry or a segment table entry. Check for the bit that are 493 * invalid for either table entry. 494 */ 495 unsigned long mask = 496 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV & 497 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 498 return (pud_val(pud) & mask) != 0; 499} 500 501#endif /* __s390x__ */ 502 503static inline int pmd_present(pmd_t pmd) 504{ 505 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL; 506} 507 508static inline int pmd_none(pmd_t pmd) 509{ 510 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL; 511} 512 513static inline int pmd_bad(pmd_t pmd) 514{ 515 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV; 516 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY; 517} 518 519static inline int pte_none(pte_t pte) 520{ 521 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT); 522} 523 524static inline int pte_present(pte_t pte) 525{ 526 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX; 527 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE || 528 (!(pte_val(pte) & _PAGE_INVALID) && 529 !(pte_val(pte) & _PAGE_SWT)); 530} 531 532static inline int pte_file(pte_t pte) 533{ 534 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT; 535 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE; 536} 537 538static inline int pte_special(pte_t pte) 539{ 540 return (pte_val(pte) & _PAGE_SPECIAL); 541} 542 543#define __HAVE_ARCH_PTE_SAME 544#define pte_same(a,b) (pte_val(a) == pte_val(b)) 545 546static inline void rcp_lock(pte_t *ptep) 547{ 548#ifdef CONFIG_PGSTE 549 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE); 550 preempt_disable(); 551 while (test_and_set_bit(RCP_PCL_BIT, pgste)) 552 ; 553#endif 554} 555 556static inline void rcp_unlock(pte_t *ptep) 557{ 558#ifdef CONFIG_PGSTE 559 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE); 560 clear_bit(RCP_PCL_BIT, pgste); 561 preempt_enable(); 562#endif 563} 564 565/* forward declaration for SetPageUptodate in page-flags.h*/ 566static inline void page_clear_dirty(struct page *page); 567#include <linux/page-flags.h> 568 569static inline void ptep_rcp_copy(pte_t *ptep) 570{ 571#ifdef CONFIG_PGSTE 572 struct page *page = virt_to_page(pte_val(*ptep)); 573 unsigned int skey; 574 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE); 575 576 skey = page_get_storage_key(page_to_phys(page)); 577 if (skey & _PAGE_CHANGED) 578 set_bit_simple(RCP_GC_BIT, pgste); 579 if (skey & _PAGE_REFERENCED) 580 set_bit_simple(RCP_GR_BIT, pgste); 581 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) 582 SetPageDirty(page); 583 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste)) 584 SetPageReferenced(page); 585#endif 586} 587 588/* 589 * query functions pte_write/pte_dirty/pte_young only work if 590 * pte_present() is true. Undefined behaviour if not.. 591 */ 592static inline int pte_write(pte_t pte) 593{ 594 return (pte_val(pte) & _PAGE_RO) == 0; 595} 596 597static inline int pte_dirty(pte_t pte) 598{ 599 /* A pte is neither clean nor dirty on s/390. The dirty bit 600 * is in the storage key. See page_test_and_clear_dirty for 601 * details. 602 */ 603 return 0; 604} 605 606static inline int pte_young(pte_t pte) 607{ 608 /* A pte is neither young nor old on s/390. The young bit 609 * is in the storage key. See page_test_and_clear_young for 610 * details. 611 */ 612 return 0; 613} 614 615/* 616 * pgd/pmd/pte modification functions 617 */ 618 619#ifndef __s390x__ 620 621#define pgd_clear(pgd) do { } while (0) 622#define pud_clear(pud) do { } while (0) 623 624#else /* __s390x__ */ 625 626static inline void pgd_clear_kernel(pgd_t * pgd) 627{ 628 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 629 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; 630} 631 632static inline void pgd_clear(pgd_t * pgd) 633{ 634 pgd_t *shadow = get_shadow_table(pgd); 635 636 pgd_clear_kernel(pgd); 637 if (shadow) 638 pgd_clear_kernel(shadow); 639} 640 641static inline void pud_clear_kernel(pud_t *pud) 642{ 643 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 644 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 645} 646 647static inline void pud_clear(pud_t *pud) 648{ 649 pud_t *shadow = get_shadow_table(pud); 650 651 pud_clear_kernel(pud); 652 if (shadow) 653 pud_clear_kernel(shadow); 654} 655 656#endif /* __s390x__ */ 657 658static inline void pmd_clear_kernel(pmd_t * pmdp) 659{ 660 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 661} 662 663static inline void pmd_clear(pmd_t *pmd) 664{ 665 pmd_t *shadow = get_shadow_table(pmd); 