at v2.6.26 500 lines 12 kB view raw
1/* 2 * General Purpose functions for the global management of the 3 * Communication Processor Module. 4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) 5 * 6 * In addition to the individual control of the communication 7 * channels, there are a few functions that globally affect the 8 * communication processor. 9 * 10 * Buffer descriptors must be allocated from the dual ported memory 11 * space. The allocator for that is here. When the communication 12 * process is reset, we reclaim the memory available. There is 13 * currently no deallocator for this memory. 14 * The amount of space available is platform dependent. On the 15 * MBX, the EPPC software loads additional microcode into the 16 * communication processor, and uses some of the DP ram for this 17 * purpose. Current, the first 512 bytes and the last 256 bytes of 18 * memory are used. Right now I am conservative and only use the 19 * memory that can never be used for microcode. If there are 20 * applications that require more DP ram, we can expand the boundaries 21 * but then we have to be careful of any downloaded microcode. 22 */ 23#include <linux/errno.h> 24#include <linux/sched.h> 25#include <linux/kernel.h> 26#include <linux/dma-mapping.h> 27#include <linux/param.h> 28#include <linux/string.h> 29#include <linux/mm.h> 30#include <linux/interrupt.h> 31#include <linux/irq.h> 32#include <linux/module.h> 33#include <asm/page.h> 34#include <asm/pgtable.h> 35#include <asm/8xx_immap.h> 36#include <asm/cpm1.h> 37#include <asm/io.h> 38#include <asm/tlbflush.h> 39#include <asm/rheap.h> 40#include <asm/prom.h> 41#include <asm/cpm.h> 42 43#include <asm/fs_pd.h> 44 45#define CPM_MAP_SIZE (0x4000) 46 47cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */ 48immap_t __iomem *mpc8xx_immr; 49static cpic8xx_t __iomem *cpic_reg; 50 51static struct irq_host *cpm_pic_host; 52 53static void cpm_mask_irq(unsigned int irq) 54{ 55 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 56 57 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 58} 59 60static void cpm_unmask_irq(unsigned int irq) 61{ 62 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 63 64 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec)); 65} 66 67static void cpm_end_irq(unsigned int irq) 68{ 69 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq; 70 71 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec)); 72} 73 74static struct irq_chip cpm_pic = { 75 .typename = " CPM PIC ", 76 .mask = cpm_mask_irq, 77 .unmask = cpm_unmask_irq, 78 .eoi = cpm_end_irq, 79}; 80 81int cpm_get_irq(void) 82{ 83 int cpm_vec; 84 85 /* Get the vector by setting the ACK bit and then reading 86 * the register. 87 */ 88 out_be16(&cpic_reg->cpic_civr, 1); 89 cpm_vec = in_be16(&cpic_reg->cpic_civr); 90 cpm_vec >>= 11; 91 92 return irq_linear_revmap(cpm_pic_host, cpm_vec); 93} 94 95static int cpm_pic_host_map(struct irq_host *h, unsigned int virq, 96 irq_hw_number_t hw) 97{ 98 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw); 99 100 get_irq_desc(virq)->status |= IRQ_LEVEL; 101 set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq); 102 return 0; 103} 104 105/* The CPM can generate the error interrupt when there is a race condition 106 * between generating and masking interrupts. All we have to do is ACK it 107 * and return. This is a no-op function so we don't need any special 108 * tests in the interrupt handler. 