666 667 pmd_clear_kernel(pmd); 668 if (shadow) 669 pmd_clear_kernel(shadow); 670} 671 672static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 673{ 674 if (mm->context.pgstes) 675 ptep_rcp_copy(ptep); 676 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 677 if (mm->context.noexec) 678 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY; 679} 680 681/* 682 * The following pte modification functions only work if 683 * pte_present() is true. Undefined behaviour if not.. 684 */ 685static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 686{ 687 pte_val(pte) &= _PAGE_CHG_MASK; 688 pte_val(pte) |= pgprot_val(newprot); 689 return pte; 690} 691 692static inline pte_t pte_wrprotect(pte_t pte) 693{ 694 /* Do not clobber _PAGE_TYPE_NONE pages! */ 695 if (!(pte_val(pte) & _PAGE_INVALID)) 696 pte_val(pte) |= _PAGE_RO; 697 return pte; 698} 699 700static inline pte_t pte_mkwrite(pte_t pte) 701{ 702 pte_val(pte) &= ~_PAGE_RO; 703 return pte; 704} 705 706static inline pte_t pte_mkclean(pte_t pte) 707{ 708 /* The only user of pte_mkclean is the fork() code. 709 We must *not* clear the *physical* page dirty bit 710 just because fork() wants to clear the dirty bit in 711 *one* of the page's mappings. So we just do nothing. */ 712 return pte; 713} 714 715static inline pte_t pte_mkdirty(pte_t pte) 716{ 717 /* We do not explicitly set the dirty bit because the 718 * sske instruction is slow. It is faster to let the 719 * next instruction set the dirty bit. 720 */ 721 return pte; 722} 723 724static inline pte_t pte_mkold(pte_t pte) 725{ 726 /* S/390 doesn't keep its dirty/referenced bit in the pte. 727 * There is no point in clearing the real referenced bit. 728 */ 729 return pte; 730} 731 732static inline pte_t pte_mkyoung(pte_t pte) 733{ 734 /* S/390 doesn't keep its dirty/referenced bit in the pte. 735 * There is no point in setting the real referenced bit. 736 */ 737 return pte; 738} 739 740static inline pte_t pte_mkspecial(pte_t pte) 741{ 742 pte_val(pte) |= _PAGE_SPECIAL; 743 return pte; 744} 745 746#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 747static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 748 unsigned long addr, pte_t *ptep) 749{ 750#ifdef CONFIG_PGSTE 751 unsigned long physpage; 752 int young; 753 unsigned long *pgste; 754 755 if (!vma->vm_mm->context.pgstes) 756 return 0; 757 physpage = pte_val(*ptep) & PAGE_MASK; 758 pgste = (unsigned long *) (ptep + PTRS_PER_PTE); 759 760 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0); 761 rcp_lock(ptep); 762 if (young) 763 set_bit_simple(RCP_GR_BIT, pgste); 764 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste); 765 rcp_unlock(ptep); 766 return young; 767#endif 768 return 0; 769} 770 771#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 772static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 773 unsigned long address, pte_t *ptep) 774{ 775 /* No need to flush TLB 776 * On s390 reference bits are in storage key and never in TLB 777 * With virtualization we handle the reference bit, without we 778 * we can simply return */ 779#ifdef CONFIG_PGSTE 780 return ptep_test_and_clear_young(vma, address, ptep); 781#endif 782 return 0; 783} 784 785static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 786{ 787 if (!(pte_val(*ptep) & _PAGE_INVALID)) { 788#ifndef __s390x__ 789 /* pto must point to the start of the segment table */ 790 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 791#else 792 /* ipte in zarch mode can do the math */ 793 pte_t *pto = ptep; 794#endif 795 asm volatile( 796 " ipte %2,%3" 797 : "=m" (*ptep) : "m" (*ptep), 798 "a" (pto), "a" (address)); 799 } 800} 801 802static inline void ptep_invalidate(struct mm_struct *mm, 803 unsigned long address, pte_t *ptep) 804{ 805 if (mm->context.pgstes) { 806 rcp_lock(ptep); 807 __ptep_ipte(address, ptep); 808 ptep_rcp_copy(ptep); 809 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 810 rcp_unlock(ptep); 811 return; 812 } 813 __ptep_ipte(address, ptep); 814 pte_val(*ptep) = _PAGE_TYPE_EMPTY; 815 if (mm->context.noexec) { 816 __ptep_ipte(address, ptep + PTRS_PER_PTE); 817 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY; 818 } 819} 820 821/* 822 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 823 * both clear the TLB for the unmapped pte. The reason is that 824 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 825 * to modify an active pte. The sequence is 826 * 1) ptep_get_and_clear 827 * 2) set_pte_at 828 * 3) flush_tlb_range 829 * On s390 the tlb needs to get flushed with the modification of the pte 830 * if the pte is active. The only way how this can be implemented is to 831 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 832 * is a nop. 833 */ 834#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 835#define ptep_get_and_clear(__mm, __address, __ptep) \ 836({ \ 837 pte_t __pte = *(__ptep); \ 838 if (atomic_read(&(__mm)->mm_users) > 1 || \ 839 (__mm) != current->active_mm) \ 840 ptep_invalidate(__mm, __address, __ptep); \ 841 else \ 842 pte_clear((__mm), (__address), (__ptep)); \ 843 __pte; \ 844}) 845 846#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 847static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 848 unsigned long address, pte_t *ptep) 849{ 850 pte_t pte = *ptep; 851 ptep_invalidate(vma->vm_mm, address, ptep); 852 return pte; 853} 854 855/* 856 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 857 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 858 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 859 * cannot be accessed while the batched unmap is running. In this case 860 * full==1 and a simple pte_clear is enough. See tlb.h. 861 */ 862#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 863static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 864 unsigned long addr, 865 pte_t *ptep, int full) 866{ 867 pte_t pte = *ptep; 868 869 if (full) 870 pte_clear(mm, addr, ptep); 871 else 872 ptep_invalidate(mm, addr, ptep); 873 return pte; 874} 875 876#define __HAVE_ARCH_PTEP_SET_WRPROTECT 877#define ptep_set_wrprotect(__mm, __addr, __ptep) \ 878({ \ 879 pte_t __pte = *(__ptep); \ 880 if (pte_write(__pte)) { \ 881 if (atomic_read(&(__mm)->mm_users) > 1 || \ 882 (__mm) != current->active_mm) \ 883 ptep_invalidate(__mm, __addr, __ptep); \ 884 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \ 885 } \ 886}) 887 888#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 889#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \ 890({ \ 891 int __changed = !pte_same(*(__ptep), __entry); \ 892 if (__changed) { \ 893 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \ 894 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \ 895 } \ 896 __changed; \ 897}) 898 899/* 900 * Test and clear dirty bit in storage key. 901 * We can't clear the changed bit atomically. This is a potential 902 * race against modification of the referenced bit. This function 903 * should therefore only be called if it is not mapped in any 904 * address space. 905 */ 906#define __HAVE_ARCH_PAGE_TEST_DIRTY 907static inline int page_test_dirty(struct page *page) 908{ 909 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0; 910} 911 912#define __HAVE_ARCH_PAGE_CLEAR_DIRTY 913static inline void page_clear_dirty(struct page *page) 914{ 915 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY); 916} 917 918/* 919 * Test and clear referenced bit in storage key. 920 */ 921#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 922static inline int page_test_and_clear_young(struct page *page) 923{ 924 unsigned long physpage = page_to_phys(page); 925 int ccode; 926 927 asm volatile( 928 " rrbe 0,%1\n" 929 " ipm %0\n" 930 " srl %0,28\n" 931 : "=d" (ccode) : "a" (physpage) : "cc" ); 932 return ccode & 2; 933} 934 935/* 936 * Conversion functions: convert a page and protection to a page entry, 937 * and a page entry and page directory to the page they refer to. 938 */ 939static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 940{ 941 pte_t __pte; 942 pte_val(__pte) = physpage + pgprot_val(pgprot); 943 return __pte; 944} 945 946static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 947{ 948 unsigned long physpage = page_to_phys(page); 949 950 return mk_pte_phys(physpage, pgprot); 951} 952 953#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 954#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 955#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 956#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 957 958#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 959#define pgd_offset_k(address) pgd_offset(&init_mm, address) 960 961#ifndef __s390x__ 962 963#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 964#define pud_deref(pmd) ({ BUG(); 0UL; }) 965#define pgd_deref(pmd) ({ BUG(); 0UL; }) 966 967#define pud_offset(pgd, address) ((pud_t *) pgd) 968#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address)) 969 970#else /* __s390x__ */ 971 972#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 973#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 