109 */ 110static irqreturn_t cpm_error_interrupt(int irq, void *dev) 111{ 112 return IRQ_HANDLED; 113} 114 115static struct irqaction cpm_error_irqaction = { 116 .handler = cpm_error_interrupt, 117 .mask = CPU_MASK_NONE, 118 .name = "error", 119}; 120 121static struct irq_host_ops cpm_pic_host_ops = { 122 .map = cpm_pic_host_map, 123}; 124 125unsigned int cpm_pic_init(void) 126{ 127 struct device_node *np = NULL; 128 struct resource res; 129 unsigned int sirq = NO_IRQ, hwirq, eirq; 130 int ret; 131 132 pr_debug("cpm_pic_init\n"); 133 134 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic"); 135 if (np == NULL) 136 np = of_find_compatible_node(NULL, "cpm-pic", "CPM"); 137 if (np == NULL) { 138 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n"); 139 return sirq; 140 } 141 142 ret = of_address_to_resource(np, 0, &res); 143 if (ret) 144 goto end; 145 146 cpic_reg = ioremap(res.start, res.end - res.start + 1); 147 if (cpic_reg == NULL) 148 goto end; 149 150 sirq = irq_of_parse_and_map(np, 0); 151 if (sirq == NO_IRQ) 152 goto end; 153 154 /* Initialize the CPM interrupt controller. */ 155 hwirq = (unsigned int)irq_map[sirq].hwirq; 156 out_be32(&cpic_reg->cpic_cicr, 157 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) | 158 ((hwirq/2) << 13) | CICR_HP_MASK); 159 160 out_be32(&cpic_reg->cpic_cimr, 0); 161 162 cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR, 163 64, &cpm_pic_host_ops, 64); 164 if (cpm_pic_host == NULL) { 165 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n"); 166 sirq = NO_IRQ; 167 goto end; 168 } 169 170 /* Install our own error handler. */ 171 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1"); 172 if (np == NULL) 173 np = of_find_node_by_type(NULL, "cpm"); 174 if (np == NULL) { 175 printk(KERN_ERR "CPM PIC init: can not find cpm node\n"); 176 goto end; 177 } 178 179 eirq = irq_of_parse_and_map(np, 0); 180 if (eirq == NO_IRQ) 181 goto end; 182 183 if (setup_irq(eirq, &cpm_error_irqaction)) 184 printk(KERN_ERR "Could not allocate CPM error IRQ!"); 185 186 setbits32(&cpic_reg->cpic_cicr, CICR_IEN); 187 188end: 189 of_node_put(np); 190 return sirq; 191} 192 193void __init cpm_reset(void) 194{ 195 sysconf8xx_t __iomem *siu_conf; 196 197 mpc8xx_immr = ioremap(get_immrbase(), 0x4000); 198 if (!mpc8xx_immr) { 199 printk(KERN_CRIT "Could not map IMMR\n"); 200 return; 201 } 202 203 cpmp = &mpc8xx_immr->im_cpm; 204 205#ifndef CONFIG_PPC_EARLY_DEBUG_CPM 206 /* Perform a reset. 207 */ 208 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG); 209 210 /* Wait for it. 211 */ 212 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG); 213#endif 214 215#ifdef CONFIG_UCODE_PATCH 216 cpm_load_patch(cpmp); 217#endif 218 219 /* Set SDMA Bus Request priority 5. 220 * On 860T, this also enables FEC priority 6. I am not sure 221 * this is what we realy want for some applications, but the 222 * manual recommends it. 223 * Bit 25, FAM can also be set to use FEC aggressive mode (860T). 224 */ 225 siu_conf = immr_map(im_siu_conf); 226 out_be32(&siu_conf->sc_sdcr, 1); 227 immr_unmap(siu_conf); 228 229 cpm_muram_init(); 230} 231 232static DEFINE_SPINLOCK(cmd_lock); 233 234#define MAX_CR_CMD_LOOPS 10000 235 236int cpm_command(u32 command, u8 opcode) 237{ 238 int i, ret; 239 unsigned long flags; 240 241 if (command & 0xffffff0f) 242 return -EINVAL; 243 244 spin_lock_irqsave(&cmd_lock, flags); 245 246 ret = 0; 247 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8)); 248 for (i = 0; i < MAX_CR_CMD_LOOPS; i++) 249 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0) 250 goto out; 251 252 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__); 253 ret = -EIO; 254out: 255 spin_unlock_irqrestore(&cmd_lock, flags); 256 return ret; 257} 258EXPORT_SYMBOL(cpm_command); 259 260/* Set a baud rate generator. This needs lots of work. There are 261 * four BRGs, any of which can be wired to any channel. 262 * The internal baud rate clock is the system clock divided by 16. 263 * This assumes the baudrate is 16x oversampled by the uart. 264 */ 265#define BRG_INT_CLK (get_brgfreq()) 266#define BRG_UART_CLK (BRG_INT_CLK/16) 267#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16) 268 269void 270cpm_setbrg(uint brg, uint rate) 271{ 272 u32 __iomem *bp; 273 274 /* This is good enough to get SMCs running..... 275 */ 276 bp = &cpmp->cp_brgc1; 277 bp += brg; 278 /* The BRG has a 12-bit counter. For really slow baud rates (or 279 * really fast processors), we may have to further divide by 16. 280 */ 281 if (((BRG_UART_CLK / rate) - 1) < 4096) 282 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN); 283 else 284 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) | 285 CPM_BRG_EN | CPM_BRG_DIV16); 286} 287 288struct cpm_ioport16 { 289 __be16 dir, par, odr_sor, dat, intr; 290 __be16 res[3]; 291}; 292 293struct cpm_ioport32 { 294 __be32 dir, par, sor; 295}; 296 297static void cpm1_set_pin32(int port, int pin, int flags) 298{ 299 struct cpm_ioport32 __iomem *iop; 300 pin = 1 << (31 - pin); 301 302 if (port == CPM_PORTB) 303 iop = (struct cpm_ioport32 __iomem *) 304 &mpc8xx_immr->im_cpm.cp_pbdir; 305 else 306 iop = (struct cpm_ioport32 __iomem *) 307 &mpc8xx_immr->im_cpm.cp_pedir; 308 309 if (flags & CPM_PIN_OUTPUT) 310 setbits32(&iop->dir, pin); 311 else 312 clrbits32(&iop->dir, pin); 313 314 if (!(flags & CPM_PIN_GPIO)) 315 setbits32(&iop->par, pin); 316 else 317 clrbits32(&iop->par, pin); 318 319 if (port == CPM_PORTB) { 320 if (flags & CPM_PIN_OPENDRAIN) 321 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); 322 else 323 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin); 324 } 325 326 if (port == CPM_PORTE) { 327 if (flags & CPM_PIN_SECONDARY) 328 setbits32(&iop->sor, pin); 329 else 330 clrbits32(&iop->sor, pin); 331 332 if (flags & CPM_PIN_OPENDRAIN) 333 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); 334 else 335 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin); 336 } 337} 338 339static void cpm1_set_pin16(int port, int pin, int flags) 340{ 341 struct cpm_ioport16 __iomem *iop = 342 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport; 343 344 pin = 1 << (15 - pin); 345 346 if (port != 0) 347 iop += port - 1; 348 349 if (flags & CPM_PIN_OUTPUT) 350 setbits16(&iop->dir, pin); 351 else 352 clrbits16(&iop->dir, pin); 353 354 if (!