974#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 975 976static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 977{ 978 pud_t *pud = (pud_t *) pgd; 979 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 980 pud = (pud_t *) pgd_deref(*pgd); 981 return pud + pud_index(address); 982} 983 984static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 985{ 986 pmd_t *pmd = (pmd_t *) pud; 987 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 988 pmd = (pmd_t *) pud_deref(*pud); 989 return pmd + pmd_index(address); 990} 991 992#endif /* __s390x__ */ 993 994#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 995#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 996#define pte_page(x) pfn_to_page(pte_pfn(x)) 997 998#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) 999 1000/* Find an entry in the lowest level page table.. */ 1001#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1002#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1003#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1004#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) 1005#define pte_unmap(pte) do { } while (0) 1006#define pte_unmap_nested(pte) do { } while (0) 1007 1008/* 1009 * 31 bit swap entry format: 1010 * A page-table entry has some bits we have to treat in a special way. 1011 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 1012 * exception will occur instead of a page translation exception. The 1013 * specifiation exception has the bad habit not to store necessary 1014 * information in the lowcore. 1015 * Bit 21 and bit 22 are the page invalid bit and the page protection 1016 * bit. We set both to indicate a swapped page. 1017 * Bit 30 and 31 are used to distinguish the different page types. For 1018 * a swapped page these bits need to be zero. 1019 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 1020 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 1021 * plus 24 for the offset. 1022 * 0| offset |0110|o|type |00| 1023 * 0 0000000001111111111 2222 2 22222 33 1024 * 0 1234567890123456789 0123 4 56789 01 1025 * 1026 * 64 bit swap entry format: 1027 * A page-table entry has some bits we have to treat in a special way. 1028 * Bits 52 and bit 55 have to be zero, otherwise an specification 1029 * exception will occur instead of a page translation exception. The 1030 * specifiation exception has the bad habit not to store necessary 1031 * information in the lowcore. 1032 * Bit 53 and bit 54 are the page invalid bit and the page protection 1033 * bit. We set both to indicate a swapped page. 1034 * Bit 62 and 63 are used to distinguish the different page types. For 1035 * a swapped page these bits need to be zero. 1036 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 1037 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 1038 * plus 56 for the offset. 1039 * | offset |0110|o|type |00| 1040 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 1041 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 1042 */ 1043#ifndef __s390x__ 1044#define __SWP_OFFSET_MASK (~0UL >> 12) 1045#else 1046#define __SWP_OFFSET_MASK (~0UL >> 11) 1047#endif 1048static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1049{ 1050 pte_t pte; 1051 offset &= __SWP_OFFSET_MASK; 1052 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) | 1053 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 1054 return pte; 1055} 1056 1057#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 1058#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 1059#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 1060 1061#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1062#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1063 1064#ifndef __s390x__ 1065# define PTE_FILE_MAX_BITS 26 1066#else /* __s390x__ */ 1067# define PTE_FILE_MAX_BITS 59 1068#endif /* __s390x__ */ 1069 1070#define pte_to_pgoff(__pte) \ 1071 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 1072 1073#define pgoff_to_pte(__off) \ 1074 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 1075 | _PAGE_TYPE_FILE }) 1076 1077#endif /* !__ASSEMBLY__ */ 1078 1079#define kern_addr_valid(addr) (1) 1080 1081extern int vmem_add_mapping(unsigned long start, unsigned long size); 1082extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1083extern int s390_enable_sie(void); 1084 1085/* 1086 * No page table caches to initialise 1087 */ 1088#define pgtable_cache_init() do { } while (0) 1089 1090#include <asm-generic/pgtable.h> 1091 1092#endif /* _S390_PAGE_H */