(flags & CPM_PIN_GPIO)) 355 setbits16(&iop->par, pin); 356 else 357 clrbits16(&iop->par, pin); 358 359 if (port == CPM_PORTA) { 360 if (flags & CPM_PIN_OPENDRAIN) 361 setbits16(&iop->odr_sor, pin); 362 else 363 clrbits16(&iop->odr_sor, pin); 364 } 365 if (port == CPM_PORTC) { 366 if (flags & CPM_PIN_SECONDARY) 367 setbits16(&iop->odr_sor, pin); 368 else 369 clrbits16(&iop->odr_sor, pin); 370 } 371} 372 373void cpm1_set_pin(enum cpm_port port, int pin, int flags) 374{ 375 if (port == CPM_PORTB || port == CPM_PORTE) 376 cpm1_set_pin32(port, pin, flags); 377 else 378 cpm1_set_pin16(port, pin, flags); 379} 380 381int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode) 382{ 383 int shift; 384 int i, bits = 0; 385 u32 __iomem *reg; 386 u32 mask = 7; 387 388 u8 clk_map[][3] = { 389 {CPM_CLK_SCC1, CPM_BRG1, 0}, 390 {CPM_CLK_SCC1, CPM_BRG2, 1}, 391 {CPM_CLK_SCC1, CPM_BRG3, 2}, 392 {CPM_CLK_SCC1, CPM_BRG4, 3}, 393 {CPM_CLK_SCC1, CPM_CLK1, 4}, 394 {CPM_CLK_SCC1, CPM_CLK2, 5}, 395 {CPM_CLK_SCC1, CPM_CLK3, 6}, 396 {CPM_CLK_SCC1, CPM_CLK4, 7}, 397 398 {CPM_CLK_SCC2, CPM_BRG1, 0}, 399 {CPM_CLK_SCC2, CPM_BRG2, 1}, 400 {CPM_CLK_SCC2, CPM_BRG3, 2}, 401 {CPM_CLK_SCC2, CPM_BRG4, 3}, 402 {CPM_CLK_SCC2, CPM_CLK1, 4}, 403 {CPM_CLK_SCC2, CPM_CLK2, 5}, 404 {CPM_CLK_SCC2, CPM_CLK3, 6}, 405 {CPM_CLK_SCC2, CPM_CLK4, 7}, 406 407 {CPM_CLK_SCC3, CPM_BRG1, 0}, 408 {CPM_CLK_SCC3, CPM_BRG2, 1}, 409 {CPM_CLK_SCC3, CPM_BRG3, 2}, 410 {CPM_CLK_SCC3, CPM_BRG4, 3}, 411 {CPM_CLK_SCC3, CPM_CLK5, 4}, 412 {CPM_CLK_SCC3, CPM_CLK6, 5}, 413 {CPM_CLK_SCC3, CPM_CLK7, 6}, 414 {CPM_CLK_SCC3, CPM_CLK8, 7}, 415 416 {CPM_CLK_SCC4, CPM_BRG1, 0}, 417 {CPM_CLK_SCC4, CPM_BRG2, 1}, 418 {CPM_CLK_SCC4, CPM_BRG3, 2}, 419 {CPM_CLK_SCC4, CPM_BRG4, 3}, 420 {CPM_CLK_SCC4, CPM_CLK5, 4}, 421 {CPM_CLK_SCC4, CPM_CLK6, 5}, 422 {CPM_CLK_SCC4, CPM_CLK7, 6}, 423 {CPM_CLK_SCC4, CPM_CLK8, 7}, 424 425 {CPM_CLK_SMC1, CPM_BRG1, 0}, 426 {CPM_CLK_SMC1, CPM_BRG2, 1}, 427 {CPM_CLK_SMC1, CPM_BRG3, 2}, 428 {CPM_CLK_SMC1, CPM_BRG4, 3}, 429 {CPM_CLK_SMC1, CPM_CLK1, 4}, 430 {CPM_CLK_SMC1, CPM_CLK2, 5}, 431 {CPM_CLK_SMC1, CPM_CLK3, 6}, 432 {CPM_CLK_SMC1, CPM_CLK4, 7}, 433 434 {CPM_CLK_SMC2, CPM_BRG1, 0}, 435 {CPM_CLK_SMC2, CPM_BRG2, 1}, 436 {CPM_CLK_SMC2, CPM_BRG3, 2}, 437 {CPM_CLK_SMC2, CPM_BRG4, 3}, 438 {CPM_CLK_SMC2, CPM_CLK5, 4}, 439 {CPM_CLK_SMC2, CPM_CLK6, 5}, 440 {CPM_CLK_SMC2, CPM_CLK7, 6}, 441 {CPM_CLK_SMC2, CPM_CLK8, 7}, 442 }; 443 444 switch (target) { 445 case CPM_CLK_SCC1: 446 reg = &mpc8xx_immr->im_cpm.cp_sicr; 447 shift = 0; 448 break; 449 450 case CPM_CLK_SCC2: 451 reg = &mpc8xx_immr->im_cpm.cp_sicr; 452 shift = 8; 453 break; 454 455 case CPM_CLK_SCC3: 456 reg = &mpc8xx_immr->im_cpm.cp_sicr; 457 shift = 16; 458 break; 459 460 case CPM_CLK_SCC4: 461 reg = &mpc8xx_immr->im_cpm.cp_sicr; 462 shift = 24; 463 break; 464 465 case CPM_CLK_SMC1: 466 reg = &mpc8xx_immr->im_cpm.cp_simode; 467 shift = 12; 468 break; 469 470 case CPM_CLK_SMC2: 471 reg = &mpc8xx_immr->im_cpm.cp_simode; 472 shift = 28; 473 break; 474 475 default: 476 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n"); 477 return -EINVAL; 478 } 479 480 if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX) 481 shift += 3; 482 483 for (i = 0; i < ARRAY_SIZE(clk_map); i++) { 484 if (clk_map[i][0] == target && clk_map[i][1] == clock) { 485 bits = clk_map[i][2]; 486 break; 487 } 488 } 489 490 if (i == ARRAY_SIZE(clk_map)) { 491 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n"); 492 return -EINVAL; 493 } 494 495 bits <<= shift; 496 mask <<= shift; 497 out_be32(reg, (in_be32(reg) & ~mask) | bits); 498 499 return 0; 500}